Package ‘icapca’

February 20, 2015
Version 1.1
Date 2014-10-19
Title Mixed ICA/PCA
Author Roger Woods <rwoods@ucla.edu>
Maintainer Roger Woods <rwoods@ucla.edu>

Description Implements mixed ICA/PCA model for blind source separation, potentially with inclu-
sion of Gaussian sources

License Unlimited
NeedsCompilation yes

Repository CRAN

Date/Publication 2014-10-20 19:18:09

R topics documented:

ICA_PCA + v v v e e e e e e e e 1
INitializations L e e e e e e e 5
Index 7
ica_pca Performs mixed ICA/PCA on the input matrix
Description

This function will decompose a matrix into the matrix product A*S such that the non-Gaussian
rows of S are maximally statistically independent. Unlike traditional ICA, a Gaussian sub-space
can be included in the model. Gaussian components cannot be separated from one another and are
decomposed using PCA criteria.

2 ica_pca

Usage

n n

ica_pca(x, inf_crit = "unc"”, components = @, center = TRUE,
subgaussian_range = NULL, supergaussian_range = NULL,
gaussian_range = NULL,

hinted_subgaussian_sources = NULL,
hinted_supergaussian_sources = NULL,
hinted_unspecified_sources = NULL,

seed = @, offset_random = @, fold = @, xval_epsilon = 0.0,
desired_initialization = 0,

sample_order = NULL, sample_offset = @, samples = @)

Arguments
X the matrix to decompose using mixed ICA/PCA
inf_crit the bias correction to apply to loglikelihoods, one of: ’unc’, ’aic’, ’bic’, *xval’
or ’caicj’
components if less than the number of rows of x, x will be reduced to components rows by
singular value decomposition before mixed ICA/PCA
center if TRUE, x will be centered by subtracting the mean of each row

subgaussian_range
the number of sub-Gaussian sources to model (single integer) or the minimum
and maximum number of sub-Gaussian sources to model (two integers)
supergaussian_range
the number of super-Gaussian sources to model (single integer) or the minimum
and maximum number of super-Gaussian sources to model (two integers)

gaussian_range the number of Gaussian sources to model (single integer) or the minimum and
maximum number of Gaussian sources to model (two integers)

hinted_subgaussian_sources
a matrix of initializing sub-Gaussian sources to include in model (number of
columns must match x)

hinted_supergaussian_sources
a matrix of initializing super-Gaussian sources to include in model (number of
columns must match x)

hinted_unspecified_sources

a matrix of non-Gaussian sources to include in model (number of columns must
match x)

seed if >0, seeds the R default random number generator to randomly rotate inputs
after preprocessing PCA

offset_random if seed>0, specifies the number or random rotation matrices to skip before se-
lecting the one to apply

fold if inf_crit == "xval’ and fold>0, specifies k for k-fold cross-validation; fold==
defaults to leave-one-out cross validation

xval_epsilon if inf_crit == ’xval’ and xval_epsilon != 0.0, omits initializations that produce
identical loglikelihood and det(W) values

ica_pca 3

desired_initialization
if desired_initialization > 0 only the specified initialization is used

sample_order if inf_crit = *xval’, an integer vector of permuted column vectors of length

dim(x)[2]

sample_offset if samples > 0 and inf_crit = *xval’, an integer specifying the offset into sam-
ple_order

samples if samples > 0 and inf_crit = "xval’, an integer specifying the number of samples

to use from sample_order

Details

The recommended value for inf_crit is *xval’ which uses cross-validation. However, this option is
computationally intensive. The default value 'unc’ provides no correction. The ’aic’ option uses
the Akaike Information Criterion (AIC) but is typically an unacceptably biased estimate, especially
when Gaussian sources are modeled as non-Gaussian. The "bic’ option uses the Bayes Information
Criterion (BIC) which is also dubious. If all sources are Gaussian, the ’caicj’ option will provide a
good estimate, but this correction is not applicable if any non-Gaussian sources are modeled. If a
non-zero value is specified for xval_epsilon, initializations that produce very similar uncorrrected
log likelihoods are assumed identical and only evaluated once through cross-validation.

If inf_crit is "xval’, fold == 0 and samples > 0, only a subset of all possible leave-one-out cross
validations will be performed and the results will be rescaled to estimate the result that would have
been obtained if all possible leave-one-out cross validations had been performed. In this case,
sample_order should be a vector containing a permutation of the integers from 1 to the number of
columns in x and sample_offset should be an integer indexing an offset into this vector. The speci-
fied number of samples will be taken from sample_order after skipping sample_offset entries. The
result will be used as the indices of the samples left out, one-by-one, for cross-validation estimation.
Parallelization can be achieved by running multiple instances with differing sample_offset values as
needed to cover all samples and then computing a weighted average (weighted based on the number
of samples) of the result.

If inf_crit is *xval’ and fold > 0, k-fold cross validation will be performed. Unless the ordering of
samples is known to be random, a random sample_order should be provided since the estimated
result will be order dependent and the validity of k-fold cross validation depends on the order being
random. The values of fold and samples cannot both be non-zero. The value of fold must be an
exact divisor of the number of columns in x and cannot be equal to one. Smaller values of fold will
run more quickly, but will likely provide less accurat results relative to larger values since bias is
calculated using a smaller number of sample. When fold is equal to the number of columns in X,
the result is leave-one-out cross validation, which is more efficiently computed using fold = 0.

If seed is specified, R’s random number generator is set to the default and seeded with the specified
value. If the state of the random number generator needs to be restored to its initial value that pre-
ceeded the call to ica_pca, save the value of .Random.seed before calling and restore it afterwards.

Value

s the matrix of sources
loglikelihood the adjusted log-likelihood of the best fitting model

distribution the type of source used to model each row of s (0=subgaussian, 1=supergaussian,
2=gaussian)

4 ica_pca

variance the variance associated with each row of s

probability the relative probability of the best model containing a given number of Gaussian
sources, starting with zero Gaussian sources in the first element
subgaussian_range
the range of subgaussian sources actually modeled
supergaussian_ranges
the range of supergaussian sources actually modeled

gaussian_range the range of Gaussian sources actually modeled

Author(s)
Roger P. Woods, M.D.

References

Woods RP, Hansen LK, Strother S. How many separable sources? Model selection in independent
components analysis (in preparation)

Examples

x<-matrix(nrow=4, ncol=150)

x[1,]<-iris[[1]]

x[2,1<-iris[[2]]

x[3,1<-iris[[3]]

x[4,]<-iris[[4]]

result<-ica_pca(x,inf_crit="'xval', subgaussian_range=c(1,1), supergaussian_range=c(3,3))
area<-as.double(dim(x)[2])

subg<-function(x){return ((areaxplot_width/sqrt(pi*exp(1)))*exp(-x*x)*cosh(sqrt(2)*x))}
superg<-function(x){return ((areaxplot_width)/(2*xcosh(pi*x/2.0)))}
gaussian<-function(x){return ((area*plot_width/sqrt(2*pi))*exp(-x*x))}
distributions<-list(subg, superg, gaussian)

par(mfrow=c(2,2))

plot_params<-hist(result$s[1,], ylim=c(0,45))
plot_width=plot_params$breaks[2]-plot_params$breaks[1]
par (new=TRUE)
plot(distributions[[result$distribution[1]+11],
plot_params$breaks[1],
plot_params$breaks[length(plot_params$breaks)],
ylim=c(0,45),
xlab="",
ylab="")
par (new=FALSE)

plot_params<-hist(result$s[2,], ylim=c(0,45))
plot_width=plot_params$breaks[2]-plot_params$breaks[1]
par (new=TRUE)
plot(distributions[[result$distribution[2]+11],

initializations 5

plot_params$breaks[1],
plot_params$breaks[length(plot_params$breaks)],
ylim=c(9Q,45),
xlab="",
ylab="")

par (new=FALSE)

plot_params<-hist(result$s[3,], ylim=c(0,45))
plot_width=plot_params$breaks[2]-plot_params$breaks[1]
par (new=TRUE)
plot(distributions[[result$distribution[3]+11],
plot_params$breaks[1],
plot_params$breaks[length(plot_params$breaks)],
ylim=c(9@,45),
xlab="",
ylab="")
par (new=FALSE)

plot_params<-hist(result$s[4,], ylim=c(0,90))
plot_width=plot_params$breaks[2]-plot_params$breaks[1]
par (new=TRUE)
plot(distributions[[result$distribution[4]+1]7],
plot_params$breaks[1],
plot_params$breaks[length(plot_params$breaks)],
ylim=c(0,90),
xlab="",
ylab="")
par (new=FALSE)

x_centered<-x
for (i in 1:(dim(x))[1]) x_centered[i,]=x_centered[i,]-mean(x_centered[i,])

w=t(qr.solve(t(x_centered),t(result$s)))

residuals<-w%*%x_centered-result$s

initializations Computes number of initializations to be performed by ica_pca

Description

For a given number of sub-Gaussian and super-Gaussian sources and Gaussian components, the
function ica_pca will initialize the model multiple times. This function will compute the number of
initializations that will be performed.

Usage

initializations(subgaussians, supergaussians, gaussians)

6 initializations

Arguments

subgaussians the number of sub-Gaussian sources in the model
supergaussians the number of super-Gaussian sources in the model

gaussians the number of Gaussian sources in the model

Details

If the number of initializations is small (less than 50 to 100), the ica_pca function may fail to identify
the optimal model; models with small numbers of initializations should be run several times using
different values for seed and/or offset_random. As the number of sources and components gets large
(e.g., with totals more than 10) the number of initializations grows quickly. To a first approximation,
computation time is proportional to the number of initializations.

Value

returns the number of initializations

Author(s)
Roger P. Woods, M.D.

Examples

initializations(4,1,2)

Index

xTopic multivariate
ica_pca, 1
initializations, 5

ica_pca, 1
initializations, 5

	ica_pca
	initializations
	Index

