Package 'ic.infer'

January 26, 2018
Title Inequality Constrained Inference in Linear Normal Situations
Version 1.1-6
Depends R(>=2.5.0)
Imports quadprog, mvtnorm, boot, kappalab
Suggests relaimpo
Date 2018-01-26
Author Ulrike Groemping
Maintainer Ulrike Groemping groemping@beuth-hochschule.de
Description Implements inequality constrained inference. This includes parameter estimation in normal (linear) models under linear equality and inequality constraints, as well as normal likelihood ratio tests involving inequality-constrained hypotheses. For inequality-constrained linear models, averaging over R-squared for different orderings of regressors is also included.
License GPL (>=2)
LazyLoad yes
LazyData yes
Encoding latin1
URL http://prof.beuth-hochschule.de/groemping/
NeedsCompilation no
Repository CRAN
Date/Publication 2018-01-26 22:01:12 UTC

R topics documented:

bodyfat . 2
contr.diff . 3
grades . 4
ic.est . 5
ic.infer . 7
ic.test . 9
ic.weights . 13
internal.functions . 15
make.mon.ui . 16
or.relimp . 18
orlm . 20
Index 25
bodyfat Body fat data from Kutner et al. 2004

Description

Data set with three explanatory variables and response variable body fat for 20 healthy females aged 35-44

Usage

bodyfat

Format

A data frame with four columns:
Triceps triceps skinfold thickness
Thigh thigh circumference
Midarm midarm circumference
BodyFat body fat

Details

The data set contains three explanatory variables and the response variable body fat for 20 healthy females aged 35-44. As the variable body fat is very expensive to obtain, predicting it with the cheaper dimensional measurements is desirable. There is substantial multicollinearity among the explanatory variables.

Author(s)

Ulrike Groemping, BHT Berlin

Source

Kutner,M., Nachtsheim,C., Neter J., Li, W. (2005, 5th Ed.). Applied Linear Statistical Models. McGraw-Hill, New York.
Kutner,M., Nachtsheim,C., Neter J. (2004, 4th Ed.). Applied Linear Regression Models. McGrawHill, New York.
The data are published on the accompanying CD-Roms of those books (Table 1 in Chapter 7) and are also available online on the books homepages or from the UCLA website linked below. (Note that earlier editions of the bood had Neter as first author and included Wasserman as author, but the earlier editions do not have these data.)

References

UCLA: Academic Technology Services, Statistical Consulting Group (2009). Textbook examples. http://www.ats.ucla.edu/stat/examples/default.htm (accessed September 18, 2009).

$$
\begin{aligned}
& \text { contr.diff } \quad \begin{array}{l}
\text { Contrast function for factors with ordered values that yields increment } \\
\text { coefficients }
\end{array}
\end{aligned}
$$

Description

Function contr.diff is a contrast function for factors with ordered values. Coefficients for factors formatted with contr.diff are the increments from the current level to the neighbouring lower level.

Usage

contr. $\operatorname{diff}(\mathrm{n}$, contrasts $=$ TRUE $)$

Arguments

n	vector of levels or integer number of levels
contrasts	logical indicating whether contrasts should be computed

Details

The design matrix for an ordered factor formatted with contr. diff consists of ones for the current level itself and all lower levels. Thus, the estimated coefficients for each level are the estimated differences to the next lower level.

With this coding, the matrix ui in functions of package ic.infer can be chosen as the identity matrix for monotonicity constraints on the factor.

Value

a matrix with a row for each level and a column for each dummy variable (when applied to a factor in a linear model).

Author(s)

Ulrike Groemping, BHT Berlin

See Also

See also ic.test, ic.est, orlm, contrasts for other contrast functions

Examples

```
## mu, Sigma and covariance matrix
means <- c(3,5,2,7)
## contrast matrix
contr.diff(4)
## design matrix
X <- cbind(rep(1,4), contr.diff(4))
## estimated coefficients
solve(t(X)%*%X,t(X)%*%means)
```

 grades Data set grades: Grade point averages by HSR and ACTC

Description

The data set contains first-year grade point averages (GPAs) from 2397 Iowa university first-years who entered the university of Iowa as freshmen in the fall of 1978. The GPAs are separated out by two ordinal variables with 9 categories each, High-School-Ranking percentiles and ACT Classification.

Usage

grades

Format

A data frame with four columns:
HSR high-school-ranking percentiles
ACTC ACT classification (ACT is an organization that offers, among other things, college entrance exams in the US; up to 1996, ACT stood for "American College Testing".)
meanGPA grade point average for the HSR/ACTC combination
n sample size for the HSR/ACTC combination

Author(s)

Ulrike Groemping, BHT Berlin

Source

Robertson T, Wright F, Dykstra R (1988). Order-Restricted Inference. Wiley, New York. Table 1.3.1, p.13.

Thanks go to Wiley for granting a complimentary license for embedding the data into the package.

Description

Function ic.est estimates a mean vector under linear inequality constraints, functions print.orest and summary.orest provide printed results in different degrees of detail.

Usage

ic.est(x, Sigma, ui, ci $=$ NULL, index $=1:$ nrow(Sigma), meq $=0$, tol $=\operatorname{sqrt}($. Machine\$double.eps))
\#\# S3 method for class 'orest'
print(x, digits $=\max (3$, getOption("digits") -3$)$, scientific = FALSE, ...)
\#\# S3 method for class 'orest'
summary (object, display.unrestr = FALSE, brief = FALSE, digits $=\max (3$, getOption("digits") - 3), scientific = FALSE, ...)

Arguments

x
for ic.est: unrestricted vector (e.g. mean of a sample of random vectors), from which the expected value under linear inequality (and perhaps equality) restrictions is to be estimated
for print. orest: object of class orest (normally produced by ic.est or orlm)
object for summary.orest: object of class orest (normally produced by ic.est or orlm)
Sigma covariance or correlation matrix (or any multiple thereof) of x
ui matrix (or vector in case of one single restriction only) defining the left-hand side of the restriction
ui\%*\%mu >= ci,
where $m u$ is the expectation vector of x; the first few of these restrictions can be declared equality- instead of inequality restrictions (cf. argument meq); if only part of the elements of mu are subject to restrictions, the columns of ui can be restricted to these elements, if their index numbers are provided in index
Rows of ui must be linearly independent; in case of linearly dependent rows the function gives an error message with a hint which subset of rows is independent. Note that the restrictions must define a (possibly translated) cone, i.e. e.g. interval restrictions on a parameter are not permitted.
See contr. diff for examples of how to comfortably define various types of restriction.
ci vector on the right-hand side of the restriction (cf. ui), defaults to a vector of zeroes
index index numbers of the components of mu, which are subject to the specified constraints as $u i \% * \% m u[i n d e x]>=c i$

```
meq integer number (default 0) giving the number of rows of ui that are used for
        equality restrictions instead of inequality restrictions.
tol numerical tolerance value; estimates closer to 0 than tol are set to exactly 0
digits number of digits to be used in printing
scientific if FALSE, suppresses scientific representation of numbers (default: FALSE)
... further arguments to print
display.unrestr
    if TRUE, unrestricted estimate (i.e. object) is also displayed
brief if TRUE, suppress printing of restrictions; default: FALSE
```


Details

Function ic.est heavily relies on package quadprog for determining the optimizer. It is a convenience wrapper for solve. QP from that package. The function is guaranteed to work appropriately if the specified restrictions determine a (translated) cone. In that case, the estimate is the projection along matrix Sigma onto one of the faces of that cone (including the interior as the face of the highest dimension); this means that it minimizes the quadratic form $t(x-b) \% * \%$ solve(Sigma, $x-b$) among all b that satisfy the restrictions $u i \% * \% b>=c i$ (or, if specified by meq, with the first meq restrictions equality instead of inequality restrictions).

Value

Function ic.est outputs a list with the following elements:

b. unrestr	x
b. restr	restricted estimate
Sigma	as input
ui	as input
ci	as input
restr.index	index of components of mu, which are subject to the specified constraints as in input index meq
as input	
iact	active restrictions, i.e. restrictions that are satisfied with equality in the solution, as output by solve. QP

Author(s)

Ulrike Groemping, BHT Berlin

See Also

See also ic.test, ic.weights, orlm, solve.QP

Examples

```
## different correlation structures
corr.plus <- matrix(c(1,0.9,0.9,1),2,2)
corr.null <- matrix(c(1,0,0,1),2,2)
corr.minus <- matrix(c(1,-0.9,-0.9,1),2,2)
## unrestricted vectors
x1 <- c(1, -1)
x2 <- c(-1, -1)
x3 <- c(10, -1)
## estimation under restriction non-negative orthant
## or first element equal to 0, second non-negative
ice <- ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0))
ice
summary(ice)
ice2 <-ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
summary(ice2)
ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x3, corr.plus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x3, corr.plus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x1, corr.null, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x1, corr.null, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x2, corr.null, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x2, corr.null, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x3, corr.null, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x3, corr.null, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x1, corr.minus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x1, corr.minus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x2, corr.minus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x2, corr.minus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x3, corr.minus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x3, corr.minus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
## estimation under one element restricted to being non-negative
ic.est(x3, corr.plus, ui=1, ci=0, index=1)
ic.est(x3, corr.plus, ui=1, ci=0, index=2)
```

ic.infer

Description

Package ic.infer implements estimation and testing for multivariate normal expectations with linear equality- and inequality constraints. This also includes inference on linear models with linear equality- and inequality constraints on the parameters. Decomposition of R-squared is also included for these models.

Details

Function ic.est estimates the constrained expectation of a multivariate normal random vector, function ic. test conducts related tests.

Function orlm estimates constrained parameters in normal linear models based on a linear model object or a covariance matrix. The function offers the possibility of bootstrapping the estimates. Tests and confidence intervals are provided by a summary function.
Function or .relimp decomposes the $\$ \mathrm{R}^{\wedge} 2 \$$-values analogously to metric lmg in package relaimpo for unconstrained linear models. However, or . relimp is far less comfortable to use und subject to severe limitations, since automatic selection of restrictions for sub models is not in all cases trivial.

The package makes use of various other R packages: quadprog is used for constrained estimation, mvtnorm in calculation of weights for null distributions of test statistics, kappalab for averaging over orderings in function or. relimp, and boot for bootstrapping.
The theory behind inequality-constrained estimation and testing as well as functionality of the package are explained in a vignette (Link from within dynamic help: ../doc/ic.infer.pdf) that is based on Groemping (2010). The vignette can also be opened from the command line by vignette("ic.infer").

Value

The output of function ic.est belongs to S 3 class orest.
The output of function ic. test belongs to S 3 class ict.
The output of function orlm belongs to S3 classes orlm and orest.
All these classes offer print and summary methods.
The output of function or . relimp is a named vector.

Acknowledgements

This package uses as an internal function the function nchoosek from vsn, authored by Wolfgang Huber, available under LGPL.

It also uses modifications of numerical routines that were provided by John Fox in R-help.
Thanks go to Wiley for permission of incorporating the grades data from Table 1.3.1 of Robertson, Wright and Dykstra (1988) into the package.

Author(s)

Ulrike Groemping, BHT Berlin

References

Groemping, U. (2010). Inference With Linear Equality And Inequality Constraints Using R: The Package ic.infer. Journal of Statistical Software, Forthcoming.
Kudo, A. (1963). A multivariate analogue of the one-sided test. Biometrika 50, 403-418
Robertson T, Wright F, Dykstra R (1988). Order-Restricted Inference. Wiley, New York.
Sasabuchi, S. (1980) A test of a multivariate normal mean with composite hypotheses determined by linear inequalities. Biometrika 67, 429-429

Shapiro, A. (1988). Towards a unified theory of inequality-constrained testing in multivariate analysis. International Statistical Review 56, 49-62
Silvapulle, M.J. and Sen, P.K. (2004). Constrained Statistical Inference. Wiley, New York

See Also

See also ic.est, ic.test, orlm, or.relimp, packages boot, kappalab, mvtnorm, quadprog, and relaimpo

Examples

```
## unrestricted linear model for grade point averages
limo <- lm(meanGPA~.-n, weights=n, data=grades)
summary(limo)
## restricted linear model with restrictions that better HSR ranking
## cannot deteriorate meanGPA
orlimo <- orlm(lm(meanGPA~.-n, weights=n, data=grades), index=2:9,
    ui=make.mon.ui(grades$HSR))
summary(orlimo, brief=TRUE)
```

```
ic.test
```

Function for testing inequality-related hypotheses for multivariate normal random variables

Description

ic. test tests linear inequality hypotheses for multivariate normal means by likelihood ratio tests. print and summary functions display results in different degrees of detail.

Usage

ic.test(obj, TP = 1, s2 = 1, df.error = Inf, ui0.11 = diag(rep(1, length(obj\$b.restr))), ci0.11 = NULL, meq.alt $=0$, df = NULL, wt = NULL, tol=sqrt(.Machine\$double.eps), ...)
\#\# S3 method for class 'ict'
print(x, digits $=\max (3$, getOption("digits") - 3), scientific = FALSE, ...)
\#\# S3 method for class 'ict'
summary(object, brief = TRUE, digits = max(3, getOption("digits") - 3), scientific = FALSE, tol=sqrt(.Machine\$double.eps), ...)

Arguments

obj
Object of class orest that contains unrestricted and restricted estimate, covariance structure, and restriction;
for objects of class orlm (that inherit from class orest) information on s2 and df . error is taken from obj (i.e. specifications of s2 and df.error in the call to ic.test are ignored)
TP type of test problem, cf. details
s2 multiplier that modifies the matrix obj\$Sigma into the (estimated) covariance matrix of the unrestricted estimate; obj\$Sigma may be a covariance matrix ($s 2=1$, default), a correlation matrix or an otherwise rescaled covariance matrix (e.g. cov. unscaled from a linear model)
$\left.\begin{array}{ll}\text { df.error } & \begin{array}{l}\text { error degrees of freedom connected with estimation of s2 (e.g. residual df } \\ \text { from linear model); if df.error < Inf, the test is based on a mixture of beta- } \\ \text { distributions with parameters df/2 and df. error/2, otherwise the test is based } \\ \text { on a mixture of chi-square distributions with degrees of freedom in df. }\end{array} \\ \text { ui0.11 } & \begin{array}{l}\text { matrix (or vector in case of one restriction only) for defining (additional) equal- } \\ \text { ity restrictions for TP 11 (in addition to restrictions in obj); } \\ \text { note that there must be as many columns as there are elements of vector b.restr } \\ \text { (no extra index vector taken); }\end{array} \\ \text { if there is overlap between restrictions in ui0.11 and restrictions already present } \\ \text { in obj, restrictions already present in obj are projected out for ui0.11: for exam- } \\ \text { ple, the default choice for ui0.11 means that all elements of the expectation are } \\ 0 ; \text { some of these restrictions may already be present in obj and are projected out }\end{array}\right\}$

Details

The following test problems are implemented:
$\mathrm{TP}=1$: H 0 : restrictions valid with equality vs. H 1 : at least one inequality
TP=2: H0: all restrictions true vs. H 1 : at least one restriction false
TP=3: H0: restrictions false vs. H 1 : restrictions true (with inequality)
$T P=11$: $H 0$: restriction valid with equality and further linear equalities vs. H 1 : at least one equality from H 0 violated, restriction valid
$T P=21$: H0: restrictions valid (including some equality restrictions) vs. H 1 : at least one restriction from H 0 violated, some equality restrictions are maintained

Note that TPs 1 and 11 can reject H0 even if H1 is violated by the data. Rejection of H0 does not provide evidence for H 1 (but only against H 0) in these TPs because H 1 is not the opposite of H 0 . The tests concentrate their power in H 1 , but are only guaranteed to observe their level for the stated H0.
Also note that TP 3 does not make sense if obj involves equality restrictions (obj\$meq>0).
Under TPs $1,2,11$, and 21 , the distributions of test statistics are mixtures of chi-square distributions (df.error=Inf) or beta-distributions (df.error finite) with different degrees of freedom (chi-square) or parameter combinations (beta). Shapiro (1988) gives detailed information on the mixing weights for the different scenarios. Basically, there are two different situations:
If meq=0, the weights are probabilities that a random variable with covariance matrix $u i \% * \% c o v \% * \% t$ (ui) is realized in the positive orthant or its lower-dimensional faces, respectively (if ui has too few columns, blow up by columns of 0 s in appropriate positions) (Shapiro, formulae (5.5) or (5.10), respectively).
If meq > 0 (but not all restrictions are equality restrictions), the weights are probabilities that a random variable with covariance matrix the inverse of the lower right corner of solve (ui\%*\%cov\% $\mathrm{u} \% \mathrm{t}$ (ui)) is realized in the positive orthant or its lower-dimensional faces, respectively (Shapiro, formula (5.9)).

These weights must then be combined with the appropriate degrees of freedom - these can be worked out by realizing that either the null hypothesis or the alternative hypothesis has fixed dimension and the respective mixing degrees of freedom are obtained by taking the difference to the dimension of the respective other hypothesis, which is correct because - given a certain dimension of the inequality-restricted estimate, the inequality-restricted estimate is a projection onto a linear space of that dimension.
The test for TP 3 (cf. e.g. Sasabuchi 1980) is based on the intersection-union principle and simply obtains its p-value as the maximum p-value from testing the individual restrictions.

Value

object of class ict, which is a list containing elements

TP	test problem identifier (cf. argument TP)		
b. unrestr	unrestricted estimate		
b.restr	restricted estimate		
ui	restriction matrix, LHS		
ci	restriction vector, RHS		
restr.index	elements of mean referred to by ui and ci meq		
number of equality restrictions (first meq rows of ui), meq must not exceed			
nrow(ui)-1		\quad	row numbers of active restrictions (all equality restrictions plus inequality re-
:---			
strictions that are met with equality by the solution b.restr)			

b.extra.restr	estimate for null hypothesis of TP=11
T	test statistic
p.value	p-value
s2	input parameter
cov	matrix with s2*cov equal to covariance matrix of unrestricted estimate
df.error	input parameter df.bar
vector of degrees of freedom for test statistic distribution, cf. also input param- eter df	
wt.bar	vector of weights for test statistic distribution, cf. also input parameter wt

Note

Package versions up to 1.1-4 had a bug that caused p -values for $\mathrm{TP}=11$ to be too large.

Author(s)

Ulrike Groemping, BHT Berlin

References

Sasabuchi, S. (1980) A test of a multivariate normal mean with composite hypotheses determined by linear inequalities. Biometrika 67, 429-429
Shapiro, A. (1988) Towards a unified theory of inequality-constrained testing in multivariate analysis. International Statistical Review 56, 49-62

See Also

See also ic.est, ic.weights

Examples

```
corr.plus <- matrix(c(1,0.5,0.5,1),2,2)
corr.null <- matrix(c(1,0,0,1),2,2)
corr.minus <- matrix(c(1,-0.5,-0.5,1),2,2)
## unrestricted vectors
x1 <- c(1, 1)
x2 <- c(-1, 1)
ict1 <- ic.test(ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0)))
ict1
summary(ict1)
ic.test(ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0)), s2=1, df.error=10)
ic.test(ic.est(x1, corr.minus, ui=diag(c(1,1)), ci=c(0,0)))
ic.test(ic.est(x1, corr.minus, ui=diag(c(1,1)), ci=c(0,0)), s2=1, df.error=10)
ic.test(ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0)))
ic.test(ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0)), s2=1, df.error=10)
ic.test(ic.est(x2, corr.minus, ui=diag(c(1,1)), ci=c(0,0)))
ic.test(ic.est(x2, corr.minus, ui=diag(c(1,1)), ci=c(0,0)), s2=1, df.error=10)
ict2 <- ic.test(ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0)),TP=2)
```

```
summary(ict2)
ict3 <- ic.test(ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0)),TP=3)
summary(ict3)
ict11 <- ic.test(ic.est(x1, corr.plus, ui=c(1,1), ci=0),TP=11, ui0.11 =c(1,0))
summary(ict11)
## larger example
corr.plus <- diag(1,8)
for (i in 1:7)
    for (j in (i+1):8)
        corr.plus[i,j] <- corr.plus[j,i] <- 0.5
u <- rbind(rep(1,6), c(-1,-1,-1,1,1,1), c(-1,0,1,0,0,0), c(0,0,0,-1,0,1))
ice <- ic.est(c(rep(1,4),rep(4,4)), corr.plus, ui=u, ci=rep(0,4), index=2:7, meq = 1)
ict1 <- ic.test(ice,TP=1)
summary(ict1)
ict2 <- ic.test(ice,TP=2)
summary(ict2)
ict11 <- ic.test(ice,TP=11)
summary(ict11,digits=3)
ice <- ic.est(c(rep(1,4),rep(4,4)), corr.plus, ui=u, ci=rep(0,4), index=2:7)
ict3 <- ic.test(ice, TP=3)
summary(ict3)
```

ic.weights functions for calculating the distributions of normal distribution
order-related likelihood ratio tests

Description

Test statistics of normal distribution-based order-related likelihood ratio tests are often distributed as mixtures of chi-square or beta-distributions with different parameters. These functions determine the mixing weights and the cumulative distribution functions based on these. They can be directly used and are called by function ic.test.

Usage

ic.weights(corr, ...)
pchibar (x, df, wt)
pbetabar (x, df1, df2, wt)

Arguments

corr
corr is the correlation or covariance matrix (or any multiple thereof) of the data or coefficients for which weights are to be calculated
... ...contains further arguments to be given to function pmvnorm of package mvtnorm for calculating multivariate normal rectangle probabilities; it is possible to select an algorithm (default in current version of mvtnorm: algorithm = GenzBretz()) and to tune weight accuracy by modifying including additional parameters into the algorithm specification, cf. help for GenzBretz

X
$d f$
wt
df1
df2
x is the quantile for which the distribution function is to be calculated is the vector of the degrees of freedom for the chi-square distributions that are mixed into the chibar-square-distribution with the proportions given in wt
each element of $w t$ is the mixing weight of the chi-square distribution with df as in the corresponding element of df ; such weights can be calculated with function ic.weights
vector of first parameters of the beta-distributions to be mixed into the betabardistribution
second parameter of the beta-distributions to be mixed into the betabar-distribution; error degrees of freedom in the tests implemented for linear models in summary.orlm;
NOTE: see details for the (perhaps unexpected) constancy of df2

Details

Function ic.weights uses results by Kudo (1963) regarding the calculation of the weights. The weights are the probabilities that the projection along its covariance onto the non-negative orthant of a multivariate normal random vector with expectation 0 and correlation corr lies in faces of dimensions nrow (corr) : 1 (in this order). It is known that these probabilities coincide with various other useful probabilities related to order-related hypothesis testing, cf. e.g. Shapiro (1988). Calculation of the weights involves various calls to function pmvnorm from package mvtnorm.
Functions pchibar (taken from package ibdreg) and pbetabar calculate cumulative probabilities from mixtures of chi-square and beta-distributions, respectively.
IMPORTANT: Contrary to likelihood ratio theory in linear models, the beta distributions mixed always use the error sum of squares from the unrestricted model, i.e. the smallest possible error sum of squares with a fixed no. of df. Therefore, the second df entry is not increased when decreasing the first! This is appropriate for the test statistics calculated by functions ic.test or summary.orlm, but not necessarily for test statistics obtained elsewhere.

Value

ic. weights returns the vector of weights, pchibar and pchibar return the cumulative probability of the respective distribution. Function ic. weights relies on package mvtnorm for determining multivariate normal rectangle probabilities. Note that these calculations involve Monte Carlo steps so that these weights are not completely repeatable.

Author(s)

Ulrike Groemping, BHT Berlin

References

Kudo, A. (1963) A multivariate analogue of the one-sided test. Biometrika 50, 403-418
Shapiro, A. (1988) Towards a unified theory of inequality-constrained testing in multivariate analysis. International Statistical Review 56, 49-62
Silvapulle, M.J. and Sen, P.K. (2004) Constrained Statistical Inference. Wiley, New York

See Also

ic.test, orlm, pmvnorm, GenzBretz

Examples

```
z <- 0.5
corr <- matrix(c(1,0.9,0.9,1),2,2)
print(wt.plus <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.plus)
1-pbetabar(T/(T+10),2:0,10,wt.plus)
corr <- matrix(c(1,0,0,1),2,2)
print(wt.0 <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.0)
1-pbetabar(T/(T+10), 2:0,10,wt.0)
corr <- matrix(c(1,-0.9,-0.9,1),2,2)
print(wt.minus <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.minus)
1-pbetabar(T/(T+10), 2:0,10,wt.minus)
```

internal.functions internal functions not intended for the user

Description

nchoosek is originally taken from package vsn by Wolfgang Huber, GaussianElimination and RREF have been provided by John Fox in R-help and have been modified by the author to provide more output

Usage

nchoosek(n, k) \#\# not exported, calculates all combinations
GaussianElimination(A, B, tol=sqrt(.Machine\$double.eps),
verbose=FALSE) \#\# not exported
RREF (X, ...) \#\# not exported, calculates reduced Echelon form

Arguments

n	number of elements to choose from
k	number of elements to choose
A	argument to GaussianElimination
B	argument to GaussianElimination
tol	argument to GaussianElimination
verbose	argument to GaussianElimination
X	matrix to be reduced to reduced Echelon form
\ldots	further arguments to GaussianElimination

Value

nchoosek returns all subsets of size k , for GaussianElimination and RREF cf. comments in code. The latter are used for reducing a matrix with less than full row rank to a set of linearly independent rows.

Author(s)

Ulrike Groemping, BHT Berlin, based on code by John Fox and Wolfgang Huber

See Also

ic.test, orlm

Examples

```
z <- 0.5
corr <- matrix(c(1,0.9,0.9,1),2,2)
print(wt.plus <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.plus)
1-pbetabar(T/(T+10),2:0,10,wt.plus)
corr <- matrix(c(1,0,0,1),2,2)
print(wt.0 <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.0)
1-pbetabar(T/(T+10), 2:0,10,wt.0)
corr <- matrix(c(1,-0.9,-0.9,1),2,2)
print(wt.minus <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.minus)
1-pbetabar(T/(T+10), 2:0,10,wt.minus)
```

Function for creating the matrix ui for monotonicity (in)equality restrictions

Description

Function make.mon. ui creates the matrix ui for a factor, depending on its coding.

Usage

make.mon.ui(x, type = "coeff", contr = NULL)

Arguments

x
an R factor (in case of type $=$ "coeff") or the dimension of the multivariate normal distribution (in case of type = "mean")
type the situation for which ui is needed: can be coeff for coefficients in a linear model or mean for the expectation vector of a multivariate normal distribution
contr relevant in case of type = "coeff" only, ignored otherwise; the contrast with which x is coded;
if the contrasts attribute of x is a character string, contr = NULL uses this character string, otherwise contr = NULL is identical to contr = "contr. treatment".
Explicit choices for contr can be any of contr. treatment, contr. SAS, contr.diff and contr . sum) (must be given in quotes).
The other generally-available codings (contr. helmert and contr. poly) do not easily permit conclusions about monotonicity.
If the value for contr is not compatible with the factors coding, an error is thrown.

Details

The function determines the matrix ui as needed for the functions in packge ic.infer, when a monotone increase from first to last level of the x is under investigation (type $=$ "coeff") or when a monotone increase among the components of the expectation vector is investigated (type = "mean"). The respective monotone decrease can be accomodated by -make.mon.ui().
If the coding of the factor x is explicitly given, the function throws an error if the actual coding does not correspond to the specified value of contr.

Care is needed when using make.mon. ui with a linear model: It is the users responsibility to make sure that the coding used in the model corresponds to the coding used in make.mon. ui.

Value

a square matrix with as many rows and columns as there are dummy variables for the factor

Author(s)

Ulrike Groemping, BHT Berlin

See Also

See also contrasts for how to apply contrasts, contrast for the available contrasts in package stats, contr.diff for the specific monotonicity contrast function from this package.

Examples

```
gifte <- boot::poisons ## gifte is German for poisons
## default: contr.treatment (with default base 1)
linmod <- lm(1/time~poison+treat, gifte)
summary(orlm(linmod, ui=make.mon.ui(gifte$poison), index=2:3))
## next: contr.diff
```

```
contrasts(gifte$poison) <- "contr.diff"
linmod <- lm(1/time~poison+treat, gifte)
summary(orlm(linmod, ui=make.mon.ui(gifte$poison), index=2:3))
## next: contr.SAS
contrasts(gifte$poison) <- "contr.SAS"
linmod <- lm(1/time~poison+treat, gifte)
summary(orlm(linmod, ui=make.mon.ui(gifte$poison), index=2:3))
## next: contr.sum
contrasts(gifte$poison) <- "contr.sum"
linmod <- lm(1/time~poison+treat, gifte)
summary(orlm(linmod, ui=make.mon.ui(gifte$poison), index=2:3))
```

or.relimp Function to calculate relative importance for order-restricted linear models

Description

The function calculates relative importance by averaging over the variables R -squared contributions from all orderings of variables for linear models with inequality restrictions on the parameters. NOTE: only useful if each restriction refers to exactly one variable, or if it is adequate to reduce multi-variable restrictions by omitting the affected variables but leaving the restriction otherwise intact.

Usage

```
or.relimp(model, ui, ci = NULL, ...)
## S3 method for class 'lm'
or.relimp(model, ui, ci = NULL, index = 2:length(coef(model)), meq = 0,
                tol = sqrt(.Machine$double.eps), ...)
## Default S3 method:
or.relimp(model, ui, ci = NULL, index = 2:ncol(model), meq = 0,
        tol = sqrt(.Machine$double.eps), ...)
all.R2(covmat, ui, ci = NULL, index = 2:ncol(covmat), meq = 0,
    tol = sqrt(.Machine$double.eps), ...)
        ## user does not need to call this function
```


Arguments

model a linear model object of class lm with data included; for function or.relimp, all explanatory variables must be numeric (i.e. no factors), and higher-order terms (e.g. interactions) are not permitted.

	OR
	the covariance matrix of the response (first position) and all regressors
covmat	the covariance matrix of the response (first position) and all regressors
ui	cf. explanation in link\{orlm\}; cf. also details below
ci	cf. explanation in link\{orlm\}
index	cf. explanation in link\{orlm\}
meq	cf. explanation in link\{orlm\}
tol	cf. explanation in link\{orlm\}
	Further options

Details

Function or. relimp uses function all.R2 for calculating the R-squared values of all subsets that are subsequently handed to function Shapley.value (from package kappalab), which takes care of the averaging over ordering.
WARNING: In models with subsets of the regressors, the columns of the matrix ui referring to regressors outside the current subset are simply deleted for the sub model. This is only reasonable if either the individual constraints refer to individual parameters only (e.g. all parameters restricted to be non-negative) or if the constraints are still reasonable in the sub model with some variables deleted, e.g. perhaps (depending on the application) sum of all parameters less or equal to 1 .

WARNING: If the number of regressors (p) is large, the functions quickly becomes unmanageable (a vector of size $2^{\wedge} p$ is returned or handled in the process.

Value

all.R2 returns a vector ($2^{\wedge} p$ elements) with all R-squared values (p is the number of regressors, vector is ordered from empty to full model in natural order (cf. ic.infer:: : nchoosek for the order within one model size).
or . relimp returns a vector (p elements) with average R -squared contributions from all models with respective subset of restrictions ui $\% * \%$ beta >= ci enforced.

Author(s)

Ulrike Groemping, BHT Berlin

See Also

See also orlm for order-restricted linear models and calc. relimp from R-package relaimpo for a much more comfortable and much faster routine for unrestricted linear models

Examples

```
covswiss <- cov(swiss)
## all R2-values for restricted linear model with restrictions that
## Catholic and Infant.Mortality have non-negative coefficients
R2s <- all.R2(covswiss, ui=rbind(c(0,0,0,1,0),c(0,0,0,0,1)))
R2s
```

```
    require(kappalab) ## directly using package kappalab
    Shapley.value(set.func(R2s))
    ### with convenience wrapper from this package
    or.relimp(covswiss, ui=rbind(c(0,0,0,1,0),c(0,0,0,0,1)))
    ### also works on linear models
    limo <- lm(swiss)
    #or.relimp(limo, ui=rbind(c(0,0,0,1,0),c(0,0,0,0,1)))
    ## same model using index vector
    or.relimp(limo, ui=rbind(c(1,0),c(0,1)), index=5:6)
```

 orlm
 Functions for order restricted linear regression estimation and testing

Description

Function orlm calculates order-restricted linear models (linear equality and inequality constraints). It uses the internal function boot.orlm for bootstrapping, which in turn uses the internal functions orlm.forboot... . The remaining functions extract coefficients, provide a residual plot, give a short printout or a more extensive summary.

Usage

orlm(model, ui, ci, ...)
\#\# S3 method for class 'lm'
orlm(model, ui, ci, index = 2:length(coef(model)), meq = 0, orig.out $=$ FALSE, boot $=$ FALSE, $B=1000$, fixed $=$ FALSE, tol = sqrt(.Machine\$double.eps), ...)
\#\# Default S3 method:
orlm(model, ui, ci, index $=$ NULL, meq $=0$,
tol = sqrt(.Machine\$double.eps), df.error = NULL, ...)
boot.orlm(model, $B=1000$, fixed $=$ FALSE, ui, ci, index, meq)
orlm.forboot.fixed(data, indices, ...)
orlm.forboot(data, indices, index = index, ...)
\#\# S3 method for class 'orlm'
coef(object, ...)
\#\# S3 method for class 'orlm'
plot(x, caption = "Residuals vs Fitted",
panel = if (add.smooth) panel.smooth else points, sub.caption = NULL, main = "", ..., id.n = 3, labels.id = names(x\$residuals), cex.id = 0.75, add.smooth $=$ getOption("add.smooth"), label.pos $=c(4,2)$, cex.caption = 1)
\#\# S3 method for class 'orlm'
print(x, digits $=\max (3$, getOption("digits") -3$), \ldots$)

```
## S3 method for class 'orlm'
summary(object, display.unrestr = FALSE, brief = FALSE,
    digits = max(3, getOption("digits") - 3),
    scientific = FALSE, overall.tests = TRUE,
    bootCIs = TRUE, bty = "perc", level = 0.95, ...)
```


Arguments

model	a linear model object (class lm) with data included
OR	
a covariance matrix of Y and all regressors (in this order)	
matrix (or vector in case of one single restriction only) defining the left-hand	
side of the restriction	
ui\%*\%beta >= ci,	
where beta is the parameter vector; the first few of these restrictions can be	
declared equality- instead of inequality restrictions (cf. argument meq); if only	
part of the elements of beta are subject to restrictions, the columns of ui can	
be restricted to these elements, if their index numbers are provided in index;	
by default, index excludes the intercept, i.e. the columns of ui refer to the	
non-intercept elements of coef (model)	
Rows of ui must be linearly independent; in case of linearly dependent rows	
the function gives an error message with a hint which subset of rows is indepen-	
dent. Note that the restrictions must define a (possibly translated) cone, i.e. e.g.	
interval restrictions on a parameter are not permitted.	
See contr. diff for examples of how to comfortably define various types of	
restriction.	
vector on the right-hand side of the restriction (cf. ui)	
index numbers of the components of beta, which are subject to the specified con-	
index	straints as ui\%*\%beta[index] >= ci, default is index = 2:length(coef(model)),
i.e. ui is supposed to have columns for all coefficients except the intercept;	
CAUTIONs:	
- index refers to the position of the coefficient in the model. The first coef-	

data indices	data handed to bootstrap sampling routine indices for sampling
tol	numerical tolerance value; estimates closer to 0 than tol are set to exactly 0
df.error	error degrees of freedom (number of observations minus number of colummns of covariance matrix) for orlm. default; required in order to calculate adequate covariance matrix and tests; valid coefficient estimates can also be obtained for arbitrary values of df.error
	Further options
object	object of class orlm (created by function orlm)
x	object of class orlm (created by function orlm)
caption	like in function plot. 1m
panel	like in function plot.1m
sub.caption	like in function plot. 1 m
main	like in function plot.1m
id.n	like in function plot.1m
labels.id	like in function plot.1m
cex.id	like in function plot.1m
add.smooth	like in function plot.1m
label.pos	like in function plot. 1 m
cex.caption	like in function plot.1m
digits	number of digits to display
display.unrestr	
	if TRUE, also display unrestricted model; default: FALSE
brief	if TRUE, suppress printing of restrictions; default: FALSE
scientific	if FALSE, suppresses scientific format; default: FALSE
overall.tests	if FALSE, suppresses output of overall model tests; default: TRUE; for models with large sets of restrictions, tests can take up substantial time because of weight calculation
bootCIs	if FALSE, suppresses bootstrap confidence intervals, even though the obj contains a bootout element; default: TRUE
bty	type of bootstrap confidence interval; any of "perc", "bca", "norm" or "basic", cf. function boot.ci from package boot, default: "perc"
level	confidence level for bootstrap confidence intervals, default: 0.95

Details

Function orlm performs order restricted linear model analysis. Functions coef.orlm, plot.orlm, print.orlm, and summary.orlm provide methods for reporting the results on an object of S3 class orlm. The functions directly referring to bootstrapping are internal and should not be called by the user but are called from within function orlm if option boot is set to TRUE.

Of course, bootstrapping is not possible, if function orlm is applied to a covariance matrix, since the raw data are not available in this case. Also note that the intercept is not estimated in this case but can easily be estimated from the resulting estimate if the variable means are known (cf. example).
The output from summary.orlm provides information about the restrictions, a comparison of $\$ \mathrm{R}^{\wedge} 2 \$$ values for unrestricted and restricted model, restricted estimates, and

- if requested (option boot set to TRUE in function orlm and option bootCIs set to TRUE in the summary function) with bootstrap confidence intervals,
- if requested (option overall. tests set to TRUE) several restriction-related tests (implemented by calls to ic.test): The analogue to the overall F-Test in the ordinary linear model is the test of all coefficients but intercept equal to 0 within the restricted parameter space. In addition, three tests related to the restriction are reported:

Test 1: H0: Restriction valid with equality vs. H1: at least one inequality
Test 2: H0: Restriction valid vs. H1: restriction violated
Test 3: H0: Restriction violated or valid with equality vs. H1: all restrictions valid with inequality
Test 3 is conducted in case of no equality-restrictions only.

Value

The output of function orlm belongs to S3 classes orlm and orest. It is a list with the following items:

b.restr	restricted estimate
b.unrestr	unrestricted estimate
R2	R-squared
residuals	residuals of restricted model
fitted.values	fitted values of restricted model
weights	observation weights
orig.R2	R-squared of unrestricted model
df.error	error degrees of freedom of unrestricted model
s2	MSE of unrestricted model
Sigma	variance covariance matrix of beta-hat in unrestricted model
origmodel	unrestricted model itself (NULL, if orig. out=FALSE)
ui	as input input ci restr.index the input vector index
meq	as input iact
active restrictions, i.e. restrictions that are satisfied with equality in the solution,	
as output by solve.QP	

Note
Package versions up to 1.1-4 had a bug in function ic.test that caused the p-value of the overall model test to be too large.

Author(s)

Ulrike Groemping, BHT Berlin

References

Shapiro, A. (1988) Towards a unified theory of inequality-constrained testing in multivariate analysis. International Statistical Review 56, 49-62

See Also

See also ic.est, ic.test, or.relimp, solve.QP

Examples

```
limo <- lm(swiss)
## restricted linear model with restrictions that
## - Education and Examination have same coefficient
## - Catholic and Infant.Mortality have non-negative coefficients
orlimo <- orlm(limo, ui=rbind(c(0,1,-1,0,0),c(0,0,0,1,0),c(0,0,0,0,1)), meq=1)
orlimo
plot(orlimo)
summary(orlimo)
## same model using index vector
orlimo <- orlm(limo, ui=rbind(c(1,-1,0,0),c(0,0,1,0),c(0,0,0,1)), index=3:6, meq=1)
## reduced number of bootstrap samples below reasonable size for example run time
orlimo <- orlm(limo, ui=rbind(c(1,-1,0,0),c(0,0,1,0),c(0,0,0,1)),
    index=3:6, meq=1, boot=TRUE, B=100)
summary(orlimo)
## bootstrap considering data as fixed
orlimof <- orlm(limo, ui=rbind(c(1,-1,0,0),c(0,0,1,0),c(0,0,0,1)),
    index=3:6, meq=1, boot=TRUE, B=100, fixed=TRUE)
summary(orlimof, brief=TRUE)
```


Index

```
*Topic datasets
    bodyfat, 2
    grades, 4
*Topic htest
    ic.infer, 7
    ic.test, 9
    orlm, 20
*Topic models
    ic.infer, 7
    or.relimp, 18
    orlm, 20
*Topic multivariate
    contr.diff, 3
    ic.est, 5
    ic.infer, 7
    ic.test, 9
    ic.weights, 13
    internal.functions, 15
    make.mon. ui, 16
    or.relimp, 18
    orlm, 20
*Topic optimize
    contr.diff, 3
    ic.est, 5
    make.mon. ui, 16
*Topic regression
    ic.infer, 7
    or.relimp, 18
    orlm, 20
all.R2 (or. relimp), 18
bodyfat, 2
boot.orlm (orlm), 20
coef.orlm (orlm), 20
contr.diff, 3, 5, 17, 21
contrast, 17
contrasts, 3, 17
*Topic datasets
bodyfat, 2
grades, 4
*Topic htest
ic.infer, 7
ic.test, 9
orlm, 20
*Topic models
ic.infer, 7
or.relimp, 18
orlm, 20
*Topic multivariate
contr.diff, 3
ic.est, 5
ic.infer, 7
ic.test, 9
ic.weights, 13
internal.functions, 15
make.mon.ui, 16
or.relimp, 18
orlm, 20
*Topic optimize
contr.diff, 3
ic.est, 5
make.mon.ui, 16
*Topic regression
ic.infer, 7
or.relimp, 18
orlm, 20
all.R2 (or.relimp), 18
bodyfat, 2
boot.orlm (orlm), 20
coef. orlm (orlm), 20
contr.diff, 3, 5, 17, 21
contrasts, 3, 17
```

GaussianElimination
(internal.functions), 15
grades, 4
ic.est, $3,5,9,12,24$
ic.infer, 7
ic.infer-package (ic.infer), 7
ic.test, $3,6,9,9,15,16,24$
ic.weights, $6,10,12,13$
internal.functions, 15
make.mon.ui, 16
nchoosek (internal.functions), 15
or.relimp, 9, 18, 24
orlm, 3, 6, 9, 15, 16, 19, 20
pbetabar (ic.weights), 13
pchibar (ic.weights), 13
plot.lm, 22
plot.orlm (orlm), 20
print.ict(ic.test), 9
print.orest (ic.est), 5
print.orlm(orlm), 20
RREF (internal.functions), 15
summary.ict(ic.test), 9
summary.orest (ic.est), 5
summary.orlm (orlm), 20

