Package 'insuranceData’

February 20, 2015
Type Package
Title A Collection of Insurance Datasets Useful in Risk Classificationin Non-life Insurance.
Version 1.0
Date 2014-09-04
Author Alicja Wolny--Dominiak and Michal Trzesiok
Maintainer Alicja Wolny--Dominiak alicja.wolny-dominiak@ue.katowice.pl
Description Insurance datasets, which are often used in claims severity and claims frequency mod- elling. It helps testing new regression models in those prob- lems, such as GLM, GLMM, HGLM, non-linear mixed models etc. Most of the data sets are ap- plied in the project "'Mixed models in ratemaking" supported by grant NN 111461540 from Pol- ish National Science Center.
License GPL-2
Depends R (>= 2.10)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-09-04 13:46:39
R topics documented:
AutoBi 2
AutoClaims 3
AutoCollision 4
ClaimsLong 5
dataCar 6
dataOhlsson 7
IndustryAuto 8
SingaporeAuto 9
Thirdparty 10
WorkersComp 11
Index 12

Description

Data from the Insurance Research Council (IRC), a division of the American Institute for Chartered Property Casualty Underwriters and the Insurance Institute of America. The data, collected in 2002, contains information on demographic information about the claimant, attorney involvement and the economic loss (LOSS, in thousands), among other variables. We consider here a sample of $\mathrm{n}=1$; 340 losses from a single state. The full 2002 study contains over 70,000 closed claims based on data from thirty-two insurers. The IRC conducted similar studies in 1977, 1987, 1992 and 1997.

Usage

data(AutoBi)

Format

A data frame with 1340 observations on the following 8 variables.
CASENUM Case number to identify the claim, a numeric vector
ATTORNEY Whether the claimant is represented by an attorney ($=1$ if yes and $=2$ if no), a numeric vector
CLMSEX Claimant's gender ($=1$ if male and $=2$ if female), a numeric vector
MARITAL claimant's marital status ($=1$ if married, $=2$ if single, $=3$ if widowed, and $=4$ if divorced $/$ separated), a numeric vector

CLMINSUR Whether or not the driver of the claimant's vehicle was uninsured ($=1$ if yes, $=2$ if no, and $=3$ if not applicable), a numeric vector
SEATBELT Whether or not the claimant was wearing a seatbelt/child restraint ($=1$ if yes, $=2$ if no, and $=3$ if not applicable), a numeric vector

CLMAGE Claimant's age, a numeric vector
LOSS The claimant's total economic loss (in thousands), a numeric vector

Details

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/
DataDescriptions.pdf

Source

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/data.html

References

Frees E.W. (2010), Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.

Examples

```
data(AutoBi)
## maybe str(AutoBi) ; plot(AutoBi) ...
```

AutoClaims Automobile Insurance Claims

Description

Claims experience from a large midwestern (US) property and casualty insurer for private passenger automobile insurance. The dependent variable is the amount paid on a closed claim, in (US) dollars (claims that were not closed by year end are handled separately). Insurers categorize policyholders according to a risk classification system. This insurer's risk classification system is based on automobile operator characteristics and vehicle characteristics, and these factors are summarized by the risk class categorical variable CLASS.

Usage

data(AutoClaims)

Format

A data frame with 6773 observations on the following 5 variables.
STATE Codes 01 to 17 used, with each code randomly assigned to an actual individual state, a factor with levels STATE 01 STATE 02 STATE 03 STATE 04 STATE 06 STATE 07 STATE 10 STATE 11 STATE 12 STATE 13 STATE 14 STATE 15 STATE 17
CLASS Rating class of operator, based on age, gender, marital status, use of vehicle, a factor with levels C1 C11 C1A C1B C1C C2 C6 C7 C71 C72 C7A C7B C7CF1 F11 F6 F7 F71

GENDER a factor with levels F M
AGE Age of operator, a numeric vector
PAID Amount paid to settle and close a claim, a numeric vector

Details

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/ DataDescriptions.pdf

Source

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/data.html

References

Frees E.W. (2010), Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.

Examples

```
    data(AutoClaims)
    ## maybe str(AutoClaims) ; plot(AutoClaims) ...
```

AutoCollision
Automobile UK Collision Claims

Description

This data is due to Mildenhall (1999). Mildenhall (1999) considered 8,942 collision losses from private passenger United Kingdom (UK) automobile insurance policies. The data were derived from Nelder and McCullagh (1989, Section 8.4.1) but originated from Baxter et al. (1980). We consider here a sample of $\mathrm{n}=32$ of Mildenhall data for eight driver types (age groups) and four vehicle classes (vehicle use). The average severity is in pounds sterling adjusted for inflation.

Usage

data(AutoCollision)

Format

A data frame with 32 observations on the following 4 variables.
Age Age of driver, a factor with levels ABCDEFGH
Vehicle_Use Purpose of the vehicle use: DriveShort means drive to work but less than 10 miles, DriveLong means drive to work but more than 10 miles, a factor with levels Business DriveLong DriveShort Pleasure

Severity Average amount of claims (in pounds sterling), a numeric vector
Claim_Count Number of claims, a numeric vector

Details

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/
DataDescriptions.pdf

Source

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/data.html

References

Frees E.W. (2010), Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.
Mildenhall S.J. (1999), A systematic relationship between minimum bias and generalized linear models, in: Proceedings of the Casualty Actuarial Society, 86, p. 393-487.

Examples

```
data(AutoCollision)
## maybe str(AutoCollision) ; plot(AutoCollision) ...
```

ClaimsLong Claims Longitudinal

Description

This is a simulated data set, based on the car insurance data set used throughout the text. There are 40000 policies over 3 years, giving 120000 records.

Usage

data(ClaimsLong)

Format

A data frame with 120000 observations on the following 6 variables.
policyID number of policy, a numeric vector
agecat driver's age category: 1 (youngest), $2,3,4,5,6$, a numeric vector
valuecat vehicle value, in categories $1, \ldots, 6$. (Category 1 has been recoded as 9 .), a numeric vector period $1,2,3$, a numeric vector
numclaims number of claims, a numeric vector
claim a numeric vector

Details

The dataset "Longitudinal Claims"

Source

http://www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/ research/books/GLMsforInsuranceData/data_sets

References

De Jong P., Heller G.Z. (2008), Generalized linear models for insurance data, Cambridge University Press

Examples

```
data(ClaimsLong)
## maybe str(ClaimsLong) ; plot(ClaimsLong) ...
```

```
dataCar data Car
```


Description

This data set is based on one-year vehicle insurance policies taken out in 2004 or 2005. There are 67856 policies, of which 4624 (6.8

Usage

data(dataCar)

Format

A data frame with 67856 observations on the following 11 variables.
veh_value vehicle value, in $\$ 10,000$ s
exposure 0-1
clm occurrence of claim ($0=$ no, $1=$ yes $)$
numclaims number of claims
claimcst0 claim amount (0 if no claim)
veh_body vehicle body, coded as BUS CONVT COUPE HBACK HDTOP MCARA MIBUS PANVN RDSTR SEDAN STNWG TRUCK UTE
veh_age 1 (youngest), 2, 3, 4
gender a factor with levels FM
area a factor with levels A B C DEF
agecat 1 (youngest), 2, 3, 4, 5, 6
X_OBSTAT_ a factor with levels $01101 \quad 0 \quad 0 \quad 0$

Details

dataset "Car"

Source

http://www.acst.mq.edu.au/GLMsforInsuranceData

References

De Jong P., Heller G.Z. (2008), Generalized linear models for insurance data, Cambridge University Press

Examples

```
data(dataCar)
## maybe str(dataCar) ; plot(dataCar) ...
```


Description

The data for this case study comes from the former Swedish insurance company Wasa, and concerns partial casco insurance, for motorcycles this time. It contains aggregated data on all insurance policies and claims during 1994-1998; the reason for using this rather old data set is confidentiality; more recent data for ongoing business can not be disclosed.

Usage

data(dataOhlsson)

Format

A data frame with 64548 observations on the following 9 variables.
agarald The owners age, between 0 and 99, a numeric vector
kon The owners age, between 0 and 99, a factor with levels K M
zon Geographic zone numbered from 1 to 7 , in a standard classification of all Swedish parishes, a numeric vector
mcklass MC class, a classification by the so called EV ratio, defined as (Engine power in kW x 100) / (Vehicle weight in $\mathrm{kg}+75$), rounded to the nearest lower integer. The 75 kg represent the average driver weight. The EV ratios are divided into seven classes, a numeric vector
fordald Vehicle age, between 0 and 99 , a numeric vector
bonuskl Bonus class, taking values from 1 to 7 . A new driver starts with bonus class 1 ; for each claim-free year the bonus class is increased by 1 . After the first claim the bonus is decreased by 2 ; the driver can not return to class 7 with less than 6 consecutive claim free years, a numeric vector
duration the number of policy years, a numeric vector
antskad the number of claims, a numeric vector
skadkost the claim cost, a numeric vector

Details

The dataset "mccase.txt"

Source

http://people.su.se/~esbj/GLMbook/case.html

References

Ohlsson E., Johansson B. (2010), Non-life insurance pricing with generalized linear models, Springer

Examples

data(dataOhlsson)
\#\# maybe str(dataOhlsson) ; plot(dataOhlsson) ...

IndustryAuto Auto Industry

Description

The data represent industry aggregates for private passenger auto liability \backslash medical coverages from year 2004, in millions of dollars. They are based on insurance company annual statements, specifically, Schedule P, Part 3B. The elements of the triangle represent cumulative net payments, including defense and cost containment expenses.

Usage

data(IndustryAuto)

Format

A data frame with 55 observations on the following 3 variables.
Incurral. Year The year in which a claim has been incurred, a numeric vector
Development. Year The number of years from incurral to the time when the payment is made, a numeric vector
Claim Cumulative net payments, including defense and cost containment expenses, a numeric vector

Details

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/
DataDescriptions.pdf

Source

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/data.html

References

Frees E.W. (2010), Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.
Wacek M.G. (2007), A Test of Clinical Judgment vs. Statistical Prediction in Loss Reserving for Commercial Auto Liability, in: Casualty Actuarial Society Forum, p. 371-404.

Examples

```
data(IndustryAuto)
## maybe str(IndustryAuto) ; plot(IndustryAuto) ...
```


Description

The data is from the General Insurance Association of Singapore, an organization consisting of general (property and casualty) insurers in Singapore (see the organization's website: www.gia.org.sg). From this database, several characteristics are available to explain automobile accident frequency. These characteristics include vehicle variables, such as type and age, as well as person level variables, such as age, gender and prior driving experience.

Usage

data(SingaporeAuto)

Format

A data frame with 7483 observations on the following 15 variables.
SexInsured a factor with levels F M U
Female a numeric vector
VehicleType a factor with levels A G M P Q S T W Z
PC a numeric vector
Clm_Count a numeric vector
Exp_weights a numeric vector
LNWEIGHT a numeric vector
NCD a numeric vector
AgeCat a numeric vector
AutoAge0 a numeric vector
AutoAge1 a numeric vector
AutoAge2 a numeric vector
AutoAge a numeric vector
VAgeCat a numeric vector
VAgecat1 a numeric vector

Details

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/
DataDescriptions.pdf

Source

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression\ Modeling/BookWebDec2010/data.html

References

Frees E.W., Valdez E.A. (2008), Hierarchical insurance claims modeling, „Journal of the American Statistical Association", 103(484), p. 1457-1469.
Frees E.W. (2010), Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.

Examples

data(SingaporeAuto)
\#\# maybe str(SingaporeAuto) ; plot(SingaporeAuto) ...

Thirdparty Third party insurance

Description

Third party insurance is a compulsory insurance for vehicle owners in Australia. It insures vehicle owners against injury caused to other drivers, passengers or pedestrians, as a result of an accident. This data set records the number of third party claims in a twelve-month period between 1984-1986 in each of 176 geographical areas (local government areas) in New South Wales, Australia.

Usage

data(Thirdparty)

Format

A data frame with 176 observations on the following variable.
lga.sd.claims.accidents.ki.population.pop_density a numeric vector

Details

The dataset "Third Party Claims"

Source

http://www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/ research/books/GLMsforInsuranceData/data_sets

References

De Jong P., Heller G.Z. (2008), Generalized linear models for insurance data, Cambridge University Press

Examples

```
data(Thirdparty)
```

\#\# maybe str(Thirdparty) ; plot(Thirdparty) ...
WorkersComp Workers Compensation

Description

Standard example in worker's compensation insurance, examining losses due to permanent, partial disability claims. The data are from Klugman (1992), who considers Bayesian model representations, and are originally from the National Council on Compensation Insurance. We consider $\mathrm{n}=121$ occupation, or risk, classes, over $\mathrm{T}=7$ years. To protect the data source, further information on the occupation classes and years is not available. Source: Frees, E. W., Young, V. and Y. Luo (2001). Case studies using panel data models. North American Actuarial Journal, 4, No. 4, 24-42.

Usage

data(WorkersComp)

Format

A data frame with 847 observations on the following 4 variables.
CL a numeric vector
YR a numeric vector
PR a numeric vector
LOSS a numeric vector

Details

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression
DataDescriptions.pdf

Source

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression

References

Frees E.W. (2010), Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.

Examples

data(WorkersComp)
\#\# maybe str(WorkersComp) ; plot(WorkersComp) ...

Index

*Topic datasets
AutoBi, 2
AutoClaims, 3
AutoCollision, 4
ClaimsLong, 5
dataCar, 6
dataOhlsson, 7
IndustryAuto, 8
SingaporeAuto, 9
Thirdparty, 10
WorkersComp, 11
AutoBi, 2
AutoClaims, 3
AutoCollision, 4
ClaimsLong, 5
dataCar, 6
dataOhlsson, 7
IndustryAuto, 8
SingaporeAuto, 9
Thirdparty, 10

WorkersComp, 11

