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add_prediction Add predictions to a data frame

Description

Add model predictions and confidence bounds to a data frame.

Usage
add_prediction(data, ..., var = NULL, conf_int = FALSE, alpha = 0.1)
Arguments
data a data frame of new data.
one or more objects of class glm.
var the name of the output column(s), defaults to NULL
conf_int determines whether confidence intervals will be shown. Defaults to conf_int =
FALSE.
alpha a real number between 0 and 1. Controls the confidence level of the interval
estimates (defaults to 0.10, representing 90 percent confidence interval).
Value
data.frame
Examples

mod1 <- glm(nclaims ~ age_policyholder, data = MTPL,
offset = log(exposure), family = poisson())
add_prediction(MTPL, mod1)

# Include confidence bounds
add_prediction(MTPL, mod1, conf_int = TRUE)

autoplot.bootstrap_rmse
Automatically create a ggplot for objects obtained from boot-
strap_rmse()

Description

Takes an object produced by bootstrap_rmse(), and plots the simulated RMSE
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Usage
## S3 method for class 'bootstrap_rmse'
autoplot(object, fill = NULL, color = NULL, ...)
Arguments
object bootstrap_rmse object produced by bootstrap_rmse()
fill color to fill histogram (default is "steelblue")
color color to plot line colors of histogram

other plotting parameters to affect the plot

Value

a ggplot object

Author(s)

Martin Haringa

autoplot.check_residuals

Automatically create a ggplot for objects obtained from
check_residuals()

Description

Takes an object produced by check_residuals(), and produces a uniform quantile-quantile plot.#

Usage
## S3 method for class 'check_residuals'
autoplot(object, show_message = TRUE, ...)
Arguments
object check_residuals object produced by check_residuals()

show_message show output from test (defaults to TRUE)
other plotting parameters to affect the plot

Value

a ggplot object

Author(s)

Martin Haringa
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autoplot.constructtariffclasses

Automatically create a ggplot for objects obtained from con-
struct_tariff_classes()

Description

Takes an object produced by construct_tariff_classes(), and plots the fitted GAM. In addition
the constructed tariff classes are shown.

Usage
## S3 method for class 'constructtariffclasses'
autoplot(
object,
conf_int = FALSE,
color_gam = "steelblue”,

show_observations = FALSE,
color_splits = "grey50",
size_points = 1,
color_points = "black”,
rotate_labels = FALSE,
remove_outliers = NULL,

Arguments
object constructtariffclasses object produced by construct_tariff_classes
conf_int determines whether 95 percent confidence intervals will be plotted. The default
is conf_int = FALSE
color_gam a color can be specified either by name (e.g.: "red") or by hexadecimal code

(e.g. : "#FF1234") (default is "steelblue")
show_observations

add observed frequency/severity points for each level of the variable for which
tariff classes are constructed

color_splits  change the color of the splits in the graph ("grey50" is default)
size_points size for points (1 is default)
color_points  change the color of the points in the graph ("black" is default)

rotate_labels rotate x-labels 45 degrees (this might be helpful for overlapping x-labels)
remove_outliers
do not show observations above this number in the plot. This might be helpful
for outliers.

other plotting parameters to affect the plot
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Value

a ggplot object

Author(s)

Martin Haringa

Examples

## Not run:
library(ggplot2)
library(dplyr)
fit_gam(MTPL, nclaims = nclaims, x = age_policyholder,
exposure = exposure) %>%
construct_tariff_classes(.) %>%
autoplot(., show_observations = TRUE)

## End(Not run)

autoplot.fitgam Automatically create a ggplot for objects obtained from fit_gam()

Description

Takes an object produced by fit_gam(), and plots the fitted GAM.

Usage
## S3 method for class 'fitgam'
autoplot(
object,
conf_int = FALSE,
color_gam = "steelblue”,

show_observations = FALSE,
x_stepsize = NULL,
size_points = 1,
color_points = "black”,
rotate_labels = FALSE,
remove_outliers = NULL,
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Arguments

object

conf_int

color_gam

fitgam object produced by fit_gam()

determines whether 95 percent confidence intervals will be plotted. The default
is conf_int = FALSE.

a color can be specified either by name (e.g.: "red") or by hexadecimal code
(e.g. : "#FF1234") (default is "steelblue")

show_observations

x_stepsize
size_points
color_points

rotate_labels

remove_outliers

Value

a ggplot object

Author(s)

Martin Haringa

Examples

## Not run:
library(ggplot2)
library(dplyr)

add observed frequency/severity points for each level of the variable for which
tariff classes are constructed

set step size for labels horizontal axis
size for points (1 is default)
change the color of the points in the graph ("black” is default)

rotate x-labels 45 degrees (this might be helpful for overlapping x-labels)

do not show observations above this number in the plot. This might be helpful
for outliers.

other plotting parameters to affect the plot

fit_gam(MTPL, nclaims = nclaims, x = age_policyholder,
exposure = exposure) %>%
autoplot(., show_observations = TRUE)

## End(Not run)
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autoplot.restricted Automatically create a ggplot for objects obtained from restrict_coef{)

Description

[Experimental] Takes an object produced by restrict_coef (), and produces a line plot with a
comparison between the restricted coefficients and estimated coefficients obtained from the model.

Usage
## S3 method for class 'restricted’
autoplot(object, ...)

Arguments
object object produced by restrict_coef ()

other plotting parameters to affect the plot

Value

Object of class ggplot2

Author(s)

Martin Haringa

Examples

freq <- glm(nclaims ~ bm + zip, weights = power, family = poisson(),
data = MTPL)
zip_df <- data.frame(zip = c(0,1,2,3), zip_rst = c(0.8, 0.9, 1, 1.2))
freq %>%

restrict_coef(., zip_df) %>%

autoplot()

autoplot.riskfactor Automatically create a ggplot for objects obtained from rat-
ing_factors()

Description

Takes an object produced by univariate(), and plots the available input.
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## S3 method for class 'riskfactor'

= NULL,

n on

’

’

Usage

autoplot(
object,
risk_factors
ncol = 1,
labels = TRUE,
dec.mark = ",
ylab = "rate”
fill = NULL,
color = NULL,

linetype = FALSE,

Arguments

object
risk_factors
ncol

labels

dec.mark

ylab
fill
color

linetype

Value

a ggplot2 object

Author(s)

Martin Haringa

Examples

library(dplyr)
df <- MTPL2 %>%

riskfactor object produced by rating_factors()

character vector to define which factors are included. Defaults to all risk factors.
number of columns in output (default is 1)

show labels with the exposure (default is TRUE)

control the format of the decimal point, as well as the mark between intervals
before the decimal point, choose either "," (default) or "."

modify label for the y-axis

color to fill histogram

color to plot line colors of histogram (default is "skyblue")
use different linetypes (default is FALSE)

other plotting parameters to affect the plot

mutate(across(c(area), as.factor)) %>%
mutate(across(c(area), ~biggest_reference(., exposure)))

modl <- glm(nclaims ~ area + premium, offset = log(exposure),
family = poisson(), data = df)
mod2 <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
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data = df)

x <- rating_factors(mod1, mod2, model_data = df, exposure = exposure)
autoplot(x)

autoplot.smooth Automatically create a ggplot for objects obtained from smooth_coef{)

Description

[Experimental] Takes an object produced by smooth_coef (), and produces a plot with a compar-
ison between the smoothed coefficients and estimated coefficients obtained from the model.

Usage
## S3 method for class 'smooth'
autoplot(object, ...)

Arguments
object object produced by smooth_coef ()

other plotting parameters to affect the plot

Value

Object of class ggplot2

Author(s)

Martin Haringa

autoplot.truncated_dist
Automatically create a ggplot for objects obtained from
fit_truncated_dist()

Description

Takes an object produced by fit_truncated_dist(), and plots the available input.
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## S3 method for class 'truncated_dist'

Usage

autoplot(
object,
geom_ecdf =
xlab = NULL,
ylab = NULL,
ylim = c(0,
xlim = NULL,
print_title
print_dig =

print_trunc

Arguments

object
geom_ecdf
xlab

ylab

ylim

xlim
print_title
print_dig

print_trunc

Value

a ggplot2 object

Author(s)

Martin Haringa

C("point", "Step"),

1)7

= TRUE,
2,
= 2’

object univariate object produced by fit_truncated_dist()

the geometric object to use display the data (point or step)

the title of the x axis

the title of the y axis

two numeric values, specifying the lower limit and the upper limit of the scale
two numeric values, specifying the left limit and the right limit of the scale
show title (default to TRUE)

number of digits for parameters in title (default 2)

number of digits for truncation values to print

other plotting parameters to affect the plot

autoplot.univariate Automatically create a ggplot for objects obtained from univariate()

Description

Takes an object produced by univariate(), and plots the available input.



12

Usage

autoplot.univariate

## S3 method for class 'univariate'

autoplot(
object,
show_plots
ncol = 1,

1:9,

background = TRUE,

labels = TRUE,

sort = FALSE,
sort_manual = NULL,
dec.mark = ",",

color = "dodgerblue”,

color_bg = "lightskyblue”,

label_width = 19,

coord_flip = FALSE,
show_total = FALSE,
total_color = NULL,

total_name = NULL,

Arguments
object univariate object produced by univariate()
show_plots numeric vector of plots to be shown (default is ¢(1,2,3,4,5,6,7,8,9)), there are
nine available plots:
* 1. frequency (i.e. number of claims / exposure)
* 2. average severity (i.e. severity / number of claims)
* 3. risk premium (i.e. severity / exposure)
* 4. loss ratio (i.e. severity / premium)
* 5. average premium (i.e. premium / exposure)
* 6. exposure
* 7. severity
* 8. nclaims
* 9. premium
ncol number of columns in output (default is 1)
background show exposure as a background histogram (default is TRUE)
labels show labels with the exposure (default is TRUE)
sort sort (or order) risk factor into descending order by exposure (default is FALSE)
sort_manual sort (or order) risk factor into own ordering; should be a character vector (default
is NULL)
dec.mark decimal mark; defaults to ","
color change the color of the points and line ("dodgerblue" is default)

color_bg change the color of the histogram ("#f8e6bl" is default)
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label_width width of labels on the x-axis (10 is default)

coord_flip flip cartesian coordinates so that horizontal becomes vertical, and vertical, hori-
zontal (default is FALSE)
show_total show line for total if by is used in univariate (default is FALSE)

total_color change the color for the total line ("black” is default)
total_name add legend name for the total line (e.g. "total")

other plotting parameters to affect the plot

Value

a ggplot2 object

Author(s)

Marc Haine, Martin Haringa

Examples

library(ggplot2)

X <- univariate(MTPL2, x = area, severity = amount, nclaims = nclaims,
exposure = exposure)

autoplot(x)

autoplot(x, show_plots = c(6,1), background = FALSE, sort = TRUE)

# Group by ‘zip®

xzip <- univariate(MTPL, x = bm, severity = amount, nclaims = nclaims,
exposure = exposure, by = zip)

autoplot(xzip, show_plots = 1:2)

biggest_reference Set reference group to the group with largest exposure

Description

This function specifies the first level of a factor to the level with the largest exposure. Levels of
factors are sorted using an alphabetic ordering. If the factor is used in a regression context, then the
first level will be the reference. For insurance applications it is common to specify the reference
level to the level with the largest exposure.

Usage

biggest_reference(x, weight)

Arguments

X an unordered factor

weight a vector containing weights (e.g. exposure). Should be numeric.
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Value

a factor of the same length as x

Author(s)

Martin Haringa

References

Kaas, Rob & Goovaerts, Marc & Dhaene, Jan & Denuit, Michel. (2008). Modern Actuarial Risk
Theory: Using R. doi:10.1007/978-3-540-70998-5.

Examples

## Not run:

library(dplyr)

df <- chickwts %>%

mutate(across(where(is.character), as.factor)) %>%
mutate(across(where(is.factor), ~biggest_reference(., weight)))

## End(Not run)

bootstrap_rmse Bootstrapped RMSE

Description

Generate n bootstrap replicates to compute n root mean squared errors.

Usage

bootstrap_rmse(
model,
data,
n = 50,
frac = 1,
show_progress = TRUE,
rmse_model = NULL

)
Arguments
model a model object
data data used to fit model object
n number of bootstrap replicates (defaults to 50)
frac fraction used in training set if cross-validation is applied (defaults to 1)

show_progress  show progress bar (defaults to TRUE)
rmse_model numeric RMSE to show as vertical dashed line in autoplot() (defaults to NULL)
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Details

To test the predictive ability of the fitted model it might be helpful to determine the variation in
the computed RMSE. The variation is calculated by computing the root mean squared errors from
n generated bootstrap replicates. More precisely, for each iteration a sample with replacement is
taken from the data set and the model is refitted using this sample. Then, the root mean squared
error is calculated.

Value

A list with components

rmse_bs numerical vector with n root mean squared errors
rmse_mod root mean squared error for fitted (i.e. original) model
Author(s)

Martin Haringa

Examples

## Not run:
modl <- glm(nclaims ~ age_policyholder, data = MTPL,
offset = log(exposure), family = poisson())

# Use all records in MTPL

X <- bootstrap_rmse(mod1, MTPL, n = 80, show_progress = FALSE)
print(x)

autoplot(x)

# Use 80% of records to test whether predictive ability depends on which 80%
# is used. This might for example be useful in case portfolio contains large
# claim sizes

x_frac <- bootstrap_rmse(modl, MTPL, n = 50, frac = .8,

show_progress = FALSE)

autoplot(x_frac) # Variation is quite small for Poisson GLM

## End(Not run)

check_overdispersion  Check overdispersion of Poisson GLM

Description

Check Poisson GLM for overdispersion.

Usage

check_overdispersion(object)
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Arguments

object fitted model of class glm and family Poisson

Details

A dispersion ratio larger than one indicates overdispersion, this occurs when the observed variance
is higher than the variance of the theoretical model. If the dispersion ratio is close to one, a Poisson
model fits well to the data. A p-value < .05 indicates overdispersion. Overdispersion > 2 probably
means there is a larger problem with the data: check (again) for outliers, obvious lack of fit. Adopted
from performance: : check_overdispersion().

Value

A list with dispersion ratio, chi-squared statistic, and p-value.

Author(s)

Martin Haringa

References

* Bolker B et al. (2017): GLMM FAQ.

Examples

x <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)
check_overdispersion(x)

check_residuals Check model residuals

Description

Detect overall deviations from the expected distribution.

Usage

check_residuals(object, n_simulations = 30)

Arguments

object a model object

n_simulations number of simulations (defaults to 30)


http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html
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Details

Misspecifications in GLMs cannot reliably be diagnosed with standard residual plots, and GLMs
are thus often not as thoroughly checked as LMs. One reason why GLMs residuals are harder to
interpret is that the expected distribution of the data changes with the fitted values. As a result,
standard residual plots, when interpreted in the same way as for linear models, seem to show all
kind of problems, such as non-normality, heteroscedasticity, even if the model is correctly specified.
check_residuals() aims at solving these problems by creating readily interpretable residuals for
GLMs that are standardized to values between O and 1, and that can be interpreted as intuitively
as residuals for the linear model. This is achieved by a simulation-based approach, similar to the
Bayesian p-value or the parametric bootstrap, that transforms the residuals to a standardized scale.
This explanation is adopted from DHARMa: : simulateResiduals().

Value

Invisibly returns the p-value of the test statistics. A p-value < 0.05 indicates a significant deviation
from expected distribution.

Author(s)

Martin Haringa

References

Dunn, K. P,, and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational
and Graphical Statistics 5, 1-10.

Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models Cambridge
University Press, 2006

Hartig, F. (2020). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regres-
sion Models. R package version 0.3.0. https://CRAN.R-project.org/package=DHARMa

Examples

## Not run:

ml <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)

check_residuals(m1, n_simulations = 50) %>% autoplot()

## End(Not run)

construct_model_points
Construct model points from Generalized Linear Model
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Description

[Experimental] construct_model_points() is used to construct model points from generalized
linear models, and must be preceded by model_data(). construct_model_points() can also be

used in combination with a data.frame.

Usage

construct_model_points(
X,
exposure = NULL,
exposure_by = NULL,
agg_cols = NULL,
drop_na = FALSE

)
Arguments
X Object of class model_data or of class data.frame
exposure column with exposure
exposure_by split column exposure by (e.g. year)
agg_cols list of columns to aggregate (sum) by, e.g. number of claims
drop_na drop na values (default to FALSE)
Value
data.frame
Author(s)

Martin Haringa

Examples

## Not run:
# With data.frame
library(dplyr)
mtcars %>%
select(cyl, vs) %>%
construct_model_points()

mtcars %>%
select(cyl, vs, disp) %>%
construct_model_points(exposure = disp)

mtcars %>%
select(cyl, vs, disp, gear) %>%

construct_model_points(exposure = disp, exposure_by = gear)

mtcars %>%
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select(cyl, vs, disp, gear, mpg) %>%

construct_model_points(exposure =
agg_cols = list(mpg))

# With glm

library(datasets)
datal <- warpbreaks %>%
mutate(jaar =
mutate(nclaims =

»

pmodel <- glm(breaks ~ wool + tension, datal, offset =

family = poisson(link = "log"))

model_data(pmodel) %>%
construct_model_points()

model_data(pmodel) %>%
construct_model_points(exposure =

model_data(pmodel) %>%
construct_model_points(exposure =
agg_cols = list(nclaims)) %>%
add_prediction(., pmodel)

## End(Not run)

disp, exposure_by = gear,

c(rep(2000, 10), rep(2010, 44))) %%

log(nclaims),

breaks, agg_cols = list(nclaims))

breaks, exposure_by = jaar,

construct_tariff_classes

Construct insurance tariff classes

Description

Constructs insurance tariff classes to fitgam objects produced by fit_gam. The goal is to bin
the continuous risk factors such that categorical risk factors result which capture the effect of the
covariate on the response in an accurate way, while being easy to use in a generalized linear model

(GLM).

Usage

construct_tariff_classes(
object,
alpha = 0,
niterations =
ntrees = 200,
seed = 1

10000,
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Arguments
object fitgam object produced by fit_gam
alpha complexity parameter. The complexity parameter (alpha) is used to control the

number of tariff classes. Higher values for alpha render less tariff classes.
(alpha = 0 is default).

niterations in case the run does not converge, it terminates after a specified number of iter-
ations defined by niterations.

ntrees the number of trees in the population.
seed an numeric seed to initialize the random number generator (for reproducibility).
Details

Evolutionary trees are used as a technique to bin the fitgam object produced by fit_gam into risk
homogeneous categories. This method is based on the work by Henckaerts et al. (2018). See
Grubinger et al. (2014) for more details on the various parameters that control aspects of the evtree
fit.

Value

A list of class constructtariffclasses with components

prediction data frame with predicted values

X name of continuous risk factor for which tariff classes are constructed
model either "frequency’, ’severity’ or "burning’

data data frame with predicted values and observed values

x_obs observations for continuous risk factor

splits vector with boundaries of the constructed tariff classes

tariff_classes values in vector x coded according to which constructed tariff class they fall

Author(s)

Martin Haringa

References

Antonio, K. and Valdez, E. A. (2012). Statistical concepts of a priori and a posteriori risk classifica-
tion in insurance. Advances in Statistical Analysis, 96(2):187-224. doi:10.1007/s10182-011-0152-
7.

Grubinger, T., Zeileis, A., and Pfeiffer, K.-P. (2014). evtree: Evolutionary learning of globally opti-
mal classification and regression trees in R. Journal of Statistical Software, 61(1):1-29. doi:10.18637/jss.v061.i01.

Henckaerts, R., Antonio, K., Clijsters, M. and Verbelen, R. (2018). A data driven binning strategy
for the construction of insurance tariff classes. Scandinavian Actuarial Journal, 2018:8, 681-705.
doi:10.1080/03461238.2018.1429300.

Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-
36. doi:10.1111/j.1467-9868.2010.00749.x.
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Examples

## Not run:
library(dplyr)
fit_gam(MTPL, nclaims = nclaims, x = age_policyholder,
exposure = exposure) %>%
construct_tariff_classes(.)

## End(Not run)

fisher Fisher’s natural breaks classification

Description
The function provides an interface to finding class intervals for continuous numerical variables, for
example for choosing colours for plotting maps.

Usage
fisher(vec, n = 7, diglab = 2)

Arguments
vec a continuous numerical variable
n number of classes required (n = 7 is default)
diglab number of digits (n = 2 is default)

Details

The "fisher" style uses the algorithm proposed by W. D. Fisher (1958) and discussed by Slocum et
al. (2005) as the Fisher-Jenks algorithm. This function is adopted from the classInt package.
Value

Vector with clustering

Author(s)

Martin Haringa

References
Bivand, R. (2018). classInt: Choose Univariate Class Intervals. R package version 0.2-3. https:
//CRAN.R-project.org/package=classInt

Fisher, W. D. 1958 "On grouping for maximum homogeneity", Journal of the American Statistical
Association, 53, pp. 789-798. doi: 10.1080/01621459.1958.10501479.


https://CRAN.R-project.org/package=classInt
https://CRAN.R-project.org/package=classInt
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fit_gam Generalized additive model

Description

Fits a generalized additive model (GAM) to continuous risk factors in one of the following three
types of models: the number of reported claims (claim frequency), the severity of reported claims
(claim severity) or the burning cost (i.e. risk premium or pure premium).

Usage

fit_gam(
data,
nclaims,
X,
exposure,
amount = NULL,
pure_premium = NULL,

model = "frequency”,
round_x = NULL
)
Arguments
data data.frame of an insurance portfolio
nclaims column in data with number of claims
X column in data with continuous risk factor
exposure column in data with exposure
amount column in data with claim amount

pure_premium  column in data with pure premium

model choose either ’frequency’, ’severity’ or ’burning’ (model = ’frequency’ is de-
fault). See details section.

round_x round elements in column x to multiple of round_x. This gives a speed enhance-
ment for data containing many levels for x.

Details

The *frequency’ specification uses a Poisson GAM for fitting the number of claims. The logarithm
of the exposure is included as an offset, such that the expected number of claims is proportional to
the exposure.

The ’severity’ specification uses a lognormal GAM for fitting the average cost of a claim. The
average cost of a claim is defined as the ratio of the claim amount and the number of claims. The
number of claims is included as a weight.

The "burning’ specification uses a lognormal GAM for fitting the pure premium of a claim. The
pure premium is obtained by multiplying the estimated frequency and the estimated severity of
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claims. The word burning cost is used here as equivalent of risk premium and pure premium. Note
that the functionality for fitting a GAM for pure premium is still experimental (in the early stages
of development).

Value

A list with components

prediction data frame with predicted values
X name of continuous risk factor
model either "frequency’, ’severity’ or *burning’
data data frame with predicted values and observed values
x_obs observations for continuous risk factor
Author(s)

Martin Haringa

References

Antonio, K. and Valdez, E. A. (2012). Statistical concepts of a priori and a posteriori risk classifica-
tion in insurance. Advances in Statistical Analysis, 96(2):187-224. doi:10.1007/s10182-011-0152-
7.

Grubinger, T., Zeileis, A., and Pfeiffer, K.-P. (2014). evtree: Evolutionary learning of globally opti-
mal classification and regression trees in R. Journal of Statistical Software, 61(1):1-29. doi:10.18637/jss.v061.i01.

Henckaerts, R., Antonio, K., Clijsters, M. and Verbelen, R. (2018). A data driven binning strategy
for the construction of insurance tariff classes. Scandinavian Actuarial Journal, 2018:8, 681-705.
doi:10.1080/03461238.2018.1429300.

Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-
36. doi:10.1111/j.1467-9868.2010.00749.x.

Examples

fit_gam(MTPL, nclaims = nclaims, x = age_policyholder,
exposure = exposure)

fit_truncated_dist Fit a distribution to truncated severity (loss) data

Description

[Experimental] Estimate the original distribution from truncated data. Truncated data arise fre-
quently in insurance studies. It is common that only claims above a certain threshold are known.
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Usage
fit_truncated_dist(
Y,
dist = c("gamma”, "lognormal”),
left = NULL,
right = NULL,
start = NULL,
print_initial = TRUE
)
Arguments
y vector with observations of losses
dist distribution for severity ("gamma" or "lognormal"). Defaults to "gamma".
left numeric. Observations below this threshold are not present in the sample.
right numeric. Observations above this threshold are not present in the sample. De-
faults to Inf.
start list of starting parameters for the algorithm.

print_initial print attempts for initial parameters.

Value

fitdist returns an object of class "fitdist"

Author(s)

Martin Haringa

Examples

## Not run:

# Original observations for severity

set.seed(1)

e <- rgamma(1000, scale = 148099.5, shape = 0.4887023)

# Truncated data (only claims above 30.000 euros)
threshold <- 30000
f <- e[e > threshold]

library(dplyr)

library(ggplot2)

data.frame(value = c(e, f),

variable = rep(c(”"Original data”, "Only claims above 30.000 euros”),

c(length(e), length(f)))) %>%
filter(value < 5e5) %>%
mutate(value = value / 1000) %>%
ggplot(aes(x = value)) +
geom_histogram(colour = "white") +
facet_wrap(~variable, ncol = 1) +
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labs(y = "Number of observations”,
X "Severity (x 1000 EUR)")

# scale = 156259.7 and shape = 0.4588. Close to parameters of original
# distribution!
x <- fit_truncated_dist(f, left

threshold, dist = "gamma")

# Print cdf
autoplot(x)

# CDF with modifications
autoplot(x, print_dig = 5, xlab = "loss"”, ylab = "cdf”, ylim = c(.9, 1))

est_scale <- x$estimate[1]
est_shape <- x$estimate[2]

# Generate data from truncated distribution (between 30k en 20 mln)
rg <- rgammat(10, scale = est_scale, shape = est_shape, lower = 3e4,

upper = 20e6)

# Calculate quantiles
quantile(rg, probs = c(.5, .9, .99, .995))

## End(Not run)

histbin Create a histogram with outlier bins

Description

Visualize the distribution of a single continuous variable by dividing the x axis into bins and count-
ing the number of observations in each bin. Data points that are considered outliers can be binned
together. This might be helpful to display numerical data over a very wide range of values in a
compact way.

Usage
histbin(

data,
X,
left = NULL,
right = NULL,
line = FALSE,
bins = 30,
fill = NULL,
color = NULL,

fill_outliers = "#a7d1a7"
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Arguments
data data.frame
X variable name in data.frame data that should be mapped
left numeric indicating the floor of the range
right numeric indicating the ceiling of the range
line show density line (default is FALSE)
bins numeric to indicate number of bins
fill color used to fill bars
color color for bar lines

fill_outliers color used to fill outlier bars

Details
Wrapper function around ggplot2: : geom_histogram(). The method is based on suggestions from
https://edwinth.github.io/blog/outlier-bin/.

Value

a ggplot2 object

Examples

histbin(MTPL2, premium)
histbin(MTPL2, premium, left = 30, right = 120, bins = 30)

model_data Get model data

Description
[Experimental] model_data() is used to get data from glm, and must be preceded by update_glm()
or glm().

Usage

model_data(x)

Arguments

X Object of class refitsmooth, refitrestricted or glm

Value

data.frame


https://edwinth.github.io/blog/outlier-bin/

model_performance

Author(s)

Martin Haringa
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model_performance Performance of fitted GLMs

Description

Compute indices of model performance for (one or more) GLMs.

Usage

model_performance(...)

Arguments

One or more objects of class glm.

Details
The following indices are computed:
¢ AIC Akaike’s Information Criterion, see stats: :AIC()

* BIC Bayesian Information Criterion, see stats: :BIC()

* RMSE Root mean squared error, rmse ()

Adopted from performance: :model_performance().

Value

data frame

Author(s)

Martin Haringa

Examples

ml <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)

m2 <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)

model_performance(ml, m2)



28 MTPL

MTPL Characteristics of 30,000 policyholders in a Motor Third Party Liabil-
ity (MTPL) portfolio.

Description

A dataset containing the age, number of claims, exposure, claim amount, power, bm, and region of
30,000 policyholders.

Usage

MTPL

Format

A data frame with 30,000 rows and 7 variables:

age_policyholder age of policyholder, in years.
nclaims number of claims.

exposure exposure, for example, if a vehicle is insured as of July 1 for a certain year, then during
that year, this would represent an exposure of 0.5 to the insurance company.

amount claim amount in Euros.
power engine power of vehicle (in kilowatts).

bm level occupied in the 23-level (0-22) bonus-malus scale (the higher the level occupied, the
worse the claim history).

zip region indicator (0-3).

Author(s)

Martin Haringa

Source

The data is derived from the portfolio of a large Dutch motor insurance company.
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MTPL2 Characteristics of 3,000 policyholders in a Motor Third Party Liability
(MTPL) portfolio.

Description
A dataset containing the area, number of claims, exposure, claim amount, exposure, and premium
of 3,000 policyholders

Usage
MTPL2

Format

A data frame with 3,000 rows and 6 variables:

customer_id customer id

area region where customer lives (0-3)
nclaims number of claims

amount claim amount (severity)
exposure exposure

premium earned premium

Author(s)

Martin Haringa

Source

The data is derived from the portfolio of a large Dutch motor insurance company.

period_to_months Split period to months

Description

The function splits rows with a time period longer than one month to multiple rows with a time
period of exactly one month each. Values in numeric columns (e.g. exposure or premium) are
divided over the months proportionately.

Usage

period_to_months(df, begin, end, ...)
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Arguments
df data.frame
begin column in df with begin dates
end column in df with end dates
numeric columns in df to split
Details

In insurance portfolios it is common that rows relate to periods longer than one month. This is for
example problematic in case exposures per month are desired.

Since insurance premiums are constant over the months, and do not depend on the number of days
per month, the function assumes that each month has the same number of days (i.e. 30).

Value

data.frame with same columns as in df, and one extra column called id

Author(s)

Martin Haringa

Examples

library(lubridate)

portfolio <- data.frame(

beginl = ymd(c("2014-01-01", "2014-01-01")),

end = ymd(c("2014-03-14", "2014-05-10")),

termination = ymd(c("2014-03-14", "2014-05-10")),

exposure = c(0.2025, 0.3583),

premium = c¢(125, 150))

period_to_months(portfolio, beginl, end, premium, exposure)

rating_factors Include reference group in regression output

Description

Extract coefficients in terms of the original levels of the coefficients rather than the coded variables.
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Usage

rating_factors(

L

model_data =
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NULL,

exposure = NULL,

exponentiate
signif_stars

= TRUE,
= TRUE,

round_exposure = 0

Arguments
model_data

exposure

exponentiate

signif_stars

round_exposure

Details

glm object(s) produced by glm()

data.frame used to create glm object(s), this should only be specified in case the
exposure is desired in the output, default value is NULL

column in model_data with exposure, default value is NULL

logical indicating whether or not to exponentiate the coefficient estimates. De-
faults to TRUE.

show significance stars for p-values (defaults to TRUE)

number of digits for exposure (defaults to 0)

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in number
than the number of levels. This function re-expresses the coefficients in the original coding. This
function is adopted from dummy.coef(). Our adoption prints a data.frame as output.

Value

data.frame

Author(s)

Martin Haringa

Examples

library(dplyr)
df <- MTPL2 %>%

mutate(across(c(area), as.factor)) %>%
mutate(across(c(area), ~biggest_reference(., exposure)))

modl <- glm(nclaims ~ area + premium, offset = log(exposure),
family = poisson(), data = df)
mod2 <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),

data = df)

rating_factors(modl, mod2, model_data = df, exposure = exposure)
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rating_factorsi Include reference group in regression output

Description

Extract coefficients in terms of the original levels of the coefficients rather than the coded vari-
ables.Use rating_factors() to compare the output obtained from two or more glm objects.

Usage

rating_factors1(
model,
model_data = NULL,
exposure = NULL,
colname = "estimate”,
exponentiate = TRUE,
round_exposure = 0

)
Arguments
model a single glm object produced by glm()
model_data data.frame used to create glm object, this should only be specified in case the
exposure is desired in the output, default value is NULL
exposure the name of the exposure column in model_data, default value is NULL
colname the name of the output column, default value is "estimate"

exponentiate  logical indicating whether or not to exponentiate the coefficient estimates. De-
faults to TRUE.

round_exposure number of digits for exposure (default to 0)

Author(s)

Martin Haringa

Examples

MTPL2a <- MTPL2

MTPL2a$area <- as.factor(MTPL2a$area)

x <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2a)

rating_factorsi(x)
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reduce

Reduce portfolio by merging redundant date ranges

Description

Transform all the date ranges together as a set to produce a new set of date ranges. Ranges separated
by a gap of at least min. gapwidth days are not merged.

Usage

reduce(df, begin, end, ..., agg_cols = NULL, agg = "sum”, min.gapwidth = 5)
Arguments

df data.frame

begin name of column df with begin dates

end name of column in df with end dates

names of columns in df used to group date ranges by
agg_cols list with columns in df to aggregate by (defaults to NULL)
agg aggregation type (defaults to "sum"

min.gapwidth

Details

ranges separated by a gap of at least min.gapwidth days are not merged. De-
faults to 5.

This function is adopted from IRanges: : reduce().

Value

An object of class "reduce”. The function summary is used to obtain and print a summary of the
results. An object of class "reduce” is a list usually containing at least the following elements:

df
begin
end

cols

Author(s)

Martin Haringa

data frame with reduced time periods
name of column in df with begin dates
name of column in df with end dates

names of columns in df used to group date ranges by
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Examples

portfolio <- structure(list(policy_nr = c("12345", "12345", "12345", "12345",
"12345", "12345", "12345", "12345", "12345", "12345", "12345"),

productgroup = c("fire", "fire", "fire", "fire", "fire", "fire",
"fire", "fire", "fire", "fire", "fire"), product = c("contents”,
"contents”, "contents”, "contents”, "contents”, "contents"”, "contents”,
"contents”, "contents"”, "contents"”, "contents"),

begin_dat = structure(c(16709,16740, 16801, 17410, 17440, 17805, 17897,
17956, 17987, 18017, 18262), class = "Date"),

end_dat = structure(c(16739, 16800, 16831, 17439, 17531, 17896, 17955,
17986, 18016, 18261, 18292), class = "Date"),

premium = c(89L, 58L, 83L, 73L, 69L, 94L, 91L, 97L, 57L, 65L, 55L)),
row.names = c(NA, -11L), class = "data.frame")

# Merge periods
pt1 <- reduce(portfolio, begin = begin_dat, end = end_dat, policy_nr,
productgroup, product, min.gapwidth = 5)

# Aggregate per period
summary(pt1, period = "days"”, policy_nr, productgroup, product)

# Merge periods and sum premium per period
pt2 <- reduce(portfolio, begin = begin_dat, end = end_dat, policy_nr,
productgroup, product, agg_cols = list(premium), min.gapwidth = 5)

# Create summary with aggregation per week

summary(pt2, period = "weeks"”, policy_nr, productgroup, product)
refit_glm Refitting Generalized Linear Models
Description

[Experimental] refit_glm() is used to refit generalized linear models, and must be preceded by
restrict_coef ().

Usage
refit_glm(x)

Arguments

X Object of class restricted or of class smooth

Value

Object of class GLM
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Author(s)

Martin Haringa

restrict_coef Restrict coefficients in the model

Description

[Experimental] Add restrictions, like a bonus-malus structure, on the risk factors used in the model.
restrict_coef () must always be followed by update_glm().

Usage

restrict_coef(model, restrictions)

Arguments

model object of class glm/restricted

restrictions data.frame with two columns containing restricted data. The first column, with
the name of the risk factor as column name, must contain the levels of the risk
factor. The second column must contain the restricted coefficients.

Details

Although restrictions could be applied either to the frequency or the severity model, it is more
appropriate to impose the restrictions on the premium model. This can be achieved by calculating
the pure premium for each record (i.e. expected number of claims times the expected claim amount),
then fitting an "unrestricted" Gamma GLM to the pure premium,and then imposing the restrictions
in a final "restricted" Gamma GLM.

Value

Object of class restricted.

Author(s)

Martin Haringa

See Also

update_glm() for refitting the restricted model, and autoplot.restricted().

Other update_glm: smooth_coef ()
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Examples

## Not run:
# Add restrictions to risk factors for region (zip) ---------—--------——---—-

# Fit frequency and severity model

library(dplyr)
freq <- glm(nclaims ~ bm + zip, offset = log(exposure), family = poisson(),
data = MTPL)

sev <- glm(amount ~ bm + zip, weights = nclaims,
family = Gamma(link = "log"),
data = MTPL %>% filter(amount > @))

# Add predictions for freq and sev to data, and calculate premium
premium_df <- MTPL %>%

add_prediction(freq, sev) %>%

mutate(premium = pred_nclaims_freq * pred_amount_sev)

# Restrictions on risk factors for region (zip)
zip_df <- data.frame(zip = c(0,1,2,3), zip_rst = c(0.8, 0.9, 1, 1.2))

# Fit unrestricted model
burn <- glm(premium ~ bm + zip, weights = exposure,
family = Gamma(link = "log"), data = premium_df)

# Fit restricted model

burn_rst <- burn %>%
restrict_coef (., zip_df) %>%
update_glm()

# Show rating factors
rating_factors(burn_rst)

## End(Not run)

rgammat Generate data from truncated gamma distribution

Description

Random generation for the truncated Gamma distribution with parameters shape and scale.

Usage

rgammat(n, scale = scale, shape = shape, lower, upper)

Arguments

n number of observations
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scale scale parameter

shape shape parameter

lower numeric. Observations below this threshold are not present in the sample.

upper numeric. Observations above this threshold are not present in the sample.
Value

The length of the result is determined by n.

Author(s)

Martin Haringa

rlnormt Generate data from truncated lognormal distribution

Description

Random generation for the truncated log normal distribution whose logarithm has mean equal to
meanlog and standard deviation equal to sdlog.

Usage

rlnormt(n, meanlog, sdlog, lower, upper)

Arguments
n number of observations
meanlog mean of the distribution on the log scale
sdlog standard deviation of the distribution on the log scale
lower numeric. Observations below this threshold are not present in the sample.
upper numeric. Observations above this threshold are not present in the sample.
Value

The length of the result is determined by n.

Author(s)

Martin Haringa
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rmse Root Mean Squared Error

Description

Compute root mean squared error.

Usage

rmse(object, data)

Arguments

object fitted model

data data.frame (defaults to NULL)
Details

The RMSE is the square root of the average of squared differences between prediction and actual
observation and indicates the absolute fit of the model to the data. It can be interpreted as the
standard deviation of the unexplained variance, and is in the same units as the response variable.
Lower values indicate better model fit.

Value

numeric value

Author(s)

Martin Haringa

Examples

x <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)
rmse(x, MTPL2)
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rows_per_date Find active rows per date

Description

Fast overlap joins. Usually, df is a very large data.table (e.g. insurance portfolio) with small interval
ranges, and dates is much smaller with (e.g.) claim dates.

Usage

rows_per_date(
df,
dates,
df_begin,
df_end,
dates_date,

L

nomatch = NULL,

mult = "all”
)
Arguments
df data.frame with portfolio (df should include time period)
dates data.frame with dates to join
df_begin column name with begin dates of time period in df
df_end column name with end dates of time period in df
dates_date column name with dates in dates
additional column names in dates to join by
nomatch When a row (with interval say, [a,b]) in X has no match in y, nomatch=NA means
NA is returned for y’s non-by.y columns for that row of x. nomatch=NULL
(default) means no rows will be returned for that row of x.
mult When multiple rows in y match to the row in X, mult controls which values are
returned - "all" (default), "first" or "last".
Value

returned class is equal to class of df

Author(s)

Martin Haringa
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Examples

library(lubridate)

portfolio <- data.frame(

beginl = ymd(c("2014-01-01", "2014-01-01")),

end = ymd(c("2014-03-14", "2014-05-10")),

termination = ymd(c("2014-03-14", "2014-05-10")),

exposure = c(0.2025, 0.3583),

premium = ¢(125, 150),

car_type = c("BMW", "TESLA"))

## Find active rows on different dates

dates@ <- data.frame(active_date = seq(ymd("2014-01-01"), ymd("2014-05-01"),

by = "months"))

rows_per_date(portfolio, dates@, df_begin = beginl, df_end = end,

dates_date = active_date)

## With extra identifiers (merge claim date with time interval in portfolio)

claim_dates <- data.frame(claim_date = ymd("2014-01-01"),

car_type = c("BMW", "VOLVO"))

### Only rows are returned that can be matched

rows_per_date(portfolio, claim_dates, df_begin = begini,

df_end = end, dates_date = claim_date, car_type)
### When row cannot be matched, NA is returned for that row
rows_per_date(portfolio, claim_dates, df_begin = begini,
df_end = end, dates_date = claim_date, car_type, nomatch = NA)
smooth_coef Smooth coefficients in the model

Description

[Experimental] Apply smoothing on the risk factors used in the model. smooth_coef () must

always be followed by update_glm().
Usage

smooth_coef (model, x_cut, x_org, degree = NULL, breaks = NULL)
Arguments

model object of class glm/smooth

x_cut column name with breaks/cut

x_org column name where x_cut is based on

degree order of polynomial

breaks numerical vector with new clusters for x
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Details

Although smoothing could be applied either to the frequency or the severity model, it is more
appropriate to impose the smoothing on the premium model. This can be achieved by calculating
the pure premium for each record (i.e. expected number of claims times the expected claim amount),
then fitting an "unrestricted" Gamma GLM to the pure premium, and then imposing the restrictions
in a final "restricted" Gamma GLM.

Value

Object of class smooth

Author(s)

Martin Haringa

See Also

update_glm() for refitting the smoothed model, and autoplot.smooth().
Other update_glm: restrict_coef ()

Examples

## Not run:
library(insurancerating)
library(dplyr)

# Fit GAM for claim frequency

age_policyholder_frequency <- fit_gam(data = MTPL,
nclaims = nclaims,
X = age_policyholder,
exposure = exposure)

# Determine clusters
clusters_freq <- construct_tariff_classes(age_policyholder_frequency)

# Add clusters to MTPL portfolio

dat <- MTPL %>%
mutate(age_policyholder_freq_cat = clusters_freq$tariff_classes) %>%
mutate(across(where(is.character), as.factor)) %>%
mutate(across(where(is.factor), ~biggest_reference(., exposure)))

# Fit frequency and severity model
freq <- glm(nclaims ~ bm + age_policyholder_freq_cat, offset = log(exposure),
family = poisson(), data = dat)
sev <- glm(amount ~ bm + zip, weights = nclaims,
family = Gamma(link = "log"), data = dat %>% filter(amount > @))

# Add predictions for freq and sev to data, and calculate premium
premium_df <- dat %>%

add_prediction(freq, sev) %>%

mutate(premium = pred_nclaims_freq * pred_amount_sev)
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# Fit unrestricted model

burn_unrestricted <- glm(premium ~ zip + bm + age_policyholder_freq_cat,
weights = exposure,
family = Gamma(link = "log"),
data = premium_df)

# Impose smoothing and create figure
burn_unrestricted %>%
smooth_coef (x_cut = "age_policyholder_freq_cat”,
x_org = "age_policyholder”,
breaks = seq(18, 95, 5)) %>%

autoplot()

# Impose smoothing and refit model
burn_restricted <- burn_unrestricted %>%
smooth_coef (x_cut = "age_policyholder_freq_cat”,
x_org = "age_policyholder”,
breaks = seq(18, 95, 5)) %>%
update_glm()

# Show new rating factors
rating_factors(burn_restricted)

## End(Not run)

summary . reduce Automatically create a summary for objects obtained from reduce()

Description

Takes an object produced by reduce (), and counts new and lost customers.

Usage
## S3 method for class 'reduce'’
summary(object, ..., period = "days”, name = "count")
Arguments
object reduce object produced by reduce()
names of columns to aggregate counts by
period a character string indicating the period to aggregate on. Four options are avail-
able: "quarters", "months", "weeks", and "days" (the default option)
name The name of the new column in the output. If omitted, it will default to count.
Value

data.frame
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univariate

Univariate analysis for discrete risk factors

Description

Univariate analysis for discrete risk factors in an insurance portfolio. The following summary statis-

tics are calculated:

* frequency (i.e. number of claims / exposure)

 average severity (i.e. severity / number of claims)

* risk premium (i.e. severity / exposure)

* loss ratio (i.e. severity / premium)

* average premium (i.e. premium / exposure)

If input arguments are not specified, the summary statistics related to these arguments are ignored.

Usage

univariate(
df,
X’

severity = NULL,
nclaims = NULL,
exposure = NULL,
premium = NULL,

by = NULL

Arguments

df

X
severity
nclaims
exposure
premium

by

Value

A data.frame

Author(s)

Martin Haringa

data.frame with insurance portfolio

column in df with risk factor

column in df with severity (default is NULL)

column in df with number of claims (default is NULL)
column in df with exposure (default is NULL)

column in df with premium (default is NULL)

list of column(s) in df to group by
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Examples

# Summarize by ‘area®
univariate(MTPL2, x = area, severity = amount, nclaims = nclaims,
exposure = exposure, premium = premium)

# Summarize by ‘zip‘ and ‘bm*®
univariate(MTPL, x = zip, severity = amount, nclaims = nclaims,
exposure = exposure, by = bm)

# Summarize by ‘zip‘, ‘bm‘ and ‘power®
univariate(MTPL, x = zip, severity = amount, nclaims = nclaims,
exposure = exposure, by = list(bm, power))

update_glm Refitting Generalized Linear Models

Description
[Experimental] update_glm() is used to refit generalized linear models, and must be preceded by
restrict_coef ().

Usage
update_glm(x)

Arguments

X Object of class restricted or of class smooth
Value

Object of class GLM
Author(s)

Martin Haringa
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