Package 'icarus’

August 20, 2019
Title Calibrates and Reweights Units in Samples
Description Provides user-friendly tools for calibration in survey sampling.
The package is production-oriented, and its interface is inspired by the famous popular macro 'Calmar' for SAS, so that 'Calmar' users can quickly get used to 'icarus'. In addition to calibration (with linear, raking and logit methods), 'icarus' features functions for calibration on tight bounds and penalized calibration.

Version 0.3.1
Maintainer Antoine Rebecq antoine.rebecq@m4x.org
Depends R (>= 3.1.1)
License GPL-3
LazyData true
Suggests testthat, ggplot2, Rglpk, slam, xtable, magrittr
RoxygenNote 6.1.1
NeedsCompilation no
Author Antoine Rebecq [aut, cre]
Repository CRAN
Date/Publication 2019-08-20 05:00:02 UTC

R topics documented:

addMargin 2
calibration 2
calibrationMarginStats 5
calWeights_movies 6
colToDummies 6
dataPop 7
data_employees 7
HTmean 8
HTtotal 9
marginStats 9
newMarginMatrix 10
poptest_calmar 11
poptest_calmar_nr 11
regroupCalibrationModalities 12
regroupModalities 13
table_margins_1 14
table_margins_2. 14
weightedMean 15
weightedTotal 15
Index 17
addMargin Adds a margin to marginMatrix

Description

Adds a margin to marginMatrix

Usage

addMargin(marginMatrix, varName, vecTotals, adjustToOne = TRUE, thresholdAdjustToOne = 0.01)

Arguments

marginMatrix The matrix of margins to add the new margin to
varName Name of variable in calibration matrix corresponding to the new margin
vecTotals values of margins (Calmar style) for the variable. Note : if length(vecTotals) $>$ 1 , then sum(thresholdAdjustToOne) has to be 1 .
adjustToOne if TRUE and sum(vecTotals) is nearly 1 , modify values of vecTotals so that sum is 1 .
thresholdAdjustToOne
adjust sum(vecTotals) to 1 if difference is under thresholdAdjustToOne

Description

Performs calibration on margins with several methods and customizable parameters

Usage

```
calibration(data, marginMatrix, colWeights, method = "linear",
    bounds = NULL, q = NULL, costs = NULL, gap = NULL,
    popTotal = NULL, pct = FALSE, scale = NULL, description = TRUE,
    maxIter \(=2500\), check \(=\) TRUE, calibTolerance \(=1 \mathrm{e}-06\),
    uCostPenalized = 1, lambda = NULL, precisionBounds = 1e-04,
    forceSimplex = FALSE, forceBisection = FALSE, colCalibratedWeights,
    exportDistributionImage \(=\) NULL, exportDistributionTable \(=\) NULL)
```


Arguments

data The dataframe containing the survey data
marginMatrix The matrix giving the margins for each column variable included in the calibration problem
colWeights The name of the column containing the initial weights in the survey dataframe
method The method used to calibrate. Can be "linear", "raking", "logit", "truncated"
bounds Two-element vector containing the lower and upper bounds for bounded methods ("truncated" and "logit")
q
costs The penalized calibration method will be used, using costs defined by this vector. Must match the number of rows of marginMatrix. Negative of non-finite costs are given an infinite cost (coefficient of $\mathrm{C}^{\wedge}-1$ matrix is 0)
gap Only useful for penalized calibration. Sets the maximum gap between max and min calibrated weights / initial weights ratio (and thus is similar to the "bounds" parameter used in regular calibration)
popTotal Precise the total population if margins are defined by relative value in marginMatrix (percentages)
pct If TRUE, margins for categorical variables are considered to be entered as percentages. popTotal must then be set. (FALSE by default)
scale If TRUE, stats (including bounds) on ratio calibrated weights / initial weights are done on a vector multiplied by the weighted non-response ratio (ratio population total / total of initial weights). Has same behavior as "ECHELLE=0" in Calmar.
description If TRUE, output stats about the calibration process as well as the graph of the density of the ratio calibrated weights / initial weights
maxIter The maximum number of iterations before stopping
check performs a few check about the dataframe. TRUE by default
calibTolerance Tolerance for the distance to an exact solution. Could be useful when there is a huge number of margins as the risk of inadvertently setting incompatible constraints is higher. Set to $1 \mathrm{e}-06$ by default.
uCostPenalized Unary cost by which every cost is "costs" column is multiplied
lambda The initial ridge lambda used in penalized calibration. By default, the initial lambda is automatically chosen by the algorithm, but you can speed up the search for the optimum if you already know a lambda close to the lambda_opt
corresponding to the gap you set. Be careful, the search zone is reduced when a lambda is set by the user, so the program may not converge if the lambda set is too far from the lambda_opt.
precisionBounds
Only used for calibration on minimum bounds. Desired precision for lower and upper reweighting factor, both bounds being as close to 1 as possible
forceSimplex Only used for calibration on tight bounds.Bisection algorithm is used for matrices whose size exceed 1e8. forceSimplex = TRUE forces the use of the simplex algorithm whatever the size of the problem (you might want to set this parameter to TRUE if you have a large memory size)
forceBisection Only used for calibration on tight bounds. Forces the use of the bisection algorithm to solve calibration on tight bounds
colCalibratedWeights
Deprecated. Only used in the scope of calibration function
exportDistributionImage
File name to which the density plot shown when description is TRUE is exported. Requires package "ggplot2"
exportDistributionTable
File name to which the distribution table of before/after weights shown when description is TRUE is exported. Requires package "xtable"

Value

column containing the final calibrated weights

References

Deville, Jean-Claude, and Carl-Erik Sarndal. "Calibration estimators in survey sampling." Journal of the American statistical Association 87.418 (1992): 376-382.

Bocci, J., and C. Beaumont. "Another look at ridge calibration." Metron 66.1 (2008): 5-20.
Vanderhoeft, Camille. Generalised calibration at statistics Belgium: SPSS Module G-CALIB-S and current practices. Inst. National de Statistique, 2001.
Le Guennec, Josiane, and Olivier Sautory. "Calmar 2: Une nouvelle version de la macro calmar de redressement d'echantillon par calage." Journees de Methodologie Statistique, Paris. INSEE (2002).

Examples

```
N <- 300 ## population total
## Horvitz Thompson estimator of the mean: 1.666667
weightedMean(data_employees$movies, data_employees$weight, N)
## Enter calibration margins:
mar1 <- c("category",3,80,90,60)
mar2 <- c("sex",2,140,90,0)
mar3 <- c("department",2,100,130,0)
mar4 <- c("salary", 0, 470000,0,0)
margins <- rbind(mar1, mar2, mar3, mar4)
## Compute calibrated weights with raking ratio method
```

```
wCal <- calibration(data=data_employees, marginMatrix=margins, colWeights="weight"
            , method="raking", description=FALSE)
## Calibrated estimate: 2.471917
weightedMean(data_employees$movies, wCal, N)
```

```
calibrationMarginStats
```

Stats for initial weights, calibrated weights, and margins.

Description

Gives stats about the calibration process: differences between totals after/before calibration and margins. Totals for categorical variables are displayed in percentages. (same as first panels output in Calmar/Calmar 2) Output is a list, which might not be convenient for exports (e.g. for integration into a scientific report). In such cases, use function marginStats, which outputs a dataframe.

Usage

```
calibrationMarginStats(data, marginMatrix, popTotal = NULL,
        pct = FALSE, colWeights, colCalibratedWeights = NULL,
        calibThreshold = 1)
```


Arguments

data	dataframe containing the survey data
marginMatrix	matrix of margins
popTotal	total of population, useful if margins are entered in relative value
pct	Set this to true if margins for categorical variables are written in percentages
colWeights	name of weights column in the dataframe
colCalibratedWeights	
	name of calibrated weights column in the dataframe (if applicable)
calibThreshold	If difference between calibration estimate and margin differ more than this parameter, calibration is considered to have failed

Value

List containing stats on weights and margins

See Also

marginStats

```
calWeights_movies Calibration weights for data_employees
```


Description

Calibration weights computed with Calmar2 for the small example data_employees.

Usage

calWeights_movies

Format

1 column "id", unique id for each of the 15 units in sample. 3 columns with calibration weights using 3 different methods (linear, raking, and logit with bounds $\mathrm{LO}=0.4, \mathrm{UP}=2.2$)

Author(s)

Antoine Rebecq

colToDummies
 Changes a column containing multiple values to a matrix of columns

 containing the dummies corresponding to each value.
Description

Changes a column containing multiple values to a matrix of columns containing the dummies corresponding to each value.

Usage

colToDummies(col, nameCol, modalities = NULL, keepValue = FALSE)

Arguments

col	input column
nameCol	name that will be used as a prefix for dummies column name in the output matrix
modalities	if a vector is entered, dummies produced will only be the ones corresponding to the values in the "modalities" input column + another one containing all the other modalities.
keepValue	Logical. If TRUE, puts not "1"s in the dummies output columns but the real values in the "col" column (except if values are non-numeric)

Value

Matrix containing the dummy columns
dataPop Test population for Icarus.

Description

This data set features a generated population of 50000 units. 11 characteristics of interest for all units in population are featured. These characteristics of interest are variously correlated to one another. A stratified random sampling (with a proportional allocation on variable Y3) of fixed size 1000 is selected. Among the 1000 units in the selected sample, only 718 are respondant to the survey. These responding units are selected using a dummy logit model.

Usage
 dataPop

Format

1 column "ident" with unique id for all units. 11 columns with various characteristics of interest for units in the population. 1 column "weight", with sampling weights . Weights equal to zero means that the unit is not selected in the sample. 1 column "simul_nr" indicates the probability that each unit will respond to the survey. 1 column "responding". For sampled units, indicates whether unit is respondant to survey (1) or not (0). Variable is also equal to 0 for units not selected in sample 1 column "qTest" containing randomly generated q weights used in unit tests 50000 rows, 1 row per unit in the population.

Author(s)

Antoine Rebecq

References

Rebecq, A., \& Merly-Alpa, T. Pourquoi minimiser la dispersion des poids en sondage. preprint.
data_employees A small example sample for calibration with Icarus

Description

This table features a samples of 15 units (drawn from a population of size 300), used in a small survey to determine how frequently the employees of a firm go the movies (column "cinema"). Some auxiliary variables are given, which allows the use of calibration to improve estimates. Margins for these auxiliary variables are known: categ: 80 (modality 1) ; 90 (modality 2) ; 60 (modality 3) sexe: 140 (modality 1) ; 90 (modality 2) service: 100 (modality 1); 130 (modality 2) salaire : 470000

Usage

data_employees

Format

15 rows, one per unit in sample. 1 column "id", unique id for each unit. 4 columns of auxiliary variables ("service", "categ", "sexe", "salaire"). 1 column "cinema" - the variable of interest 1 column "weight" - the Horvitz-Thompson weights

Author(s)

Antoine Rebecq

HTmean Weighted estimator for the mean

Description

Computes the weighted estimator for the mean of a column. Alias for weightedMean

Usage

HTmean(var, weights, popTot = NULL)

Arguments

var column of variable of interest
weights column of weights matching the variable of interest
popTot population size, used in Horvitz-Thompson-like estimation. If no value is given for popTot, default value is the sum of weights. In the context of survey sampling, this is equivalent to using an Hajek estimate.

Value

Estimated mean

See Also

weightedMean

```
HTtotal Weighted estimator for total
```


Description

Computes the weighted estimator for the total of a column. Alias for weightedTotal

Usage

HTtotal(var, weights)

Arguments

var	column of variable of interest
weights	column of weights matching the variable of interest

Value

Estimated total

See Also

weightedTotal

Stats for initial weights, calibrated weights, and margins.

Description

Just like calibrationMarginStats, gives stats about the calibration process: differences between totals after/before calibration and margins. Totals for categorical variables are displayed in percentages. The last column, named "difference", shows the difference (in percentage points) between initial estimates and margins (if colCalibratedWeights is NULL) or between calibrated estimates and margins (if colCalibratedWeights is not NULL). Output is a dataframe, which might be more convenient to export than a list (e.g. for integration into reports).

Usage

marginStats(data, marginMatrix, pct = FALSE, popTotal = NULL, colWeights, colCalibratedWeights = NULL, calibThreshold = 1)

Arguments

data	dataframe containing the survey data
marginMatrix	matrix of margins
pct	Set this to true if margins for categorical variables are written in percentages
popTotal	total of population, useful if margins are entered in relative value
colWeights	name of weights column in the dataframe
colCalibratedWeights	
	name of calibrated weights column in the dataframe (if applicable)
calibThreshold	If difference between calibration estimate and margin differ more than this pa- rameter, calibration is considered to have failed

Value

Dataframe containing stats on weights and margins

See Also

calibrationMarginStats

```
newMarginMatrix Create empty margin matrix
```


Description

Use this to create an empty margin matrix (which facilitates the use of magrittr syntax to enter margins)

Usage

newMarginMatrix()

Examples

```
library(magrittr)
N <- 230 ## population total
## Horvitz Thompson estimator of the mean: 2.174
weightedMean(data_employees$movies, data_employees$weight, N)
## Enter calibration margins:
margins <- newMarginMatrix() %>%
    addMargin("category", c(0.35, 0.40, 0.25)) %>%
    addMargin("sex", c(0.6, 0.4)) %>%
    addMargin("department", c(0.45, 0.55)) %>%
    addMargin("salary", 470000)
## Compute calibrated weights with raking ratio method
wCal <- calibration(data=data_employees, marginMatrix=margins, colWeights="weight"
        , method="raking", pct = TRUE, description=FALSE
```

```
            , popTotal = N)
## Calibrated estimate: 2.471917
weightedMean(data_employees$movies, wCal, N)
```

poptest_calmar Calibration on population test - made on Calmar2

Description

This data set features calibration weights for the sample test of dataPop (using margins tables table_margins_1 and table_margins_2). Calibration is is computed using the SAS Macro Calmar2, for test purposes.

Usage

poptest_calmar

Format

1000 rows, one per unit in the sample. 1 column "ident", with a unique id for every unit in the sample 3 methods of calibration are used (linear, raking, and logit with bounds $\mathrm{LO}=0.2$ and $\mathrm{UP}=1.3$) for two different margins tables table_margins_1 and table_margins_2, which results in 7 columns of weights.

Author(s)

Antoine Rebecq

References

Le Guennec, J., and Sautory, O. (2002). Calmar 2: Une nouvelle version de la macro calmar de redressement d'echantillon par calage. Journees de Methodologie Statistique, Paris. INSEE.

```
poptest_calmar_nr Calibration with nonresponse on population test - made on Calmar2
```


Description

This data set features calibration weights for the sample test of dataPop (using margins tables table_margins_1 and table_margins_2). Calibration is is computed using the SAS Macro Calmar2, for test purposes. Only the 718 responding units are taken into account.

Usage

poptest_calmar_nr

Format

718 rows, one per unit in the sample. 1 column "ident", with a unique id for every unit in the sample 3 methods of calibration are used (linear, raking, and logit with bounds LO=0.1 and UP=2.0 and parameter ECHELLE=0) for two different margins tables table_margins_1 and table_margins_2, which results in 7 columns of weights.

Author(s)

Antoine Rebecq

References

Le Guennec, J., and Sautory, O. (2002). Calmar 2: Une nouvelle version de la macro calmar de redressement d'echantillon par calage. Journees de Methodologie Statistique, Paris. INSEE.

```
regroupCalibrationModalities
```

Regroup calibration modalities

Description

Beware, this function modifies the calibrationMatrix and marginMatrix objects entered in parameter? Regroups modalities entered in "vecModalities" into single "newModality" in "calibrationMatrix" and adapts "marginMatrix" to the new concept. Typical usage is right before a calibration (and after comptutation of marginMatrix), when you realise calibration output is better when several modalities are reduced to one. (typically very rare modalities, on which calibration constraints are very restrictive). Uses pseudo-"call by reference" via eval.parent because 2 objects are modified : calibrationMatrix and marginMatrix

Usage

regroupCalibrationModalities(calibrationMatrix, marginMatrix, calibrationVariable, vecModalities, newModality)

Arguments

calibrationMatrix
calibration matrix
marginMatrix matrix containing the margins to the Icarus format
calibrationVariable
name of the calibration varaible for which regroupment has to be done
vecModalities Initial modalities of the variable
newModality Regrouped modalities of the variable

Examples

```
## Not run:
## Suppose we have a calibration matrix and a margin matrix containing information
## for two categorical variables "X1" (10 modalities) and "X2" (5 modalities)
matrixCal <- data.frame(matrix(
    c(floor(10*runif(100))+1,floor((5)*runif(100))+1,
    floor(10*runif(100))+1,rep(10,100)),
    ncol=4))
marginMatrix <- matrix(c("X1",10,rep(1/10,10),
    "X2",5,rep(1/5,5),rep(0,5)), nrow=2, byrow=TRUE)
# table(matrixCal$X1)
# 1 2 2 3 4
# 9 8 8 8 8 111 15 13 6 10 12
# marginMatrix
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
# [1,] "X1" "10" "0.1" "0.1" "0.1" "0.1" "0.1" "0.1" "0.1" "0.1" "0.1" "0.1"
# [2,] "X2" "5" "0.2" "0.2" "0.2" "0.2" "0.2" "0" "0" "0" "0" "0"
regroupCalibrationModalities(matrixCal, marginMatrix, "X1", c(3,4,8), "0")
# table(matrixCal$X1)
# 0
# 22 9
# marginMatrix
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# [1,] "X1" "8" "0.3" "0.1" "0.1" "0.1" "0.1" "0.1" "0.1" "0.1"
# [2,] "X2" "5" "0.2" "0.2" "0.2" "0.2" "0.2" "0" "0" "0"
## End(Not run)
```

regroupModalities Regroup elements of a vector

Description

Regroup the contiguous elements of a vector under a single value. Which elements should be regrouped is indicated by the rows of a matrix. Output vector is NOT a factor.

Usage

regroupModalities(column, regroupMatrix, modalities = NULL)

Arguments

column Column vector which values are going to be replaced
regroupMatrix Bounds of the values to regroup under the same modality
modalities Specify the values of the modalities to use. Must match number of rows of regroupMatrix If not specified, replacement modalities will be 1:length(column)

Value

Column vector with regrouped modalities

Examples

```
    regroupModalities(c(1:20), rbind(c(0,5),c(6,18),c(19,Inf)))
```

 \# Returns : [1] 1111122222222222223
 table_margins_1 Margins for calibration of test population

Description

This table features calibration margins for the sample of the test population of dataPop

Usage

```
table_margins_1
```


Format

A margins table written in the Icarus format.

Author(s)

Antoine Rebecq
table_margins_2 Margins for calibration of test population

Description

This table features calibration margins for the sample of the test population of dataPop. Margins for categorical variables are entered in percentages.

Usage

```
    table_margins_2
```


Format

A margins table written in the Icarus format.

Author(s)

Antoine Rebecq

```
weightedMean Weighted estimator for the mean
```


Description

Computes the weighted estimator for the mean of a column

Usage

weightedMean(var, weights, popTot = NULL)

Arguments

var column of variable of interest
weights column of weights matching the variable of interest
popTot population size, used in Horvitz-Thompson-like estimation. If no value is given for popTot, default value is the sum of weights. In the context of survey sampling, this is equivalent to using an Hajek estimate.

Value

Estimated mean

See Also

HTmean
weightedTotal Weighted estimator for total

Description

Computes the weighted estimator for the total of a column

Usage

weightedTotal(var, weights)

Arguments

var	column of variable of interest
weights	column of weights matching the variable of interest

Value

Estimated total

See Also
HTtotal

Index

```
addMargin,2
calibration,2
calibrationMarginStats, 5, 9, 10
calWeights_movies, }
colToDummies, }
data_employees, 6,7
dataPop, 7, 11, 14
HTmean, 8, 15
HTtotal, 9, 16
marginStats, 5, 9
newMarginMatrix,10
poptest_calmar,11
poptest_calmar_nr,11
regroupCalibrationModalities,12
regroupModalities,13
table_margins_1,11, 12,14
table_margins_2, 11, 12,14
weightedMean, 8,15
weightedTotal, 9,15
```

