Package 'interferenceCI'

February 20, 2015

Type Package

Title Exact Confidence Intervals in the Presence of Interference

Version 1.1

Date 2015-1-7

Author Joseph Rigdon

Maintainer Joseph Rigdon <jrigdon@bios.unc.edu>

Depends compiler, gtools

Description Computes large sample confidence intervals of Liu and Hudgens (2014), exact confidence intervals of Tchetgen Tchetgen and VanderWeele (2012), and exact confidence intervals of Rigdon and Hudgens (2014) for treatment effects on a binary outcome in two-stage randomized experiments with interference.

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2015-01-08 12:20:14

R topics documented:

interferenceCI-package	2
bd	2
estbound	3
exactCI	4
HH	6
lsolve	7
nchoosem	8
pval	9
rand	10
sample.n	11
TV	12

Index

2

interferenceCI-package

Exact confidence intervals in the presence of interference

Description

Computes large sample confidence intervals of Liu and Hudgens (2014), conservative exact confidence intervals of Tchetgen Tchetgen and VanderWeele (2012), and exact confidence intervals of Rigdon and Hudgens (2014) for treatment effects on a binary outcome in two-stage randomized experiments with interference.

Details

Package:	interferenceCI
Type:	Package
Version:	1.0
Date:	2014-10-16
License:	GPL-3

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

References

Hudgens, M.G. and Halloran, M.E. "Toward causal inference with interference." Journal of the American Statistical Association 2008 103:832-842.

Tchetgen Tchetgen, E. and VanderWeele, T.J. "On causal inference in the presence of interference." Statistical Methods in Medical Research 2012 21:55-75.

Liu, L. and Hudgens, M.G. "Large sample randomization inference of causal effects in the presence of interference." Journal of the American Statistical Association 2014 109, 288-301.

Rigdon, J. and Hudgens, M.G. "Exact confidence intervals in the presence of interference." Submitted to Statistics and Probability Letters 2014.

bd

Function to ensure that probability lies in interval [0, 1]

Description

Used by targeted sampling algorithm in exactCI

estbound

Usage

bd(x)

Arguments ×

Real number

Value

Function returns 0 if x < 0, x if $0 \le x \le 1$, and 1 if x > 1

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

See Also

exactCI

estbound	Estimates and bounds for treatment effects on a binary outcome in a
	two-stage randomized experiment with interference

Description

Computes the estimators of Hudgens and Halloran (2008) and bounds of Rigdon and Hudgens (2014) for treatment effects on a binary outcome in a two-stage randomized experiment with interference

Usage

estbound(g, data, m.a0, m.a1)

Arguments

g	1st stage of randomization vector where element $i = 1,, k$ is equal to 1 if group i was randomized to strategy α_1 and 0 if randomized to strategy α_0
data	$2 \times 2 \times k$ array of 2×2 table data where row 1 is treatment=yes, row 2 is treatment=no, column 1 is outcome=yes, and column 2 is outcome=no
m.a0	α_0 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_0
m.a1	α_1 randomization vector where element $i = 1,, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_1

Details

Function will return many values (to be used by other functions in this package), but the only important value here is tab.eff

Value

tab.eff Labeled table of estimates and bounds

Author(s)

Joseph Rigdon <jrigdon@bios.unc.edu>

References

Hudgens, M.G. and Halloran, M.E. "Toward causal inference with interference." Journal of the American Statistical Association 2008 103:832-842.

Rigdon, J. and Hudgens, M.G. "Exact confidence intervals in the presence of interference." Submitted to Statistics and Probability Letters 2014.

Examples

```
#Made up example with 10 groups of 10 where half are randomized to a0 and half to a1
#a0 is assign 3 of 10 to treatment and half to a1 is assign 6 of 10 to treatment
d = c(1,1,5,3,0,6,3,1,0,4,3,3,0,5,3,2,1,1,5,3,2,2,4,2,1,5,2,2,2,3,4,1,1,1,5,3,1,5,2,2)
data.ex = array(d,c(2,2,10))
assign.ex = c(1,0,0,0,1,1,0,1,1,0)
```

```
#Estimates and bounds
e = estbound(assign.ex,data.ex,rep(3,10),rep(6,10))
e$tab.eff
```

0100	$+ \cap I$	•
exac	LUI	•

Exact confidence intervals for treatment effects on a binary outcome in a two-stage randomized experiment with interference

Description

Finds exact confidence intervals for treatment effects on a binary outcome in a two-stage randomized experiment with interference. See Section 4.2 of Rigdon and Hudgens (2014) for details.

Usage

exactCI(eff, g, data, m.a0, m.a1, B2, C2, level)

exactCI

Arguments

eff	treatment effect of interest; either "DEa0", "DEa1", "IE", "TE", or "OE"
g	1st stage of randomization vector where element $i = 1,, k$ is equal to 1 if group i was randomized to strategy α_1 and 0 if randomized to strategy α_0
data	$2 \times 2 \times k$ array of 2×2 table data where row 1 is treatment=yes, row 2 is treatment=no, column 1 is outcome=yes, and column 2 is outcome=no
m.a0	α_0 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_0
m.a1	α_0 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_1
B2	number of sharp nulls to test in the targeted sampling algorithm
C2	number of re-randomizations (experiments) to conduct in computing the null distribution of the estimator
level	significance level of hypothesis tests, i.e., method yields a 1-level confidence interval

Details

See Section 4.2 of Rigdon and Hudgens (2014) for detailed description. Please plot the p-values against the effect as a check of targeted sampling algorithm performance.

Value

B1	total number of hypotheses that could be tested
C1	total number of re-randomizations (experiments) that could be performed
frac.NA	fraction of hypothesized sharp nulls that are not tested
prob1	final value of targeting parameter q_{p_l} in finding lower confidence limit
prob2	final value of targeting parameter q_{p_u} in finding upper confidence limit
effect	vector of sharp null hypotheses
р	vector of p-values corresponding to the sharp null hypotheses
lower	lower limit to confidence interval
upper	upper limit to confidence interval

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

References

Rigdon, J. and Hudgens, M.G. "Exact confidence intervals in the presence of interference." Submitted to Statistics and Probability Letters 2014.

Examples

6

```
#Made up example with 10 groups of 10 where half are randomized to a0 and half to a1
#a0 is assign 3 of 10 to treatment and half to a1 is assign 6 of 10 to treatment
d = c(1,1,5,3,0,6,3,1,0,4,3,3,0,5,3,2,1,1,5,3,2,2,4,2,1,5,2,2,2,3,4,1,1,1,5,3,1,5,2,2)
data.ex = array(d,c(2,2,10))
assign.ex = c(1,0,0,0,1,1,0,1,1,0)
#Inference for overall effect
l1 = exactCI('OE',assign.ex,data.ex,rep(3,10),rep(6,10),100,100,0.05)
#Check algorithm using a plot
plot(l1$effect,l1$p)
```

ΗH

Large sample confidence intervals for treatment effects on a binary outcome in a two-stage randomized experiment with interference

Description

Computes the large sample confidence intervals of Liu and Hudgens (2014) for treatment effects on a binary outcome in a two-stage randomized experiment with interference

Usage

HH(eff, g, data, m.a0, m.a1, level)

Arguments

eff	treatment effect of interest; either "DEa0", "DEa1", "IE", "TE", or "OE"
g	1st stage of randomization vector where element $i = 1,, k$ is equal to 1 if group i was randomized to strategy α_1 and 0 if randomized to strategy α_0
data	$2 \times 2 \times k$ array of 2×2 table data where row 1 is treatment=yes, row 2 is treatment=no, column 1 is outcome=yes, and column 2 is outcome=no
m.a0	α_0 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_0
m.a1	α_1 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_1
level	significance level, i.e., method yields a 1-level confidence interval

lsolve

Value

est	estimated treatment effect
v	estimated variance
lower.w	lower limit to Wald confidence interval
upper.w	upper limit to Wald confidence interval
lower.ch	lower limit to Chebyshev confidence interval
upper.ch	upper limit to Chebyshev confidence interval

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

References

Hudgens, M.G. and Halloran, M.E. "Toward causal inference with interference." Journal of the American Statistical Association 2008 103:832-842.

Liu, L. and Hudgens, M.G. "Large sample randomization inference of causal effects in the presence of interference." Journal of the American Statistical Association 2014 109:288-301.

Examples

lsolve

Local linear interpolation function

Description

Computes intersection of a line drawn from (x_1, y_1) to (x_2, y_2) and a horizontal line at level

Usage

lsolve(x1, y1, x2, y2, level)

Arguments

x1	x-coordinate for first point
y1	y-coordinate for first point
x2	x-coordinate for second point
y2	y-coordinate for second point
level	y-coordinate for horizontal line

Value

Returns x-coordinate of intersection point

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

See Also

exactCI

nchoosem

Compute randomization matrix

Description

Returns the $\binom{n}{m}$ row randomization matrix; uses combinations function in **gtools**

Usage

nchoosem(n, m)

Arguments

n	total number of subjects
m	number assigned to treatment in experiment

Value

matrix with $\binom{n}{m}$ rows of randomizations

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

Description

Returns permutation test p-value; used in the construction of exact confidence intervals by the function exactCI

Usage

pval(eff, est, null, y0.a0, y1.a0, y0.a1, y1.a1, h, n, m.a0, m.a1, C2)

Arguments

eff	treatment effect of interest; either "DEa0", "DEa1", "IE", "TE", or "OE"
est	estimated treatment effect using estimators from Hudgens and Halloran (2008)
null	value of treatment effect of interest under the sharp null hypothesis
y0.a0	hypothesized vector $\vec{y}(0; \alpha_0)$ under the sharp null hypothesis
y1.a0	hypothesized vector $\vec{y}(1; \alpha_0)$ under the sharp null hypothesis
y0.a1	hypothesized vector $\vec{y}(0; \alpha_1)$ under the sharp null hypothesis
y1.a1	hypothesized vector $\vec{y}(1; \alpha_1)$ under the sharp null hypothesis
h	the number of groups out of k total to be randomized to strategy α_1
n	group size vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i
m.a0	α_0 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_0
m.a1	α_1 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_1
C2	number of re-randomizations (experiments) to conduct in computing the null distribution of the estimator

Details

See equation (6) in Rigdon and Hudgens (2014)

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

References

Hudgens, M.G. and Halloran, M.E. "Toward causal inference with interference." Journal of the American Statistical Association 2008 103:832-842.

Rigdon, J. and Hudgens, M.G. "Exact confidence intervals in the presence of interference." Submitted to Statistics and Probability Letters 2014.

See Also

exactCI

rand

Compute single $\binom{n}{m}$ randomization

Description

Returns vector of length n with exactly m 1s and n - m 0s

Usage

rand(n, m)

Arguments

n	total number of subjects
m	number assigned to treatment in experiment

Value

vector of length n with exactly m 1s and n - m 0s

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

sample.n

Description

Fills in missingness in $\vec{y}(z; \alpha_s)$ for z, s = 0, 1 based on targeted sampling algorithm described in Section 4.2 of Rigdon and Hudgens (2014)

Usage

sample.n(eff, y0.a0, y1.a0, y0.a1, y1.a1, p00, p10, p01, p11, n, m.a0, m.a1)

Arguments

eff	treatment effect of interest; either "DEa0", "DEa1", "IE", "TE", or "OE"
y0.a0	Observed $\vec{y}(0; \alpha_0)$; includes NAs where missing
y1.a0	Observed $\vec{y}(1; \alpha_0)$; includes NAs where missing
y0.a1	Observed $\vec{y}(0; \alpha_1)$; includes NAs where missing
y1.a1	Observed $\vec{y}(1; \alpha_1)$; includes NAs where missing
p00	Missingness in $\vec{y}(0;\alpha_0)$ is filled in by sampling from a Bernoulli distribution with mean p_{00}
p10	Missingness in $\vec{y}(1;\alpha_0)$ is filled in by sampling from a Bernoulli distribution with mean p_{10}
p01	Missingness in $\vec{y}(0;\alpha_1)$ is filled in by sampling from a Bernoulli distribution with mean p_{01}
p11	Missingness in $\vec{y}(1;\alpha_0)$ is filled in by sampling from a Bernoulli distribution with mean p_{11}
n	group size vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i
m.a0	α_0 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_0
m.a1	α_1 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_1

Value

y0.a0	value of $\vec{y}(0; \alpha_0)$ after missingness has been filled in using targeted sampling
y1.a0	value of $\vec{y}(1; \alpha_0)$ after missingness has been filled in using targeted sampling
y0.a1	value of $\vec{y}(0; \alpha_1)$ after missingness has been filled in using targeted sampling
y1.a1	value of $\vec{y}(1; \alpha_1)$ after missingness has been filled in using targeted sampling
effect	value of treatment effect of interested under sharp null after missingness filled in using targeted sampling

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

References

Rigdon, J. and Hudgens, M.G. "Exact confidence intervals in the presence of interference." Submitted to Statistics and Probability Letters 2014.

See Also

exactCI

-	· /
- 1	v
	v

Conservative exact confidence intervals for treatment effects on a binary outcome in a two-stage randomized experiment with interference

Description

Computes the conservative exact confidence intervals of Tchetgen Tchetgen and VanderWeele (2012) for treatment effects on a binary outcome in a two-stage randomized experiment with interference

Usage

TV(eff, g, data, m.a0, m.a1, level)

Arguments

eff	treatment effect of interest; either "DEa0", "DEa1", "IE", "TE", or "OE"
g	1st stage of randomization vector where element $i = 1,, k$ is equal to 1 if group i was randomized to strategy α_1 and 0 if randomized to strategy α_0
data	$2 \times 2 \times k$ array of 2×2 table data where row 1 is treatment=yes, row 2 is treatment=no, column 1 is outcome=yes, and column 2 is outcome=no
m.a0	α_0 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_0
m.a1	α_1 randomization vector where element $i = 1, \ldots, k$ is equal to the number of subjects in group i who would receive treatment if group i was randomized to strategy α_1
level	significance level, i.e., method yields a 1-level confidence interval

Details

Confidence intervals are based on a Hoeffding-type exponential inequality; see section 4.3.2 of Tchetgen Tchetgen and VanderWeele (2012)

TV

Value

est	estimated treatment effect from Hudgens and Halloran (2008)
V	half-width of confidence interval
lower	lower limit of confidence interval
upper	upper limit of confidence interval

Author(s)

Joseph Rigdon < jrigdon@bios.unc.edu>

References

Hudgens, M.G. and Halloran, M.E. "Toward causal inference with interference." Journal of the American Statistical Association 2008 103:832-842.

Tchetgen Tchetgen, E. and VanderWeele, T.J. "On causal inference in the presence of interference." Statistical Methods in Medical Research 2012 21:55-75.

Examples

#Made up example with 10 groups of 10 where half are randomized to a0 and half to a1 #a0 is assign 3 of 10 to treatment and half to a1 is assign 6 of 10 to treatment d = c(1,1,5,3,0,6,3,1,0,4,3,3,0,5,3,2,1,1,5,3,2,2,4,2,1,5,2,2,2,3,4,1,1,1,5,3,1,5,2,2) data.ex = array(d,c(2,2,10)) assign.ex = c(1,0,0,0,1,1,0,1,1,0)

#Inference for overall effect
TV('OE',assign.ex,data.ex,rep(3,10),rep(6,10),0.05)

Index

```
*Topic bounds
    estbound, 3
*Topic estimate
    estbound, 3
*Topic exact confidence interval
    exactCI, 4
    TV, 12
*Topic interference
    estbound, 3
    exactCI, 4
    HH, <mark>6</mark>
    pval, 9
    sample.n, 11
    TV, 12
*Topic large sample confidence
        interval
    HH. 6
*Topic randomization based inference
    exactCI, 4
    pval, 9
    sample.n, 11
bd, 2
estbound, 3
exactCI, 2, 3, 4, 8–10, 12
HH, 6
interferenceCI-package, 2
lsolve, 7
nchoosem, 8
pval, 9
rand, 10
sample.n, 11
TV, 12
```