Interpretability methods to analyze the behavior
    and predictions of any machine learning model.  Implemented methods
    are: Feature importance described by Fisher et al. (2018)
    <arXiv:1801.01489>, accumulated local effects plots described by Apley
    (2018) <arXiv:1612.08468>, partial dependence plots described by
    Friedman (2001) <www.jstor.org/stable/2699986>, individual
    conditional expectation ('ice') plots described by Goldstein et al.
    (2013) <doi:10.1080/10618600.2014.907095>, local models (variant of
    'lime') described by Ribeiro et. al (2016) <arXiv:1602.04938>, the
    Shapley Value described by Strumbelj et. al (2014)
    <doi:10.1007/s10115-013-0679-x>, feature interactions described by
    Friedman et. al <doi:10.1214/07-AOAS148> and tree surrogate models.
| Version: | 
0.10.1 | 
| Imports: | 
checkmate, data.table, Formula, future, future.apply, ggplot2, keras (≥ 2.2.5.0), Metrics, prediction, R6 | 
| Suggests: | 
ALEPlot, bench, caret, covr, e1071, future.callr, glmnet, gower, h2o, knitr, MASS, mlr, mlr3, party, partykit, patchwork, randomForest, ranger, rmarkdown, rpart, testthat, yaImpute | 
| Published: | 
2020-09-24 | 
| Author: | 
Christoph Molnar [aut, cre],
  Patrick Schratz  
    [aut] | 
| Maintainer: | 
Christoph Molnar  <christoph.molnar at gmail.com> | 
| BugReports: | 
https://github.com/christophM/iml/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://christophm.github.io/iml/,
https://github.com/christophM/iml/ | 
| NeedsCompilation: | 
no | 
| Citation: | 
iml citation info  | 
| Materials: | 
NEWS  | 
| CRAN checks: | 
iml results |