Package ‘keras’

February 10, 2022

Type Package
Title R Interface to 'Keras'
Version 2.8.0

Description Interface to 'Keras' <https://keras.io>, a high-level neural
networks 'API'. 'Keras' was developed with a focus on enabling fast experimentation,
supports both convolution based networks and recurrent networks (as well as
combinations of the two), and runs seamlessly on both 'CPU" and 'GPU' devices.

Encoding UTF-8
License MIT + file LICENSE

URL https://keras.rstudio.com

BugReports https://github.com/rstudio/keras/issues
Depends R (>=3.4)

Imports generics (>= 0.0.1), reticulate (> 1.22), tensorflow (>
2.7.0), tfruns (>= 1.0), magrittr, zeallot, glue, methods, R6,
ellipsis, rlang

Suggests ggplot2, testthat (>= 2.1.0), knitr, rmarkdown, callr,
tfdatasets, withr, jpeg

RoxygenNote 7.1.2
VignetteBuilder knitr
NeedsCompilation no

Author Tomasz Kalinowski [ctb, cph, cre],
Daniel Falbel [ctb, cph],
JJ Allaire [aut, cph],
Frangois Chollet [aut, cph],
RStudio [ctb, cph, fnd],
Google [ctb, cph, fnd],
Yuan Tang [ctb, cph] (<https://orcid.org/0000-0001-5243-233X>),
Wouter Van Der Bijl [ctb, cph],
Martin Studer [ctb, cph],
Sigrid Keydana [ctb]

Maintainer Tomasz Kalinowski <tomasz.kalinowski@rstudio.com>

https://keras.io
https://keras.rstudio.com
https://github.com/rstudio/keras/issues
https://orcid.org/0000-0001-5243-233X

2 R topics documented:

Repository CRAN
Date/Publication 2022-02-10 00:00:02 UTC

R topics documented:

keras-package 11
activation_relu. oL e 12
adapt L e e e 14
application_denseneto 15
application_efficientnet 17
application_inception_resnet_v2 20
application_inception_v3 L 22
application_mobilenet. 23
application_mobilenet_v2. 25
application_mobilenet_v3 27
application_nasnet e e e e e 30
application_resnet e e e 32
application_VEE o e e e e e e e e e e 35
application_xXception e e e e e 37
backend 39
bidirectional L e e e e e 40
callback_csv_logger 41
callback_early_stopping e 42
callback_lambda 43
callback_learning rate_scheduler. 44
callback_model_checkpoint 45
callback_progbar_logger 46
callback_reduce_Ir_on_plateau oL oo 47
callback_remote_monitor 48
callback_tensorboard e 49
callback_terminate_on_naan 50
clone_model e 51
compile.keras.engine.training.Model Lo oL 51
COMSHIAINES v v vt v it e e e e e e e e e e e e e e e e e 53
COUNL_PATAMS . « . v v v v v e 55
create_layer e e e e e e e e 55
create_layer_ Wrapper e e 56
CUStOM_MELIIC . . .« v o o o o e e e e e e e e e e e e 57
dataset_boston_housing 58
dataset_cifarlO e e 59
dataset_cifarlO0 e 59
dataset_fashion_mmnist. e 60
dataset_imdb L e e 61
dataset_ mnist e e 62
dataset_TEeULETS e e e e e e e e e 63
evaluate.keras.engine.trainingModel oL 0oL 64

export_savedmodel keras.engine.training.Model oo 65

R topics documented: 3

fit.keras.engine.training.Model L L L 66
fit image data_generator L. 68
fit_text_toKenizer e e 69
flow_images_from_data. L 69
flow_images_from_dataframe o 71
flow_images_from_directory 73
freeze_weights L 75
GENETALOT_NEXE . . o v v v v vt e e e e e e e e e e e e e e e e e e e 76
get_config L. 77
get_file . . .o 78
GEL_INPUL_at e e 79
get_layer e e 80
get_weights L e 80
hdf5_matrix 81
imagenet_decode_predictions 82
imagenet_preprocess_inputo 82
image_dataset_from_directory 83
image_data_generator e e e e e 84
image_load 86
IMAe_tO_AITAY« o o o v vt i e e e e e e e e e e e 87
implementation L. e e e e 88
initializer_constant L. e e e e e e e e e e 88
initializer_glorot_normal oL L 89
initializer_glorot_uniform.o oo 89
initializer_he_normal e 90
initializer_he_uniform 91
initializer_identity L. 91
initializer_lecun_normal 92
initializer_lecun_uniform L. 93
mnitializer_ones L. e e e e e 93
initializer_orthogonal 94
initializer_random_normal e 94
initializer_random_uniform 95
initializer_truncated_normal 95
initializer_variance_scaling oL 96
INitializer_zeros e e e e e e e e e e e e e 97
install_keras e e 97
is_keras_available e 98
Keras e e e e 99
keras_array e e 100
keras model e 100
keras_model_sequential 101
k_abs . .. e e 103
koall 104
koany . . .o 104
k_arange e e e e 105
k argmax e e 106

R topics documented:

ko backend e 107
k batch_dot e 107
k_batch_flatten 108
k_batch_get_value 109
k_batch_normalization 109
k batch _set_value e 110
k bias_add 111
Kk_binary_CroSsentropy« v v v v i it e e e e e e e e e e 111
K ocast . . . e 112
k cast_to floatx s 113
k_categorical_Crossentropy« oo e e 113
k_clear_session e 114
koclip . . . o 114
k concatenate e e e 115
kK constant e 116
k_convld e 116
k oconv2d s 117
K_conv2d_transSpose e e e e e e e e e e e 118
koconv3dd e e 119
k_conv3d_transpose e e e e 120
K COS . o s 121
k_count_params e e e e e e e e 121
k ctc_batch_cost e e 122
k ctc_decode 123
k_ctc_label_dense_to_sparseo e e 124
k_cumprod 124
kK cumsum e e 125
k_depthwise_conv2d 126
K odot . . e e e e e 127
k dropout 127
kodtype 128
K elu . . e e e e e 129
ke epsilon e 129
k equal L 130
ke eval . . . 130
K XD . o e e e 131
k expand_dims e 132
koeye . .o 132
kK flatten e e 133
k floatx e 134
k foldl e 134
k_foldr. e e e e 135
k function 136
k gather L 136
K et SeSSIONo e 137
k_get_uid e e e 138
k_get value 138

k_get_variable_shape L 139

R topics documented: 5

k_gradients e e e e e 139
k_greater e e 140
k_greater_equal 141
k_hard_sigmoid 141
koidentity L e e e e e 142
k_image_data_format oL 142
koint_shape L 143
k_in_test_phase e e 144
koin_top_k . . .o e 144
k_in_train_phase 145
Kk is_Keras_tensor e e e 146
k_is_placeholder 146
kK is_sparse 147
KIS _tENSOr o o o e e e s 147
k 12 normalize e e 148
k_learning_phase 149
KLIESS . . 149
k_less_equal e e e e 150
k local_convld 150
k local_conv2d e 151
k log . . o 152
k_manual_variable_initialization 153
komap_fn 153
K omax 154
K omaximum e 155
komean L e 155
K omin 156
kominimum L e 157
k_moving_average_update e 157
kondim 158
k_normalize_batch_in_training 159
k_not_equal e e 159
K ones e e e 160
k oones like 161
k oone hot e 161
k_permute_dimensions L e e e 162
k_placeholder 163
k pool2d 164
k_pool3d e e 165
K pow . o e 166
k print_tensor e 166
koprod e e e 167
k_random_binomial 168
k random normal L e 168
k_random_normal_variable 169
k_random_uniform L L e e 170
k_random_uniform_variable e 171

korelu . . . 172

R topics documented:

korepeato e e e e 172
k repeat_elements e 173
koreset_ wids 174
k reshape e 174
k_resize_images e e e e e 175
k_resize_volumes e 175
K Ieverse e s 176
K rnn . .. e 177
k_roundo e 178
k_separable_conv2d 178
k_set_learning_phase L 179
koset_value e 180
k shape e 180
kosigmoid 181
K_Sign . . . o e e e 182
K_Sin . . . e e e 182
Kk softmax 183
K_softplus e e e e 184
kosoftsign 184
k_sparse_categorical_Crossentropyo i e 185
k_spatial_2d_paddingo 186
k_spatial_3d_padding 186
kosqrt . . e 187
kosquare 188
K_SqUeeze e e e e e 188
kostack e 189
kostd . . . o 190
k_ stop_gradient L 190
Kosum e e e e e e e 191
koswitch e 192
k_tanh 192
k_temporal_padding 193
kK tile . . . e e e 194
k_to_dense e 194
k transpose 195
k_truncated_normal L 195
k update 196
k update_add 197
k_update_sub e e e 197
kovar .. s 198
k_variable e 199
K_ZEeros e e 199
k_zeros_like 200
Layer e 201
layer_activation e e 202
layer_activation_elu L 204
layer_activation_leaky_relu 205

layer_activation_parametric_reluo 206

R topics documented: 7

layer_activation_relu e 207
layer_activation_selu L 209
layer_activation_softmax 210
layer_activation_thresholded_relu 211
layer_activity_regularization L 212
layer_add e 214
layer_additive_attention 214
layer_alpha_dropout 215
layer_attention L e e e e e 217
layer_average e e 218
layer_average_pooling_1d 219
layer_average_pooling_2d 220
layer_average_pooling_3d 221
layer_batch_normalization 223
layer_category_encoding e e 226
layer_center_Crop e e e e 227
layer_concatenateol e e e 228
layer_conv_1d e 229
layer_conv_1d_transpose e 231
layer_conv_2do e 234
layer_conv_2d_transposeo e e e e e e e e 237
layer_conv_3d e 240
layer_conv_3d_transposeo e e 242
layer_conv_Istm_1d 245
layer_conv_Istm_2d 248
layer_conv_Istm 3d 251
layer_cropping_1d 253
layer_cropping_2d e 255
layer_cropping_3d e 256
layer_dense 258
layer_dense_features e 260
layer_depthwise_conv_1d 261
layer_depthwise_conv_2d L 263
layer_discretization e 266
layer_dot 267
layer_dropout e e 268
layer embedding 269
layer_flatten L 271
layer_gaussian_dropout L e e 272
layer_gaussian_noiseo ..o e e e e e 273
layer_global_average_pooling_1d 274
layer_global_average_pooling_2d oo 276
layer_global_average_pooling_3d 277
layer_global_max_pooling_1d 278
layer_global_max_pooling_2d 279
layer_global_max_pooling_3d 280
layer_gru 281

layer_gru_cell 285

R topics documented:

layer_hashing e 287
layer_input 289
layer_integer lookup L 290
layer_lambda 293
layer_layer_normalization L 294
layer_locally_connected_1d 296
layer_locally_connected_2d 298
layer_Istm L e e e 301
layer_Istm_cell e 304
layer_masking 307
layer_maximum e e e e 308
layer_max_pooling_1d 309
layer_max_pooling_2d L 310
layer_max_pooling_3d 311
layer_minimum e e e e e e 313
layer multiply 314
layer_multi_head_attention 314
layer_normalization e e e e e 316
layer_permute oL e e e e e e 318
layer_random_contrast Lo e e 319
layer_random_Crop e e 320
layer_random_flip 321
layer_random_height 322
layer_random_rotationl e 323
layer_random_translation 325
layer_random_width oL 327
layer_random_zooml e 328
layer_repeat_Vectoro e e e 329
layer_rescaling e e 331
layer_reshape 332
layer_resizing 333
layer_mn oL e e e e e e e e e 334
layer_separable_conv_1d oL 338
layer_separable_conv_2d 341
layer_simple_rnn 344
layer_simple_rnn_cell 347
layer_spatial_dropout_1d L 349
layer_spatial_dropout_2d 350
layer_spatial_dropout_3d 351
layer_stacked_rnn_cells 352
layer_string_lookup 353
layer_subtract L e e e 355
layer_text_vectorization o it e e e e e e e 356
layer_upsampling 1d 359
layer_upsampling_2d 360
layer_upsampling_3d 362
layer_zero_padding_1d 363

layer_zero_padding_2d 364

R topics documented: 9

layer_zero_padding_3d 366
loss-functions e e e e e e e 367
make_sampling_table 372
MELtriC e e e e 373
MEHIC_ACCUTACY .+ © .« « v v v v v v e e e e e e e e e e e e e e e e e 374
MELTIC_AUC . . . v v o o o e e e e e e e e e s 375
Metric_binary_acCuracy v vttt e e e e e e 377
metric_binary_CroSSentropy v v v v v v i e e e e e e e e e e 379
metric_categorical_accuracy e e 380
metric_categorical_Crossentropyo 381
metric_categorical_hinge oL 383
metric_cosine_similarity Lo 384
metric_false_negatives 385
metric_false_positives L 386
metric_hinge e e e 387
metric_kullback_leibler_divergence 388
metric_logcosh_error 389
MELHIC_MEAN . . v v v o o e e e e e e e e e e e e e 390
metric_mean_absolute_error e e e e e e e e e 391
metric_mean_absolute_percentage_errorea e e e e 392
MELHIC_MEAN_T0U v v v e e e e e e e e e e e e 394
metric_mean_relative_error e e e e e e e e e 395
metric_mean_squared_erroro e e e 396
metric_mean_squared_logarithmic_error oL 397
MEtriC_MEAN_tENSOT+t v v v e e e e e e e e e e e e e 398
MEtriC_Mean_WIAPPET v v v e bttt e e e e e e e e e e 399
MEtHIC_POISSON . . . v v v et vttt e e e e e e e e e e 400
MEtriC_PreciSion o v i e e e e 401
metric_precision_at_recall 403
metric_recall e 404
metric_recall_at_precision 405
metric_root_mean_squared_eIror i e e e e e e e 407
metric_sensitivity_at_specificity o L oo 408
metric_sparse_categorical_accuracyo e 409
metric_sparse_categorical_Crossentropy o oo bu e e e 410
metric_sparse_top_k_categorical_accuracy 412
metric_specificity_at_sensitivity 413
metric_squared_hinge 414
MELHIC_SUM . . v v v v v o e e e e e e e e e e e e 415
metric_top_k_categorical_accuracyo 416
MEtric_true_Negatives o v v vt i e e e e e 417
MEeLriC_true_poSitiVeS v v v e e e e e e e e e e e e e 418
model_from_saved_model 419
model_to_json. 420
model_to_yaml 421
normalize e e e e e e e e e 421
optimizer_adadelta 422

optimizer_adagrad L. 423

10

Index

R topics documented:

optimizer_adam e e e e e 424
optimizer_adamax L. e e e e e e e 425
optimizer_nadam L. 426
OPtMIZEI_IMSPIOP . .« + v v v v e vt e e et e e e e e e e e e 427
optimizer_sgd e e e e e e 428
Pad_SEqUENCES e e 429
plotkeras_training_history 430
pop_layer 431
predict.keras.engine.training.Model Lo 431
predict_ on_batch L 432
regularizer_11 oL 433
TESEL_STAtES i e e e e e e e e e e 433
save_model_hdfS L 434
save_model tf, 435
save_model_weights_hdf5 L o 436
save_model_weights_tf L 437
save_text_tokenizer e e 438
SeqUeNCes_tO_MAtriX v it e e e 439
sequential_model_input_layer 440
serialize_model L e 441
skipgrams L L e e e 442
summary.keras.engine.training.Model oL, 443
EXIS_tO_MALIIX . . v v v v v e e e e e e e e e e e e e e e e 444
tEXIS_LO_SEQUENCES . « « v v v v v e e e e e e e e e e e e e e e e e e 445
teXts_tO_SeqUeNCes_ZENErator o v v v v e bt e e e e e e e 445
text_dataset_from_directory L 446
text_hashing_trick 448
text_one_hot e e 449
tEXt_tOKENIZET o o o e e e e e e 450
teXt_to_Word_SeqUENCE e e e e e 451
timeseries_dataset_from_array 452
tIMESeries_generator v v v v e e e e e e e e e e e 455
time_distributed e 456
to_categorical L e e e 457
train_on_batch L 457
use_implementation Lo e 458
with_custom_object_scope e 459
Topy_Class%o e e e e e e 460
Do<-aCtiveTo e e e e e e e e e 461

463

keras-package 11

keras-package R interface to Keras

Description

Keras is a high-level neural networks API, developed with a focus on enabling fast experimentation.
Keras has the following key features:

Details

* Allows the same code to run on CPU or on GPU, seamlessly.
* User-friendly API which makes it easy to quickly prototype deep learning models.

* Built-in support for convolutional networks (for computer vision), recurrent networks (for
sequence processing), and any combination of both.

* Supports arbitrary network architectures: multi-input or multi-output models, layer sharing,
model sharing, etc. This means that Keras is appropriate for building essentially any deep
learning model, from a memory network to a neural Turing machine.

* Is capable of running on top of multiple back-ends including TensorFlow, CNTK, or Theano.

See the package website at https://keras.rstudio.com for complete documentation.

Author(s)
Maintainer: Tomasz Kalinowski <tomasz.kalinowski@rstudio.com> [contributor, copyright
holder]
Authors:

* JJ Allaire [copyright holder]
* Francois Chollet [copyright holder]

Other contributors:

* Daniel Falbel <daniel@rstudio.com> [contributor, copyright holder]

* RStudio [contributor, copyright holder, funder]

* Google [contributor, copyright holder, funder]

* Yuan Tang <terrytangyuan@gmail.com> (ORCID) [contributor, copyright holder]
* Wouter Van Der Bijl [contributor, copyright holder]

* Martin Studer [contributor, copyright holder]

* Sigrid Keydana [contributor]

See Also

Useful links:

* https://keras.rstudio.com

* Report bugs at https://github.com/rstudio/keras/issues

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano
https://keras.rstudio.com
https://orcid.org/0000-0001-5243-233X
https://keras.rstudio.com
https://github.com/rstudio/keras/issues

12 activation_relu

activation_relu Activation functions

Description

relu(...): Applies the rectified linear unit activation function.

elu(...): Exponential Linear Unit.

selu(...): Scaled Exponential Linear Unit (SELU).
hard_sigmoid(...): Hard sigmoid activation function.

linear(...): Linear activation function (pass-through).
sigmoid(...): Sigmoid activation function, sigmoid(x) =1/ (1 + exp(-x)).
softmax(...): Softmax converts a vector of values to a probability distribution.
softplus(...): Softplus activation function, softplus(x) = log(exp(x) + 1).
softsign(...): Softsign activation function, softsign(x) =x / (abs(x) +1).
tanh(...): Hyperbolic tangent activation function.
exponential(...): Exponential activation function.

gelu(...): Applies the Gaussian error linear unit (GELU) activation function.

swish(...): Swish activation function, swish(x) = x * sigmoid(x).

Usage

activation_relu(x, alpha = @, max_value = NULL, threshold = @)
activation_elu(x, alpha = 1)

activation_selu(x)

activation_hard_sigmoid(x)

activation_linear(x)

activation_sigmoid(x)

activation_softmax(x, axis = -1)

activation_softplus(x)

activation_softsign(x)

activation_tanh(x)

activation_exponential (x)

activation_relu 13

activation_gelu(x, approximate = FALSE)

activation_swish(x)

Arguments
X Tensor
alpha Alpha value
max_value Max value
threshold Threshold value for thresholded activation.
axis Integer, axis along which the softmax normalization is applied
approximate A bool, whether to enable approximation.
Details

Activations functions can either be used through layer_activation(), or through the activation
argument supported by all forward layers.

* activation_selu() to be used together with the initialization "lecun_normal".

e activation_selu() to be used together with the dropout variant "AlphaDropout".

Value

Tensor with the same shape and dtype as x.

References

* activation_swish(): Searching for Activation Functions
e activation_gelu(): Gaussian Error Linear Units (GELUs)
e activation_selu(): Self-Normalizing Neural Networks

* activation_elu(): Fast and Accurate Deep Network Learning by Exponential Linear Units
(ELUs)

See Also

https://www.tensorflow.org/api_docs/python/tf/keras/activations

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
https://www.tensorflow.org/api_docs/python/tf/keras/activations

14 adapt

adapt Fits the state of the preprocessing layer to the data being passed

Description

Fits the state of the preprocessing layer to the data being passed

Usage
adapt(object, data, ..., batch_size = NULL, steps = NULL)
Arguments
object Preprocessing layer object
data The data to train on. It can be passed either as a tf.data.Dataset or as an R
array.
Used for forwards and backwards compatibility. Passed on to the underlying
method.
batch_size Integer or NULL. Number of asamples per state update. If unspecified, batch_size
will default to 32. Do not specify the batch_size if your data is in the form of
datasets, generators, or keras.utils.Sequence instances (since they generate
batches).
steps Integer or NULL. Total number of steps (batches of samples) When training with
input tensors such as TensorFlow data tensors, the default NULL is equal to the
number of samples in your dataset divided by the batch size, or 1 if that cannot
be determined. If x is a tf.data.Dataset, and steps is NULL, the epoch will
run until the input dataset is exhausted. When passing an infinitely repeating
dataset, you must specify the steps argument. This argument is not supported
with array inputs.
Details

After calling adapt on a layer, a preprocessing layer’s state will not update during training. In order
to make preprocessing layers efficient in any distribution context, they are kept constant with respect
to any compiled tf.Graphs that call the layer. This does not affect the layer use when adapting each
layer only once, but if you adapt a layer multiple times you will need to take care to re-compile any
compiled functions as follows:

* If you are adding a preprocessing layer to a keras.Model, you need to call compile(model)
after each subsequent call to adapt ().

* If you are calling a preprocessing layer inside tfdatasets: :dataset_map(), you should call
dataset_map() again on the input tf.data.Dataset after each adapt ().

e If you are using a tensorflow::tf_function() directly which calls a preprocessing layer,
you need to call tf_function again on your callable after each subsequent call to adapt ().

keras_model example with multiple adapts:

application_densenet 15

layer <- layer_normalization(axis=NULL)
adapt(layer, c(0, 2))

model <- keras_model_sequential(layer)
predict(model, c(o, 1, 2)) # [1] -1 @ 1

adapt(layer, c(-1, 1))
compile(model) # This is needed to re-compile model.predict!
predict(model, c(@, 1, 2)) # [1J 0 1 2

tf.data.Dataset example with multiple adapts:

layer <- layer_normalization(axis=NULL)
adapt(layer, c(0, 2))

input_ds <- tfdatasets::range_dataset(0, 3)
normalized_ds <- input_ds %>%

tfdatasets::dataset_map(layer)

str(reticulate::iterate(normalized_ds))

List of 3

$:tf.Tensor([-1.], shape=(1,), dtype=float32)
$:tf.Tensor([0.], shape=(1,), dtype=float32)
$:tf.Tensor([1.]1, shape=(1,), dtype=float32)

adapt(layer, c(-1, 1))
normalized_ds <- input_ds %>%

tfdatasets: :dataset_map(layer) # Re-map over the input dataset.

str(reticulate::iterate(normalized_ds$as_numpy_iterator()))
List of 3

#
#
#

$: num [1(1d)] -1
num [1(1d)] @

$:
$: num [1(1d)] 1

See Also

* https://www.tensorflow.org/guide/keras/preprocessing_layers#the_adapt_method

* https://keras.io/guides/preprocessing_layers/#the-adapt-method

application_densenet Instantiates the DenseNet architecture.

Description

Instantiates the DenseNet architecture.

Usage

application_densenet(

blocks,
include_top = TRUE,

https://www.tensorflow.org/guide/keras/preprocessing_layers#the_adapt_method
https://keras.io/guides/preprocessing_layers/#the-adapt-method

16 application_densenet

weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

application_densenet121(
include_top = TRUE,
weights = "imagenet"”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

application_densenet169(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

application_densenet201(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

densenet_preprocess_input(x, data_format = NULL)

Arguments
blocks numbers of building blocks for the four dense layers.
include_top whether to include the fully-connected layer at the top of the network.
weights one of NULL (random initialization), ’imagenet’ (pre-training on ImageNet), or

the path to the weights file to be loaded.

input_tensor optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3) (with channels_last data format) or
(3, 224, 224) (with channels_first data format). It should have exactly 3
inputs channels.

application_efficientnet 17

pooling optional pooling mode for feature extraction when include_top is FALSE. -
NULL means that the output of the model will be the 4D tensor output of the last
convolutional layer. - avg means that global average pooling will be applied to
the output of the last convolutional layer, and thus the output of the model will
be a 2D tensor. - max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.
X a 3D or 4D array consists of RGB values within [0, 255].
data_format data format of the image tensor.
Details

Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best per-
formance you should set image_data_format="channels_last' in your Keras config at ~/.keras/keras.json.

The model and the weights are compatible with TensorFlow, Theano, and CNTK. The data format
convention used by the model is the one specified in your Keras config file.

application_efficientnet
Instantiates the EfficientNetB0 architecture

Description

Instantiates the EfficientNetBO architecture

Usage

application_efficientnet_b@(
include_top = TRUE,
weights = "imagenet"”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000L,
classifier_activation = "softmax",

)

application_efficientnet_b1(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000L,
classifier_activation = "softmax",

18

)

application_efficientnet_b2(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000L,

classifier_activation = "softmax”,

)

application_efficientnet_b3(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000L,

classifier_activation = "softmax”,

)

application_efficientnet_b4(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000L,

classifier_activation = "softmax”,

)

application_efficientnet_b5(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000L,

classifier_activation = "softmax”,

)

application_efficientnet_b6(

application_efficientnet

application_efficientnet 19

include_top = TRUE,

weights = "imagenet”,

input_tensor = NULL,

input_shape = NULL,

pooling = NULL,

classes = 1000L,
classifier_activation = "softmax”,

)

application_efficientnet_b7(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000L,
classifier_activation = "softmax”,

Arguments

include_top Whether to include the fully-connected layer at the top of the network. Defaults
to TRUE.

weights One of NULL (random initialization), 'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded. Defaults to 'imagenet'.

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

input_shape Optional shape list, only to be specified if include_top is FALSE. It should
have exactly 3 inputs channels.

pooling Optional pooling mode for feature extraction when include_top is FALSE. De-
faults to NULL.

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

* 'avg' means that global average pooling will be applied to the output of
the last convolutional layer, and thus the output of the model will be a 2D
tensor.

* 'max' means that global max pooling will be applied.

classes Optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified. Defaults to 1000 (number of
ImageNet classes).

classifier_activation
A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the
logits of the "top" layer. Defaults to 'softmax'. When loading pretrained
weights, classifier_activation can only be NULL or "softmax".

20 application_inception_resnet_v2

For backwards and forwards compatibility

Details
Reference:
» EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (ICML 2019)

This function returns a Keras image classification model, optionally loaded with weights pre-trained
on ImageNet.

For image classification use cases, see this page for detailed examples.

For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.

EfficientNet models expect their inputs to be float tensors of pixels with values in the [0-255] range.

Note

Each Keras Application typically expects a specific kind of input preprocessing. For EfficientNet,
input preprocessing is included as part of the model (as a Rescaling layer), and thus a calling a
preprocessing function is not necessary.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet/
EfficientNetBo

* https://keras.io/api/applications/

application_inception_resnet_v2
Inception-ResNet v2 model, with weights trained on ImageNet

Description

Inception-ResNet v2 model, with weights trained on ImageNet

Usage

application_inception_resnet_v2(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,
classifier_activation = "softmax”,

)

inception_resnet_v2_preprocess_input(x)

https://arxiv.org/abs/1905.11946
https://keras.io/api/applications/#usage-examples-for-image-classification-models
https://keras.io/guides/transfer_learning/
https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet/EfficientNetB0
https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet/EfficientNetB0
https://keras.io/api/applications/

application_inception_resnet_v2 21

Arguments

include_top Whether to include the fully-connected layer at the top of the network. Defaults
to TRUE.

weights One of NULL (random initialization), 'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded. Defaults to 'imagenet'.

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (299, 299, 3). It should have exactly 3 inputs channels,

and width and height should be no smaller than 71. E.g. (150, 150, 3) would be
one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE. De-
faults to NULL.

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

e 'avg' means that global average pooling will be applied to the output of
the last convolutional layer, and thus the output of the model will be a 2D
tensor.

* 'max' means that global max pooling will be applied.

classes Optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified. Defaults to 1000 (number of
ImageNet classes).

classifier_activation
A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the
logits of the "top" layer. Defaults to 'softmax'. When loading pretrained
weights, classifier_activation can only be NULL or "softmax”.

For backwards and forwards compatibility

X preprocess_input () takes an array or floating point tensor, 3D or 4D with 3
color channels, with values in the range [0, 255].
Details

Do note that the input image format for this model is different than for the VGG16 and ResNet
models (299x299 instead of 224x224).

The inception_resnet_v2_preprocess_input () function should be used for image preprocess-
ing.

Value

A Keras model instance.

Reference

* Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(https://arxiv.org/abs/1512.00567)

https://arxiv.org/abs/1602.07261

22 application_inception_v3

application_inception_v3
Inception V3 model, with weights pre-trained on ImageNet.

Description

Inception V3 model, with weights pre-trained on ImageNet.

Usage

application_inception_v3(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,
classifier_activation = "softmax",

)

inception_v3_preprocess_input(x)

Arguments

include_top Whether to include the fully-connected layer at the top of the network. Defaults
to TRUE.

weights One of NULL (random initialization), 'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded. Defaults to 'imagenet'.

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (299, 299, 3). It should have exactly 3 inputs channels,
and width and height should be no smaller than 71. E.g. (150, 150, 3) would be
one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE. De-
faults to NULL.

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

* 'avg' means that global average pooling will be applied to the output of
the last convolutional layer, and thus the output of the model will be a 2D
tensor.

* 'max' means that global max pooling will be applied.

classes Optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified. Defaults to 1000 (number of
ImageNet classes).

application_mobilenet 23

classifier_activation
A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the
logits of the "top" layer. Defaults to 'softmax'. When loading pretrained
weights, classifier_activation can only be NULL or "softmax".

For backwards and forwards compatibility

X preprocess_input () takes an array or floating point tensor, 3D or 4D with 3
color channels, with values in the range [0, 255].
Details

Do note that the input image format for this model is different than for the VGG16 and ResNet
models (299x299 instead of 224x224).

The inception_v3_preprocess_input() function should be used for image preprocessing.

Value

A Keras model instance.

Reference

* Rethinking the Inception Architecture for Computer Vision

application_mobilenet MobileNet model architecture.

Description

MobileNet model architecture.

Usage

application_mobilenet(
input_shape = NULL,
alpha = 1,
depth_multiplier = 1L,
dropout = 0.001,
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
pooling = NULL,
classes = 1000L,
classifier_activation = "softmax”,

)

mobilenet_preprocess_input(x)

https://arxiv.org/abs/1512.00567

24 application_mobilenet

mobilenet_decode_predictions(preds, top = 5)

mobilenet_load_model_hdf5(filepath)

Arguments

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3) (with channels_last data format) or (3,
224, 224) (with channels_first data format). It should have exactly 3 inputs
channels, and width and height should be no smaller than 32. E.g. (200, 200, 3)
would be one valid value.

alpha controls the width of the network.
* If alpha < 1.0, proportionally decreases the number of filters in each layer.
* If alpha > 1.0, proportionally increases the number of filters in each layer.
* If alpha = 1, default number of filters from the paper are used at each layer.

depth_multiplier
depth multiplier for depthwise convolution (also called the resolution multiplier)

dropout dropout rate

include_top whether to include the fully-connected layer at the top of the network.

weights NULL (random initialization), imagenet (ImageNet weights), or the path to the
weights file to be loaded.

input_tensor optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

pooling Optional pooling mode for feature extraction when include_top is FALSE. -

NULL means that the output of the model will be the 4D tensor output of the last
convolutional layer. - avg means that global average pooling will be applied to
the output of the last convolutional layer, and thus the output of the model will
be a 2D tensor. - max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

classifier_activation
A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the
logits of the "top" layer. Defaults to 'softmax'. When loading pretrained
weights, classifier_activation can only be NULL or "softmax".

For backwards and forwards compatibility

X input tensor, 4D
preds Tensor encoding a batch of predictions.
top integer, how many top-guesses to return.

filepath File path

application_mobilenet_v2 25

Details

The mobilenet_preprocess_input() function should be used for image preprocessing. To load
a saved instance of a MobileNet model use the mobilenet_load_model_hdf5() function. To pre-
pare image input for MobileNet use mobilenet_preprocess_input (). To decode predictions use
mobilenet_decode_predictions().

Value

application_mobilenet() and mobilenet_load_model_hdf5() return a Keras model instance.
mobilenet_preprocess_input() returns image input suitable for feeding into a mobilenet model.
mobilenet_decode_predictions() returns a list of data frames with variables class_name, class_description,
and score (one data frame per sample in batch input).

Reference

* MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

application_mobilenet_v2
MobileNetV2 model architecture

Description

MobileNetV2 model architecture

Usage

application_mobilenet_v2(
input_shape = NULL,

alpha = 1,
include_top = TRUE,
weights = "imagenet”,

input_tensor = NULL,

pooling = NULL,

classes = 1000,
classifier_activation = "softmax”,

)
mobilenet_v2_preprocess_input(x)
mobilenet_v2_decode_predictions(preds, top = 5)

mobilenet_v2_load_model_hdf5(filepath)

https://arxiv.org/pdf/1704.04861v1.pdf

26 application_mobilenet_v2

Arguments

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3) (with channels_last data format) or (3,
224, 224) (with channels_first data format). It should have exactly 3 inputs
channels, and width and height should be no smaller than 32. E.g. (200, 200, 3)
would be one valid value.

alpha controls the width of the network.

* If alpha < 1.0, proportionally decreases the number of filters in each layer.
* If alpha > 1.0, proportionally increases the number of filters in each layer.
¢ If alpha = 1, default number of filters from the paper are used at each layer.

include_top whether to include the fully-connected layer at the top of the network.

weights NULL (random initialization), imagenet (ImageNet weights), or the path to the
weights file to be loaded.

input_tensor optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

pooling Optional pooling mode for feature extraction when include_top is FALSE. -
NULL means that the output of the model will be the 4D tensor output of the last
convolutional layer. - avg means that global average pooling will be applied to
the output of the last convolutional layer, and thus the output of the model will
be a 2D tensor. - max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

classifier_activation
A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the
logits of the "top" layer. Defaults to 'softmax'. When loading pretrained
weights, classifier_activation can only be NULL or "softmax".

For backwards and forwards compatibility

X input tensor, 4D
preds Tensor encoding a batch of predictions.
top integer, how many top-guesses to return.
filepath File path

Value

application_mobilenet_v2() and mobilenet_v2_load_model_hdf5() return a Keras model
instance. mobilenet_v2_preprocess_input() returns image input suitable for feeding into a
mobilenet v2 model. mobilenet_v2_decode_predictions() returns a list of data frames with
variables class_name, class_description, and score (one data frame per sample in batch in-
put).

Reference

e MobileNetV2: Inverted Residuals and Linear Bottlenecks

https://arxiv.org/abs/1801.04381

application_mobilenet_v3 27

See Also

application_mobilenet

application_mobilenet_v3
Instantiates the MobileNetV3Large architecture

Description

Instantiates the MobileNetV3Large architecture

Usage

application_mobilenet_v3_large(
input_shape = NULL,
alpha = 1,
minimalistic = FALSE,
include_top = TRUE,
weights = "imagenet"”,
input_tensor = NULL,
classes = 1000L,
pooling = NULL,
dropout_rate = 0.2,
classifier_activation = "softmax”,
include_preprocessing = TRUE

)

application_mobilenet_v3_small(
input_shape = NULL,
alpha = 1,
minimalistic = FALSE,
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
classes = 1000L,
pooling = NULL,
dropout_rate = 0.2,

classifier_activation = "softmax”,
include_preprocessing = TRUE
)
Arguments
input_shape Optional shape vector, to be specified if you would like to use a model with an

input image resolution that is not c (224,224, 3). It should have exactly 3 inputs
channels c (224,224, 3). You can also omit this option if you would like to infer
input_shape from an input_tensor. If you choose to include both input_tensor

28 application_mobilenet_v3

and input_shape then input_shape will be used if they match, if the shapes do
not match then we will throw an error. E.g. ¢(160,16@,3) would be one valid
value.

alpha controls the width of the network. This is known as the depth multiplier in the
MobileNetV3 paper, but the name is kept for consistency with MobileNetV1 in
Keras.
* If alpha < 1.0, proportionally decreases the number of filters in each layer.
* If alpha > 1.0, proportionally increases the number of filters in each layer.
e If alpha = 1, default number of filters from the paper are used at each layer.
minimalistic In addition to large and small models this module also contains so-called min-
imalistic models, these models have the same per-layer dimensions character-
istic as MobilenetV3 however, they don’t utilize any of the advanced blocks

(squeeze-and-excite units, hard-swish, and 5x5 convolutions). While these mod-
els are less efficient on CPU, they are much more performant on GPU/DSP.

include_top Boolean, whether to include the fully-connected layer at the top of the network.
Defaults to TRUE.

weights String, one of NULL (random initialization), ’imagenet’ (pre-training on Ima-
geNet), or the path to the weights file to be loaded.

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

classes Integer, optional number of classes to classify images into, only to be specified
if include_top is TRUE, and if no weights argument is specified.

pooling String, optional pooling mode for feature extraction when include_top is FALSE.
* NULL means that the output of the model will be the 4D tensor output of the
last convolutional block.

* avg means that global average pooling will be applied to the output of the
last convolutional block, and thus the output of the model will be a 2D
tensor.

* max means that global max pooling will be applied.

dropout_rate fraction of the input units to drop on the last layer.

classifier_activation
A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the
logits of the "top" layer. When loading pretrained weights, classifier_activation
can only be NULL or "softmax".

include_preprocessing
Boolean, whether to include the preprocessing layer (Rescaling) at the bottom
of the network. Defaults to TRUE.

Details

Reference:

* Searching for MobileNetV3 (ICCV 2019)

https://arxiv.org/pdf/1905.02244.pdf

application_mobilenet_v3

The following table describes the performance of MobileNets v3::
MAC:s stands for Multiply Adds

29

30 application_nasnet

Classification Checkpoint MACs(M) ParametersM) Topl Accuracy Pixell CPU(ms)
mobilenet_v3_large_1.0_224 217 5.4 75.6 51.2
mobilenet_v3_large 0.75_224 155 4.0 73.3 39.8
mobilenet_v3_large_minimalistic_1.0_224 209 3.9 72.3 44.1
mobilenet_v3_small_1.0_224 66 2.9 68.1 15.8
mobilenet_v3_small_0.75_224 44 2.4 65.4 12.8
mobilenet_v3_small_minimalistic_1.0_224 65 2.0 61.9 12.2

For image classification use cases, see this page for detailed examples.
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.

Value

A keras Model instance

Note

Each Keras application typically expects a specific kind of input preprocessing. For ModelNetV3,
by default input preprocessing is included as a part of the model (as a Rescaling layer), and thus a
preprocessing function is not necessary. In this use case, ModelNetV3 models expect their inputs to
be float tensors of pixels with values in the [0-255] range. At the same time, preprocessing as a part
of the model (i.e. Rescaling layer) can be disabled by setting include_preprocessing argument
to FALSE. With preprocessing disabled ModelNetV3 models expect their inputs to be float tensors
of pixels with values in the [-1, 1] range.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNetV3Large
e https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNetV3Small
* https://keras.io/api/applications/

application_nasnet Instantiates a NASNet model.

Description

Note that only TensorFlow is supported for now, therefore it only works with the data format
image_data_format="'channels_last' in your Keras config at ~/ keras/keras.json.

Usage

application_nasnet(
input_shape = NULL,
penultimate_filters = 4032L,
num_blocks = 6L,
stem_block_filters = 96L,

https://keras.io/api/applications/#usage-examples-for-image-classification-models
https://keras.io/guides/transfer_learning/
https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNetV3Large
https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNetV3Small
https://keras.io/api/applications/

application_nasnet 31

skip_reduction = TRUE,
filter_multiplier = 2L,
include_top = TRUE,
weights = NULL,
input_tensor = NULL,
pooling = NULL,

classes = 1000,
default_size = NULL

)

application_nasnetlarge(
input_shape = NULL,
include_top = TRUE,
weights = NULL,
input_tensor = NULL,
pooling = NULL,
classes = 1000

)

application_nasnetmobile(
input_shape = NULL,
include_top = TRUE,
weights = NULL,
input_tensor = NULL,
pooling = NULL,
classes = 1000

)

nasnet_preprocess_input(x)

Arguments

input_shape Optional shape list, the input shape is by default (331, 331, 3) for NASNetLarge
and (224, 224, 3) for NASNetMobile It should have exactly 3 inputs channels,
and width and height should be no smaller than 32. E.g. (224, 224, 3) would be
one valid value.

penultimate_filters
Number of filters in the penultimate layer. NASNet models use the notation
NASNet (N @P), where: - N is the number of blocks - P is the number of penul-
timate filters

num_blocks Number of repeated blocks of the NASNet model. NASNet models use the
notation NASNet (N @ P), where: - N is the number of blocks - P is the number
of penultimate filters

stem_block_filters
Number of filters in the initial stem block

skip_reduction Whether to skip the reduction step at the tail end of the network. Set to FALSE
for CIFAR models.

32 application_resnet

filter_multiplier
Controls the width of the network.
e Iffilter_multiplier < 1.0, proportionally decreases the number of filters
in each layer.

e If filter_multiplier > 1.0, proportionally increases the number of filters
in each layer. - If filter_multiplier = 1, default number of filters from
the paper are used at each layer.

include_top Whether to include the fully-connected layer at the top of the network.

weights NULL (random initialization) or imagenet (ImageNet weights)

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

pooling Optional pooling mode for feature extraction when include_top is FALSE. -

NULL means that the output of the model will be the 4D tensor output of the last
convolutional layer. - avg means that global average pooling will be applied to
the output of the last convolutional layer, and thus the output of the model will
be a 2D tensor. - max means that global max pooling will be applied.

classes Optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

default_size Specifies the default image size of the model

X a 4D array consists of RGB values within [0, 255].
application_resnet Instantiates the ResNet architecture
Description

Instantiates the ResNet architecture

Usage

application_resnet50(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,

)

application_resnet101(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,

application_resnet

)

input_shape = NULL,
pooling = NULL,
classes = 1000,

application_resnet152(

)

include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,

application_resnet50_v2(

)

include_top = TRUE,

weights = "imagenet”,

input_tensor = NULL,

input_shape = NULL,

pooling = NULL,

classes = 1000,
classifier_activation = "softmax”,

application_resnet101_v2(

)

include_top = TRUE,

weights = "imagenet”,

input_tensor = NULL,

input_shape = NULL,

pooling = NULL,

classes = 1000,
classifier_activation = "softmax”,

application_resnet152_v2(

include_top = TRUE,

weights = "imagenet”,

input_tensor = NULL,

input_shape = NULL,

pooling = NULL,

classes = 1000,
classifier_activation = "softmax",

33

34 application_resnet

resnet_preprocess_input(x)

resnet_v2_preprocess_input(x)

Arguments

include_top Whether to include the fully-connected layer at the top of the network. Defaults
to TRUE.

weights One of NULL (random initialization), 'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded. Defaults to 'imagenet'.

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise the
input shape has to be c(224,224,3) (with 'channels_last' data format) or
c(3,224,224) (with 'channels_first' data format). It should have exactly
3 inputs channels, and width and height should be no smaller than 32. E.g.
c(200,200, 3) would be one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE. De-
faults to NULL.

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

* 'avg' means that global average pooling will be applied to the output of
the last convolutional layer, and thus the output of the model will be a 2D
tensor.

* 'max' means that global max pooling will be applied.

classes Optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified. Defaults to 1000 (number of
ImageNet classes).

For backwards and forwards compatibility

classifier_activation
A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the
logits of the "top" layer. Defaults to 'softmax'. When loading pretrained
weights, classifier_activation can only be NULL or "softmax".

X preprocess_input () takes an array or floating point tensor, 3D or 4D with 3
color channels, with values in the range [0, 255].

Details

Reference:
* Deep Residual Learning for Image Recognition (CVPR 2015)

For image classification use cases, see this page for detailed examples.

For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.

https://arxiv.org/abs/1512.03385
https://keras.io/api/applications/#usage-examples-for-image-classification-models
https://keras.io/guides/transfer_learning/

application_vgg

35

Note: each Keras Application expects a specific kind of input preprocessing. For ResNet, call
tf.keras.applications.resnet.preprocess_input on your inputs before passing them to the
model. resnet.preprocess_input will convert the input images from RGB to BGR, then will
zero-center each color channel with respect to the ImageNet dataset, without scaling.

See Also

https://www.
https://www.
https://www.
https://www.

ResNet50V2

https://www.

ResNet101V2

https://www.

ResNet152V2

tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
tensorflow.org/api_docs/python/tf/keras/applications/resnet/ResNet101
tensorflow.org/api_docs/python/tf/keras/applications/resnet/ResNet152
tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/

tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/

tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/

https://keras.io/api/applications/

Examples

Not run:
library(keras)

instantiate the model
model <- application_resnet50(weights = 'imagenet')

load the image
img_path <- "elephant. jpg"

img <- image_load(img_path, target_size = c(224,224))
x <- image_to_array(img)

ensure we have a 4d tensor with single element in the batch dimension,

<- array_reshape(x, c(1, dim(x)))

#
the preprocess the input for prediction using resnet50
X
X

<- imagenet_preprocess_input(x)

make predictions then decode and print them
preds <- model %>% predict(x)
imagenet_decode_predictions(preds, top = 3)[[1]1]

End(Not run)

application_vgg

VGG16 and VGG19 models for Keras.

Description

VGG16 and VGG19 models for Keras.

https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet/ResNet101
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet/ResNet152
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/ResNet50V2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/ResNet50V2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/ResNet101V2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/ResNet101V2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/ResNet152V2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/ResNet152V2
https://keras.io/api/applications/

36 application_vgg

Usage

application_vggl16(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,
classifier_activation = "softmax”

)

application_vgg19(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,

classifier_activation = "softmax”
)
Arguments
include_top whether to include the 3 fully-connected layers at the top of the network.
weights One of NULL (random initialization), 'imagenet' (pre-training on ImageNet),

or the path to the weights file to be loaded. Defaults to 'imagenet'.

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3) It should have exactly 3 inputs channels,
and width and height should be no smaller than 32. E.g. (200, 200, 3) would be
one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE. De-
faults to NULL.

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.
e 'avg' means that global average pooling will be applied to the output of
the last convolutional layer, and thus the output of the model will be a 2D
tensor.
* "max' means that global max pooling will be applied.
classes Optional number of classes to classify images into, only to be specified if include_top

is TRUE, and if no weights argument is specified. Defaults to 1000 (number of
ImageNet classes).

classifier_activation

A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the

application_xception 37

logits of the "top" layer. Defaults to 'softmax'. When loading pretrained
weights, classifier_activation can only be NULL or "softmax"”.
Details

Optionally loads weights pre-trained on ImageNet.

The imagenet_preprocess_input () function should be used for image preprocessing.

Value

Keras model instance.

Reference

- Very Deep Convolutional Networks for Large-Scale Image Recognition

Examples
Not run:
library(keras)

model <- application_vggl6(weights = 'imagenet', include_top = FALSE)

img_path <- "elephant. jpg"

img <- image_load(img_path, target_size = c(224,224))
x <- image_to_array(img)

x <- array_reshape(x, c(1, dim(x)))

x <- imagenet_preprocess_input(x)

features <- model %>% predict(x)

End(Not run)

application_xception Instantiates the Xception architecture

Description

Instantiates the Xception architecture

Usage

application_xception(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,

https://arxiv.org/abs/1409.1556

38 application_xception

classifier_activation = "softmax”,

)

xception_preprocess_input(x)

Arguments

include_top Whether to include the fully-connected layer at the top of the network. Defaults
to TRUE.

weights One of NULL (random initialization), 'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded. Defaults to 'imagenet'.

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (299, 299, 3). It should have exactly 3 inputs channels,
and width and height should be no smaller than 71. E.g. (150, 150, 3) would be
one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE. De-
faults to NULL.

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

* 'avg' means that global average pooling will be applied to the output of
the last convolutional layer, and thus the output of the model will be a 2D
tensor.

* "max' means that global max pooling will be applied.

classes Optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified. Defaults to 1000 (number of
ImageNet classes).

classifier_activation
A string or callable. The activation function to use on the "top" layer. Ignored
unless include_top = TRUE. Set classifier_activation = NULL to return the
logits of the "top" layer. Defaults to 'softmax'. When loading pretrained
weights, classifier_activation can only be NULL or "softmax".
For backwards and forwards compatibility

X preprocess_input () takes an array or floating point tensor, 3D or 4D with 3
color channels, with values in the range [0, 255].

Details

For image classification use cases, see this page for detailed examples.
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.

The default input image size for this model is 299x299.

Reference

» Xception: Deep Learning with Depthwise Separable Convolutions (CVPR 2017)

https://keras.io/api/applications/#usage-examples-for-image-classification-models
https://keras.io/guides/transfer_learning/
https://arxiv.org/abs/1610.02357

backend 39

Note

Each Keras Application typically expects a specific kind of input preprocessing. For Xception, call
xception_preprocess_input () on your inputs before passing them to the model. xception_preprocess_input()
will scale input pixels between -1 and 1.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/applications/xception/Xception

* https://keras.io/api/applications/

backend Keras backend tensor engine

Description

Obtain a reference to the keras.backend Python module used to implement tensor operations.

Usage

backend(convert = TRUE)

Arguments
convert Boolean; should Python objects be automatically converted to their R equiva-
lent? If set to FALSE, you can still manually convert Python objects to R via the
py_to_r() function.
Value

Reference to Keras backend python module.

Note

See the documentation here https://keras.io/backend/ for additional details on the available
functions.

https://www.tensorflow.org/api_docs/python/tf/keras/applications/xception/Xception
https://keras.io/api/applications/
https://keras.io/backend/

40

bidirectional

bidirectional

Bidirectional wrapper for RNNs

Description

Bidirectional wrapper for RNNs

Usage

bidirectional(

object,
layer,

merge_mode = "concat”,

weights

NULL,

backward_layer = NULL,

Arguments

object

layer

merge_mode

weights

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.
A RNN layer instance, such as layer_lstm() or layer_gru(). It could also be
a keras$layerss$Layer instance that meets the following criteria:

1. Be a sequence-processing layer (accepts 3D+ inputs).

2. Have a go_backwards, return_sequences and return_state attribute
(with the same semantics as for the RNN class).

3. Have an input_spec attribute.

4. Implement serialization via get_config() and from_config(). Note that
the recommended way to create new RNN layers is to write a custom RNN

cell and use it with layer_rnn(), instead of subclassing keras$layers$Layer

directly.

5. When returns_sequences = TRUE, the output of the masked timestep will
be zero regardless of the layer’s original zero_output_for_mask value.

Mode by which outputs of the forward and backward RNNs will be combined.
One of 'sum’, 'mul’', 'concat’', 'ave', NULL. If NULL, the outputs will not be
combined, they will be returned as a list. Default value is 'concat'.

Split and propagated to the initial_weights attribute on the forward and back-
ward layer.

callback_csv_logger 41

backward_layer Optional keras.layers.RNN, or keras.layers.Layer instance to be used to
handle backwards input processing. If backward_layer is not provided, the
layer instance passed as the layer argument will be used to generate the back-
ward layer automatically. Note that the provided backward_layer layer should
have properties matching those of the layer argument, in particular it should
have the same values for stateful, return_states, return_sequences, etc.
In addition, backward_layer and layer should have different go_backwards
argument values. A ValueError will be raised if these requirements are not
met.

standard layer arguments.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/Bidirectional
e https://keras.io/api/layers/recurrent_layers/bidirectional/

Other layer wrappers: time_distributed()

callback_csv_logger Callback that streams epoch results to a csv file

Description

Supports all values that can be represented as a string

Usage
callback_csv_logger(filename, separator = ",", append = FALSE)
Arguments
filename filename of the csv file, e.g. ‘run/log.csv’.
separator string used to separate elements in the csv file.
append TRUE: append if file exists (useful for continuing training). FALSE: overwrite
existing file,
See Also

Other callbacks: callback_early_stopping(), callback_lambda(), callback_learning_rate_scheduler(),
callback_model_checkpoint(), callback_progbar_logger(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Bidirectional
https://keras.io/api/layers/recurrent_layers/bidirectional/

42 callback_early_stopping

callback_early_stopping
Stop training when a monitored quantity has stopped improving.

Description

Stop training when a monitored quantity has stopped improving.

Usage

callback_early_stopping(
monitor = "val_loss”,
min_delta = 0,
patience = 0,
verbose = 0,
mode = c("auto”, "min"
baseline = NULL,
restore_best_weights = FALSE

n n
, "'max"),

)
Arguments

monitor quantity to be monitored.

min_delta minimum change in the monitored quantity to qualify as an improvement, i.e.
an absolute change of less than min_delta, will count as no improvement.

patience number of epochs with no improvement after which training will be stopped.

verbose verbosity mode, 0 or 1.

mode one of "auto", "min", "max". In min mode, training will stop when the quantity
monitored has stopped decreasing; in max mode it will stop when the quantity
monitored has stopped increasing; in auto mode, the direction is automatically
inferred from the name of the monitored quantity.

baseline Baseline value for the monitored quantity to reach. Training will stop if the

model doesn’t show improvement over the baseline.
restore_best_weights
Whether to restore model weights from the epoch with the best value of the

monitored quantity. If FALSE, the model weights obtained at the last step of
training are used.

See Also

Other callbacks: callback_csv_logger(), callback_lambda(), callback_learning_rate_scheduler(),
callback_model_checkpoint(), callback_progbar_logger(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_lambda

43

callback_lambda Create a custom callback

Description

This callback is constructed with anonymous functions that will be called at the appropriate time.

Note that the callbacks expects positional arguments, as:

Usage

callback_lambda(
on_epoch_begin = NULL,
on_epoch_end = NULL,
on_batch_begin = NULL,
on_batch_end = NULL,
on_train_batch_begin = NULL,
on_train_batch_end = NULL,
on_train_begin = NULL,
on_train_end = NULL,
on_predict_batch_begin = NULL,
on_predict_batch_end = NULL,
on_predict_begin = NULL,
on_predict_end = NULL,
on_test_batch_begin = NULL,
on_test_batch_end = NULL,
on_test_begin = NULL,
on_test_end = NULL

Arguments

on_epoch_begin called at the beginning of every epoch.
on_epoch_end called at the end of every epoch.
on_batch_begin called at the beginning of every training batch.

on_batch_end called at the end of every training batch.
on_train_batch_begin

called at the beginning of every batch.
on_train_batch_end

called at the end of every batch.

on_train_begin called at the beginning of model training.

on_train_end called at the end of model training.
on_predict_batch_begin

called at the beginning of a batch in predict methods.

on_predict_batch_end
called at the end of a batch in predict methods.

44 callback_learning_rate_scheduler

on_predict_begin
called at the beginning of prediction.
on_predict_end called at the end of prediction.
on_test_batch_begin
called at the beginning of a batch in evaluate methods. Also called at the begin-
ning of a validation batch in the fit methods, if validation data is provided.
on_test_batch_end
called at the end of a batch in evaluate methods. Also called at the end of a
validation batch in the fit methods, if validation data is provided.
on_test_begin called at the beginning of evaluation or validation.

on_test_end called at the end of evaluation or validation.

Details

* on_epoch_begin and on_epoch_end expect two positional arguments: epoch, logs

* on_batch_*, on_train_batch_*, on_predict_batch_* and on_test_batch_*, expect two posi-
tional arguments: batch, logs

e on_train_*, on_test_* and on_predict_* expect one positional argument: logs

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_learning_rate_scheduler(),
callback_model_checkpoint(), callback_progbar_logger (), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_learning_rate_scheduler
Learning rate scheduler.

Description

Learning rate scheduler.

Usage

callback_learning_rate_scheduler(schedule)

Arguments
schedule a function that takes an epoch index as input (integer, indexed from 0) and cur-
rent learning rate and returns a new learning rate as output (float).
See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_model_checkpoint(), callback_progbar_logger(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_model_checkpoint 45

callback_model_checkpoint
Save the model after every epoch.

Description

filepath can contain named formatting options, which will be filled the value of epoch and
keys in logs (passed in on_epoch_end). For example: if filepath is weights.{epoch:02d}-
{val_loss:.2f}.hdf5, then the model checkpoints will be saved with the epoch number and the vali-
dation loss in the filename.

Usage
callback_model_checkpoint(
filepath,
monitor = "val_loss”,
verbose = 0,

save_best_only = FALSE,
save_weights_only = FALSE,

mode = c("auto”, "min”, "max"),
period = NULL,
save_freq = "epoch”
)
Arguments
filepath string, path to save the model file.
monitor quantity to monitor.
verbose verbosity mode, O or 1.

save_best_only if save_best_only=TRUE, the latest best model according to the quantity mon-
itored will not be overwritten.

save_weights_only
if TRUE, then only the model’s weights will be saved (save_model_weights_hdf5(filepath)),
else the full model is saved (save_model_hdf5(filepath)).

non non

mode one of "auto", "min", "max". If save_best_only=TRUE, the decision to over-
write the current save file is made based on either the maximization or the mini-
mization of the monitored quantity. For val_acc, this should be max, for val_loss
this should be min, etc. In auto mode, the direction is automatically inferred
from the name of the monitored quantity.

period Interval (number of epochs) between checkpoints.

save_freq 'epoch' or integer. When using ’epoch’, the callback saves the model after
each epoch. When using integer, the callback saves the model at end of a batch
at which this many samples have been seen since last saving. Note that if the
saving isn’t aligned to epochs, the monitored metric may potentially be less
reliable (it could reflect as little as 1 batch, since the metrics get reset every
epoch). Defaults to 'epoch’

46 callback_progbar_logger

For example

if filepath is weights.{epoch:02d}-{val_loss:.2f}.hdf5,: then the model checkpoints will be saved
with the epoch number and the validation loss in the filename.

See Also
Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),

callback_learning_rate_scheduler(), callback_progbar_logger(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_progbar_logger
Callback that prints metrics to stdout.

Description

Callback that prints metrics to stdout.

Usage

callback_progbar_logger(count_mode = "samples”, stateful_metrics = NULL)

Arguments

count_mode One of "steps" or "samples". Whether the progress bar should count samples
seens or steps (batches) seen.

stateful_metrics
List of metric names that should not be averaged onver an epoch. Metrics in

this list will be logged as-is in on_epoch_end. All others will be averaged in
on_epoch_end.

See Also
Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),

callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_reduce_Ir_on_plateau 47

callback_reduce_lr_on_plateau
Reduce learning rate when a metric has stopped improving.

Description

Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates.
This callback monitors a quantity and if no improvement is seen for a ’patience’ number of epochs,
the learning rate is reduced.

Usage
callback_reduce_lr_on_plateau(
monitor = "val_loss",
factor = 0.1,

patience = 10,

verbose = 0,

mode = c("auto”, "min"”, "max"),
min_delta = 1e-04,

cooldown = 0,

min_lr = @

)
Arguments
monitor quantity to be monitored.
factor factor by which the learning rate will be reduced. new_Ir = Ir
* factor
patience number of epochs with no improvement after which learning rate will be re-
duced.
verbose int. 0: quiet, 1: update messages.
mode one of "auto", "min", "max". In min mode, Ir will be reduced when the quan-
tity monitored has stopped decreasing; in max mode it will be reduced when
the quantity monitored has stopped increasing; in auto mode, the direction is
automatically inferred from the name of the monitored quantity.
min_delta threshold for measuring the new optimum, to only focus on significant changes.
cooldown number of epochs to wait before resuming normal operation after Ir has been
reduced.
min_1r lower bound on the learning rate.
See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_progbar_logger(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

48 callback _remote_monitor

callback_remote_monitor
Callback used to stream events to a server.

Description

Callback used to stream events to a server.

Usage

callback_remote_monitor(
root = "https://localhost:9000",
path = "/publish/epoch/end/",
field = "data",
headers = NULL,
send_as_json = FALSE

)
Arguments
root root url of the target server.
path path relative to root to which the events will be sent.
field JSON field under which the data will be stored.
headers Optional named list of custom HTTP headers. Defaults to: list(Accept = "appli-

cation/json", Content-Type = "application/json")

send_as_json Whether the request should be sent as application/json.

Details

Events are sent to root + ' /publish/epoch/end/"' by default. Calls are HTTP POST, with a data
argument which is a JSON-encoded dictionary of event data. If send_as_json is set to True, the
content type of the request will be application/json. Otherwise the serialized JSON will be send
within a form

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_progbar_logger(),
callback_reduce_lr_on_plateau(), callback_tensorboard(), callback_terminate_on_naan()

callback_tensorboard

49

callback_tensorboard TensorBoard basic visualizations

Description

This callback writes a log for TensorBoard, which allows you to visualize dynamic graphs of your
training and test metrics, as well as activation histograms for the different layers in your model.

Usage

callback_tensorboard(
log_dir = NULL,
histogram_freq = 0,
batch_size = NULL,
write_graph = TRUE,

write_grads =

write_images

FALSE,

= FALSE,

embeddings_freq = 0,
embeddings_layer_names = NULL,
embeddings_metadata = NULL,
embeddings_data = NULL,

update_freq =

"epOCh" ,

profile_batch = 0

Arguments

log_dir

histogram_freq

batch_size

write_graph

write_grads

write_images

embeddings_freq

The path of the directory where to save the log files to be parsed by Tensorboard.
The default is NULL, which will use the active run directory (if available) and
otherwise will use "logs".

frequency (in epochs) at which to compute activation histograms for the layers
of the model. If set to 0, histograms won’t be computed.

size of batch of inputs to feed to the network for histograms computation. No
longer needed, ignored since TF 1.14.

whether to visualize the graph in Tensorboard. The log file can become quite
large when write_graph is set to TRUE

whether to visualize gradient histograms in TensorBoard. histogram_freq
must be greater than 0.

whether to write model weights to visualize as image in Tensorboard.

frequency (in epochs) at which selected embedding layers will be saved.

embeddings_layer_names

a list of names of layers to keep eye on. If NULL or empty list all the embedding
layers will be watched.

50 callback_terminate_on_naan

embeddings_metadata
a named list which maps layer name to a file name in which metadata for this
embedding layer is saved. See the details about the metadata file format. In case
if the same metadata file is used for all embedding layers, string can be passed.
embeddings_data
Data to be embedded at layers specified in embeddings_layer_names. Array (if
the model has a single input) or list of arrays (if the model has multiple inputs).
Learn more about embeddings

update_freq 'batch’ or 'epoch' orinteger. When using 'batch’, writes the losses and met-
rics to TensorBoard after each batch. The same applies for 'epoch'. If using
an integer, let’s say 10009, the callback will write the metrics and losses to Ten-
sorBoard every 10000 samples. Note that writing too frequently to TensorBoard
can slow down your training.

profile_batch Profile the batch to sample compute characteristics. By default, it will disbale
profiling. Set profile_batch=2 profile the second batch. Must run in TensorFlow
eager mode. (TF >=1.14)

Details

TensorBoard is a visualization tool provided with TensorFlow.
You can find more information about TensorBoard here.

When using a backend other than TensorFlow, TensorBoard will still work (if you have TensorFlow
installed), but the only feature available will be the display of the losses and metrics plots.

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_progbar_logger(),
callback_reduce_lr_on_plateau(), callback_remote_monitor(), callback_terminate_on_naan()

callback_terminate_on_naan
Callback that terminates training when a NaN loss is encountered.

Description

Callback that terminates training when a NaN loss is encountered.

Usage

callback_terminate_on_naan()

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_progbar_logger(),
callback_reduce_lr_on_plateau(), callback_remote_monitor(), callback_tensorboard()

https://www.tensorflow.org/tensorboard/tensorboard_projector_plugin#saving_data_for_tensorboard
https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/tensorboard/get_started

clone_model 51

clone_model Clone a model instance.

Description

Model cloning is similar to calling a model on new inputs, except that it creates new layers (and
thus new weights) instead of sharing the weights of the existing layers.

Usage

clone_model(model, input_tensors = NULL, clone_function = NULL)

Arguments

model Instance of Keras model (could be a functional model or a Sequential model).

input_tensors Optional list of input tensors to build the model upon. If not provided, place-
holders will be created.

clone_function Callable to be used to clone each layer in the target model (except InputLayer
instances). It takes as argument the layer instance to be cloned, and returns the
corresponding layer instance to be used in the model copy. If unspecified, this
callable defaults to the following serialization/deserialization function:

function(layer) layer$*__class__‘$from_config(layer$get_config())

By passing a custom callable, you can customize your copy of the model, e.g.
by wrapping certain layers of interest (you might want to replace all LSTM
instances with equivalent Bidirectional (LSTM(. . .)) instances, for example).

compile.keras.engine.training.Model
Configure a Keras model for training

Description

Configure a Keras model for training

Usage
S3 method for class 'keras.engine.training.Model'
compile(
object,
optimizer = NULL,
loss = NULL,

metrics = NULL,
loss_weights = NULL,
weighted_metrics = NULL,

52 compile.keras.engine.training. Model

run_eagerly = NULL,
steps_per_execution = NULL,
target_tensors = NULL,
sample_weight_mode = NULL

Arguments

object Model object to compile.

optimizer String (name of optimizer) or optimizer instance. For most models, this defaults
to "rmsprop”

loss String (name of objective function), objective function or a keras$losses$Loss
subclass instance. An objective function is any callable with the signature loss
=fn(y_true,y_pred), where y_true = ground truth values with shape = [batch_size, d0, .. dN],
except sparse loss functions such as sparse categorical crossentropy where shape
= [batch_size, dO, .. dN-1]. y_pred = predicted values with shape = [batch_size, d0, .. dN].
It returns a weighted loss float tensor. If a custom Loss instance is used and re-
duction is set to NULL, return value has the shape [batch_size, dO, .. dN-1] i.e.
per-sample or per-timestep loss values; otherwise, it is a scalar. If the model
has multiple outputs, you can use a different loss on each output by passing a
dictionary or a list of losses. The loss value that will be minimized by the model
will then be the sum of all individual losses, unless loss_weights is specified.

metrics List of metrics to be evaluated by the model during training and testing. Each of
this can be a string (name of a built-in function), function or a keras$metrics$Metric
class instance. See ?tf$keras$metrics. Typically you willuse metrics=1list('accuracy').
A function is any callable with the signature result = fn(y_true,y_pred). To
specify different metrics for different outputs of a multi-output model, you could
also pass a dictionary, such asmetrics=1list(output_a = 'accuracy',output_b
=c('accuracy', 'mse')). You can also pass a list to specify a metric or a list of
metrics for each output, such asmetrics=1list(list('accuracy'),list('accuracy', 'mse'))
or metrics=list('accuracy',c('accuracy', 'mse')). When you pass the
strings 'accuracy' or 'acc’, this is converted to one of tf.keras.metrics.BinaryAccuracy,
tf.keras.metrics.CategoricalAccuracy, tf.keras.metrics.SparseCategoricalAccuracy
based on the loss function used and the model output shape. A similar conver-
sion is done for the strings 'crossentropy' and 'ce'.

loss_weights Optional list, dictionary, or named vector specifying scalar numeric coefficients
to weight the loss contributions of different model outputs. The loss value that
will be minimized by the model will then be the weighted sum of all individual
losses, weighted by the loss_weights coefficients. If a list, it is expected to
have a 1:1 mapping to the model’s outputs. If a dict, it is expected to map output
names (strings) to scalar coefficients.

weighted_metrics
List of metrics to be evaluated and weighted by sample_weight or class_weight
during training and testing.

run_eagerly Bool. Defaults to FALSE. If TRUE, this Model’s logic will not be wrapped in a
tf.function. Recommended to leave this as NULL unless your Model cannot

constraints 53

be run inside a tf.function. run_eagerly=True is not supported when using
tf.distribute.experimental.ParameterServerStrategy. If the model’s
logic uses tensors in R control flow expressions like if and for, the model is still
traceable with tf. function, but you will have to enter a tfautograph: : autograph({})
directly.

steps_per_execution
Int. Defaults to 1. The number of batches to run during each tf. function call.
Running multiple batches inside a single tf. function call can greatly improve
performance on TPUs or small models with a large Python/R overhead. At most,
one full epoch will be run each execution. If a number larger than the size of
the epoch is passed, the execution will be truncated to the size of the epoch.
Note that if steps_per_executionis set to N, Callback.on_batch_begin and
Callback.on_batch_end methods will only be called every N batches (i.e. be-
fore/after each tf.function execution).

Arguments supported for backwards compatibility only.

target_tensors By default, Keras will create a placeholder for the model’s target, which will be
fed with the target data during training. If instead you would like to use your
own target tensor (in turn, Keras will not expect external data for these targets
at training time), you can specify them via the target_tensors argument. It
should be a single tensor (for a single-output sequential model).

sample_weight_mode
If you need to do timestep-wise sample weighting (2D weights), set this to "tem-
poral". NULL defaults to sample-wise weights (1D). If the model has multiple
outputs, you can use a different sample_weight_mode on each output by pass-
ing a list of modes.

See Also

Other model functions: evaluate.keras.engine.training.Model(), evaluate_generator(),
fit.keras.engine.training.Model(), fit_generator(), get_config(), get_layer(), keras_model_sequential(),
keras_model (), multi_gpu_model(), pop_layer (), predict.keras.engine.training.Model(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model (),
train_on_batch()

constraints Weight constraints

Description

Functions that impose constraints on weight values.

Usage

constraint_maxnorm(max_value = 2, axis = @)

constraint_nonneg()

54 constraints

constraint_unitnorm(axis = @)

constraint_minmaxnorm(min_value = @, max_value = 1, rate = 1, axis = 0)

Arguments
max_value The maximum norm for the incoming weights.
axis The axis along which to calculate weight norms. For instance, in a dense layer
the weight matrix has shape input_dim, output_dim, set axis to @ to constrain
each weight vector of length input_dim,. In a convolution 2D layer with dim_ordering="tf",
the weight tensor has shape rows, cols, input_depth, output_depth, set axis to
c(0,1,2) to constrain the weights of each filter tensor of size rows, cols, in-
put_depth.
min_value The minimum norm for the incoming weights.
rate The rate for enforcing the constraint: weights will be rescaled to yield (1 - rate) *
norm + rate * norm.clip(low, high). Effectively, this means that rate=1.0 stands
for strict enforcement of the constraint, while rate<1.0 means that weights will
be rescaled at each step to slowly move towards a value inside the desired inter-
val.
Details

e constraint_maxnorm() constrains the weights incident to each hidden unit to have a norm
less than or equal to a desired value.

e constraint_nonneg() constraints the weights to be non-negative

e constraint_unitnorm() constrains the weights incident to each hidden unit to have unit
norm.

e constraint_minmaxnorm() constrains the weights incident to each hidden unit to have the
norm between a lower bound and an upper bound.

Custom constraints

You can implement your own constraint functions in R. A custom constraint is an R function that
takes weights (w) as input and returns modified weights. Note that keras backend() tensor func-
tions (e.g. k_greater_equal()) should be used in the implementation of custom constraints. For
example:

nonneg_constraint <- function(w) {
w * k_cast(k_greater_equal(w, 0), k_floatx())
3

layer_dense(units = 32, input_shape = c(784),
kernel_constraint = nonneg_constraint)

Note that models which use custom constraints cannot be serialized using save_model_hdf5().
Rather, the weights of the model should be saved and restored using save_model_weights_hdf5().

count_params

See Also

55

Dropout: A Simple Way to Prevent Neural Networks from Overfitting Srivastava, Hinton, et al.

2014

KerasConstraint

count_params Count the total number of scalars composing the weights.

Description

Count the total number of scalars composing the weights.

Usage

count_params(object)

Arguments

object Layer or model object

Value

An integer count

See Also

Other layer methods: get_config(), get_input_at(), get_weights(), reset_states()

create_layer Create a Keras Layer

Description

Create a Keras Layer

Usage

create_layer(layer_class, object, args = list())

Arguments

layer_class Python layer class or R6 class of type KerasLayer

object Object to compose layer with. This is either a keras_model_sequential() to

add the layer to, or another Layer which this layer will call.

args List of arguments to layer constructor function

https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

56 create_layer_wrapper

Value

A Keras layer

Note

The object parameter can be missing, in which case the layer is created without a connection to an
existing graph.

create_layer_wrapper Create a Keras Layer wrapper

Description

Create a Keras Layer wrapper

Usage

create_layer_wrapper(LayerClass, modifiers = NULL, convert = TRUE)

Arguments
LayerClass A R6 or Python class generator that inherits from keras$layers$Layer
modifiers A named list of functions to modify to user-supplied arguments before they are
passed on to the class constructor. (e.g., list(units = as.integer))
convert Boolean, whether the Python class and its methods should by default convert
python objects to R objects.
See guide 'making_new_layers_and_models_via_subclassing.Rmd’ for exam-
ple usage.
Value

An R function that behaves similarly to the builtin keras layer_* functions. When called, it will
create the class instance, and also optionally call it on a supplied argument object if it is present.
This enables keras layers to compose nicely with the pipe (%>%).

The R function will arguments taken from the initialize (or __init__) method of the LayerClass.

If LayerClass is an R6 object, this will avoid initializing the python session, so it is safe to use in
an R package.

custom_metric 57

custom_metric Custom metric function

Description

Custom metric function

Usage

custom_metric(name, metric_fn)

Arguments
name name used to show training progress output
metric_fn An R function with signature function(y_true,y_pred){} that accepts ten-
Sors.
Details

You can provide an arbitrary R function as a custom metric. Note that the y_true and y_pred
parameters are tensors, SO computations on them should use backend tensor functions.

Use the custom_metric() function to define a custom metric. Note that a name ("mean_pred’) is
provided for the custom metric function: this name is used within training progress output.

If you want to save and load a model with custom metrics, you should also specify the metric in the
call the load_model_hdf5(). For example: load_model_hdf5("my_model.h5",c('mean_pred'
=metric_mean_pred)).

Alternatively, you can wrap all of your code in a call to with_custom_object_scope() which will
allow you to refer to the metric by name just like you do with built in keras metrics.

Documentation on the available backend tensor functions can be found at https://keras.rstudio.
com/articles/backend.html#backend-functions.

Alternative ways of supplying custom metrics:

 custom_metric(): Arbitrary R function.
* metric_mean_wrapper(): Wrap an arbitrary R function in a Metric instance.

* subclass keras$metrics$Metric: see ?Metric for example.

See Also

Other metrics: metric_accuracy(),metric_auc(),metric_binary_accuracy(),metric_binary_crossentropy(),
metric_categorical_accuracy(),metric_categorical_crossentropy(),metric_categorical_hinge(),
metric_cosine_similarity(),metric_false_negatives(),metric_false_positives(),metric_hinge(),
metric_kullback_leibler_divergence(),metric_logcosh_error(),metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

58 dataset_boston_housing

metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

dataset_boston_housing
Boston housing price regression dataset

Description

Dataset taken from the StatLib library which is maintained at Carnegie Mellon University.

Usage
dataset_boston_housing(
path = "boston_housing.npz"”,
test_split = 0.2,
seed = 113L
)
Arguments
path Path where to cache the dataset locally (relative to ~/.keras/datasets).
test_split fraction of the data to reserve as test set.
seed Random seed for shuffling the data before computing the test split.
Value

Lists of training and test data: train$x, train$y, test$x, test$y.

Samples contain 13 attributes of houses at different locations around the Boston suburbs in the late
1970s. Targets are the median values of the houses at a location (in k$).

See Also

Other datasets: dataset_cifar100(), dataset_cifar10(), dataset_fashion_mnist(), dataset_imdb(),
dataset_mnist(), dataset_reuters()

dataset_cifarl0 59

dataset_cifario CIFARI10 small image classification

Description

Dataset of 50,000 32x32 color training images, labeled over 10 categories, and 10,000 test images.

Usage

dataset_cifar10()

Value

Lists of training and test data: train$x, train$y, test$x, test$y.
The x data is an array of RGB image data with shape (num_samples, 3, 32, 32).

The y data is an array of category labels (integers in range 0-9) with shape (num_samples).

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_fashion_mnist(),
dataset_imdb(), dataset_mnist(), dataset_reuters()

dataset_cifari100 CIFAR100 small image classification

Description

Dataset of 50,000 32x32 color training images, labeled over 100 categories, and 10,000 test images.

Usage

dataset_cifar100(label_mode = c("fine", "coarse"))
Arguments

label_mode one of "fine", "coarse".
Value

Lists of training and test data: train$x, train$y, test$x, test$y.
The x data is an array of RGB image data with shape (num_samples, 3, 32, 32).

The y data is an array of category labels with shape (num_samples).

See Also

Other datasets: dataset_boston_housing(), dataset_cifar10(), dataset_fashion_mnist(),
dataset_imdb(), dataset_mnist(), dataset_reuters()

60 dataset_fashion_mnist

dataset_fashion_mnist Fashion-MNIST database of fashion articles

Description

Dataset of 60,000 28x28 grayscale images of the 10 fashion article classes, along with a test set
of 10,000 images. This dataset can be used as a drop-in replacement for MNIST. The class labels
are encoded as integers from 0-9 which correspond to T-shirt/top, Trouser, Pullover, Dress, Coat,
Sandal, Shirt,

Usage

dataset_fashion_mnist()

Details

Dataset of 60,000 28x28 grayscale images of 10 fashion categories, along with a test set of 10,000
images. This dataset can be used as a drop-in replacement for MNIST. The class labels are:
¢ 0 - T-shirt/top
e 1 - Trouser
* 2 - Pullover
* 3 - Dress
* 4 - Coat
* 5- Sandal
* 6 - Shirt
* 7 - Sneaker
* 8-Bag
9 - Ankle boot

Value

Lists of training and test data: train$x, trainS$y, test$x, test$y, where x is an array of grayscale image
data with shape (num_samples, 28, 28) and y is an array of article labels (integers in range 0-9) with
shape (num_samples).

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_cifar10(), dataset_imdb(),
dataset_mnist(), dataset_reuters()

dataset_imdb

61

dataset_imdb

IMDB Movie reviews sentiment classification

Description

Dataset of 25,000 movies reviews from IMDB, labeled by sentiment (positive/negative). Reviews
have been preprocessed, and each review is encoded as a sequence of word indexes (integers). For
convenience, words are indexed by overall frequency in the dataset, so that for instance the integer
"3" encodes the 3rd most frequent word in the data. This allows for quick filtering operations such
as: "only consider the top 10,000 most common words, but eliminate the top 20 most common

words".

Usage

dataset_imdb(

path = "imdb.npz",

num_words = NULL,
skip_top = oL,
maxlen = NULL,
seed = 113L,
start_char = 1L,
oov_char = 2L,
index_from = 3L

)
dataset_imdb_word_index(path = "imdb_word_index. json")
Arguments

path Where to cache the data (relative to ~/.keras/dataset).

num_words Max number of words to include. Words are ranked by how often they occur (in
the training set) and only the most frequent words are kept

skip_top Skip the top N most frequently occuring words (which may not be informative).

maxlen sequences longer than this will be filtered out.

seed random seed for sample shuffling.

start_char The start of a sequence will be marked with this character. Set to 1 because 0 is
usually the padding character.

oov_char Words that were cut out because of the num_words or skip_top limit will be

index_from

Details

replaced with this character.

Index actual words with this index and higher.

As a convention, "0" does not stand for a specific word, but instead is used to encode any unknown

word.

62 dataset_mnist

Value

Lists of training and test data: train$x, train$y, test$x, test$y.

The x data includes integer sequences. If the num_words argument was specific, the maximum
possible index value is num_words-1. If the maxlen™™ argument was specified, the largest possi-
ble sequence length is maxlen‘.

The y data includes a set of integer labels (0 or 1).

The dataset_imdb_word_index () function returns a list where the names are words and the values
are integer.

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_cifar10(), dataset_fashion_mnist(),
dataset_mnist(), dataset_reuters()

dataset_mnist MNIST database of handwritten digits

Description

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images.

Usage

dataset_mnist(path = "mnist.npz")
Arguments

path Path where to cache the dataset locally (relative to ~/.keras/datasets).
Value

Lists of training and test data: train$x, train$y, test$x, test$y, where x is an array of grayscale image
data with shape (num_samples, 28, 28) and y is an array of digit labels (integers in range 0-9) with
shape (num_samples).

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_cifar10(), dataset_fashion_mnist(),
dataset_imdb(), dataset_reuters()

dataset_reuters 63

dataset_reuters Reuters newswire topics classification

Description

Dataset of 11,228 newswires from Reuters, labeled over 46 topics. As with dataset_imdb() , each
wire is encoded as a sequence of word indexes (same conventions).

Usage

dataset_reuters(
path = "reuters.npz”,
num_words = NULL,
skip_top = oL,
maxlen = NULL,
test_split = 0.2,
seed = 113L,
start_char = 1L,
oov_char = 2L,
index_from = 3L

)
dataset_reuters_word_index(path = "reuters_word_index.pkl")
Arguments
path Where to cache the data (relative to ~/ keras/dataset).
num_words Max number of words to include. Words are ranked by how often they occur (in
the training set) and only the most frequent words are kept
skip_top Skip the top N most frequently occuring words (which may not be informative).
maxlen Truncate sequences after this length.
test_split Fraction of the dataset to be used as test data.
seed Random seed for sample shuffling.
start_char The start of a sequence will be marked with this character. Set to 1 because 0 is
usually the padding character.
oov_char words that were cut out because of the num_words or skip_top limit will be
replaced with this character.
index_from index actual words with this index and higher.
Value

Lists of training and test data: train$x, train$y, test$x, test$y with same format as dataset_imdb ().
The dataset_reuters_word_index() function returns a list where the names are words and the
values are integer. e.g. word_index[["giraffe”]] might return 1234.

64 evaluate.keras.engine.training. Model

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_cifar10(), dataset_fashion_mnist(),
dataset_imdb (), dataset_mnist()

evaluate.keras.engine.training.Model
Evaluate a Keras model

Description

Evaluate a Keras model

Usage

S3 method for class 'keras.engine.training.Model'
evaluate(

object,

x = NULL,

y = NULL,

batch_size = NULL,

verbose = 1,

sample_weight = NULL,

steps = NULL,

callbacks = NULL,

Arguments

object Model object to evaluate

X Vector, matrix, or array of test data (or list if the model has multiple inputs).
If all inputs in the model are named, you can also pass a list mapping input
names to data. x can be NULL (default) if feeding from framework-native tensors
(e.g. TensorFlow data tensors). You can also pass a tfdataset or a generator
returning a list with (inputs, targets) or (inputs, targets, sample_weights).

y Vector, matrix, or array of target (label) data (or list if the model has multiple
outputs). If all outputs in the model are named, you can also pass a list mapping
output names to data. y can be NULL (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).

batch_size Integer or NULL. Number of samples per gradient update. If unspecified, batch_size
will default to 32.

verbose Verbosity mode (0 = silent, 1 = progress bar, 2 = one line per epoch).

sample_weight Optional array of the same length as x, containing weights to apply to the
model’s loss for each sample. In the case of temporal data, you can pass a
2D array with shape (samples, sequence_length), to apply a different weight to
every timestep of every sample. In this case you should make sure to specify
sample_weight_mode="temporal” in compile().

export_savedmodel.keras.engine.training. Model 65

steps Total number of steps (batches of samples) before declaring the evaluation round
finished. Ignored with the default value of NULL.
callbacks List of callbacks to apply during evaluation.
Unused
Value

Named list of model test loss (or losses for models with multiple outputs) and model metrics.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate_generator(),
fit.keras.engine.training.Model(), fit_generator(), get_config(), get_layer(), keras_model_sequential(),
keras_model (), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(),

predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

export_savedmodel .keras.engine.training.Model
Export a Saved Model

Description

Serialize a model to disk.

Usage

S3 method for class 'keras.engine.training.Model'
export_savedmodel (

object,

export_dir_base,

overwrite = TRUE,

versioned = l!overwrite,

remove_learning_phase = TRUE,

as_text = FALSE,

Arguments

object An R object.
export_dir_base
A string containing a directory in which to export the SavedModel.

overwrite Should the export_dir_base directory be overwritten?

versioned Should the model be exported under a versioned subdirectory?

66 fit.keras.engine.training.Model

remove_learning_phase
Should the learning phase be removed by saving and reloading the model? De-
faults to TRUE.

as_text Whether to write the SavedModel in text format.

Other arguments passed to tf.saved_model.save. (Used only if TensorFlow ver-
sion >= 2.0)

Value

The path to the exported directory, as a string.

fit.keras.engine.training.Model
Train a Keras model

Description

Trains the model for a fixed number of epochs (iterations on a dataset).

Usage

S3 method for class 'keras.engine.training.Model'
fit(

object,

x = NULL,

y = NULL,

batch_size = NULL,

epochs = 10,

verbose = getOption("keras.fit_verbose”, default = 1),

callbacks = NULL,

view_metrics = getOption("keras.view_metrics”, default = "auto"),

validation_split = 0,

validation_data = NULL,

shuffle = TRUE,

class_weight = NULL,

sample_weight = NULL,

initial_epoch = 0,

steps_per_epoch = NULL,

validation_steps = NULL,

Arguments

object Model to train.

fit.keras.engine.training. Model 67

X Vector, matrix, or array of training data (or list if the model has multiple inputs).
If all inputs in the model are named, you can also pass a list mapping input
names to data. x can be NULL (default) if feeding from framework-native tensors
(e.g. TensorFlow data tensors). You can also pass a tfdataset or a generator
returning a list with (inputs, targets) or (inputs, targets, sample_weights).

y Vector, matrix, or array of target (label) data (or list if the model has multiple
outputs). If all outputs in the model are named, you can also pass a list mapping
output names to data. y can be NULL (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).

batch_size Integer or NULL. Number of samples per gradient update. If unspecified, batch_size
will default to 32.
epochs Number of epochs to train the model. Note that in conjunction with initial_epoch,

epochs is to be understood as "final epoch". The model is not trained for a num-
ber of iterations given by epochs, but merely until the epoch of index epochs is

reached.
verbose Verbosity mode (0 = silent, 1 = progress bar, 2 = one line per epoch).
callbacks List of callbacks to be called during training.

view_metrics View realtime plot of training metrics (by epoch). The default ("auto”) will
display the plot when running within RStudio, metrics were specified during
model compile(), epochs > 1 and verbose > @. Use the global keras.view_metrics
option to establish a different default.

validation_split
Float between 0 and 1. Fraction of the training data to be used as validation
data. The model will set apart this fraction of the training data, will not train on
it, and will evaluate the loss and any model metrics on this data at the end of
each epoch. The validation data is selected from the last samples in the x and y
data provided, before shuffling.

validation_data
Data on which to evaluate the loss and any model metrics at the end of each
epoch. The model will not be trained on this data. This could be a list (x_val,
y_val) or a list (x_val, y_val, val_sample_weights). validation_data will
override validation_split.

shuffle shuffle: Logical (whether to shuffle the training data before each epoch) or string
(for "batch"). "batch" is a special option for dealing with the limitations of HDF5
data; it shuffles in batch-sized chunks. Has no effect when steps_per_epoch is
not NULL.

class_weight Optional named list mapping indices (integers) to a weight (float) value, used
for weighting the loss function (during training only). This can be useful to tell
the model to "pay more attention" to samples from an under-represented class.

sample_weight Optional array of the same length as x, containing weights to apply to the
model’s loss for each sample. In the case of temporal data, you can pass a
2D array with shape (samples, sequence_length), to apply a different weight to
every timestep of every sample. In this case you should make sure to specify
sample_weight_mode="temporal” in compile().

initial_epoch Integer, Epoch at which to start training (useful for resuming a previous training
run).

68 fit_image_data_generator

steps_per_epoch
Total number of steps (batches of samples) before declaring one epoch finished
and starting the next epoch. When training with input tensors such as Tensor-
Flow data tensors, the default NULL is equal to the number of samples in your
dataset divided by the batch size, or 1 if that cannot be determined.
validation_steps
Only relevant if steps_per_epoch is specified. Total number of steps (batches
of samples) to validate before stopping.

Unused

Value

A history object that contains all information collected during training.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit_generator(), get_config(), get_layer(), keras_model_sequential(),
keras_model (), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

fit_image_data_generator
Fit image data generator internal statistics to some sample data.

Description

Required for featurewise_center, featurewise_std_normalization and zca_whitening.

Usage

fit_image_data_generator(object, x, augment = FALSE, rounds = 1, seed = NULL)

Arguments
object image_data_generator ()
X array, the data to fit on (should have rank 4). In case of grayscale data, the
channels axis should have value 1, and in case of RGB data, it should have
value 3.
augment Whether to fit on randomly augmented samples
rounds If augment, how many augmentation passes to do over the data
seed random seed.
See Also

Other image preprocessing: flow_images_from_dataframe(), flow_images_from_data(), flow_images_from_directo
image_load(), image_to_array()

fit_text_tokenizer 69

fit_text_tokenizer Update tokenizer internal vocabulary based on a list of texts or list of
sequences.

Description

Update tokenizer internal vocabulary based on a list of texts or list of sequences.

Usage

fit_text_tokenizer(object, x)

Arguments
object Tokenizer returned by text_tokenizer ()
X Vector/list of strings, or a generator of strings (for memory-efficiency); Alterna-
tively a list of "sequence" (a sequence is a list of integer word indices).
Note

Required before using texts_to_sequences(), texts_to_matrix(), or sequences_to_matrix().

See Also

Other text tokenization: save_text_tokenizer(), sequences_to_matrix(), text_tokenizer(),
texts_to_matrix(), texts_to_sequences_generator(), texts_to_sequences()

flow_images_from_data Generates batches of augmented/normalized data from image data
and labels

Description

Generates batches of augmented/normalized data from image data and labels

Usage
flow_images_from_data(
X ’
y = NULL,

generator = image_data_generator(),
batch_size = 32,

shuffle = TRUE,

sample_weight = NULL,

seed = NULL,

save_to_dir = NULL,

70

save_prefix
save_format =
subset = NULL

Arguments

X

y

generator
batch_size
shuffle
sample_weight
seed

save_to_dir

save_prefix

save_format

subset

Details

flow_images_from_data

nn

npngn7

data. Should have rank 4. In case of grayscale data, the channels axis should
have value 1, and in case of RGB data, it should have value 3.

labels (can be NULL if no labels are required)

Image data generator to use for augmenting/normalizing image data.
int (default: 32).

boolean (defaut: TRUE).

Sample weights.

int (default: NULL).

NULL or str (default: NULL). This allows you to optionally specify a directory
to which to save the augmented pictures being generated (useful for visualizing
what you are doing).

str (default:). Prefix to use for filenames of saved pictures (only relevant if
save_to_dir is set).

"o

one of "png", "jpeg" (only relevant if save_to_dir is set). Default: "png".

Subset of data ("training” or "validation”) if validation_split is set in
image_data_generator().

Yields batches indefinitely, in an infinite loop.

Yields

(X, y) where x is an array of image data and y is a array of corresponding labels. The generator

loops indefinitely.

See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_dataframe(),
flow_images_from_directory(), image_load(), image_to_array()

flow_images_from_dataframe 71

flow_images_from_dataframe

Takes the dataframe and the path to a directory and generates batches
of augmented/normalized data.

Description

Takes the dataframe and the path to a directory and generates batches of augmented/normalized
data.

Usage

flow_images_from_dataframe(
dataframe,
directory = NULL,
x_col = "filename",
y_col = "class”,
generator = image_data_generator(),
target_size = c(256, 256),

color_mode = "rgb",
classes = NULL,
class_mode = "categorical”,

batch_size = 32,
shuffle = TRUE,
seed = NULL,

save_to_dir = NULL,
save_prefix = "",
save_format = "png”,
subset = NULL,
interpolation = "nearest”,
drop_duplicates = NULL

)

Arguments
dataframe data.frame containing the filepaths relative to directory (or absolute paths if

directory is NULL) of the images in a character column. It should include other
column/s depending on the class_mode:

* if class_mode is "categorical" (default value) it must include the y_col col-
umn with the class/es of each image. Values in column can be character/list
if a single class or list if multiple classes.

* if class_mode is "binary" or "sparse" it must include the given y_col col-
umn with class values as strings.

* if class_mode is "other" it should contain the columns specified in y_col.
¢ if class_mode is "input" or NULL no extra column is needed.

72

directory

x_col

y_col
generator
target_size
color_mode

classes

class_mode

batch_size
shuffle
seed

save_to_dir

save_prefix

save_format
subset

interpolation

drop_duplicates

flow_images_from_dataframe

character, path to the directory to read images from. If NULL, data in x_col
column should be absolute paths.

character, column in dataframe that contains the filenames (or absolute paths if
directory is NULL).

string or list, column/s in dataframe that has the target data.
Image data generator to use for augmenting/normalizing image data.
Either NULL (default to original size) or integer vector (img_height, img_width).

non

one of "grayscale", "rgb". Default: "rgb". Whether the images will be converted
to have 1 or 3 color channels.

optional list of classes (e.g. c('dogs', 'cats'). Default: NULL If not provided,
the list of classes will be automatically inferred from the y_col, which will
map to the label indices, will be alphanumeric). The dictionary containing the
mapping from class names to class indices can be obtained via the attribute
class_indices.

non "nong non

one of "categorical", "binary", "sparse", "input",
egorical". Mode for yielding the targets:

other" or None. Default: "cat-

* "binary": 1D array of binary labels,

 "categorical": 2D array of one-hot encoded labels. Supports multi-label
output.

* "sparse": 1D array of integer labels,

* "input": images identical to input images (mainly used to work with au-
toencoders),

 "other": array of y_col data,

* "multi_output": allow to train a multi-output model. Y is a list or a vector.
NULL, no targets are returned (the generator will only yield batches of image
data, which is useful to use in predict_generator()).

int (default: 32).
boolean (defaut: TRUE).
int (default: NULL).

NULL or str (default: NULL). This allows you to optionally specify a directory
to which to save the augmented pictures being generated (useful for visualizing
what you are doing).

str (default:). Prefix to use for filenames of saved pictures (only relevant if
save_to_dir is set).

one of "png", "jpeg" (only relevant if save_to_dir is set). Default: "png".

Subset of data ("training” or "validation”) if validation_split is set in
image_data_generator ().

Interpolation method used to resample the image if the target size is different
from that of the loaded image. Supported methods are "nearest", "bilinear”, and
"bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported.
If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also sup-
ported. By default, "nearest" is used.

(deprecated in TF >= 2.3) Boolean, whether to drop duplicate rows based on
filename. The default value is TRUE.

flow_images_from_directory 73

Details

Yields batches indefinitely, in an infinite loop.

Yields

(x, y) where x is an array of image data and y is a array of corresponding labels. The generator
loops indefinitely.

Note

This functions requires that pandas (Python module) is installed in the same environment as tensorflow
and keras.

If you are using r-tensorflow (the default environment) you can install pandas by running reticulate: :virtualenv_ins:
="r-tensorflow"”) orreticulate: :conda_install("pandas”,envname = "r-tensorflow”) de-
pending on the kind of environment you are using.

See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_data(), flow_images_from_directory
image_load(), image_to_array()

flow_images_from_directory
Generates batches of data from images in a directory (with optional
augmented/normalized data)

Description

Generates batches of data from images in a directory (with optional augmented/normalized data)

Usage

flow_images_from_directory(
directory,
generator = image_data_generator(),
target_size = c(256, 256),

color_mode = "rgb",
classes = NULL,
class_mode = "categorical”,

batch_size = 32,
shuffle = TRUE,
seed = NULL,

save_to_dir = NULL,
save_prefix = "",
save_format = "png”,

follow_links = FALSE,
subset = NULL,

74

interpolation

)

Arguments

directory

generator

target_size

color_mode

classes

class_mode

batch_size
shuffle
seed

save_to_dir

save_prefix

save_format
follow_links

subset

interpolation

Details

flow_images_from_directory

= "nearest”

path to the target directory. It should contain one subdirectory per class. Any
PNG, JPG, BMP, PPM, or TIF images inside each of the subdirectories directory
tree will be included in the generator. See this script for more details.

Image data generator (default generator does no data augmentation/normalization
transformations)

integer vector, default: c(256,256). The dimensions to which all images found
will be resized.

non

one of "grayscale", "rbg". Default: "rgb". Whether the images will be converted
to have 1 or 3 color channels.

optional list of class subdirectories (e.g. c('dogs', 'cats')). Default: NULL, If
not provided, the list of classes will be automatically inferred (and the order of
the classes, which will map to the label indices, will be alphanumeric).

non

one of "categorical", "binary", "sparse" or NULL. Default: "categorical". Deter-
mines the type of label arrays that are returned: "categorical” will be 2D one-hot
encoded labels, "binary" will be 1D binary labels, "sparse" will be 1D integer la-
bels. If NULL, no labels are returned (the generator will only yield batches of im-
age data, which is useful to use predict_generator(), evaluate_generator(),
etc.).

int (default: 32).
boolean (defaut: TRUE).
int (default: NULL).

NULL or str (default: NULL). This allows you to optionally specify a directory
to which to save the augmented pictures being generated (useful for visualizing
what you are doing).

str (default:). Prefix to use for filenames of saved pictures (only relevant if
save_to_dir is set).

non:

one of "png", "jpeg" (only relevant if save_to_dir is set). Default: "png".
whether to follow symlinks inside class subdirectories (default: FALSE)

Subset of data ("training” or "validation”) if validation_split is set in
image_data_generator().

Interpolation method used to resample the image if the target size is different
from that of the loaded image. Supported methods are "nearest", "bilinear", and
"bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported.
If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also sup-
ported. By default, "nearest" is used.

Yields batches indefinitely, in an infinite loop.

https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d

freeze_weights 75

Yields

(x, y) where x is an array of image data and y is a array of corresponding labels. The generator
loops indefinitely.

See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_dataframe(),
flow_images_from_data(), image_load(), image_to_array()

freeze_weights Freeze and unfreeze weights

Description

Freeze weights in a model or layer so that they are no longer trainable.

Usage

freeze_weights(object, from = NULL, to = NULL)

unfreeze_weights(object, from = NULL, to = NULL)

Arguments
object Keras model or layer object
from Layer instance, layer name, or layer index within model
to Layer instance, layer name, or layer index within model
Note

The from and to layer arguments are both inclusive.

When applied to a model, the freeze or unfreeze is a global operation over all layers in the model
(i.e. layers not within the specified range will be set to the opposite value, e.g. unfrozen for a call
to freeze).

Models must be compiled again after weights are frozen or unfrozen.

Examples

Not run:

instantiate a VGG16 model

conv_base <- application_vggl6(
weights = "imagenet”,
include_top = FALSE,
input_shape = c(150, 150, 3)

)

freeze it's weights

76

generator_next

freeze_weights(conv_base)

create a composite model that includes the base + more layers
model <- keras_model_sequential() %>%

conv_base %>%

layer_flatten() %>%

layer_dense(units = 256, activation = "relu”) %>%
layer_dense(units = 1, activation = "sigmoid")

compile

model %>% compile(
loss = "binary_crossentropy”,

optimizer = optimizer_rmsprop(lr = 2e-5),
metrics = c("accuracy”)

)

unfreeze weights from "block5_conv1” on
unfreeze_weights(conv_base, from = "block5_conv1")

compile again since we froze or unfroze weights
model %>% compile(
loss = "binary_crossentropy”,
optimizer = optimizer_rmsprop(lr = 2e-5),
metrics = c("accuracy”)

End(Not run)

generator_next Retrieve the next item from a generator

Description

Use to retrieve items from generators (e.g. image_data_generator()). Will return either the next
item or NULL if there are no more items.

Usage

generator_next(generator, completed = NULL)

Arguments
generator Generator
completed Sentinel value to return from generator_next() if the iteration completes (de-

faults to NULL but can be any R value you specify).

get_config 77

get_config Layer/Model configuration

Description

A layer config is an object returned from get_config() that contains the configuration of a layer
or model. The same layer or model can be reinstantiated later (without its trained weights) from this
configuration using from_config(). The config does not include connectivity information, nor the
class name (those are handled externally).

Usage

get_config(object)

from_config(config)

Arguments

object Layer or model object

config Object with layer or model configuration
Value

get_config() returns an object with the configuration, from_config() returns a re-instantiation
of the object.

Note

Objects returned from get_config() are not serializable. Therefore, if you want to save and re-
store a model across sessions, you can use the model_to_json() or model_to_yaml() functions
(for model configuration only, not weights) or the save_model_hdf5() function to save the model
configuration and weights to a file.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model(), fit_generator(), get_layer(),
keras_model_sequential (), keras_model (), multi_gpu_model (), pop_layer(), predict.keras.engine.training.\
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

Other layer methods: count_params(), get_input_at(), get_weights(), reset_states()

78

get_file

get_file

Downloads a file from a URL if it not already in the cache.

Description

Passing the MDS5 hash will verify the file after download as well as if it is already present in the

cache.

Usage

get_file(
fname,
origin,

file_hash = NULL,
cache_subdir = "datasets”,

hash_algorithm = "auto”,
extract = FALSE,
archive_format = "auto”,
cache_dir = NULL,

untar = FALSE

Arguments

fname

origin
file_hash

cache_subdir

hash_algorithm

extract

archive_format

cache_dir

untar

Value

Name of the file. If an absolute path /path/to/file.txt is specified the file will be
saved at that location.

Original URL of the file.

The expected hash string of the file after download. The sha256 and md5 hash
algorithms are both supported.

Subdirectory under the Keras cache dir where the file is saved. If an absolute
path /path/to/folder is specified the file will be saved at that location.

Select the hash algorithm to verify the file. options are *'md5’, ’sha256°, and
“auto’. The default "auto’ detects the hash algorithm in use.

True tries extracting the file as an Archive, like tar or zip.

Archive format to try for extracting the file. Options are ’auto’, ’tar’, ’zip’, and

None. ’tar’ includes tar, tar.gz, and tar.bz files. The default "auto’ is ("tar’, *zip’).
None or an empty list will return no matches found.

Location to store cached files, when NULL it defaults to the Keras configuration
directory.

Deprecated in favor of ’extract’. boolean, whether the file should be decom-
pressed

Path to the downloaded file

get_input_at 79

get_input_at Retrieve tensors for layers with multiple nodes

Description
Whenever you are calling a layer on some input, you are creating a new tensor (the output of the
layer), and you are adding a "node" to the layer, linking the input tensor to the output tensor. When
you are calling the same layer multiple times, that layer owns multiple nodes indexed as 1, 2, 3.
These functions enable you to retrieve various tensor properties of layers with multiple nodes.
Usage
get_input_at(object, node_index)
get_output_at(object, node_index)
get_input_shape_at(object, node_index)
get_output_shape_at(object, node_index)

get_input_mask_at(object, node_index)

get_output_mask_at(object, node_index)

Arguments
object Layer or model object
node_index Integer, index of the node from which to retrieve the attribute. E.g. node_index
=1 will correspond to the first time the layer was called.
Value

A tensor (or list of tensors if the layer has multiple inputs/outputs).

See Also

Other layer methods: count_params(), get_config(), get_weights(), reset_states()

80 get_weights

get_layer Retrieves a layer based on either its name (unique) or index.

Description
Indices are based on order of horizontal graph traversal (bottom-up) and are 1-based. If name and
index are both provided, index will take precedence.

Usage

get_layer(object, name = NULL, index = NULL)

Arguments

object Keras model object

name String, name of layer.

index Integer, index of layer (1-based)
Value

A layer instance.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model(), fit_generator(), get_config(),
keras_model_sequential (), keras_model (), multi_gpu_model (), pop_layer(), predict.keras.engine.training.\
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

get_weights Layer/Model weights as R arrays

Description

Layer/Model weights as R arrays

Usage

get_weights(object)

set_weights(object, weights)

hdf5_matrix 81

Arguments
object Layer or model object
weights Weights as R array
See Also

Other model persistence: model_to_json(), model_to_yaml(), save_model_hdf5(), save_model_tf (),
save_model_weights_hdf5(), serialize_model()

Other layer methods: count_params(), get_config(), get_input_at(), reset_states()

hdf5_matrix Representation of HDF'5 dataset to be used instead of an R array

Description

Representation of HDFS5 dataset to be used instead of an R array

Usage

hdf5_matrix(datapath, dataset, start = @, end = NULL, normalizer = NULL)

Arguments
datapath string, path to a HDFS5 file
dataset string, name of the HDF5 dataset in the file specified in datapath
start int, start of desired slice of the specified dataset
end int, end of desired slice of the specified dataset
normalizer function to be called on data when retrieved
Details

Providing start and end allows use of a slice of the dataset.

Optionally, a normalizer function (or lambda) can be given. This will be called on every slice of
data retrieved.

Value

An array-like HDF5 dataset.

82 imagenet_preprocess_input

imagenet_decode_predictions
Decodes the prediction of an ImageNet model.

Description

Decodes the prediction of an ImageNet model.

Usage

imagenet_decode_predictions(preds, top = 5)

Arguments
preds Tensor encoding a batch of predictions.
top integer, how many top-guesses to return.
Value

List of data frames with variables class_name, class_description, and score (one data frame
per sample in batch input).

imagenet_preprocess_input
Preprocesses a tensor or array encoding a batch of images.

Description

Preprocesses a tensor or array encoding a batch of images.

Usage

imagenet_preprocess_input(x, data_format = NULL, mode = "caffe”)
Arguments

X Input Numpy or symbolic tensor, 3D or 4D.

data_format Data format of the image tensor/array.

mode One of "caffe", "tf", or "torch"

* caffe: will convert the images from RGB to BGR, then will zero-center
each color channel with respect to the ImageNet dataset, without scaling.

* tf: will scale pixels between -1 and 1, sample-wise.

* torch: will scale pixels between 0 and 1 and then will normalize each chan-
nel with respect to the ImageNet dataset.

image_dataset_from_directory 83

Value

Preprocessed tensor or array.

image_dataset_from_directory
Create a dataset from a directory

Description

Generates a tf.data.Dataset from image files in a directory. If your directory structure is:

Usage
image_dataset_from_directory(

directory,

labels = "inferred”,
label_mode = "int",
class_names = NULL,
color_mode = "rgb",
batch_size = 32,

image_size = c(256, 256),
shuffle = TRUE,

seed = NULL,
validation_split = NULL,
subset = NULL,

interpolation = "bilinear”,
follow_links = FALSE
)
Arguments
directory Directory where the data is located. If labels is "inferred", it should contain sub-
directories, each containing images for a class. Otherwise, the directory struc-
ture is ignored.
labels Either "inferred" (labels are generated from the directory structure), or a list/tuple
of integer labels of the same size as the number of image files found in the direc-
tory. Labels should be sorted according to the alphanumeric order of the image
file paths (obtained via os.walk(directory) in Python).
label_mode * ’int’: means that the labels are encoded as integers (e.g. for sparse_categorical_crossentropy
loss). - *categorical’ means that the labels are encoded as a categorical vec-
tor (e.g. for categorical_crossentropy loss). - *binary’ means that the labels
(there can be only 2) are encoded as float32 scalars with values O or 1 (e.g.
for binary_crossentropy). - None (no labels).
class_names Only valid if "labels" is "inferred". This is the explict list of class names (must

match names of subdirectories). Used to control the order of the classes (other-
wise alphanumerical order is used).

84

image_data_generator

color_mode One of "grayscale", "rgb", "rgba". Default: "rgb". Whether the images will be
converted to have 1, 3, or 4 channels.

batch_size Size of the batches of data. Default: 32.

image_size Size to resize images to after they are read from disk. Defaults to (256, 256).

Since the pipeline processes batches of images that must all have the same size,
this must be provided.

shuffle Whether to shuffle the data. Default: TRUE. If set to FALSE, sorts the data in
alphanumeric order.
seed Optional random seed for shuffling and transformations.
validation_split
Optional float between 0 and 1, fraction of data to reserve for validation.
subset One of "training" or "validation". Only used if validation_split is set.
interpolation String, the interpolation method used when resizing images. Defaults to bi-

linear. Supports bilinear, nearest, bicubic, area, lanczos3, lanczos5, gaussian,
mitchellcubic.

follow_links Whether to visits subdirectories pointed to by symlinks. Defaults to FALSE.

image_data_generator Generate batches of image data with real-time data augmentation. The
data will be looped over (in batches).

Description

Generate batches of image data with real-time data augmentation. The data will be looped over (in
batches).

Usage

image_data_generator(
featurewise_center = FALSE,
samplewise_center = FALSE,
featurewise_std_normalization = FALSE,
samplewise_std_normalization = FALSE,
zca_whitening = FALSE,
zca_epsilon = 1e-06,
rotation_range = 0,
width_shift_range = 0,
height_shift_range = 0,
brightness_range = NULL,
shear_range = 0,
zoom_range = @,
channel_shift_range = 0,
fill_mode = "nearest”,
cval = 0,
horizontal_flip = FALSE,

image_data_generator 85

vertical_flip = FALSE,

rescale = NULL,
preprocessing_function = NULL,
data_format = NULL,
validation_split = @

Arguments

featurewise_center

Set input mean to O over the dataset, feature-wise.
samplewise_center

Boolean. Set each sample mean to 0.
featurewise_std_normalization

Divide inputs by std of the dataset, feature-wise.
samplewise_std_normalization

Divide each input by its std.
zca_whitening apply ZCA whitening.
zca_epsilon Epsilon for ZCA whitening. Default is le-6.

rotation_range degrees (0 to 180).
width_shift_range

fraction of total width.
height_shift_range

fraction of total height.
brightness_range

the range of brightness to apply

shear_range shear intensity (shear angle in radians).
zoom_range amount of zoom. if scalar z, zoom will be randomly picked in the range [1-
z, 1+z]. A sequence of two can be passed instead to select this range.
channel_shift_range
shift range for each channels.

non non

fill_mode One of "constant", "nearest", "reflect”" or "wrap". Points outside the boundaries
of the input are filled according to the given mode:
 "constant": kkkkkkkk | abcd | kkkkkkkk (cval=k)
e "nearest": aaaaaaaaabcd|dddddddd
e "reflect": abcddcba|abcd|dcbaabed
* "wrap": abcdabcd|abcd|abcdabed
cval value used for points outside the boundaries when fill_mode is ’constant’. De-
fault is 0.
horizontal_flip
whether to randomly flip images horizontally.

vertical_flip whether to randomly flip images vertically.

rescale rescaling factor. If NULL or 0, no rescaling is applied, otherwise we multiply
the data by the value provided (before applying any other transformation).

86

image_load

preprocessing_function

data_format

function that will be implied on each input. The function will run before any
other modification on it. The function should take one argument: one image
(tensor with rank 3), and should output a tensor with the same shape.

’channels_first’ or ’channels_last’. In ’channels_first’ mode, the channels di-
mension (the depth) is at index 1, in ’channels_last’ mode it is at index 3. It
defaults to the image_data_format value found in your Keras config file at
~/ .keras/keras.json. If you never set it, then it will be "channels_last".

validation_split

fraction of images reserved for validation (strictly between 0 and 1).

image_load

Loads an image into PIL format.

Description

Loads an image into PIL format.

Usage
image_load(
path,
grayscale = FALSE,
color_mode = "rgb",
target_size = NULL,
interpolation = "nearest”
)
Arguments
path Path to image file
grayscale DEPRECATED use color_mode="grayscale"
color_mode One of "grayscale”, "rgb", "rgba". Default: "rgb"”. The desired image for-

target_size

interpolation

Value

mat.
Either NULL (default to original size) or integer vector (img_height, img_width).

Interpolation method used to resample the image if the target size is different
from that of the loaded image. Supported methods are "nearest", "bilinear", and
"bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported.
If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also sup-
ported. By default, "nearest" is used.

A PIL Image instance.

image_to_array 87

See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_dataframe(),
flow_images_from_data(), flow_images_from_directory(), image_to_array()

image_to_array 3D array representation of images

Description

3D array that represents an image with dimensions (height,width,channels) or (channels,height,width)
depending on the data_format.

Usage

image_to_array(img, data_format = c(”channels_last”, "channels_first"))

image_array_resize(

img,
height,
width,
data_format = c(”"channels_last”, "channels_first")
)
image_array_save(
img,
path,
data_format = NULL,
file_format = NULL,
scale = TRUE
)
Arguments
img Image
data_format Image data format ("channels_last" or "channels_first")
height Height to resize to
width Width to resize to
path Path to save image to
file_format Optional file format override. If omitted, the format to use is determined from
the filename extension. If a file object was used instead of a filename, this
parameter should always be used.
scale Whether to rescale image values to be within 0,255
See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_dataframe(),
flow_images_from_data(), flow_images_from_directory(), image_load()

88 initializer_constant

implementation Keras implementation

Description

Obtain a reference to the Python module used for the implementation of Keras.

Usage

implementation()

Details
There are currently two Python modules which implement Keras:

¢ keras ("keras")

« tensorflow.keras ("tensorflow")

This function returns a reference to the implementation being currently used by the keras package.
The default implementation is "keras". You can override this by setting the KERAS_IMPLEMENTATION
environment variable to "tensorflow".

Value

Reference to the Python module used for the implementation of Keras.

initializer_constant [nitializer that generates tensors initialized to a constant value.

Description

Initializer that generates tensors initialized to a constant value.

Usage

initializer_constant(value = 0)

Arguments

value float; the value of the generator tensors.

See Also

Other initializers: initializer_glorot_normal(), initializer_glorot_uniform(), initializer_he_normal(),
initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniforr
initializer_ones(), initializer_orthogonal (), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_glorot_normal 89

initializer_glorot_normal
Glorot normal initializer, also called Xavier normal initializer.

Description

It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / (fan_in
+ fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the
number of output units in the weight tensor.

Usage

initializer_glorot_normal(seed = NULL)

Arguments

seed Integer used to seed the random generator.

References

Glorot & Bengio, AISTATS 2010 https://jmlr.org/proceedings/papers/v9/gloroti@a/glorotioa.

pdf

See Also

Other initializers: initializer_constant(), initializer_glorot_uniform(), initializer_he_normal(),
initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniforr
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(

initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_glorot_uniform
Glorot uniform initializer, also called Xavier uniform initializer.

Description

It draws samples from a uniform distribution within -limit, limit where 1imit is sqrt(6 / (fan_in
+ fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the
number of output units in the weight tensor.

Usage

initializer_glorot_uniform(seed = NULL)

Arguments

seed Integer used to seed the random generator.

https://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
https://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

90 initializer_he_normal

References

Glorot & Bengio, AISTATS 2010 https://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_he_normal(),
initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniforr
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_he_normal He normal initializer.

Description
It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / fan_in)
where fan_in is the number of input units in the weight tensor.

Usage

initializer_he_normal(seed = NULL)

Arguments

seed Integer used to seed the random generator.

References

He et al., https://arxiv.org/abs/1502.01852

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniforr
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_he_uniform 91

initializer_he_uniform
He uniform variance scaling initializer.

Description
It draws samples from a uniform distribution within -limit, limit where limit™" is sqrt(6 / fan_in)where
fan_in‘ is the number of input units in the weight tensor.

Usage

initializer_he_uniform(seed = NULL)

Arguments

seed Integer used to seed the random generator.

References

He et al., https://arxiv.org/abs/1502.01852

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniform
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(),initializer_variance_scaling(), initializer_zeros()

initializer_identity [Initializer that generates the identity matrix.

Description

Only use for square 2D matrices.

Usage

initializer_identity(gain = 1)

Arguments

gain Multiplicative factor to apply to the identity matrix

92 initializer lecun_normal

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_lecun_normal(), initializer_lecun_unifol
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_lecun_normal
LeCun normal initializer.

Description
It draws samples from a truncated normal distribution centered on 0 with stddev <-sqrt(1 /
fan_in) where fan_in is the number of input units in the weight tensor..

Usage

initializer_lecun_normal (seed = NULL)

Arguments

seed A Python integer. Used to seed the random generator.

References

* Self-Normalizing Neural Networks

* Efficient Backprop, LeCun, Yann et al. 1998

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_uniform(),
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

https://arxiv.org/abs/1706.02515

initializer lecun_uniform 93

initializer_lecun_uniform
LeCun uniform initializer.

Description
It draws samples from a uniform distribution within -limit, limit where 1imit is sqrt(3 / fan_in)
where fan_in is the number of input units in the weight tensor.

Usage

initializer_lecun_uniform(seed = NULL)

Arguments

seed Integer used to seed the random generator.

References

LeCun 98, Efficient Backprop,

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_ones(), initializer_orthogonal (), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_ones Initializer that generates tensors initialized to 1.

Description

Initializer that generates tensors initialized to 1.

Usage

initializer_ones()

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_orthogonal(), initializer_random_normal(),
initializer_random_uniform(), initializer_truncated_normal(), initializer_variance_scaling(),
initializer_zeros()

94 initializer_random_normal

initializer_orthogonal
Initializer that generates a random orthogonal matrix.

Description

Initializer that generates a random orthogonal matrix.

Usage

initializer_orthogonal(gain = 1, seed = NULL)

Arguments
gain Multiplicative factor to apply to the orthogonal matrix.
seed Integer used to seed the random generator.

References

Saxe et al., https://arxiv.org/abs/1312.6120

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_random_normal(), initializer_random_unifol
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_random_normal
Initializer that generates tensors with a normal distribution.

Description

Initializer that generates tensors with a normal distribution.

Usage

initializer_random_normal(mean = @, stddev = 0.05, seed = NULL)

Arguments
mean Mean of the random values to generate.
stddev Standard deviation of the random values to generate.

seed Integer used to seed the random generator.

https://arxiv.org/abs/1312.6120

initializer_random_uniform 95

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_random_uniform

Initializer that generates tensors with a uniform distribution.

Description

Initializer that generates tensors with a uniform distribution.

Usage

initializer_random_uniform(minval = -@.05, maxval = 0.05, seed = NULL)
Arguments

minval Lower bound of the range of random values to generate.

maxval Upper bound of the range of random values to generate. Defaults to 1 for float

types.

seed seed

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_normal(),
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_truncated_normal

Initializer that generates a truncated normal distribution.

Description

These values are similar to values from an initializer_random_normal() except that values
more than two standard deviations from the mean are discarded and re-drawn. This is the recom-
mended initializer for neural network weights and filters.

Usage

initializer_truncated_normal(mean = @, stddev = 0.05, seed = NULL)

96 initializer_variance_scaling

Arguments
mean Mean of the random values to generate.
stddev Standard deviation of the random values to generate.
seed Integer used to seed the random generator.

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_normal(),
initializer_random_uniform(), initializer_variance_scaling(), initializer_zeros()

initializer_variance_scaling
Initializer capable of adapting its scale to the shape of weights.

Description

With distribution="normal", samples are drawn from a truncated normal distribution centered
on zero, with stddev = sqrt(scale / n) where n is:

* number of input units in the weight tensor, if mode = "fan_in"

* number of output units, if mode = "fan_out"

* average of the numbers of input and output units, if mode = "fan_avg"

Usage
initializer_variance_scaling(
scale = 1,
mode = c("fan_in", "fan_out”, "fan_avg"),
distribution = c("normal”, "uniform”, "truncated_normal”, "untruncated_normal"),
seed = NULL
)
Arguments
scale Scaling factor (positive float).
mode One of "fan_in", "fan_out", "fan_avg".

distribution One of "truncated_normal", "untruncated_normal" and "uniform". For back-
ward compatibility, "normal" will be accepted and converted to "untruncated_normal".

seed Integer used to seed the random generator.

Details

With distribution="uniform", samples are drawn from a uniform distribution within -limit, limit,
with 1imit = sqrt(3 * scale / n).

initializer_zeros 97

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_normal(),
initializer_random_uniform(), initializer_truncated_normal(), initializer_zeros()

initializer_zeros Initializer that generates tensors initialized to 0.

Description

Initializer that generates tensors initialized to 0.

Usage

initializer_zeros()

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_normal(),
initializer_random_uniform(), initializer_truncated_normal(), initializer_variance_scaling()

install_keras Install TensorFlow and Keras, including all Python dependencies

Description

This function will install Tensorflow and all Keras dependencies. This is a thin wrapper around
tensorflow: :install_tensorflow(), with the only difference being that this includes by de-
fault additional extra packages that keras expects, and the default version of tensorflow installed
by install_keras() may at times be different from the default installed install_tensorflow().
The default version of tensorflow installed by install_keras() is "2.8".

Usage
install_keras(
method = c("auto”, "virtualenv"”, "conda"),
conda = "auto",
version = "default”,

tensorflow = version,
extra_packages = NULL,

’

pip_ignore_installed = TRUE

98

Arguments

method

conda

version

tensorflow

extra_packages

is_keras_available

Installation method. By default, "auto" automatically finds a method that will
work in the local environment. Change the default to force a specific installation
method. Note that the "virtualenv" method is not available on Windows.

The path to a conda executable. Use "auto” to allow reticulate to automati-
cally find an appropriate conda binary. See Finding Conda and conda_binary ()
for more details.

TensorFlow version to install. Valid values include:

e "default” installs 2.8

* "release” installs the latest release version of tensorflow (which may be
incompatible with the current version of the R package)

* A version specification like "2.4" or "2.4.0". Note that if the patch ver-
sion is not supplied, the latest patch release is installed (e.g., "2.4" today
installs version "2.4.2")

* nightly for the latest available nightly build.
 To any specification, you can append "-cpu" to install the cpu version only
of the package (e.g., "2.4-cpu”)
* The full URL or path to a installer binary or python *.whl file.
Synonym for version. Maintained for backwards.
Additional Python packages to install along with TensorFlow.

other arguments passed to reticulate: :conda_install() orreticulate::virtualenv_install(),
depending on the method used.

pip_ignore_installed

Details

Whether pip should ignore installed python packages and reinstall all already
installed python packages. This defaults to TRUE, to ensure that TensorFlow
dependencies like NumPy are compatible with the prebuilt TensorFlow binaries.

The default additional packages are: tensorflow-hub, scipy, requests, pyyaml, Pillow, h5py, pandas,
with their versions potentially constrained for compatibility with the requested tensorflow version.

See Also

tensorflow: :install_tensorflow()

is_keras_available Check if Keras is Available

Description

Probe to see whether the Keras Python package is available in the current system environment.

keras 99

Usage

is_keras_available(version = NULL)

Arguments

version Minimum required version of Keras (defaults to NULL, no required version).

Value

Logical indicating whether Keras (or the specified minimum version of Keras) is available.

Examples

Not run:
testthat utilty for skipping tests when Keras isn't available
skip_if_no_keras <- function(version = NULL) {
if (!is_keras_available(version))
skip(”"Required keras version not available for testing"”)

}

use the function within a test
test_that("keras function works correctly”, {
skip_if_no_keras()
test code here

b

End(Not run)

keras Main Keras module

Description
The keras module object is the equivalent of keras <-tensorflow: : tf$keras and provided mainly
as a convenience.

Usage

keras

Format

An object of class python.builtin.module (inherits from python.builtin.object) of length O.

Value

the keras Python module

100 keras _model

keras_array Keras array object

Description
Convert an R vector, matrix, or array object to an array that has the optimal in-memory layout and
floating point data type for the current Keras backend.

Usage

keras_array(x, dtype = NULL)

Arguments
X Object or list of objects to convert
dtype NumPy data type (e.g. float32, float64). If this is unspecified then R doubles will
be converted to the default floating point type for the current Keras backend.
Details

Keras does frequent row-oriented access to arrays (for shuffling and drawing batches) so the order
of arrays created by this function is always row-oriented ("C" as opposed to "Fortran" ordering,
which is the default for R arrays).

If the passed array is already a NumPy array with the desired dtype and "C" order then it is returned
unmodified (no additional copies are made).

Value

NumPy array with the specified dtype (or list of NumPy arrays if a list was passed for x).

keras_model Keras Model

Description

A model is a directed acyclic graph of layers.

Usage

keras_model(inputs, outputs = NULL, ...)
Arguments

inputs Input layer

outputs Output layer

Any additional arguments

keras_model_sequential 101

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model(), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), multi_gpu_model(), pop_layer(),predict.keras.engine.training.Moc
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

Examples

Not run:
library(keras)

input layer
inputs <- layer_input(shape = c(784))

outputs compose input + dense layers
predictions <- inputs %>%

layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 10, activation = 'softmax')

create and compile model
model <- keras_model(inputs = inputs, outputs = predictions)
model %>% compile(

optimizer = 'rmsprop',

loss = 'categorical_crossentropy',

metrics = c('accuracy')

)

End(Not run)

keras_model_sequential
Keras Model composed of a linear stack of layers

Description

Keras Model composed of a linear stack of layers

Usage

keras_model_sequential(layers = NULL, name = NULL, ...)
Arguments

layers List of layers to add to the model

name Name of model

Arguments passed on to sequential_model_input_layer

102 keras_model_sequential

input_shape an integer vector of dimensions (not including the batch axis), or
a tf$TensorShape instance (also not including the batch axis).

batch_size Optional input batch size (integer or NULL).

dtype Optional datatype of the input. When not provided, the Keras default
float type will be used.

input_tensor Optional tensor to use as layer input. If set, the layer will use the
tf$TypeSpec of this tensor rather than creating a new placeholder tensor.

sparse Boolean, whether the placeholder created is meant to be sparse. Default
to FALSE.

ragged Boolean, whether the placeholder created is meant to be ragged. In this
case, values of 'NULL’ in the ’shape’ argument represent ragged dimen-
sions. For more information about RaggedTensors, see this guide. Default
to FALSE.

type_spec A tf$TypeSpec object to create Input from. This tf$TypeSpec
represents the entire batch. When provided, all other args except name
must be NULL.

input_layer_name Optional name of the input layer (string).

Note

If any arguments are provided to .. ., then the sequential model is initialized with a InputLayer
instance. If not, then the first layer passed to a Sequential model should have a defined input shape.
What that means is that it should have received an input_shape or batch_input_shape argument,
or for some type of layers (recurrent, Dense...) an input_dim argument.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model(), fit_generator(), get_config(),

get_layer(), keras_model (), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

Examples

Not run:
library(keras)

model <- keras_model_sequential()

model %>%
layer_dense(units = 32, input_shape = c(784)) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax")

model %>% compile(
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',

https://www.tensorflow.org/guide/ragged_tensor

k abs 103

metrics = c('accuracy')

)

alternative way to provide input shape
model <- keras_model_sequential(input_shape = c(784)) %>%
layer_dense(units = 32) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax')

End(Not run)

k_abs Element-wise absolute value.

Description

Element-wise absolute value.

Usage

k_abs(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

104 k_any

k_all Bitwise reduction (logical AND).

Description

Bitwise reduction (logical AND).

Usage
k_all(x, axis = NULL, keepdims = FALSE)

Arguments
X Tensor or variable.
axis Axis along which to perform the reduction (axis indexes are 1-based).
keepdims whether the drop or broadcast the reduction axes.

Value

A uint8 tensor (0s and 1s).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_any Bitwise reduction (logical OR).

Description

Bitwise reduction (logical OR).

Usage
k_any(x, axis = NULL, keepdims = FALSE)

Arguments
X Tensor or variable.
axis Axis along which to perform the reduction (axis indexes are 1-based).

keepdims whether the drop or broadcast the reduction axes.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_arange 105

Value

A uint8 tensor (0s and 1s).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_arange Creates a 1D tensor containing a sequence of integers.

Description

The function arguments use the same convention as Theano’s arange: if only one argument is
provided, it is in fact the "stop" argument. The default type of the returned tensor is 'int32' to
match TensorFlow’s default.

Usage

k_arange(start, stop = NULL, step = 1, dtype = "int32")

Arguments
start Start value.
stop Stop value.
step Difference between two successive values.
dtype Integer dtype to use.
Value

An integer tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

106 k_argmin

k_argmax Returns the index of the maximum value along an axis.

Description

Returns the index of the maximum value along an axis.

Usage
k_argmax(x, axis = -1)
Arguments
X Tensor or variable.
axis Axis along which to perform the reduction (axis indexes are 1-based). Pass -1
(the default) to select the last axis.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_argmin Returns the index of the minimum value along an axis.

Description

Returns the index of the minimum value along an axis.

Usage
k_argmin(x, axis = -1)
Arguments
X Tensor or variable.
axis Axis along which to perform the reduction (axis indexes are 1-based). Pass -1

(the default) to select the last axis.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k backend 107

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_backend Active Keras backend

Description

Active Keras backend

Usage
k_backend()

Value

The name of the backend Keras is currently using.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_batch_dot Batchwise dot product.

Description

batch_dot is used to compute dot product of x and y when x and y are data in batch, i.e. in a shape
of (batch_size). batch_dot results in a tensor or variable with less dimensions than the input. If
the number of dimensions is reduced to 1, we use expand_dims to make sure that ndim is at least 2.

Usage

k_batch_dot(x, y, axes)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

108 k_batch_flatten

Arguments
X Keras tensor or variable with 2 more more axes.
y Keras tensor or variable with 2 or more axes
axes List of (or single) integer with target dimensions (axis indexes are 1-based). The
lengths of axes[[1]] and axes[[2]] should be the same.
Value

A tensor with shape equal to the concatenation of x’s shape (less the dimension that was summed
over) and y’s shape (less the batch dimension and the dimension that was summed over). If the final
rank is 1, we reshape it to (batch_size, 1).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_batch_flatten Turn a nD tensor into a 2D tensor with same 1st dimension.

Description

In other words, it flattens each data samples of a batch.

Usage
k_batch_flatten(x)

Arguments

X A tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_batch_get_value 109

k_batch_get_value Returns the value of more than one tensor variable.

Description

Returns the value of more than one tensor variable.

Usage

k_batch_get_value(ops)

Arguments

ops List of ops to evaluate.

Value

A list of arrays.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

See Also

k_batch_set_value()

k_batch_normalization Applies batch normalization on x given mean, var, beta and gamma.

Description

i.e. returns output <-(x -mean) / (sqrt(var) + epsilon) * gamma + beta

Usage

k_batch_normalization(x, mean, var, beta, gamma, axis = -1, epsilon = 0.001)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

110 k_batch_set_value

Arguments
X Input tensor or variable.
mean Mean of batch.
var Variance of batch.
beta Tensor with which to center the input.
gamma Tensor by which to scale the input.
axis Axis (axis indexes are 1-based). Pass -1 (the default) to select the last axis.
epsilon Fuzz factor.
Value
A tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_batch_set_value Sets the values of many tensor variables at once.

Description

Sets the values of many tensor variables at once.

Usage

k_batch_set_value(lists)

Arguments

lists a list of lists (tensor, value). value should be an R array.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

See Also
k_batch_get_value()

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_bias_add 111

k_bias_add Adds a bias vector to a tensor.

Description

Adds a bias vector to a tensor.

Usage

k_bias_add(x, bias, data_format = NULL)

Arguments

X Tensor or variable.

bias Bias tensor to add.

data_format string, "channels_last” or "channels_first".
Value

Output tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_binary_crossentropy Binary crossentropy between an output tensor and a target tensor.

Description

Binary crossentropy between an output tensor and a target tensor.

Usage

k_binary_crossentropy(target, output, from_logits = FALSE)

Arguments
target A tensor with the same shape as output.
output A tensor.
from_logits Whether output is expected to be a logits tensor. By default, we consider that

output encodes a probability distribution.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

112 k_cast

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_cast Casts a tensor to a different dtype and returns it.

Description

You can cast a Keras variable but it still returns a Keras tensor.

Usage

k_cast(x, dtype)

Arguments

X Keras tensor (or variable).

dtype String, either (' float16', 'float32', or 'float64").
Value

Keras tensor with dtype dtype.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_cast_to_floatx 113

k_cast_to_floatx Cast an array to the default Keras float type.

Description

Cast an array to the default Keras float type.

Usage

k_cast_to_floatx(x)

Arguments

X Array.

Value

The same array, cast to its new type.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_categorical_crossentropy
Categorical crossentropy between an output tensor and a target tensor.

Description

Categorical crossentropy between an output tensor and a target tensor.

Usage

k_categorical_crossentropy(target, output, from_logits = FALSE, axis = -1)

Arguments
target A tensor of the same shape as output.
output A tensor resulting from a softmax (unless from_logits is TRUE, in which case
output is expected to be the logits).
from_logits Logical, whether output is the result of a softmax, or is a tensor of logits.

axis Axis (axis indexes are 1-based). Pass -1 (the default) to select the last axis.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

114 k_clip

Value

Output tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_clear_session Destroys the current TF graph and creates a new one.

Description

Useful to avoid clutter from old models / layers.

Usage

k_clear_session()

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_clip Element-wise value clipping.

Description

Element-wise value clipping.

Usage

k_clip(x, min_value, max_value)

Arguments
X Tensor or variable.
min_value Float or integer.

max_value Float or integer.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_concatenate 115

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_concatenate Concatenates a list of tensors alongside the specified axis.

Description

Concatenates a list of tensors alongside the specified axis.

Usage
k_concatenate(tensors, axis = -1)
Arguments
tensors list of tensors to concatenate.
axis concatenation axis (axis indexes are 1-based). Pass -1 (the default) to select the
last axis.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

116 k convld

k_constant Creates a constant tensor.

Description

Creates a constant tensor.

Usage
k_constant(value, dtype = NULL, shape = NULL, name = NULL)

Arguments
value A constant value
dtype The type of the elements of the resulting tensor.
shape Optional dimensions of resulting tensor.
name Optional name for the tensor.
Value

A Constant Tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_convild 1D convolution.

Description

1D convolution.

Usage

k_conv1d(
X,
kernel,
strides = 1,
padding = "valid”,
data_format = NULL,
dilation_rate = 1

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k conv2d 117

Arguments
X Tensor or variable.
kernel kernel tensor.
strides stride integer.
padding string, "same”, "causal” or "valid".
data_format string, "channels_last” or "channels_first".

dilation_rate integer dilate rate.

Value

A tensor, result of 1D convolution.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_conv2d 2D convolution.

Description

2D convolution.

Usage

k_conv2d(
X,
kernel,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1, 1)

)
Arguments
X Tensor or variable.
kernel kernel tensor.
strides strides
padding string, "same"” or "valid".
data_format string, "channels_last"” or "channels_first”. Whether to use Theano or

TensorFlow/CNTK data format for inputs/kernels/outputs.

dilation_rate vector of 2 integers.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

118 k_conv2d_transpose

Value

A tensor, result of 2D convolution.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_conv2d_transpose 2D deconvolution (i.e. transposed convolution).

Description

2D deconvolution (i.e. transposed convolution).

Usage

k_conv2d_transpose(
X,
kernel,
output_shape,
strides = c(1, 1),
padding = "valid”,
data_format = NULL

)

Arguments
X Tensor or variable.
kernel kernel tensor.

output_shape 1D int tensor for the output shape.

strides strides list.
padding string, "same” or "valid".
data_format string, "channels_last"” or "channels_first"”. Whether to use Theano or

TensorFlow/CNTK data format for inputs/kernels/outputs.

Value

A tensor, result of transposed 2D convolution.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k conv3d 119

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_conv3d 3D convolution.

Description

3D convolution.

Usage

k_conv3d(
X,
kernel,
strides = c(1, 1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1, 1, 1)

)
Arguments
X Tensor or variable.
kernel kernel tensor.
strides strides
padding string, "same"” or "valid".
data_format string, "channels_last"” or "channels_first"”. Whether to use Theano or

TensorFlow/CNTK data format for inputs/kernels/outputs.

dilation_rate list of 3 integers.

Value

A tensor, result of 3D convolution.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

120 k_conv3d_transpose

k_conv3d_transpose 3D deconvolution (i.e. transposed convolution).

Description

3D deconvolution (i.e. transposed convolution).

Usage

k_conv3d_transpose(
X,
kernel,
output_shape,
strides = c(1, 1, 1),
padding = "valid”,
data_format = NULL

)

Arguments
X input tensor.
kernel kernel tensor.

output_shape 1D int tensor for the output shape.

strides strides
padding string, "same" or "valid".
data_format string, "channels_last"” or "channels_first"”. Whether to use Theano or

TensorFlow/CNTK data format for inputs/kernels/outputs.

Value

A tensor, result of transposed 3D convolution.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k cos 121

k_cos Computes cos of x element-wise.

Description

Computes cos of x element-wise.

Usage

k_cos(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_count_params Returns the static number of elements in a Keras variable or tensor.

Description

Returns the static number of elements in a Keras variable or tensor.

Usage

k_count_params(x)

Arguments

X Keras variable or tensor.

Value

Integer, the number of elements in X, i.e., the product of the array’s static dimensions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

122 k ctc_batch_cost

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_ctc_batch_cost Runs CTC loss algorithm on each batch element.

Description

Runs CTC loss algorithm on each batch element.

Usage

k_ctc_batch_cost(y_true, y_pred, input_length, label_length)

Arguments
y_true tensor (samples, max_string_length) containing the truth labels.
y_pred tensor (samples, time_steps, num_categories) containing the prediction, or out-

put of the softmax.
input_length tensor (samples, 1) containing the sequence length for each batch item in y_pred.

label_length tensor (samples, 1) containing the sequence length for each batch item in y_true.

Value

Tensor with shape (samples,1) containing the CTC loss of each element.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k ctc_decode 123

k_ctc_decode Decodes the output of a softmax.

Description

Can use either greedy search (also known as best path) or a constrained dictionary search.

Usage

k_ctc_decode(
y_pred,
input_length,
greedy = TRUE,
beam_width = 100L,
top_paths = 1

Arguments

y_pred tensor (samples, time_steps, num_categories) containing the prediction, or out-
put of the softmax.

input_length tensor (samples,) containing the sequence length for each batch item in y_pred.

greedy perform much faster best-path search if TRUE. This does not use a dictionary.
beam_width if greedy is FALSE: a beam search decoder will be used with a beam of this
width.
top_paths if greedy is FALSE, how many of the most probable paths will be returned.
Value

If greedy is TRUE, returns a list of one element that contains the decoded sequence. If FALSE,
returns the top_paths most probable decoded sequences. Important: blank labels are returned as
-1. Tensor (top_paths) that contains the log probability of each decoded sequence.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

124 k_cumprod

k_ctc_label_dense_to_sparse
Converts CTC labels from dense to sparse.

Description

Converts CTC labels from dense to sparse.

Usage

k_ctc_label_dense_to_sparse(labels, label_lengths)

Arguments

labels dense CTC labels.
label_lengths length of the labels.

Value

A sparse tensor representation of the labels.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_cumprod Cumulative product of the values in a tensor, alongside the specified
axis.

Description

Cumulative product of the values in a tensor, alongside the specified axis.

Usage

k_cumprod(x, axis = 1)

Arguments

X A tensor or variable.

axis An integer, the axis to compute the product (axis indexes are 1-based).

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _cumsum 125

Value

A tensor of the cumulative product of values of x along axis.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_cumsum Cumulative sum of the values in a tensor, alongside the specified axis.

Description

Cumulative sum of the values in a tensor, alongside the specified axis.

Usage

k_cumsum(x, axis = 1)

Arguments

X A tensor or variable.

axis An integer, the axis to compute the sum (axis indexes are 1-based).
Value

A tensor of the cumulative sum of values of x along axis.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

126 k_depthwise_conv2d

k_depthwise_conv2d Depthwise 2D convolution with separable filters.

Description

Depthwise 2D convolution with separable filters.

Usage

k_depthwise_conv2d(
X,
depthwise_kernel,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1, 1)

Arguments

X input tensor

depthwise_kernel
convolution kernel for the depthwise convolution.

strides strides (length 2).
padding string, "same" or "valid".
data_format string, "channels_last” or "channels_first".

dilation_rate vector of integers, dilation rates for the separable convolution.

Value

Output tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_dot 127

k_dot Multiplies 2 tensors (and/or variables) and returns a tensor.

Description
When attempting to multiply a nD tensor with a nD tensor, it reproduces the Theano behavior. (e.g.
(2,3)*(4,3,5->(2,4,5)

Usage
k_dot(x, y)

Arguments

X Tensor or variable.

y Tensor or variable.

Value

A tensor, dot product of x and y.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_dropout Sets entries in x to zero at random, while scaling the entire tensor.

Description

Sets entries in x to zero at random, while scaling the entire tensor.

Usage
k_dropout(x, level, noise_shape = NULL, seed = NULL)

Arguments
X tensor
level fraction of the entries in the tensor that will be set to 0.
noise_shape shape for randomly generated keep/drop flags, must be broadcastable to the

shape of x

seed random seed to ensure determinism.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

128 k_dtype

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_dtype Returns the dtype of a Keras tensor or variable, as a string.

Description

Returns the dtype of a Keras tensor or variable, as a string.

Usage

k_dtype(x)

Arguments

X Tensor or variable.

Value

String, dtype of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k elu 129

k_elu Exponential linear unit.

Description

Exponential linear unit.

Usage
k_elu(x, alpha = 1)

Arguments
X A tensor or variable to compute the activation function for.
alpha A scalar, slope of negative section.

Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_epsilon Fuzz factor used in numeric expressions.

Description

Fuzz factor used in numeric expressions.

Usage
k_epsilon()
k_set_epsilon(e)

Arguments

e float. New value of epsilon.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

130 k eval

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_equal Element-wise equality between two tensors.

Description

Element-wise equality between two tensors.

Usage
k_equal(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_eval Evaluates the value of a variable.

Description

Evaluates the value of a variable.

Usage
k_eval(x)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_exp 131

Arguments

X A variable.

Value

An R array.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_exp Element-wise exponential.

Description

Element-wise exponential.

Usage

k_exp(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

132 k_eye

k_expand_dims Adds a 1-sized dimension at index axis.

Description

Adds a 1-sized dimension at index axis.

Usage
k_expand_dims(x, axis = -1)
Arguments
X A tensor or variable.
axis Position where to add a new axis (axis indexes are 1-based). Pass -1 (the default)
to select the last axis.
Value

A tensor with expanded dimensions.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_eye Instantiate an identity matrix and returns it.

Description

Instantiate an identity matrix and returns it.

Usage
k_eye(size, dtype = NULL, name = NULL)

Arguments
size Integer, number of rows/columns.
dtype String, data type of returned Keras variable.

name String, name of returned Keras variable.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_flatten 133

Value

A Keras variable, an identity matrix.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_flatten Flatten a tensor.

Description

Flatten a tensor.

Usage

k_flatten(x)

Arguments

X A tensor or variable.

Value

A tensor, reshaped into 1-D

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

134 k_foldl

k_floatx Default float type

Description

Default float type

Usage
k_floatx()

k_set_floatx(floatx)

Arguments

floatx String, *float16’, "float32’, or *float64’.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_foldl Reduce elems using fn to combine them from left to right.

Description

Reduce elems using fn to combine them from left to right.

Usage
k_foldl(fn, elems, initializer = NULL, name = NULL)

Arguments
fn Function that will be called upon each element in elems and an accumulator
elems tensor
initializer The first value used (first element of elems in case of ‘NULL")
name A string name for the foldl node in the graph
Value

Tensor with same type and shape as initializer.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_foldr 135

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_foldr Reduce elems using fn to combine them from right to left.

Description

Reduce elems using fn to combine them from right to left.

Usage

k_foldr(fn, elems, initializer = NULL, name = NULL)

Arguments
fn Function that will be called upon each element in elems and an accumulator
elems tensor
initializer The first value used (last element of elems in case of NULL)
name A string name for the foldr node in the graph
Value

Tensor with same type and shape as initializer.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

136 k_gather

k_function Instantiates a Keras function

Description

Instantiates a Keras function

Usage

k_function(inputs, outputs, updates = NULL, ...)
Arguments

inputs List of placeholder tensors.

outputs List of output tensors.

updates List of update ops.

Named arguments passed to tf$Session$run.

Value

Output values as R arrays.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_gather Retrieves the elements of indices indices in the tensor reference.

Description

Retrieves the elements of indices indices in the tensor reference.

Usage

k_gather(reference, indices)

Arguments
reference A tensor.
indices Indices. Dimension indices are 1-based. Note however that if you pass a tensor

for indices they will be passed as-is, in which case indices will be 0 based
because no normalizing of R 1-based axes to Python 0-based axes is performed.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_get_session 137

Value

A tensor of same type as reference.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_get_session TF session to be used by the backend.

Description

If a default TensorFlow session is available, we will return it. Else, we will return the global Keras
session. If no global Keras session exists at this point: we will create a new global session. Note
that you can manually set the global session via k_set_session().

Usage

k_get_session()

k_set_session(session)

Arguments

session A TensorFlow Session.

Value

A TensorFlow session

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

138 k_get_value

k_get_uid Get the uid for the default graph.

Description

Get the uid for the default graph.

Usage

k_get_uid(prefix = "")
Arguments

prefix An optional prefix of the graph.
Value

A unique identifier for the graph.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_get_value Returns the value of a variable.

Description

Returns the value of a variable.

Usage

k_get_value(x)

Arguments

X input variable.

Value

An R array.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_get_variable_shape 139

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_get_variable_shape Returns the shape of a variable.

Description

Returns the shape of a variable.

Usage

k_get_variable_shape(x)

Arguments

X A variable.

Value

A vector of integers.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_gradients Returns the gradients of variables w.rt. loss.

Description

Returns the gradients of variables w.r.t. loss.

Usage

k_gradients(loss, variables)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

140 k_greater

Arguments
loss Scalar tensor to minimize.
variables List of variables.

Value

A gradients tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_greater Element-wise truth value of (x > y).

Description

Element-wise truth value of (x > y).

Usage

k_greater(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_greater_equal 141

k_greater_equal Element-wise truth value of (x >=y).

Description

Element-wise truth value of (x >=y).

Usage

k_greater_equal(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_hard_sigmoid Segment-wise linear approximation of sigmoid.

Description
Faster than sigmoid. Returns 0. if x <-2.5, 1. if x>2.5. In -2.5 <= x <= 2.5, returns 0.2 x x +
0.5.

Usage
k_hard_sigmoid(x)

Arguments

X A tensor or variable.

Value

A tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

142 k_image_data_format

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_identity Returns a tensor with the same content as the input tensor.

Description

Returns a tensor with the same content as the input tensor.

Usage

k_identity(x, name = NULL)

Arguments

X The input tensor.

name String, name for the variable to create.
Value

A tensor of the same shape, type and content.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_image_data_format Default image data format convention (’channels_first’ or ’chan-
nels_last’).

Description

Default image data format convention (’channels_first’ or ’channels_last’).

Usage

k_image_data_format()

k_set_image_data_format(data_format)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_int_shape 143

Arguments

data_format string. 'channels_first' or 'channels_last'.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_int_shape Returns the shape of tensor or variable as a list of int or NULL entries.

Description

Returns the shape of tensor or variable as a list of int or NULL entries.

Usage

k_int_shape(x)

Arguments

X Tensor or variable.

Value

A list of integers (or NULL entries).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

144 k_in_top_k

k_in_test_phase Selects x in test phase, and alt otherwise.

Description

Note that alt should have the same shape as x.

Usage
k_in_test_phase(x, alt, training = NULL)

Arguments

X What to return in test phase (tensor or function that returns a tensor).

alt ‘What to return otherwise (tensor or function that returns a tensor).

training Optional scalar tensor (or R logical or integer) specifying the learning phase.
Value

Either x or alt based on k_learning_phase().

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_in_top_k Returns whether the targets are in the top k predictions.

Description

Returns whether the targets are in the top k predictions.

Usage

k_in_top_k(predictions, targets, k)

Arguments
predictions A tensor of shape (batch_size, classes) and type float32.
targets A 1D tensor of length batch_size and type int32 or int64.

k An int, number of top elements to consider.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_in_train_phase 145

Value

A 1D tensor of length batch_size and type bool. output[[i]] is TRUE if predictions[i, targets[[i]]
is within top-k values of predictions[[i]].

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_in_train_phase Selects x in train phase, and alt otherwise.

Description

Note that alt should have the same shape as x.

Usage

k_in_train_phase(x, alt, training = NULL)

Arguments

X What to return in train phase (tensor or function that returns a tensor).

alt ‘What to return otherwise (tensor or function that returns a tensor).

training Optional scalar tensor (or R logical or integer) specifying the learning phase.
Value

Either x or alt based on the training flag. the training flag defaults to k_learning_phase().

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

146 k_is_placeholder

k_is_keras_tensor Returns whether x is a Keras tensor.

Description

A "Keras tensor" is a tensor that was returned by a Keras layer

Usage

k_is_keras_tensor(x)

Arguments

X A candidate tensor.

Value

A logical: Whether the argument is a Keras tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_is_placeholder Returns whether x is a placeholder.

Description

Returns whether x is a placeholder.

Usage

k_is_placeholder(x)

Arguments

X A candidate placeholder.

Value

A logical

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_is_sparse 147

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_is_sparse Returns whether a tensor is a sparse tensor.

Description

Returns whether a tensor is a sparse tensor.

Usage

k_is_sparse(tensor)

Arguments

tensor A tensor instance.

Value

A logical

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_is_tensor Returns whether x is a symbolic tensor.

Description

Returns whether x is a symbolic tensor.

Usage

k_is_tensor(x)

Arguments

X A candidate tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

148 k 12 _normalize

Value

A logical: Whether the argument is a symbolic tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_12_normalize Normalizes a tensor wrt the L2 norm alongside the specified axis.

Description

Normalizes a tensor wrt the L2 norm alongside the specified axis.

Usage

k_12_normalize(x, axis = NULL)

Arguments

X Tensor or variable.

axis Axis along which to perform normalization (axis indexes are 1-based)
Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_learning_phase 149

k_learning_phase Returns the learning phase flag.

Description

The learning phase flag is a bool tensor (0 = test, 1 = train) to be passed as input to any Keras
function that uses a different behavior at train time and test time.

Usage

k_learning_phase()

Value

Learning phase (scalar integer tensor or R integer).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_less Element-wise truth value of (x < y).

Description

Element-wise truth value of (x <y).

Usage

k_less(x, y)

Arguments

X Tensor or variable.

y Tensor or variable.

Value

A bool tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

150 k local convld

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_less_equal Element-wise truth value of (x <=y).

Description

Element-wise truth value of (x <=y).

Usage
k_less_equal(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_local_convid Apply 1D conv with un-shared weights.

Description

Apply 1D conv with un-shared weights.

Usage

k_local_convid(inputs, kernel, kernel_size, strides, data_format = NULL)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k local conv2d 151

Arguments
inputs 3D tensor with shape: (batch_size, steps, input_dim)
kernel the unshared weight for convolution, with shape (output_length, feature_dim,

filters)

kernel_size a list of a single integer, specifying the length of the 1D convolution window
strides a list of a single integer, specifying the stride length of the convolution
data_format the data format, channels_first or channels_last

Value

the tensor after 1d conv with un-shared weights, with shape (batch_size, output_length, filters)

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_local_conv2d Apply 2D conv with un-shared weights.

Description

Apply 2D conv with un-shared weights.

Usage

k_local_conv2d(
inputs,
kernel,
kernel_size,
strides,
output_shape,
data_format = NULL

)
Arguments
inputs 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format="channels_first’
or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format="channels_last’.
kernel the unshared weight for convolution, with shape (output_items, feature_dim,
filters)
kernel_size a list of 2 integers, specifying the width and height of the 2D convolution win-

dow.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

152 k_log

strides a list of 2 integers, specifying the strides of the convolution along the width and
height.
output_shape a list with (output_row, output_col)
data_format the data format, channels_first or channels_last
Value

A 4d tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format="channels_first’
or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format="channels_last’.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_log Element-wise log.

Description

Element-wise log.

Usage

k_log(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _manual variable_initialization 153

k_manual_variable_initialization
Sets the manual variable initialization flag.

Description
This boolean flag determines whether variables should be initialized as they are instantiated (de-
fault), or if the user should handle the initialization (e.g. via tf$initialize_all_variables()).
Usage

k_manual_variable_initialization(value)

Arguments

value Logical

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_map_fn Map the function fn over the elements elems and return the outputs.

Description

Map the function fn over the elements elems and return the outputs.

Usage

k_map_fn(fn, elems, name = NULL, dtype = NULL)

Arguments
fn Function that will be called upon each element in elems
elems tensor
name A string name for the map node in the graph
dtype Output data type.
Value

Tensor with dtype dtype.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

154 k max

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_max Maximum value in a tensor.

Description

Maximum value in a tensor.

Usage

k_max(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to find maximum values (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with maximum values of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _maximum 155

k_maximum Element-wise maximum of two tensors.

Description

Element-wise maximum of two tensors.

Usage

k_maximum(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value
A tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_mean Mean of a tensor, alongside the specified axis.

Description

Mean of a tensor, alongside the specified axis.

Usage

k_mean(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis A list of axes to compute the mean over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the

rank of the tensor is reduced by 1 for each entry in axis. If keep_dims is TRUE,
the reduced dimensions are retained with length 1.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

156 k_min

Value

A tensor with the mean of elements of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_min Minimum value in a tensor.

Description

Minimum value in a tensor.

Usage

k_min(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, axis to find minimum values (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with miminum values of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_minimum 157

k_minimum Element-wise minimum of two tensors.

Description

Element-wise minimum of two tensors.

Usage

k_minimum(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_moving_average_update
Compute the moving average of a variable.

Description

Compute the moving average of a variable.

Usage

k_moving_average_update(x, value, momentum)

Arguments
X A Variable.
value A tensor with the same shape as x.

momentum The moving average momentum.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

158 k_ndim

Value

An operation to update the variable.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_ndim Returns the number of axes in a tensor, as an integer:

Description

Returns the number of axes in a tensor, as an integer.

Usage

k_ndim(x)

Arguments

X Tensor or variable.

Value

Integer (scalar), number of axes.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_normalize_batch_in_training 159

k_normalize_batch_in_training

Computes mean and std for batch then apply batch_normalization on
batch.

Description

Computes mean and std for batch then apply batch_normalization on batch.

Usage

k_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon = 0.001)

Arguments
X Input tensor or variable.
gamma Tensor by which to scale the input.
beta Tensor with which to center the input.

reduction_axes iterable of integers, axes over which to normalize.

epsilon Fuzz factor.

Value

A list length of 3, (normalized_tensor, mean, variance).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_not_equal Element-wise inequality between two tensors.

Description

Element-wise inequality between two tensors.

Usage

k_not_equal(x, y)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

160 k_ones

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_ones Instantiates an all-ones tensor variable and returns it.

Description

Instantiates an all-ones tensor variable and returns it.

Usage

k_ones(shape, dtype = NULL, name = NULL)

Arguments
shape Tuple of integers, shape of returned Keras variable.
dtype String, data type of returned Keras variable.
name String, name of returned Keras variable.

Value

A Keras variable, filled with 1.0.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k ones_like 161

k_ones_like Instantiates an all-ones variable of the same shape as another tensor.

Description

Instantiates an all-ones variable of the same shape as another tensor.

Usage

k_ones_like(x, dtype = NULL, name = NULL)

Arguments
X Keras variable or tensor.
dtype String, dtype of returned Keras variable. NULL uses the dtype of x.
name String, name for the variable to create.

Value

A Keras variable with the shape of x filled with ones.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_one_hot Computes the one-hot representation of an integer tensor.

Description

Computes the one-hot representation of an integer tensor.

Usage

k_one_hot(indices, num_classes)

Arguments

indices nD integer tensor of shape (batch_size, diml, dim2, ... dim(n-1))

num_classes Integer, number of classes to consider.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

162 k_permute_dimensions

Value

(n+ 1)D one hot representation of the input with shape (batch_size, dim1, dim2, ... dim(n-1), num_classes)

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_permute_dimensions Permutes axes in a tensor.

Description

Permutes axes in a tensor.

Usage

k_permute_dimensions(x, pattern)

Arguments

X Tensor or variable.

pattern A list of dimension indices, e.g. (1, 3, 2). Dimension indices are 1-based.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_placeholder 163

k_placeholder Instantiates a placeholder tensor and returns it.

Description

Instantiates a placeholder tensor and returns it.

Usage
k_placeholder(
shape = NULL,
ndim = NULL,
dtype = NULL,
sparse = FALSE,
name = NULL
)
Arguments
shape Shape of the placeholder (integer list, may include NULL entries).
ndim Number of axes of the tensor. At least one of shape, ndim must be specified. If
both are specified, shape is used.
dtype Placeholder type.
sparse Logical, whether the placeholder should have a sparse type.
name Optional name string for the placeholder.
Value

Tensor instance (with Keras metadata included).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

164 k_pool2d

k_pool2d 2D Pooling.

Description

2D Pooling.

Usage

k_pool2d(
X,
pool_size,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,

pool_mode = "max”
)
Arguments
X Tensor or variable.
pool_size list of 2 integers.
strides list of 2 integers.
padding string, "same" or "valid".
data_format string, "channels_last” or "channels_first".
pool_mode string, "max" or "avg".
Value

A tensor, result of 2D pooling.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_pool3d 165

k_pool3d 3D Pooling.

Description

3D Pooling.

Usage

k_pool3d(
X,
pool_size,
strides = c(1, 1, 1),
padding = "valid”,
data_format = NULL,

pool_mode = "max”
)
Arguments
X Tensor or variable.
pool_size list of 3 integers.
strides list of 3 integers.
padding string, "same" or "valid".
data_format string, "channels_last” or "channels_first".
pool_mode string, "max" or "avg".
Value

A tensor, result of 3D pooling.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

166 k_print_tensor

k_pow Element-wise exponentiation.

Description

Element-wise exponentiation.

Usage

k_pow(x, a)

Arguments

X Tensor or variable.

a R integer.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_print_tensor Prints message and the tensor value when evaluated.

Description

Note that print_tensor returns a new tensor identical to x which should be used in the following
code. Otherwise the print operation is not taken into account during evaluation.

Usage

k_print_tensor(x, message = "")
Arguments

X Tensor to print.

message Message to print jointly with the tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_prod 167

Value

The same tensor x, unchanged.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_prod Multiplies the values in a tensor, alongside the specified axis.

Description

Multiplies the values in a tensor, alongside the specified axis.

Usage

k_prod(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, axis to compute the product over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with the product of elements of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

168 k _random_normal

k_random_binomial Returns a tensor with random binomial distribution of values.

Description

k_random_binomial() and k_random_bernoulli() are aliases for the same function. Both are
maintained for backwards compatibility. New code should prefer k_random_bernoulli().

Usage

k_random_binomial (shape, p = @, dtype = NULL, seed = NULL)

k_random_bernoulli(shape, p = @, dtype = NULL, seed = NULL)

Arguments
shape A list of integers, the shape of tensor to create.
p A float, 0. <= p <= 1, probability of binomial distribution.
dtype String, dtype of returned tensor.
seed Integer, random seed.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_random_normal Returns a tensor with normal distribution of values.

Description

Returns a tensor with normal distribution of values.

Usage

k_random_normal (shape, mean = @, stddev = 1, dtype = NULL, seed = NULL)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _random_normal_variable 169

Arguments
shape A list of integers, the shape of tensor to create.
mean A float, mean of the normal distribution to draw samples.
stddev A float, standard deviation of the normal distribution to draw samples.
dtype String, dtype of returned tensor.
seed Integer, random seed.
Value
A tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_random_normal_variable
Instantiates a variable with values drawn from a normal distribution.

Description

Instantiates a variable with values drawn from a normal distribution.

Usage
k_random_normal_variable(
shape,
mean,
scale,
dtype = NULL,
name = NULL,
seed = NULL
)
Arguments
shape Tuple of integers, shape of returned Keras variable.
mean Float, mean of the normal distribution.
scale Float, standard deviation of the normal distribution.
dtype String, dtype of returned Keras variable.
name String, name of returned Keras variable.

seed Integer, random seed.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

170 k_random_uniform

Value

A Keras variable, filled with drawn samples.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_random_uniform Returns a tensor with uniform distribution of values.

Description

Returns a tensor with uniform distribution of values.

Usage

k_random_uniform(shape, minval = @, maxval = 1, dtype = NULL, seed = NULL)

Arguments
shape A list of integers, the shape of tensor to create.
minval A float, lower boundary of the uniform distribution to draw samples.
maxval A float, upper boundary of the uniform distribution to draw samples.
dtype String, dtype of returned tensor.
seed Integer, random seed.

Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _random_uniform_variable 171

k_random_uniform_variable
Instantiates a variable with values drawn from a uniform distribution.

Description

Instantiates a variable with values drawn from a uniform distribution.

Usage
k_random_uniform_variable(
shape,
low,
high,
dtype = NULL,
name = NULL,
seed = NULL
)
Arguments
shape Tuple of integers, shape of returned Keras variable.
low Float, lower boundary of the output interval.
high Float, upper boundary of the output interval.
dtype String, dtype of returned Keras variable.
name String, name of returned Keras variable.
seed Integer, random seed.
Value

A Keras variable, filled with drawn samples.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

172 k_repeat

k_relu Rectified linear unit.

Description

With default values, it returns element-wise max(x,).

Usage
k_relu(x, alpha = @, max_value = NULL)

Arguments
X A tensor or variable.
alpha A scalar, slope of negative section (default=0.).
max_value Saturation threshold.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_repeat Repeats a 2D tensor.

Description

If x has shape (samples, dim) and n is 2, the output will have shape (samples, 2, dim).

Usage

k_repeat(x, n)

Arguments

X Tensor or variable.

n Integer, number of times to repeat.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_repeat_elements 173

Value

A tensor

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_repeat_elements Repeats the elements of a tensor along an axis.

Description

If x has shape (s1, s2, s3) and axis is 2, the output will have shape (s1, s2 * rep, s3).

Usage

k_repeat_elements(x, rep, axis)

Arguments

X Tensor or variable.

rep Integer, number of times to repeat.

axis Axis along which to repeat (axis indexes are 1-based)
Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

174 k_reshape

k_reset_uids Reset graph identifiers.

Description

Reset graph identifiers.

Usage

k_reset_uids()

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_reshape Reshapes a tensor to the specified shape.

Description

Reshapes a tensor to the specified shape.

Usage
k_reshape(x, shape)

Arguments
X Tensor or variable.
shape Target shape list.
Value
A tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_resize_images 175

k_resize_images Resizes the images contained in a 4D tensor.

Description

Resizes the images contained in a 4D tensor.

Usage

k_resize_images(x, height_factor, width_factor, data_format)

Arguments

X Tensor or variable to resize.
height_factor Positive integer.
width_factor Positive integer.

data_format string, "channels_last” or "channels_first".

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_resize_volumes Resizes the volume contained in a 5D tensor.

Description

Resizes the volume contained in a 5D tensor.

Usage

k_resize_volumes(x, depth_factor, height_factor, width_factor, data_format)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

176 k_reverse

Arguments

X Tensor or variable to resize.
depth_factor Positive integer.
height_factor Positive integer.
width_factor Positive integer.

data_format string, "channels_last” or "channels_first".

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_reverse Reverse a tensor along the specified axes.

Description

Reverse a tensor along the specified axes.

Usage

k_reverse(x, axes)

Arguments

X Tensor to reverse.

axes Integer or list of integers of axes to reverse (axis indexes are 1-based).
Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k rnn

177

k_rnn

Iterates over the time dimension of a tensor

Description

Iterates over the time dimension of a tensor

Usage

k_rnn(

step_function,

inputs,

initial_states,

go_backwards
mask = NULL,
constants =

= FALSE,

NULL,

unroll = FALSE,

input_length

Arguments

step_function

inputs

initial_states

go_backwards

mask

constants

unroll

input_length

Value

A list with:

= NULL

RNN step function.

Tensor with shape (samples, ...) (no time dimension), representing input for the
batch of samples at a certain time step.

Tensor with shape (samples, output_dim) (no time dimension), containing the
initial values for the states used in the step function.

Logical If TRUE, do the iteration over the time dimension in reverse order and
return the reversed sequence.

Binary tensor with shape (samples, time, 1), with a zero for every element that
is masked.

A list of constant values passed at each step.

Whether to unroll the RNN or to use a symbolic loop (while_loop or scan de-
pending on backend).

Not relevant in the TensorFlow implementation. Must be specified if using un-
rolling with Theano.

* last_output: the latest output of the rnn, of shape (samples, ...)

* outputs: tensor with shape (samples, time, ...) where each entry outputs[s,t] is the output
of the step function at time t for sample s.

* new_states: list of tensors, latest states returned by the step function, of shape (samples, ...).

178 k_separable_conv2d

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_round Element-wise rounding to the closest integer.

Description

In case of tie, the rounding mode used is "half to even".

Usage

k_round(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_separable_conv2d 2D convolution with separable filters.

Description

2D convolution with separable filters.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_set_learning_phase 179

Usage

k_separable_conv2d(
X,
depthwise_kernel,
pointwise_kernel,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1, 1)

Arguments

X input tensor
depthwise_kernel

convolution kernel for the depthwise convolution.
pointwise_kernel

kernel for the 1x1 convolution.

strides strides list (length 2).
padding string, "same"” or "valid".
data_format string, "channels_last” or "channels_first".

dilation_rate list of integers, dilation rates for the separable convolution.

Value

Output tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_set_learning_phase Sets the learning phase to a fixed value.

Description

Sets the learning phase to a fixed value.

Usage

k_set_learning_phase(value)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

180 k_shape

Arguments

value Learning phase value, either O or 1 (integers).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_set_value Sets the value of a variable, from an R array.

Description

Sets the value of a variable, from an R array.

Usage

k_set_value(x, value)

Arguments

X Tensor to set to a new value.

value Value to set the tensor to, as an R array (of the same shape).
Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_shape Returns the symbolic shape of a tensor or variable.

Description

Returns the symbolic shape of a tensor or variable.

Usage
k_shape(x)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_sigmoid 181

Arguments

X A tensor or variable.

Value

A symbolic shape (which is itself a tensor).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sigmoid Element-wise sigmoid.

Description

Element-wise sigmoid.

Usage

k_sigmoid(x)

Arguments

X A tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

182 k_sin

k_sign Element-wise sign.

Description

Element-wise sign.

Usage
k_sign(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sin Computes sin of x element-wise.

Description

Computes sin of x element-wise.

Usage

k_sin(x)

Arguments

X Tensor or variable.

Value

A tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_softmax 183

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_softmax Softmax of a tensor.

Description

Softmax of a tensor.

Usage
k_softmax(x, axis = -1)
Arguments
X A tensor or variable.
axis The dimension softmax would be performed on. The default is -1 which indi-
cates the last dimension.
Value
A tensor.
Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

184 k_softsign

k_softplus Softplus of a tensor.

Description

Softplus of a tensor.

Usage
k_softplus(x)

Arguments

X A tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_softsign Softsign of a tensor.

Description

Softsign of a tensor.

Usage

k_softsign(x)

Arguments

X A tensor or variable.

Value

A tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_sparse_categorical_crossentropy 185

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sparse_categorical_crossentropy

Categorical crossentropy with integer targets.

Description

Categorical crossentropy with integer targets.

Usage

k_sparse_categorical_crossentropy(

target,
output,

from_logits = FALSE,

axis = -1

Arguments

target
output

from_logits

axis

Value

Output tensor.

Keras Backend

An integer tensor.

A tensor resulting from a softmax (unless from_logits is TRUE, in which case
output is expected to be the logits).

Boolean, whether output is the result of a softmax, or is a tensor of logits.

Axis (axis indexes are 1-based). Pass -1 (the default) to select the last axis.

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

186 k_spatial_3d_padding

k_spatial_2d_padding Pads the 2nd and 3rd dimensions of a 4D tensor.

Description

Pads the 2nd and 3rd dimensions of a 4D tensor.

Usage

k_spatial_2d_padding(
X’
padding = list(list(1, 1), list(1, 1)),
data_format = NULL

)
Arguments

X Tensor or variable.

padding Tuple of 2 lists, padding pattern.

data_format string, "channels_last” or "channels_first".
Value

A padded 4D tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_spatial_3d_padding Pads 5D tensor with zeros along the depth, height, width dimensions.

Description

Pads these dimensions with respectively padding[[1]], padding[[2]], and padding[[3]] zeros
left and right. For ’channels_last’ data_format, the 2nd, 3rd and 4th dimension will be padded. For
’channels_first” data_format, the 3rd, 4th and 5th dimension will be padded.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_sqrt 187

Usage

k_spatial_3d_padding(
X,
padding = list(list(1, 1), list(1, 1), list(1, 1)),
data_format = NULL

)
Arguments

X Tensor or variable.

padding List of 3 lists, padding pattern.

data_format string, "channels_last"” or "channels_first".
Value

A padded 5D tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sqrt Element-wise square root.

Description

Element-wise square root.

Usage

k_sqrt(x)

Arguments

X Tensor or variable.

Value

A tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

188 k_squeeze

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_square Element-wise square.

Description

Element-wise square.

Usage

k_square(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_squeeze Removes a 1-dimension from the tensor at index axis.

Description

Removes a 1-dimension from the tensor at index axis.

Usage

k_squeeze(x, axis)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_stack 189

Arguments

X A tensor or variable.

axis Axis to drop (axis indexes are 1-based).
Value

A tensor with the same data as x but reduced dimensions.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_stack Stacks a list of rank R tensors into a rank R+1 tensor.

Description

Stacks a list of rank R tensors into a rank R+1 tensor.

Usage

k_stack(x, axis = 1)

Arguments

X List of tensors.

axis Axis along which to perform stacking (axis indexes are 1-based).
Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

190 k_stop_gradient

k_std Standard deviation of a tensor, alongside the specified axis.

Description

Standard deviation of a tensor, alongside the specified axis.

Usage
k_std(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to compute the standard deviation over (axis indexes are
1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with the standard deviation of elements of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_stop_gradient Returns variables but with zero gradient w.r.t. every other variable.

Description

Returns variables but with zero gradient w.r.t. every other variable.

Usage

k_stop_gradient(variables)

Arguments

variables tensor or list of tensors to consider constant with respect to any other variable.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k sum 191

Value

A single tensor or a list of tensors (depending on the passed argument) that has constant gradient
with respect to any other variable.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sum Sum of the values in a tensor, alongside the specified axis.

Description

Sum of the values in a tensor, alongside the specified axis.

Usage

k_sum(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to sum over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with sum of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

192 k_tanh

k_switch Switches between two operations depending on a scalar value.

Description

Note that both then_expression and else_expression should be symbolic tensors of the same
shape.

Usage

k_switch(condition, then_expression, else_expression)

Arguments

condition tensor (int or bool).
then_expression

either a tensor, or a function that returns a tensor.
else_expression

either a tensor, or a function that returns a tensor.

Value

The selected tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_tanh Element-wise tanh.

Description

Element-wise tanh.

Usage
k_tanh(x)

Arguments

X A tensor or variable.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_temporal_padding 193

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_temporal_padding Pads the middle dimension of a 3D tensor.

Description

Pads the middle dimension of a 3D tensor.

Usage

k_temporal_padding(x, padding = c(1, 1))

Arguments

X Tensor or variable.

padding List of 2 integers, how many zeros to add at the start and end of dim 1.
Value

A padded 3D tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

194 k_to_dense

k_tile Creates a tensor by tiling x by n.

Description

Creates a tensor by tiling x by n.

Usage
k_tile(x, n)
Arguments
X A tensor or variable
n A list of integers. The length must be the same as the number of dimensions in
X.
Value

A tiled tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_to_dense Converts a sparse tensor into a dense tensor and returns it.

Description

Converts a sparse tensor into a dense tensor and returns it.

Usage

k_to_dense(tensor)

Arguments

tensor A tensor instance (potentially sparse).

Value

A dense tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_transpose 195

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_transpose Transposes a tensor and returns it.

Description

Transposes a tensor and returns it.

Usage

k_transpose(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_truncated_normal Returns a tensor with truncated random normal distribution of values.

Description

The generated values follow a normal distribution with specified mean and standard deviation, ex-
cept that values whose magnitude is more than two standard deviations from the mean are dropped
and re-picked.

Usage

k_truncated_normal(shape, mean = @, stddev = 1, dtype = NULL, seed = NULL)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

196 k_update

Arguments
shape A list of integers, the shape of tensor to create.
mean Mean of the values.
stddev Standard deviation of the values.
dtype String, dtype of returned tensor.
seed Integer, random seed.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_update Update the value of x to new_x.

Description

Update the value of x to new_x.

Usage

k_update(x, new_x)

Arguments

X A Variable.

new_x A tensor of same shape as x.
Value

The variable x updated.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_update_add 197

k_update_add Update the value of x by adding increment.

Description

Update the value of x by adding increment.

Usage

k_update_add(x, increment)

Arguments

X A Variable.

increment A tensor of same shape as x.
Value

The variable x updated.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_update_sub Update the value of x by subtracting decrement.

Description

Update the value of x by subtracting decrement.

Usage

k_update_sub(x, decrement)

Arguments

X A Variable.

decrement A tensor of same shape as x.
Value

The variable x updated.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

198 k var

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_var Variance of a tensor, alongside the specified axis.

Description

Variance of a tensor, alongside the specified axis.

Usage

k_var(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to compute the variance over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with the variance of elements of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_variable 199

k_variable Instantiates a variable and returns it.

Description

Instantiates a variable and returns it.

Usage

k_variable(value, dtype = NULL, name = NULL, constraint = NULL)

Arguments
value Numpy array, initial value of the tensor.
dtype Tensor type.
name Optional name string for the tensor.
constraint Optional projection function to be applied to the variable after an optimizer up-
date.
Value

A variable instance (with Keras metadata included).

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_zeros Instantiates an all-zeros variable and returns it.

Description

Instantiates an all-zeros variable and returns it.

Usage

k_zeros(shape, dtype = NULL, name = NULL)

Arguments
shape Tuple of integers, shape of returned Keras variable
dtype String, data type of returned Keras variable

name String, name of returned Keras variable

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

200 k_zeros_like

Value

A variable (including Keras metadata), filled with 0. @.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_zeros_like Instantiates an all-zeros variable of the same shape as another tensor.

Description

Instantiates an all-zeros variable of the same shape as another tensor.

Usage

k_zeros_like(x, dtype = NULL, name = NULL)

Arguments
X Keras variable or Keras tensor.
dtype String, dtype of returned Keras variable. NULL uses the dtype of x.
name String, name for the variable to create.

Value

A Keras variable with the shape of x filled with zeros.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

Layer

201

Layer

Create a custom Layer

Description

Create a custom Layer

Usage

Layer(
classname,
initialize,
build = NULL,
call = NULL,

compute_output_shape = NULL,

L

inherit = tensorflow::tf$keras$layers$Layer

Arguments

classname

initialize

build

call

the name of the custom Layer.

a function. This is where you define the arguments used to further build your
layer. For example, a dense layer would take the units argument. You should
always call super()$*__init__()" to initialize the base inherited layer.

a function that takes input_shape as argument. This is where you will define
your weights. Note that if your layer doesn’t define trainable weights then you
need not implement this method.

This is where the layer’s logic lives. Unless you want your layer to support
masking, you only have to care about the first argument passed to call (the
input tensor).

compute_output_shape

inherit

Value

a function that takes input_shape as an argument. In case your layer modifies
the shape of its input, you should specify here the shape transformation logic.
This allows Keras to do automatic shape inference. If you don’t modify the
shape of the input then you need not implement this method.

Any other methods and/or attributes can be specified using named arguments.
They will be added to the layer class.

the Keras layer to inherit from

A function that wraps create_layer, similar to keras: : layer_dense.

202

Examples

Not run:

layer_dense2 <- Layer(
"Dense2",

initialize = function(units) {
super()$ __init__* ()
self$units <- as.integer(units)

}Y

build = function(input_shape) {
print(class(input_shape))
self$kernel <- self$add_weight(
name = "kernel”,
shape = list(input_shape[[2]], self$units),
initializer = "uniform”,
trainable = TRUE
)
3,

call = function(x) {
tensorflow: :tf$matmul (x, self$kernel)

}?

compute_output_shape = function(input_shape) {
list(input_shape[[1]], self$units)

}

)

1 <- layer_dense2(units = 10)
1(matrix(runif(10), ncol = 1))

End(Not run)

layer_activation

layer_activation Apply an activation function to an output

Description

Apply an activation function to an output.

Usage

layer_activation(

layer_activation 203

object,

activation,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
activation Name of activation function to use. If you don’t specify anything, no activation
is applied (ie. "linear" activation: a(x) = x).
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other core layers: layer_activity_regularization(), layer_attention(), layer_dense_features(),
layer_dense(), layer_dropout (), layer_flatten(), layer_input (), layer_lambda(), layer_masking(),
layer_permute(), layer_repeat_vector(), layer_reshape()

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_relu(), layer_activation_selu(), layer_activation_softmax(), layer_activation_thresho.

204 layer_activation_elu

layer_activation_elu Exponential Linear Unit.

Description

It follows: f(x) = alpha * (exp(x) -1.0) for x <@, f(x) = x for x >= 0.

Usage
layer_activation_elu(
object,
alpha = 1,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
alpha Scale for the negative factor.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

layer_activation_leaky_relu 205

See Also

Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).

Other activation layers: layer_activation_leaky_relu(), layer_activation_parametric_relu(),
layer_activation_relu(), layer_activation_selu(), layer_activation_softmax(), layer_activation_thresho:
layer_activation()

layer_activation_leaky_relu
Leaky version of a Rectified Linear Unit.

Description

Allows a small gradient when the unit is not active: f(x) = alpha * x for x <0, f(x) = x for x >=
0

Usage
layer_activation_leaky_relu(
object,
alpha = 0.3,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned
* a Tensor, the output tensor from layer_instance(object) is returned
alpha float >= 0. Negative slope coefficient.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

https://arxiv.org/abs/1511.07289v1

206 layer_activation_parametric_relu

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Rectifier Nonlinearities Improve Neural Network Acoustic Models.

Other activation layers: layer_activation_elu(), layer_activation_parametric_relu(), layer_activation_relu(
layer_activation_selu(), layer_activation_softmax(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_parametric_relu
Parametric Rectified Linear Unit.

Description

It follows: f(x) = alpha * x™* for x < 0, f(x) = xforx >= 0°, where alpha is a learned array with the
same shape as x.

Usage
layer_activation_parametric_relu(
object,
alpha_initializer = "zeros",

alpha_regularizer = NULL,
alpha_constraint = NULL,
shared_axes = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

layer_activation_relu 207

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
alpha_initializer
Initializer function for the weights.
alpha_regularizer
Regularizer for the weights.
alpha_constraint
Constraint for the weights.

shared_axes The axes along which to share learnable parameters for the activation func-
tion. For example, if the incoming feature maps are from a 2D convolution
with output shape (batch, height, width, channels), and you wish to share pa-
rameters across space so that each filter only has one set of parameters, set
shared_axes=c(1, 2).

input_shape Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_relu(),
layer_activation_selu(), layer_activation_softmax(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_relu Rectified Linear Unit activation function

Description

Rectified Linear Unit activation function

https://arxiv.org/abs/1502.01852

208 layer_activation_relu

Usage

layer_activation_relu(
object,
max_value = NULL,
negative_slope = 0,
threshold = 0,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
max_value loat, the maximum output value.

negative_slope float >= 0 Negative slope coefficient.

threshold float. Threshold value for thresholded activation.

input_shape Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_selu(), layer_activation_softmax(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_selu 209

layer_activation_selu Scaled Exponential Linear Unit.

Description

SELU is equal to: scale * elu(x,alpha), where alpha and scale are pre-defined constants.

Usage

layer_activation_selu(
object,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

210 layer_activation_softmax

Details

The values of alpha and scale are chosen so that the mean and variance of the inputs are pre-
served between two consecutive layers as long as the weights are initialized correctly (see initial-
izer_lecun_normal) and the number of inputs is "large enough" (see article for more information).

Note:

* To be used together with the initialization "lecun_normal".

* To be used together with the dropout variant "AlphaDropout".

See Also

Self-Normalizing Neural Networks, initializer_lecun_normal, layer_alpha_dropout

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_relu(), layer_activation_softmax(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_softmax
Softmax activation function.

Description

It follows: f(x) = alpha * (exp(x) -1.0) for x <@, f(x) = x for x >= 0.

Usage
layer_activation_softmax(
object,
axis = -1,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.

https://arxiv.org/abs/1706.02515

layer_activation_thresholded_relu 211

* a Tensor, the output tensor from layer_instance(object) is returned.
axis Integer, axis along which the softmax normalization is applied.

input_shape Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_relu(), layer_activation_selu(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_thresholded_relu
Thresholded Rectified Linear Unit.

Description

It follows: f(x) = x for x > theta, f(x) = @ otherwise.

Usage
layer_activation_thresholded_relu(
object,
theta = 1,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

212 layer_activity_regularization

Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
theta float >= 0. Threshold location of activation.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Zero-bias autoencoders and the benefits of co-adapting features.

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_relu(), layer_activation_selu(), layer_activation_softmax(), layer_activation()

layer_activity_regularization
Layer that applies an update to the cost function based input activity.

Description

Layer that applies an update to the cost function based input activity.

Usage

layer_activity_regularization(
object,
11 = o,
12 = o,
input_shape = NULL,

https://arxiv.org/abs/1402.3337

layer_activity_regularization 213

batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
11 L1 regularization factor (positive float).
12 L2 regularization factor (positive float).
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number

of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.

Output shape

Same shape as input.

See Also

Other core layers: layer_activation(), layer_attention(), layer_dense_features(), layer_dense(),
layer_dropout (), layer_flatten(), layer_input(), layer_lambda(), layer_masking(), layer_permute(),
layer_repeat_vector(), layer_reshape()

214 layer_additive_attention

layer_add Layer that adds a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage
layer_add(inputs, ...)
Arguments
inputs A list of input tensors (at least 2). Can be missing.
Standard layer arguments (must be named).
Value

A tensor, the sum of the inputs. If inputs is missing, a keras layer instance is returned.

See Also
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/add
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Add
* https://keras.io/api/layers/merging_layers/add

layer_additive_attention
Additive attention layer, a.k.a. Bahdanau-style attention

Description

Additive attention layer, a.k.a. Bahdanau-style attention

Usage

layer_additive_attention(
object,
use_scale = TRUE,
causal = FALSE,
dropout = @

)

https://www.tensorflow.org/api_docs/python/tf/keras/layers/add
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Add
https://keras.io/api/layers/merging_layers/add

layer_alpha_dropout 215

Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
use_scale If TRUE, will create a variable to scale the attention scores.
standard layer arguments.
causal Boolean. Set to TRUE for decoder self-attention. Adds a mask such that position
i cannot attend to positions j > i. This prevents the flow of information from
the future towards the past.
dropout Float between 0 and 1. Fraction of the units to drop for the attention scores.
Details

Inputs are query tensor of shape [batch_size, Tq, dim], value tensor of shape [batch_size, Tv, dim]
and key tensor of shape [batch_size, Tv, dim]. The calculation follows the steps:

1. Reshape query and key into shapes [batch_size, Tq, 1, dim] and [batch_size, 1, Tv, dim]
respectively.

2. Calculate scores with shape [batch_size, Tq, Tv] as a non-linear sum: scores = tf.reduce_sum(tf.tanh(query
+ key),axis=-1)

3. Use scores to calculate a distribution with shape [batch_size, Tq, Tv]: distribution = tfnnsoftmax(scores).

4. Use distribution to create a linear combination of value with shape [batch_size, Tq, dim]:
return tf$matmul(distribution, value).
See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/AdditiveAttention

e https://keras.io/api/layers/attention_layers/additive_attention/

layer_alpha_dropout Applies Alpha Dropout to the input.

Description

Alpha Dropout is a dropout that keeps mean and variance of inputs to their original values, in order
to ensure the self-normalizing property even after this dropout.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/AdditiveAttention
https://keras.io/api/layers/attention_layers/additive_attention/

216 layer_alpha_dropout
Usage
layer_alpha_dropout(
object,
rate,
noise_shape = NULL,
seed = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
rate float, drop probability (as with layer_dropout()). The multiplicative noise
will have standard deviation sqrt(rate / (1 -rate)).
noise_shape Noise shape
seed An integer to use as random seed.
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.
batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Details

Alpha Dropout fits well to Scaled Exponential Linear Units by randomly setting activations to the
negative saturation value.

layer_attention

Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples

axis) when using this layer as the first layer in a model.

Output shape

Same shape as input.

References

¢ Self-Normalizing Neural Networks

See Also

Other noise layers: layer_gaussian_dropout(), layer_gaussian_noise()

layer_attention Creates attention layer

Description

Dot-product attention layer, a.k.a. Luong-style attention.

Usage

layer_attention(
inputs,
use_scale = FALSE,
causal = FALSE,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments

inputs a list of inputs first should be the query tensor, the second the value tensor

use_scale If True, will create a scalar variable to scale the attention scores.

causal Boolean. Set to True for decoder self-attention. Adds a mask such that position
i cannot attend to positions j > i. This prevents the flow of information from the
future towards the past.

batch_size Fixed batch size for layer

dtype The data type expected by the input, as a string (float32, float64, int32...)

https://arxiv.org/abs/1706.02515

218 layer_average

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_dense_features(),
layer_dense(), layer_dropout (), layer_flatten(), layer_input (), layer_lambda(), layer_masking(),
layer_permute(), layer_repeat_vector(), layer_reshape()

layer_average Layer that averages a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage
layer_average(inputs, ...)
Arguments
inputs A list of input tensors (at least 2). Can be missing.
Standard layer arguments (must be named).
Value

A tensor, the average of the inputs. If inputs is missing, a keras layer instance is returned.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/average
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Average
e https://keras.io/api/layers/merging_layers/average

Other merge layers: layer_concatenate(), layer_dot(), layer_maximum(), layer_minimum(),
layer_multiply(), layer_subtract()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/average
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Average
https://keras.io/api/layers/merging_layers/average

layer_average_pooling 1d 219

layer_average_pooling_1d

Average pooling for temporal data.

Description

Average pooling for temporal data.

Usage

layer_average_pooling_1d(

object,

pool_size = 2L,
strides = NULL,
padding = "valid”,

data_format = "channels_last”,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
pool_size Integer, size of the average pooling windows.
strides Integer, or NULL. Factor by which to downscale. E.g. 2 will halve the input. If
NULL, it will default to pool_size.
padding One of "valid"” or "same" (case-insensitive).

data_format

batch_size

name

trainable

weights

Input shape

One of channels_last (default) or channels_first. The ordering of the di-
mensions in the inputs.

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

3D tensor with shape: (batch_size, steps, features).

220 layer_average_pooling_2d

Output shape

3D tensor with shape: (batch_size, downsampled_steps, features).

See Also

Other pooling layers: layer_average_pooling_2d(), layer_average_pooling_3d(), layer_global_average_pooling
layer_global_average_pooling_2d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_average_pooling_2d
Average pooling operation for spatial data.

Description

Average pooling operation for spatial data.

Usage

layer_average_pooling_2d(
object,
pool_size = c(2L, 2L),
strides = NULL,
padding = "valid”,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
pool_size integer or list of 2 integers, factors by which to downscale (vertical, horizontal).

(2, 2) will halve the input in both spatial dimension. If only one integer is
specified, the same window length will be used for both dimensions.

strides Integer, list of 2 integers, or NULL. Strides values. If NULL, it will default to
pool_size.

layer_average_pooling _3d 221

padding One of "valid" or "same" (case-insensitive).

data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

» Ifdata_format="'channels_last': 4D tensor with shape: (batch_size, rows, cols, channels)

» Ifdata_format='channels_first': 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape

» Ifdata_format="'channels_last': 4D tensor with shape: (batch_size, pooled_rows, pooled_cols, chan-
nels)

* Ifdata_format="channels_first': 4D tensor with shape: (batch_size, channels, pooled_rows, pooled_cols)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_3d(), layer_global_average_pooling
layer_global_average_pooling_2d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_average_pooling_3d
Average pooling operation for 3D data (spatial or spatio-temporal).

Description

Average pooling operation for 3D data (spatial or spatio-temporal).

222 layer_average_pooling_3d

Usage

layer_average_pooling_3d(
object,
pool_size = c(2L, 2L, 2L),
strides = NULL,
padding = "valid”,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned
pool_size list of 3 integers, factors by which to downscale (diml, dim2, dim3). (2, 2, 2)
will halve the size of the 3D input in each dimension.
strides list of 3 integers, or NULL. Strides values.
padding One of "valid” or "same" (case-insensitive).
data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

* If data_format='channels_last': 5D tensor with shape: (batch_size, spatial_diml, spa-
tial_dim?2, spatial_dim3, channels)

e Ifdata_format="'channels_first': 5D tensor with shape: (batch_size, channels, spatial_dim1, spa-
tial_dim?2, spatial_dim3)

layer_batch_normalization 223

Output shape

e Ifdata_format="'channels_last': 5D tensor with shape: (batch_size, pooled_dim1, pooled_dim2, pooled_dim3, cha
nels)

e Ifdata_format="'channels_first': 5D tensor with shape: (batch_size, channels, pooled_dim1, pooled_dim?2, pooled

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_global_average_pooling
layer_global_average_pooling_2d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_batch_normalization
Batch normalization layer (loffe and Szegedy, 2014).

Description

Normalize the activations of the previous layer at each batch, i.e. applies a transformation that
maintains the mean activation close to 0 and the activation standard deviation close to 1.

Usage
layer_batch_normalization(
object,
axis = -1L,

momentum = 0.99,
epsilon = 0.001,
center = TRUE,

scale = TRUE,

beta_initializer = "zeros",
gamma_initializer = "ones”,
moving_mean_initializer = "zeros",
moving_variance_initializer = "ones”,

beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,
gamma_constraint = NULL,
renorm = FALSE,
renorm_clipping
renorm_momentum
fused = NULL,
virtual_batch_size = NULL,
adjustment = NULL,
input_shape = NULL,
batch_input_shape = NULL,

NULL,
.99,

224

layer_batch_normalization

batch_size = NULL,
dtype = NULL,

name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
axis Integer, the axis that should be normalized (typically the features axis). For in-
stance, after a Conv2D layer with data_format="channels_first", set axis=1
in BatchNormalization.
momentum Momentum for the moving mean and the moving variance.
epsilon Small float added to variance to avoid dividing by zero.
center If TRUE, add offset of beta to normalized tensor. If FALSE, beta is ignored.
scale If TRUE, multiply by gamma. If FALSE, gamma is not used. When the next layer

is linear (also e.g. nn.relu), this can be disabled since the scaling will be done
by the next layer.
beta_initializer
Initializer for the beta weight.
gamma_initializer
Initializer for the gamma weight.
moving_mean_initializer
Initializer for the moving mean.
moving_variance_initializer
Initializer for the moving variance.
beta_regularizer
Optional regularizer for the beta weight.
gamma_regularizer
Optional regularizer for the gamma weight.
beta_constraint
Optional constraint for the beta weight.
gamma_constraint
Optional constraint for the gamma weight.
renorm Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This

adds extra variables during training. The inference is the same for either value
of this parameter.

layer_batch_normalization 225

renorm_clipping
A named list or dictionary that may map keys rmax, rmin, dmax to scalar Tensors
used to clip the renorm correction. The correction (r, d) is used as corrected_value
=normalized_value * r + d, with r clipped to [rmin, rmax], and d to [-dmax, dmax].
Missing rmax, rmin, dmax are set to Inf, @, Inf, respectively.

renorm_momentum
Momentum used to update the moving means and standard deviations with
renorm. Unlike momentum, this affects training and should be neither too small
(which would add noise) nor too large (which would give stale estimates). Note
that momentum is still applied to get the means and variances for inference.

fused TRUE, use a faster, fused implementation, or raise a ValueError if the fused im-
plementation cannot be used. If NULL, use the faster implementation if possible.
If FALSE, do not use the fused implementation.

virtual_batch_size
An integer. By default, virtual_batch_size is NULL, which means batch normal-
ization is performed across the whole batch. When virtual_batch_size is not
NULL, instead perform "Ghost Batch Normalization", which creates virtual sub-
batches which are each normalized separately (with shared gamma, beta, and
moving statistics). Must divide the actual batch size during execution.

adjustment A function taking the Tensor containing the (dynamic) shape of the input ten-
sor and returning a pair (scale, bias) to apply to the normalized values (be-
fore gamma and beta), only during training. For example, if axis==-1, adjustment
<-function(shape) { tuple(tf$random$uniform(shape[-1:NULL,style = "python"],0.93,1.07)
= "python"],-0.1,0.1)) } will scale the normalized value by up to 7% up or
down, then shift the result by up to 0.1 (with independent scaling and bias for
each feature but shared across all examples), and finally apply gamma and/or
beta. If NULL, no adjustment is applied. Cannot be specified if virtual_batch_size
is specified.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.

226 layer_category_encoding

Output shape

Same shape as input.

References

» Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift

layer_category_encoding
A preprocessing layer which encodes integer features.

Description

This layer provides options for condensing data into a categorical encoding when the total number
of tokens are known in advance. It accepts integer values as inputs, and it outputs a dense or sparse
representation of those inputs. For integer inputs where the total number of tokens is not known,
use layer_integer_lookup() instead.

Usage
layer_category_encoding(
object,
num_tokens = NULL,
output_mode = "multi_hot"”,

sparse = FALSE,

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
num_tokens The total number of tokens the layer should support. All inputs to the layer must
integers in the range 0 <= value < num_tokens, or an error will be thrown.
output_mode Specification for the output of the layer. Defaults to "multi_hot". Values can

be "one_hot"”, "multi_hot" or "count”, configuring the layer as follows:

* "one_hot": Encodes each individual element in the input into an array of
num_tokens size, containing a 1 at the element index. If the last dimension
is size 1, will encode on that dimension. If the last dimension is not size 1,
will append a new dimension for the encoded output.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

layer_center_crop 227

e "multi_hot": Encodes each sample in the input into a single array of
num_tokens size, containing a 1 for each vocabulary term present in the
sample. Treats the last dimension as the sample dimension, if input shape
is (..., sample_length), output shape will be (..., num_tokens).

e "count”: Like "multi_hot", but the int array contains a count of the num-
ber of times the token at that index appeared in the sample.

For all output modes, currently only output up to rank 2 is supported.

sparse Boolean. If TRUE, returns a SparseTensor instead of a dense Tensor. Defaults
to FALSE.

standard layer arguments.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/CategoryEncoding
e https://keras.io/api/layers/preprocessing_layers/categorical/category_encoding/

Other categorical features preprocessing layers: layer_hashing(), layer_integer_lookup(),
layer_string_lookup()

Other preprocessing layers: layer_center_crop(), layer_discretization(), layer_hashing(),
layer_integer_lookup(), layer_normalization(), layer_random_contrast(), layer_random_crop(),
layer_random_f1lip(), layer_random_height(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_center_crop Crop the central portion of the images to target height and width

Description

Crop the central portion of the images to target height and width

Usage
layer_center_crop(object, height, width, ...)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
height Integer, the height of the output shape.
width Integer, the width of the output shape.

standard layer arguments.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/CategoryEncoding
https://keras.io/api/layers/preprocessing_layers/categorical/category_encoding/

228 layer_concatenate

Details

Input shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in
"channels_last"” format.

Output shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., target_height, target_width, chan-
nels).

If the input height/width is even and the target height/width is odd (or inversely), the input image is
left-padded by 1 pixel.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/CenterCrop

* https://keras.io/api/layers/preprocessing_layers/image_preprocessing/center_
crop

Other image preprocessing layers: layer_rescaling(), layer_resizing()

Other preprocessing layers: layer_category_encoding(), layer_discretization(), layer_hashing(),
layer_integer_lookup(), layer_normalization(), layer_random_contrast(), layer_random_crop(),
layer_random_f1lip(), layer_random_height(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_concatenate Layer that concatenates a list of inputs.

Description

It takes as input a list of tensors, all of the same shape expect for the concatenation axis, and returns
a single tensor, the concatenation of all inputs.

Usage
layer_concatenate(inputs, axis = -1, ...)
Arguments
inputs A list of input tensors (at least 2). Can be missing.
axis Concatenation axis.
Standard layer arguments (must be named).
Value

A tensor, the concatenation of the inputs alongside axis axis. If inputs is missing, a keras layer
instance is returned.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/CenterCrop
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/center_crop
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/center_crop

layer_conv_1d 229

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/concatenate
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate
* https://keras.io/api/layers/merging_layers/concatenate

Other merge layers: layer_average(), layer_dot(), layer_maximum(), layer_minimum(), layer_multiply(),
layer_subtract()

layer_conv_1d 1D convolution layer (e.g. temporal convolution).

Description

This layer creates a convolution kernel that is convolved with the layer input over a single spatial
(or temporal) dimension to produce a tensor of outputs. If use_bias is TRUE, a bias vector is
created and added to the outputs. Finally, if activation is not NULL, it is applied to the outputs
as well. When using this layer as the first layer in a model, provide an input_shape argument
(list of integers or NULL , e.g. (10, 128) for sequences of 10 vectors of 128-dimensional vectors, or
(NULL, 128) for variable-length sequences of 128-dimensional vectors.

Usage

layer_conv_1d(
object,
filters,
kernel_size,
strides = 1L,
padding = "valid”,
data_format = "channels_last”,
dilation_rate = 1L,
groups = 1L,

activation = NULL,

use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

https://www.tensorflow.org/api_docs/python/tf/keras/layers/concatenate
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate
https://keras.io/api/layers/merging_layers/concatenate

230

Arguments

object

filters

kernel_size

strides

padding

data_format

dilation_rate

groups

activation

use_bias

layer_conv_1d

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of a single integer, specifying the length of the 1D convolution
window.

An integer or list of a single integer, specifying the stride length of the con-
volution. Specifying any stride value != 1 is incompatible with specifying any
dilation_rate value !=1.

One of "valid”, "causal” or "same” (case-insensitive). "valid” means "no
padding”. "same” results in padding the input such that the output has the same
length as the original input. "causal” results in causal (dilated) convolutions,
e.g. output[t] does not depend on input[t+1:]. Useful when modeling tempo-
ral data where the model should not violate the temporal order. See WaveNet:
A Generative Model for Raw Audio, section 2.1.

A string, one of "channels_last” (default) or "channels_first”. The or-
dering of the dimensions in the inputs. "channels_last” corresponds to in-
puts with shape (batch, length, channels) (default format for temporal data in
Keras) while "channels_first” corresponds to inputs with shape (batch, chan-
nels, length).

an integer or list of a single integer, specifying the dilation rate to use for dilated
convolution. Currently, specifying any dilation_rate value != 1 is incompat-
ible with specifying any strides value !=1.

A positive integer specifying the number of groups in which the input is split
along the channel axis. Each group is convolved separately with filters /

groups filters. The output is the concatenation of all the groups results along
the channel axis. Input channels and filters must both be divisible by groups.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.

bias_regularizer

Regularizer function applied to the bias vector.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499

layer_conv_1d_transpose 231

activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint
Constraint function applied to the kernel matrix.

bias_constraint
Constraint function applied to the bias vector.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch_size, steps, input_dim)

Output shape

3D tensor with shape: (batch_size, new_steps, filters) steps value might have changed due to
padding or strides.

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_conv_1d_transpose
Transposed 1D convolution layer (sometimes called Deconvolution).

232 layer_conv_1d_transpose

Description

The need for transposed convolutions generally arises from the desire to use a transformation going
in the opposite direction of a normal convolution, i.e., from something that has the shape of the
output of some convolution to something that has the shape of its input while maintaining a connec-
tivity pattern that is compatible with said convolution. When using this layer as the first layer in a
model, provide the keyword argument input_shape (tuple of integers, does not include the sample
axis), e.g. input_shape=(128, 3) for data with 128 time steps and 3 channels.

Usage

layer_conv_1d_transpose(
object,
filters,
kernel_size,
strides = 1,
padding = "valid”,
output_padding = NULL,
data_format = NULL,
dilation_rate = 1,
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros”,
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned
* a Tensor, the output tensor from layer_instance(object) is returned
filters Integer, the dimensionality of the output space (i.e. the number of output filters

in the convolution).

layer_conv_1d_transpose 233

kernel_size An integer or list of a single integer, specifying the length of the 1D convolution
window.
strides An integer or list of a single integer, specifying the stride length of the con-

volution. Specifying any stride value != 1 is incompatible with specifying any
dilation_rate value != 1.

padding one of "valid” or "same" (case-insensitive).

output_padding An integer specifying the amount of padding along the time dimension of the
output tensor. The amount of output padding must be lower than the stride. If
set to NULL (default), the output shape is inferred.

data_format A string, one of "channels_last” (default) or "channels_first”. The or-
dering of the dimensions in the inputs. "channels_last” corresponds to in-
puts with shape (batch, length, channels) (default format for temporal data in
Keras) while "channels_first"” corresponds to inputs with shape (batch, chan-
nels, length).

dilation_rate an integer or list of a single integer, specifying the dilation rate to use for dilated
convolution. Currently, specifying any dilation_rate value != 1 is incompat-
ible with specifying any strides value !=1.
activation Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).
use_bias Boolean, whether the layer uses a bias vector.
kernel_initializer
Initializer for the kernel weights matrix.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel matrix.
bias_constraint
Constraint function applied to the bias vector.
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer

dtype The data type expected by the input, as a string (float32, float64, int32...)

234 layer_conv_2d

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch, steps, channels)

Output shape

3D tensor with shape: (batch, new_steps, filters) If output_padding is specified:
new_timesteps = ((timesteps - 1) * strides + kernel_size - 2 * padding + output_padding)

References

* A guide to convolution arithmetic for deep learning

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_conv_2d 2D convolution layer (e.g. spatial convolution over images).

Description

This layer creates a convolution kernel that is convolved with the layer input to produce a ten-
sor of outputs. If use_bias is TRUE, a bias vector is created and added to the outputs. Fi-
nally, if activation is not NULL, it is applied to the outputs as well. When using this layer
as the first layer in a model, provide the keyword argument input_shape (list of integers, does
not include the sample axis), e.g. input_shape=c(128,128,3) for 128x128 RGB pictures in
data_format="channels_last"”.

Usage

layer_conv_2d(
object,
filters,
kernel_size,
strides = c(1L, 1L),
padding = "valid”,

https://arxiv.org/abs/1603.07285v1

layer_conv_2d 235

data_format = NULL,
dilation_rate = c(1L, 1L),
groups = 1L,

activation = NULL,

use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
filters Integer, the dimensionality of the output space (i.e. the number of output filters

in the convolution).

kernel_size An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

strides An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value !=1.

padding one of "valid"” or "same"” (case-insensitive). Note that "same” is slightly in-
consistent across backends with strides != 1, as described here

data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

https://github.com/keras-team/keras/pull/9473#issuecomment-372166860

236

dilation_rate

groups

activation

use_bias

layer_conv_2d

an integer or list of 2 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-
mensions. Currently, specifying any dilation_rate value != 1 is incompatible
with specifying any stride value != 1.

A positive integer specifying the number of groups in which the input is split
along the channel axis. Each group is convolved separately with filters /

groups filters. The output is the concatenation of all the groups results along
the channel axis. Input channels and filters must both be divisible by groups.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint

bias_constraint

input_shape

Constraint function applied to the kernel matrix.

Constraint function applied to the bias vector.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

trainable

weights

Input shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

4D tensor with shape: (samples, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (samples, rows, cols, channels) if data_format="channels_last’.

layer_conv_2d_transpose 237

Output shape

4D tensor with shape: (samples, filters, new_rows, new_cols) if data_format="channels_first’ or 4D
tensor with shape: (samples, new_rows, new_cols, filters) if data_format="channels_last’. rows and
cols values might have changed due to padding.

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1stm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_conv_2d_transpose
Transposed 2D convolution layer (sometimes called Deconvolution).

Description

The need for transposed convolutions generally arises from the desire to use a transformation going
in the opposite direction of a normal convolution, i.e., from something that has the shape of the out-
put of some convolution to something that has the shape of its input while maintaining a connectivity
pattern that is compatible with said convolution. When using this layer as the first layer in a model,
provide the keyword argument input_shape (list of integers, does not include the sample axis), e.g.
input_shape=c(128L,128L,3L) for 128x128 RGB pictures in data_format="channels_last".

Usage

layer_conv_2d_transpose(
object,
filters,
kernel_size,
strides = c(1, 1),
padding = "valid”,
output_padding = NULL,
data_format = NULL,
dilation_rate = c(1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,

238

batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

layer_conv_2d_transpose

weights = NULL

Arguments

object

filters

kernel_size

strides

padding
output_padding

data_format

dilation_rate

activation

use_bias

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

one of "valid” or "same" (case-insensitive).

An integer or list of 2 integers, specifying the amount of padding along the
height and width of the output tensor. Can be a single integer to specify the
same value for all spatial dimensions. The amount of output padding along a
given dimension must be lower than the stride along that same dimension. If set
to NULL (default), the output shape is inferred.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

Dialation rate.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

layer_conv_2d_transpose 239

kernel_regularizer

Regularizer function applied to the kernel weights matrix.
bias_regularizer

Regularizer function applied to the bias vector.
activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint

Constraint function applied to the kernel matrix.
bias_constraint

Constraint function applied to the bias vector.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape: (batch, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (batch, rows, cols, channels) if data_format="channels_last’.

Output shape

4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format="channels_first’ or 4D
tensor with shape: (batch, new_rows, new_cols, filters) if data_format="channels_last’. rows and
cols values might have changed due to padding.

References

* A guide to convolution arithmetic for deep learning

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

https://arxiv.org/abs/1603.07285v1

240

layer_conv_3d

layer_conv_3d

3D convolution layer (e.g. spatial convolution over volumes).

Description

Usage

layer_conv_3d(

object,

filters,

kernel_size,

strides = c(1L, 1L, 1L),
padding = "valid”,

data_format = NULL,
dilation_rate = c(1L, 1L, 1L),
groups = 1L,

activation = NULL,

use_bias = TRUE,

kernel_initializer = "glorot_uniform”,

bias_initializer = "zeros”,
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

Arguments

object

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor
of outputs. If use_bias is TRUE, a bias vector is created and added to the outputs. Finally, if
activation is not NULL, it is applied to the outputs as well. When using this layer as the first
layer in a model, provide the keyword argument input_shape (list of integers, does not include the
sample axis), e.g. input_shape=c(128L,128L,128L,3L) for 128x128x128 volumes with a single
channel, in data_format="channels_last".

What to compose the new Layer instance with. Typically a Sequential model

or a Tensor (e.g., as returned by layer_input()). The return value depends on

object. If object is:

* missing or NULL, the Layer instance is returned.

layer_conv_3d 241

* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

filters Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

kernel_size An integer or list of 3 integers, specifying the depth, height, and width of the 3D
convolution window. Can be a single integer to specify the same value for all
spatial dimensions.

strides An integer or list of 3 integers, specifying the strides of the convolution along
each spatial dimension. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

padding one of "valid” or "same" (case-insensitive).

data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

dilation_rate an integer or list of 3 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-
mensions. Currently, specifying any dilation_rate value !=1 is incompatible
with specifying any stride value != 1.

groups A positive integer specifying the number of groups in which the input is split
along the channel axis. Each group is convolved separately with filters /
groups filters. The output is the concatenation of all the groups results along
the channel axis. Input channels and filters must both be divisible by groups.

activation Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).
use_bias Boolean, whether the layer uses a bias vector.
kernel_initializer
Initializer for the kernel weights matrix.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel matrix.
bias_constraint
Constraint function applied to the bias vector.

242 layer_conv_3d_transpose

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

5D tensor with shape: (samples, channels, conv_dim1, conv_dim2, conv_dim3) if data_format="channels_first’
or 5D tensor with shape: (samples, conv_dim1, conv_dim2, conv_dim3, channels) if data_format="channels_last’.

Output shape

5D tensor with shape: (samples, filters, new_conv_diml, new_conv_dim2, new_conv_dim3) if
data_format="channels_first’ or 5D tensor with shape: (samples, new_conv_dim1, new_conv_dim2, new_conv_dim3, fil-
ters) if data_format="channels_last’. new_conv_dim1, new_conv_dim2 and new_conv_dim3 values

might have changed due to padding.

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_conv_3d_transpose
Transposed 3D convolution layer (sometimes called Deconvolution).

Description

The need for transposed convolutions generally arises from the desire to use a transformation go-
ing in the opposite direction of a normal convolution, i.e., from something that has the shape of
the output of some convolution to something that has the shape of its input while maintaining a
connectivity pattern that is compatible with said convolution.

layer_conv_3d_transpose 243

Usage

layer_conv_3d_transpose(

object,
filters,

kernel_size,
strides =

c(1, 1, O,

padding = "valid”,
output_padding = NULL,

data_format
dilation_rate

NULL,
= c(1L, 1L, 1L),

activation = NULL,

use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",

kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,

batch_size
dtype = NULL,
name = NULL,
trainable
weights =

)

Arguments
object
filters

kernel_size

strides

padding

NULL,

NULL,
NULL

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of 3 integers, specifying the depth, height, and width of the 3D
convolution window. Can be a single integer to specify the same value for all
spatial dimensions.

An integer or list of 3 integers, specifying the strides of the convolution along
the depth, height and width.. Can be a single integer to specify the same value
for all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value !=1.

one of "valid” or "same" (case-insensitive).

244

layer_conv_3d_transpose

output_padding An integer or list of 3 integers, specifying the amount of padding along the

data_format

dilation_rate

activation

use_bias

depth, height, and width of the output tensor. Can be a single integer to specify
the same value for all spatial dimensions. The amount of output padding along
a given dimension must be lower than the stride along that same dimension. If
set to NULL (default), the output shape is inferred.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, depth, height, width, channels) while channels_first corresponds to
inputs with shape (batch, channels, depth, height, width). It defaults to the
image_data_format value found in your Keras config file at ~/.keras/keras.json.
If you never set it, then it will be "channels_last".

An integer or vector of 3 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial
dimensions.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix,

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation").

kernel_constraint

bias_constraint

input_shape

Constraint function applied to the kernel matrix.

Constraint function applied to the bias vector.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

trainable

weights

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

layer_conv_Istm_1d 245

Details

When using this layer as the first layer in a model, provide the keyword argument input_shape
(list of integers, does not include the sample axis), e.g. input_shape = 1ist (128,128,128, 3) for
a 128x128x128 volume with 3 channels if data_format="channels_last".

References

* A guide to convolution arithmetic for deep learning

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(), layer_cropping_2d(),
layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(),
layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_conv_lstm_1d 1D Convolutional LSTM

Description
1D Convolutional LSTM
Usage
layer_conv_lstm_1d(
object,
filters,
kernel_size,
strides = 1L,

padding = "valid”,
data_format = NULL,
dilation_rate = 1L,

activation = "tanh",
recurrent_activation = "hard_sigmoid”,
use_bias = TRUE,

kernel_initializer = "glorot_uniform”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,

https://arxiv.org/abs/1603.07285v1

246

bias_constraint = NULL,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,

dropout = 0,
recurrent_dropout = 0,

layer_conv_Istm_1d

Arguments

object

filters

kernel_size

strides

padding

data_format

dilation_rate

activation

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of n integers, specifying the dimensions of the convolution
window.

An integer or list of n integers, specifying the strides of the convolution. Speci-
fying any stride value != 1 is incompatible with specifying any dilation_rate
value !=1.

One of "valid” or "same” (case-insensitive). "valid” means no padding.
"same" results in padding evenly to the left/right or up/down of the input such
that output has the same height/width dimension as the input.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, time, ..., channels) while channels_first corresponds to inputs with
shape (batch, time, channels, ...). It defaults to the image_data_format value
found in your Keras config file at ~/ keras/keras.json. If you never set it, then it
will be "channels_last".

An integer or list of n integers, specifying the dilation rate to use for dilated con-
volution. Currently, specifying any dilation_rate value != 1 is incompatible
with specifying any strides value !=1.

Activation function to use. By default hyperbolic tangent activation function is
applied (tanh(x)).

recurrent_activation

use_bias

Activation function to use for the recurrent step.

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.

layer_conv_Istm_1d 247

recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.
bias_initializer
Initializer for the bias vector.
unit_forget_bias
Boolean. If TRUE, add 1 to the bias of the forget gate at initialization. Use
in combination with bias_initializer="zeros"”. This is recommended in
Jozefowicz et al., 2015
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to.
kernel_constraint
Constraint function applied to the kernel weights matrix.
recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
return_sequences
Boolean. Whether to return the last output in the output sequence, or the full
sequence. (default FALSE)

return_state Boolean Whether to return the last state in addition to the output. (default

FALSE)
go_backwards Boolean (default FALSE). If TRUE, process the input sequence backwards.
stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a

batch will be used as initial state for the sample of index i in the following batch.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.

recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

standard layer arguments.

Details

Similar to an LSTM layer, but the input transformations and recurrent transformations are both
convolutional.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM1D

https://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM1D

248

layer_conv_Istm_2d

layer_conv_lstm_2d Convolutional LSTM.

Description

Usage

layer_conv_1lstm_2d(

object,

filters,

kernel_size,

strides = c(1L, 1L),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1L, 1L),

activation = "tanh",
recurrent_activation = "hard_sigmoid”,
use_bias = TRUE,

kernel_initializer = "glorot_uniform"”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,

dropout = 0,
recurrent_dropout = 0,
batch_size = NULL,

name = NULL,

trainable = NULL,

weights = NULL,

input_shape = NULL

It is similar to an LSTM layer, but the input transformations and recurrent transformations are both
convolutional.

layer_conv_Istm_2d 249

Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
filters Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).
kernel_size An integer or list of n integers, specifying the dimensions of the convolution
window.
strides An integer or list of n integers, specifying the strides of the convolution. Speci-
fying any stride value != 1 is incompatible with specifying any dilation_rate
value !=1.
padding One of "valid" or "same" (case-insensitive).
data_format A string, one of channels_last (default) or channels_first. The ordering of

the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, time, ..., channels) while channels_first corresponds to inputs with
shape (batch, time, channels, ...). It defaults to the image_data_format value
found in your Keras config file at ~/ keras/keras.json. If you never set it, then it
will be "channels_last".

dilation_rate An integer or list of n integers, specifying the dilation rate to use for dilated con-
volution. Currently, specifying any dilation_rate value != 1 is incompatible
with specifying any strides value != 1.

activation Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

recurrent_activation
Activation function to use for the recurrent step.

use_bias Boolean, whether the layer uses a bias vector.

kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs..

recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state..

bias_initializer
Initializer for the bias vector.

unit_forget_bias
Boolean. If TRUE, add 1 to the bias of the forget gate at initialization. Use
in combination with bias_initializer="zeros". This is recommended in
Jozefowicz et al.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.

https://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

250

layer_conv_Istm_2d

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint

Constraint function applied to the kernel weights matrix.

recurrent_constraint

bias_constraint

Constraint function applied to the recurrent_kernel weights matrix.

Constraint function applied to the bias vector.

return_sequences

return_state
go_backwards

stateful

dropout

Boolean. Whether to return the last output in the output sequence, or the full
sequence.

Boolean. Whether to return the last state in addition to the output.
Boolean (default FALSE). If TRUE, rocess the input sequence backwards.

Boolean (default FALSE). If TRUE, the last state for each sample at index i in a
batch will be used as initial state for the sample of index i in the following batch.

Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.

recurrent_dropout

batch_size

name

trainable
weights

input_shape

Input shape

Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.
Initial weights for layer.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

* if data_format="channels_first’ 5D tensor with shape: (samples,time, channels, rows, cols)

— if data_format="channels_last’ 5D tensor with shape: (samples,time, rows, cols, chan-

nels)

References

* Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
The current implementation does not include the feedback loop on the cells output

https://arxiv.org/abs/1506.04214v1

layer_conv_Istm_3d 251

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_cropping_1d(), layer_cropping_2d(),
layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(),
layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_conv_1stm_3d 3D Convolutional LSTM

Description

3D Convolutional LSTM

Usage

layer_conv_1stm_3d(
object,
filters,
kernel_size,
strides = c(1L, 1L, 1L),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1L, 1L, 1L),

activation = "tanh",
recurrent_activation = "hard_sigmoid”,
use_bias = TRUE,

kernel_initializer = "glorot_uniform”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,

dropout = 0,
recurrent_dropout = 0,

252 layer_conv_Istm_3d

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

filters Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

kernel_size An integer or list of n integers, specifying the dimensions of the convolution
window.

strides An integer or list of n integers, specifying the strides of the convolution. Speci-
fying any stride value != 1 is incompatible with specifying any dilation_rate
value !=1.

padding One of "valid” or "same"” (case-insensitive). "valid” means no padding.
"same" results in padding evenly to the left/right or up/down of the input such
that output has the same height/width dimension as the input.

data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, time, ..., channels) while channels_first corresponds to inputs with
shape (batch, time, channels, ...). It defaults to the image_data_format value
found in your Keras config file at ~/ keras/keras.json. If you never set it, then it
will be "channels_last".

dilation_rate Aninteger or list of n integers, specifying the dilation rate to use for dilated con-
volution. Currently, specifying any dilation_rate value != 1 is incompatible
with specifying any strides value != 1.

activation Activation function to use. By default hyperbolic tangent activation function is
applied (tanh(x)).

recurrent_activation
Activation function to use for the recurrent step.

use_bias Boolean, whether the layer uses a bias vector.

kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.

recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.

bias_initializer
Initializer for the bias vector.

unit_forget_bias
Boolean. If TRUE, add 1 to the bias of the forget gate at initialization. Use
in combination with bias_initializer="zeros". This is recommended in
Jozefowicz et al., 2015

kernel_regularizer
Regularizer function applied to the kernel weights matrix.

https://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

layer_cropping_1d 253

recurrent_regularizer

Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer

Regularizer function applied to the bias vector.
activity_regularizer

Regularizer function applied to.

kernel_constraint
Constraint function applied to the kernel weights matrix.

recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.

bias_constraint
Constraint function applied to the bias vector.

return_sequences
Boolean. Whether to return the last output in the output sequence, or the full
sequence. (default FALSE)

return_state Boolean Whether to return the last state in addition to the output. (default
FALSE)

go_backwards Boolean (default FALSE). If TRUE, process the input sequence backwards.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a
batch will be used as initial state for the sample of index i in the following batch.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.

recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

standard layer arguments.

Details

Similar to an LSTM layer, but the input transformations and recurrent transformations are both
convolutional.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM3D

layer_cropping_1d Cropping layer for 1D input (e.g. temporal sequence).

Description

It crops along the time dimension (axis 1).

https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM3D

254 layer_cropping_1d

Usage

layer_cropping_1d(
object,
cropping = c(1L, 1L),
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned
* a Tensor, the output tensor from layer_instance(object) is returned.
cropping int or list of int (length 2) How many units should be trimmed off at the begin-
ning and end of the cropping dimension (axis 1). If a single int is provided, the
same value will be used for both.
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape (batch, axis_to_crop, features)

Output shape

3D tensor with shape (batch, cropped_axis, features)

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_cropping_2d 255

layer_cropping_2d Cropping layer for 2D input (e.g. picture).

Description

It crops along spatial dimensions, i.e. width and height.

Usage

layer_cropping_2d(
object,
cropping = list(c(oL, OL), c(oL, oL)),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

cropping int, or list of 2 ints, or list of 2 lists of 2 ints.

* If int: the same symmetric cropping is applied to width and height.
o If list of 2 ints: interpreted as two different symmetric cropping values for
height and width: (symmetric_height_crop, symmetric_width_crop).
o Iflist of 2 lists of 2 ints: interpreted as ((top_crop, bottom_crop), (left_crop, right_crop))
data_format A string, one of channels_last (default) or channels_first. The ordering of

the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

256 layer_cropping_3d

Input shape
4D tensor with shape:

e If data_format is "channels_last”: (batch, rows, cols, channels)

e If data_format is "channels_first": (batch, channels, rows, cols)

Output shape

4D tensor with shape:

» If data_format is "channels_last": (batch, cropped_rows, cropped_cols, channels)

* If data_format is "channels_first": (batch, channels, cropped_rows, cropped_cols)

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_cropping_3d Cropping layer for 3D data (e.g. spatial or spatio-temporal).

Description

Cropping layer for 3D data (e.g. spatial or spatio-temporal).

Usage

layer_cropping_3d(
object,
cropping = list(c(lL, 1L), c(IL, 1L), c(1L, 1L)),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.

layer_cropping_3d 257

* a Tensor, the output tensor from layer_instance(object) is returned.
cropping int, or list of 3 ints, or list of 3 lists of 2 ints.

 If int: the same symmetric cropping is applied to depth, height, and width.

« If list of 3 ints: interpreted as two different symmetric cropping values for
depth, height, and width: (symmetric_dim1_crop, symmetric_dim2_crop, sym-
metric_dim3_crop).

 Iflist of 3 list of 2 ints: interpreted as ((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_din

data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

5D tensor with shape:

* Ifdata_formatis "channels_last": (batch, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, depth)

» Ifdata_formatis "channels_first": (batch, depth, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)

Output shape

5D tensor with shape:

» Ifdata_formatis "channels_last": (batch, first_cropped_axis, second_cropped_axis, third_cropped_axis, depth)

e Ifdata_formatis "channels_first": (batch, depth, first_cropped_axis, second_cropped_axis, third_cropped_axis)

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

258 layer_dense

layer_dense Add a densely-connected NN layer to an output

Description

Implements the operation: output = activation(dot(input,kernel) + bias) where activation
is the element-wise activation function passed as the activation argument, kernel is a weights

matrix created by the layer, and bias is a bias vector created by the layer (only applicable if

use_bias is TRUE). Note: if the input to the layer has a rank greater than 2, then it is flattened

prior to the initial dot product with kernel.

Usage

layer_dense(
object,
units,
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned
units Positive integer, dimensionality of the output space.
activation Name of activation function to use. If you don’t specify anything, no activation

is applied (ie. "linear" activation: a(x) = X).

layer_dense 259

use_bias Whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.
bias_initializer

Initializer for the bias vector.
kernel_regularizer

Regularizer function applied to the kernel weights matrix.

bias_regularizer
Regularizer function applied to the bias vector.

activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint
Constraint function applied to the kernel weights matrix.

bias_constraint
Constraint function applied to the bias vector.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input and Output Shapes

Input shape: nD tensor with shape: (batch_size, ..., input_dim). The most common situation would
be a 2D input with shape (batch_size, input_dim).

Output shape: nD tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape
(batch_size, input_dim), the output would have shape (batch_size, unit).

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dropout(), layer_flatten(), layer_input(), layer_lambda(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

260 layer_dense_features

layer_dense_features Constructs a DenseFeatures.

Description

A layer that produces a dense Tensor based on given feature_columns.

Usage

layer_dense_features(
object,
feature_columns,
name = NULL,
trainable = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,
weights = NULL
)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model

or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.

feature_columns

An iterable containing the FeatureColumns to use as inputs to your model.
All items should be instances of classes derived from DenseColumn such as
numeric_column, embedding_column, bucketized_column, indicator_column.
If you have categorical features, you can wrap them with an embedding_column
or indicator_column. See tfestimators: :feature_columns().

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

layer_depthwise_conv_1d 261

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
weights Initial weights for layer.

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense(), layer_dropout (), layer_flatten(), layer_input (), layer_lambda(), layer_masking(),
layer_permute(), layer_repeat_vector(), layer_reshape()

layer_depthwise_conv_1d
Depthwise 1D convolution

Description

Depthwise 1D convolution

Usage

layer_depthwise_conv_1d(
object,
kernel_size,
strides = 1L,
padding = "valid”,
depth_multiplier = 1L,
data_format = NULL,
dilation_rate = 1L,
activation = NULL,
use_bias = TRUE,
depthwise_initializer = "glorot_uniform”,
bias_initializer = "zeros",
depthwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
bias_constraint = NULL,

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

262

layer_depthwise_conv_1d

* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

kernel_size An integer, specifying the height and width of the 1D convolution window. Can
be a single integer to specify the same value for all spatial dimensions.

strides An integer, specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying any dilation_rate
value != 1.

padding oneof 'valid' or 'same' (case-insensitive). “valid” means no padding. "same”
results in padding with zeros evenly to the left/right or up/down of the input such
that output has the same height/width dimension as the input.

depth_multiplier
The number of depthwise convolution output channels for each input channel.
The total number of depthwise convolution output channels will be equal to
filters_in x depth_multiplier.

data_format A string, one of "channels_last"” (default) or "channels_first". The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds
to inputs with shape (batch_size, channels, height, width). It defaults to the
image_data_format value found in your Keras config file at ~/.keras/keras.json.
If you never set it, then it will be *channels_last’.

dilation_rate A single integer, specifying the dilation rate to use for dilated convolution. Cur-
rently, specifying any dilation_rate value != 1 is incompatible with specify-
ing any stride value != 1.

activation Activation function to use. If you don’t specify anything, no activation is applied
(see ?activation_relu).

use_bias Boolean, whether the layer uses a bias vector.

depthwise_initializer
Initializer for the depthwise kernel matrix (see initializer_glorot_uniform).
If NULL, the default initializer ("glorot_uniform") will be used.

bias_initializer
Initializer for the bias vector (see keras.initializers). If NULL, the default
initializer (’zeros’) will be used.

depthwise_regularizer
Regularizer function applied to the depthwise kernel matrix (see regularizer_11()).

bias_regularizer
Regularizer function applied to the bias vector (see regularizer_11()).

activity_regularizer
Regularizer function applied to the output of the layer (its ’activation’) (see
regularizer_11()).

depthwise_constraint
Constraint function applied to the depthwise kernel matrix (see constraint_maxnorm()).

bias_constraint
Constraint function applied to the bias vector (see constraint_maxnorm()).

standard layer arguments.

layer_depthwise_conv_2d 263

Details

Depthwise convolution is a type of convolution in which each input channel is convolved with a
different kernel (called a depthwise kernel). You can understand depthwise convolution as the first
step in a depthwise separable convolution.

It is implemented via the following steps:

* Split the input into individual channels.

* Convolve each channel with an individual depthwise kernel with depth_multiplier output
channels.

* Concatenate the convolved outputs along the channels axis.

Unlike a regular 1D convolution, depthwise convolution does not mix information across different
input channels.

The depth_multiplier argument determines how many filter are applied to one input channel. As
such, it controls the amount of output channels that are generated per input channel in the depthwise
step.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/DepthwiseConviD

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_depthwise_conv_2d
Depthwise separable 2D convolution.

Description

Depthwise Separable convolutions consists in performing just the first step in a depthwise spatial
convolution (which acts on each input channel separately). The depth_multiplier argument con-
trols how many output channels are generated per input channel in the depthwise step.

Usage

layer_depthwise_conv_2d(
object,
kernel_size,
strides = c(1, 1),
padding = "valid”,
depth_multiplier = 1,
data_format = NULL,
dilation_rate = c(1, 1),

https://www.tensorflow.org/api_docs/python/tf/keras/layers/DepthwiseConv1D

264

layer_depthwise_conv_2d

activation = NULL,

use_bias = TRUE,

depthwise_initializer = "glorot_uniform”,
bias_initializer = "zeros",
depthwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
bias_constraint = NULL,

input_shape

NULL,

batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,
name = NULL,

trainable =

NULL,

weights = NULL

Arguments

object

kernel_size

strides

padding

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.
An integer or list of 2 integers, specifying the width and height of the 2D convo-

lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value !=1.

one of "valid” or "same" (case-insensitive).

depth_multiplier

data_format

dilation_rate

The number of depthwise convolution output channels for each input channel.
The total number of depthwise convolution output channels will be equal to
filters_in * depth_multiplier.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

an integer or list of 2 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-

layer_depthwise_conv_2d 265

mensions. Currently, specifying any dilation_rate value !=1 is incompatible
with specifying any stride value !=1.

activation Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

use_bias Boolean, whether the layer uses a bias vector.

depthwise_initializer
Initializer for the depthwise kernel matrix.

bias_initializer
Initializer for the bias vector.

depthwise_regularizer
Regularizer function applied to the depthwise kernel matrix.

bias_regularizer
Regularizer function applied to the bias vector.

activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..

depthwise_constraint
Constraint function applied to the depthwise kernel matrix.

bias_constraint
Constraint function applied to the bias vector.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

266 layer_discretization

layer_discretization A preprocessing layer which buckets continuous features by ranges.

Description

A preprocessing layer which buckets continuous features by ranges.

Usage

layer_discretization(
object,
bin_boundaries = NULL,
num_bins = NULL,
epsilon = 0.01,

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

bin_boundaries A list of bin boundaries. The leftmost and rightmost bins will always extend
to -Inf and Inf, so bin_boundaries =c(@.,1.,2.) generates bins (-Inf, 0.),
[0., 1.), [1., 2.), and [2., +Inf). If this option is set, adapt should not be called.

num_bins The integer number of bins to compute. If this option is set, adapt should be
called to learn the bin boundaries.

epsilon Error tolerance, typically a small fraction close to zero (e.g. 0.01). Higher values
of epsilon increase the quantile approximation, and hence result in more unequal
buckets, but could improve performance and resource consumption.

standard layer arguments.

Details

This layer will place each element of its input data into one of several contiguous ranges and output
an integer index indicating which range each element was placed in.

Input shape: Any tf.Tensor or tf.RaggedTensor of dimension 2 or higher.

Output shape: Same as input shape.

layer_dot 267

See Also
e adapt()
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Discretization
* https://keras.io/api/layers/preprocessing_layers/numerical/discretization

Other numerical features preprocessing layers: layer_normalization()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_hashing(),
layer_integer_lookup(), layer_normalization(), layer_random_contrast(), layer_random_crop(),
layer_random_flip(), layer_random_height(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),

layer_text_vectorization()

layer_dot Layer that computes a dot product between samples in two tensors.

Description

Layer that computes a dot product between samples in two tensors.

Usage
layer_dot(inputs, axes, normalize = FALSE, ...)
Arguments
inputs A list of input tensors (at least 2). Can be missing.
axes Integer or list of integers, axis or axes along which to take the dot product.
normalize Whether to L2-normalize samples along the dot product axis before taking the
dot product. If set to TRUE, then the output of the dot product is the cosine
proximity between the two samples.
Standard layer arguments (must be named).
Value

If inputs is supplied: A tensor, the dot product of the samples from the inputs. If inputs is missing,
a keras layer instance is returned.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/dot
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dot
* https://keras.io/api/layers/merging_layers/dot/

Other merge layers: layer_average(), layer_concatenate(), layer_maximum(), layer_minimum(),

layer_multiply(), layer_subtract()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Discretization
https://keras.io/api/layers/preprocessing_layers/numerical/discretization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/dot
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dot
https://keras.io/api/layers/merging_layers/dot/

268 layer_dropout

layer_dropout Applies Dropout to the input.

Description

Dropout consists in randomly setting a fraction rate of input units to 0 at each update during
training time, which helps prevent overfitting.

Usage

layer_dropout (
object,
rate,
noise_shape
seed = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

NULL,

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned
rate float between 0 and 1. Fraction of the input units to drop.
noise_shape 1D integer tensor representing the shape of the binary dropout mask that will be
multiplied with the input. For instance, if your inputs have shape (batch_size, timesteps, fea-
tures) and you want the dropout mask to be the same for all timesteps, you can
use noise_shape=c(batch_size, 1, features).
seed integer to use as random seed.
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

batch_size Fixed batch size for layer

layer_embedding 269

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_flatten(), layer_input(), layer_lambda(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

Other dropout layers: layer_spatial_dropout_1d(), layer_spatial_dropout_2d(), layer_spatial_dropout_3d()

layer_embedding Turns positive integers (indexes) into dense vectors of fixed size.

Description

For example, 1ist(4L,20L) -> list(c(@.25,0.1),c(0.6,-0.2)) This layer can only be used as
the first layer in a model.

Usage

layer_embedding(
object,
input_dim,
output_dim,
embeddings_initializer = "uniform”,
embeddings_regularizer = NULL,
activity_regularizer = NULL,
embeddings_constraint = NULL,
mask_zero = FALSE,
input_length = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

270

input_dim

output_dim

layer_embedding

int > 0. Size of the vocabulary, i.e. maximum integer index + 1.

int >= 0. Dimension of the dense embedding.

embeddings_initializer

Initializer for the embeddings matrix.

embeddings_regularizer

Regularizer function applied to the embeddings matrix.

activity_regularizer

activity_regularizer

embeddings_constraint

mask_zero

input_length

batch_size

name

trainable

weights

Input shape

Constraint function applied to the embeddings matrix.

Whether or not the input value 0 is a special "padding" value that should be
masked out. This is useful when using recurrent layers, which may take variable
length inputs. If this is TRUE then all subsequent layers in the model need to
support masking or an exception will be raised. If mask_zero is set to TRUE,
as a consequence, index 0 cannot be used in the vocabulary (input_dim should
equal size of vocabulary + 1).

Length of input sequences, when it is constant. This argument is required if you
are going to connect Flatten then Dense layers upstream (without it, the shape
of the dense outputs cannot be computed).

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

2D tensor with shape: (batch_size, sequence_length).

Output shape

3D tensor with shape: (batch_size, sequence_length, output_dim).

References

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

https://arxiv.org/abs/1512.05287

layer_flatten 271

layer_flatten Flattens an input

Description

Flatten a given input, does not affect the batch size.

Usage

layer_flatten(
object,
data_format = NULL,
input_shape = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.

data_format A string. one of channels_last (default) or channels_first. The order-

ing of the dimensions in the inputs. The purpose of this argument is to pre-
serve weight ordering when switching a model from one data format to an-
other. channels_last corresponds to inputs with shape (batch, ..., channels)
while channels_first corresponds to inputs with shape (batch, channels, ...).

It defaults to the image_data_format value found in your Keras config file at
~/ .keras/keras.json. If you never set it, then it will be "channels_last".

input_shape Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

dtype The data type expected by the input, as a string (float32, float64, int32...)

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

272 layer_gaussian_dropout

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_input(), layer_lambda(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

layer_gaussian_dropout
Apply multiplicative I-centered Gaussian noise.

Description

As it is a regularization layer, it is only active at training time.

Usage

layer_gaussian_dropout(
object,
rate,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
rate float, drop probability (as with Dropout). The multiplicative noise will have
standard deviation sqrt(rate / (1 -rate)).
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

batch_size Fixed batch size for layer

layer_gaussian_noise 273

dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.
Output shape

Same shape as input.

References
* Dropout: A Simple Way to Prevent Neural Networks from Overfitting Srivastava, Hinton, et
al. 2014
See Also

Other noise layers: layer_alpha_dropout(), layer_gaussian_noise()

layer_gaussian_noise Apply additive zero-centered Gaussian noise.

Description

This is useful to mitigate overfitting (you could see it as a form of random data augmentation).
Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a
regularization layer, it is only active at training time.

Usage

layer_gaussian_noise(
object,
stddev,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

274

Arguments

object

stddev

input_shape

layer_global_average_pooling_1d

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* aSequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.
float, standard deviation of the noise distribution.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

trainable

weights

Input shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.

Output shape

Same shape as input.

See Also

Other noise layers: layer_alpha_dropout(), layer_gaussian_dropout()

layer_global_average_pooling_1d

Global average pooling operation for temporal data.

Description

Global average pooling operation for temporal data.

layer_global_average_pooling_1d 275

Usage
layer_global_average_pooling_1d(
object,
data_format = "channels_last",

keepdims = FALSE,

Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
data_format One of channels_last (default) or channels_first. The ordering of the di-
mensions in the inputs.
keepdims A boolean, whether to keep the spatial dimensions or not. If keepdims is FALSE
(default), the rank of the tensor is reduced for spatial dimensions. If keepdims
is TRUE, the spatial dimensions are retained with length 1. The behavior is the
same as for tf.reduce_mean or np.mean.
standard layer arguments.
Input shape

3D tensor with shape: (batch_size, steps, features).

Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_2d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

276

layer_global_average_pooling_2d

layer_global_average_pooling_2d

Global average pooling operation for spatial data.

Description

Global average pooling operation for spatial data.

Usage

layer_global_average_pooling_2d(

object,

data_format = NULL,

keepdims

Arguments

object

data_format

keepdims

Input shape

FALSE,

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

A boolean, whether to keep the spatial dimensions or not. If keepdims is FALSE
(default), the rank of the tensor is reduced for spatial dimensions. If keepdims
is TRUE, the spatial dimensions are retained with length 1. The behavior is the
same as for tf.reduce_mean or np.mean.

standard layer arguments.

e Ifdata_format="'channels_last': 4D tensor with shape: (batch_size, rows, cols, channels)

» Ifdata_format="'channels_first': 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape

2D tensor with shape: (batch_size, channels)

layer_global_average_pooling_3d 2717

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_global_average_pooling_3d
Global Average pooling operation for 3D data.

Description

Global Average pooling operation for 3D data.

Usage

layer_global_average_pooling_3d(
object,
data_format = NULL,
keepdims = FALSE,

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim?2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

keepdims A boolean, whether to keep the spatial dimensions or not. If keepdims is FALSE
(default), the rank of the tensor is reduced for spatial dimensions. If keepdims
is TRUE, the spatial dimensions are retained with length 1. The behavior is the
same as for tf.reduce_mean or np.mean.

standard layer arguments.

278 layer_global_max_pooling_1d

Input shape

o If data_format="'channels_last': 5D tensor with shape: (batch_size, spatial_diml, spa-
tial_dim?2, spatial_dim3, channels)

» Ifdata_format='channels_first': 5D tensor with shape: (batch_size, channels, spatial_diml, spa-
tial_dim2, spatial_dim3)

Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_global_max_pooling_1d
Global max pooling operation for temporal data.

Description

Global max pooling operation for temporal data.

Usage
layer_global_max_pooling_1d(
object,
data_format = "channels_last”,

keepdims = FALSE,

Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
data_format One of channels_last (default) or channels_first. The ordering of the di-

mensions in the inputs.

layer_global _max_pooling_2d 279

keepdims A boolean, whether to keep the spatial dimensions or not. If keepdims is FALSE
(default), the rank of the tensor is reduced for spatial dimensions. If keepdims
is TRUE, the spatial dimensions are retained with length 1. The behavior is the
same as for tf.reduce_mean or np.mean.

standard layer arguments.

Input shape

3D tensor with shape: (batch_size, steps, features).

Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_global_max_pooling_2d
Global max pooling operation for spatial data.

Description

Global max pooling operation for spatial data.

Usage
layer_global_max_pooling_2d(object, data_format = NULL, keepdims = FALSE, ...)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
data_format A string, one of channels_last (default) or channels_first. The ordering of

the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

280 layer_global_max_pooling_3d

keepdims A boolean, whether to keep the spatial dimensions or not. If keepdims is FALSE
(default), the rank of the tensor is reduced for spatial dimensions. If keepdims
is TRUE, the spatial dimensions are retained with length 1. The behavior is the
same as for tf.reduce_mean or np.mean.

standard layer arguments.

Input shape

* If data_format='channels_last': 4D tensor with shape: (batch_size, rows, cols, channels)

» Ifdata_format="'channels_first': 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_global_max_pooling_3d
Global Max pooling operation for 3D data.

Description

Global Max pooling operation for 3D data.

Usage

layer_global_max_pooling_3d(object, data_format = NULL, keepdims = FALSE, ...)
Arguments

object What to compose the new Layer instance with. Typically a Sequential model

or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.

layer_gru 281

data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

keepdims A boolean, whether to keep the spatial dimensions or not. If keepdims is FALSE
(default), the rank of the tensor is reduced for spatial dimensions. If keepdims
is TRUE, the spatial dimensions are retained with length 1. The behavior is the
same as for tf.reduce_mean or np.mean.

standard layer arguments.

Input shape

o If data_format="'channels_last': 5D tensor with shape: (batch_size, spatial_diml, spa-
tial_dim?2, spatial_dim3, channels)

* Ifdata_format="channels_first': 5D tensor with shape: (batch_size, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3)
Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_2d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_gru Gated Recurrent Unit - Cho et al.

Description

There are two variants. The default one is based on 1406.1078v3 and has reset gate applied to
hidden state before matrix multiplication. The other one is based on original 1406.1078v1 and has
the order reversed.

Usage

layer_gru(
object,
units,
activation = "tanh",
recurrent_activation = "sigmoid”,

282

use_bias = TRUE,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,

unroll = FALSE,
time_major = FALSE,
reset_after = TRUE,

kernel_initializer = "glorot_uniform"”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,

layer_gru

Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
units Positive integer, dimensionality of the output space.
activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass

NULL, no activation is applied (ie. "linear" activation: a(x) = x).

recurrent_activation

use_bias

Activation function to use for the recurrent step.

Boolean, whether the layer uses a bias vector.

return_sequences

return_state

go_backwards

stateful

Boolean. Whether to return the last output in the output sequence, or the full
sequence.

Boolean (default FALSE). Whether to return the last state in addition to the
output.

Boolean (default FALSE). If TRUE, process the input sequence backwards and
return the reversed sequence.

Boolean (default FALSE). If TRUE, the last state for each sample at index i in a
batch will be used as initial state for the sample of index i in the following batch.

layer_gru 283

unroll Boolean (default FALSE). If TRUE, the network will be unrolled, else a sym-
bolic loop will be used. Unrolling can speed-up a RNN, although it tends to be
more memory-intensive. Unrolling is only suitable for short sequences.

time_major If True, the inputs and outputs will be in shape [timesteps, batch, feature],
whereas in the False case, it will be [batch, timesteps, feature]. Using time_major
= TRUE is a bit more efficient because it avoids transposes at the beginning and
end of the RNN calculation. However, most TensorFlow data is batch-major, so
by default this function accepts input and emits output in batch-major form.

reset_after GRU convention (whether to apply reset gate after or before matrix multiplica-
tion). FALSE = "before" (default), TRUE = "after" (CuDNN compatible).
kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel weights matrix.
recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.

recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

Standard Layer args.

Details

The second variant is compatible with CuDNNGRU (GPU-only) and allows inference on CPU.
Thus it has separate biases for kernel and recurrent_kernel. Use reset_after = TRUE and
recurrent_activation = "sigmoid".

284 layer_gru

Input shapes

N-D tensor with shape (batch_size, timesteps, ...), or (timesteps, batch_size, ...) when time_major
= TRUE.

Output shape

* if return_state: a list of tensors. The first tensor is the output. The remaining tensors are
the last states, each with shape (batch_size, state_size), where state_size could be a high
dimension tensor shape.

e if return_sequences: N-D tensor with shape [batch_size, timesteps, output_size], where
output_size could be a high dimension tensor shape, or [timesteps, batch_size, output_size]
when time_major is TRUE

* else, N-D tensor with shape [batch_size, output_size], where output_size could be a high
dimension tensor shape.

Masking

This layer supports masking for input data with a variable number of timesteps. To introduce masks
to your data, use layer_embedding() with the mask_zero parameter set to TRUE.

Statefulness in RNNs

You can set RNN layers to be ’stateful’, which means that the states computed for the samples in
one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one
mapping between samples in different successive batches.

For intuition behind statefulness, there is a helpful blog post here: https://philipperemy.github.
io/keras-stateful-1stm/

To enable statefulness:

* Specify stateful = TRUE in the layer constructor.

 Specify a fixed batch size for your model. For sequential models, pass batch_input_shape =
list(...) to the first layer in your model. For functional models with 1 or more Input layers,
pass batch_shape = 1list(...) toall the first layers in your model. This is the expected shape
of your inputs including the batch size. It should be a list of integers, e.g. 1ist(32,10,100).
For dimensions which can vary (are not known ahead of time), use NULL in place of an integer,
e.g. 1list(32,NULL,NULL).

* Specify shuffle = FALSE when calling fit().

To reset the states of your model, call layer$reset_states() on either a specific layer, or on your
entire model.

Initial State of RNNs

You can specify the initial state of RNN layers symbolically by calling them with the keyword ar-
gument initial_state. The value of initial_state should be a tensor or list of tensors representing
the initial state of the RNN layer.

You can specify the initial state of RNN layers numerically by calling reset_states with the
named argument states. The value of states should be an array or list of arrays representing the
initial state of the RNN layer.

https://philipperemy.github.io/keras-stateful-lstm/
https://philipperemy.github.io/keras-stateful-lstm/

layer_gru_cell 285

Passing external constants to RNNs

You can pass "external" constants to the cell using the constants named argument of RNN$__call__
(as well as RNN$call) method. This requires that the cell$call method accepts the same keyword
argument constants. Such constants can be used to condition the cell transformation on additional
static inputs (not changing over time), a.k.a. an attention mechanism.

References

» Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Trans-
lation

* On the Properties of Neural Machine Translation: Encoder-Decoder Approaches

* Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

See Also

e https://www.tensorflow.org/guide/keras/rnn

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_lstm(), layer_rnn(),
layer_simple_rnn()

layer_gru_cell Cell class for the GRU layer

Description

Cell class for the GRU layer

Usage

layer_gru_cell(
units,
activation = "tanh",
recurrent_activation = "sigmoid”,
use_bias = TRUE,
kernel_initializer = "glorot_uniform"”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
reset_after = TRUE,

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1412.3555v1
https://arxiv.org/abs/1512.05287
https://www.tensorflow.org/guide/keras/rnn

286 layer_gru_cell

)
Arguments
units Positive integer, dimensionality of the output space.
activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass

NULL, no activation is applied (ie. "linear" activation: a(x) = x).
recurrent_activation

Activation function to use for the recurrent step. Default: sigmoid (sigmoid). If

you pass NULL, no activation is applied (ie. "linear" activation: a(x) = x).
use_bias Boolean, (default TRUE), whether the layer uses a bias vector.

kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs. Default: glorot_uniform.

recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state. Default: orthogonal.

bias_initializer
Initializer for the bias vector. Default: zeros.

kernel_regularizer
Regularizer function applied to the kernel weights matrix. Default: NULL.

recurrent_regularizer

Regularizer function applied to the recurrent_kernel weights matrix. Default:
NULL.

bias_regularizer
Regularizer function applied to the bias vector. Default: NULL.

kernel_constraint
Constraint function applied to the kernel weights matrix. Default: NULL.
recurrent_constraint

Constraint function applied to the recurrent_kernel weights matrix. Default:
NULL.

bias_constraint
Constraint function applied to the bias vector. Default: NULL.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs. Default: 0.

recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state. Default: 0.

reset_after GRU convention (whether to apply reset gate after or before matrix multiplica-
tion). FALSE = "before", TRUE = "after" (default and CuDNN compatible).

standard layer arguments.

layer_hashing 287

Details

See the Keras RNN API guide for details about the usage of RNN APIL.

This class processes one step within the whole time sequence input, whereas tf.keras.layer.GRU
processes the whole sequence.

For example:

inputs <- k_random_uniform(c(32, 10, 8))
output <- inputs %>% layer_rnn(layer_gru_cell(4))
output$shape # TensorShape([32, 4])

rnn <- layer_rnn(cell = layer_gru_cell(4),
return_sequence = TRUE,
return_state = TRUE)
c(whole_sequence_output, final_state) %<-% rnn(inputs)
whole_sequence_output$shape # TensorShape([32, 10, 4])
final_state$shape # TensorShape([32, 4])

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRUCell
Other RNN cell layers: layer_lstm_cell(), layer_simple_rnn_cell(), layer_stacked_rnn_cells()

layer_hashing A preprocessing layer which hashes and bins categorical features.

Description

A preprocessing layer which hashes and bins categorical features.

Usage
layer_hashing(object, num_bins, mask_value = NULL, salt = NULL, ...)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
num_bins Number of hash bins. Note that this includes the mask_value bin, so the effec-

tive number of bins is (num_bins -1) if mask_value is set.

https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRUCell

288 layer_hashing

mask_value A value that represents masked inputs, which are mapped to index 0. Defaults to
NULL, meaning no mask term will be added and the hashing will start at index
0.

salt A single unsigned integer or NULL. If passed, the hash function used will be

SipHash64, with these values used as an additional input (known as a "salt" in
cryptography). These should be non-zero. Defaults to NULL (in that case, the
FarmHash64 hash function is used). It also supports list of 2 unsigned integer
numbers, see reference paper for details.

standard layer arguments.

Details

This layer transforms single or multiple categorical inputs to hashed output. It converts a sequence
of int or string to a sequence of int. The stable hash function uses tensorflow::ops::Fingerprint to
produce the same output consistently across all platforms.

This layer uses FarmHash64 by default, which provides a consistent hashed output across different
platforms and is stable across invocations, regardless of device and context, by mixing the input bits
thoroughly.

If you want to obfuscate the hashed output, you can also pass a random salt argument in the
constructor. In that case, the layer will use the SipHash64 hash function, with the salt value
serving as additional input to the hash function.

Example (FarmHash64)

layer <- layer_hashing(num_bins=3)

inp <- matrix(c('A', 'B', 'C', 'D', 'E'))
layer(inp)

<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array(LL[1],

[el,

1],

1],

[211)>

Example (FarmHash64) with a mask value

layer <- layer_hashing(num_bins=3, mask_value='")
inp <- matrix(c('A', 'B', 'C', 'D', 'E'))
layer(inp)

<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[1],

(11,

o],

[2],

[211)>

Example (SipHash64)

https://github.com/google/farmhash
https://github.com/google/highwayhash

layer_input 289

layer <- layer_hashing(num_bins=3, salt=c(133, 137))
inp <- matrix(c('A', 'B', 'C', 'D', 'E'))

layer(inp)

<tf.Tensor: shape=(5, 1), dtype=int64, numpy=

array([[1],

[21,

(11,

[e],

[211)>

Example (Siphash64 with a single integer, same as salt=[133, 133])

layer <- layer_hashing(num_bins=3, salt=133)
inp <- matrix(c('A', 'B', 'C', 'D', 'E'))
layer(inp)

<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[e],

o],

[2],

(11,

[011)>

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Hashing
e https://keras.io/api/layers/preprocessing_layers/categorical/hashing/

Other categorical features preprocessing layers: layer_category_encoding(), layer_integer_lookup(),
layer_string_lookup()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_integer_lookup(), layer_normalization(), layer_random_contrast(), layer_random_crop(),
layer_random_f1lip(), layer_random_height(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_input Input layer

Description

Layer to be used as an entry point into a graph.

Usage

layer_input(
shape = NULL,
batch_shape = NULL,

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Hashing
https://keras.io/api/layers/preprocessing_layers/categorical/hashing/

290 layer_integer._lookup

name = NULL,
dtype = NULL,
sparse = FALSE,
tensor = NULL,
ragged = FALSE
)
Arguments
shape Shape, not including the batch size. For instance, shape=c(32) indicates that
the expected input will be batches of 32-dimensional vectors.
batch_shape Shape, including the batch size. For instance, shape = c(10,32) indicates that
the expected input will be batches of 10 32-dimensional vectors. batch_shape
=1list(NULL,32) indicates batches of an arbitrary number of 32-dimensional
vectors.
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
dtype The data type expected by the input, as a string (float32, float64, int32...)
sparse Boolean, whether the placeholder created is meant to be sparse.
tensor Existing tensor to wrap into the Input layer. If set, the layer will not create a
placeholder tensor.
ragged A boolean specifying whether the placeholder to be created is ragged. Only
one of ‘ragged’ and ’sparse’ can be TRUE In this case, values of 'NULL’ in the
’shape’ argument represent ragged dimensions.
Value
A tensor
See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout(), layer_flatten(), layer_lambda(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

layer_integer_lookup A preprocessing layer which maps integer features to contiguous
ranges.

Description

A preprocessing layer which maps integer features to contiguous ranges.

layer_integer lookup 291

Usage

layer_integer_lookup(
object,
max_tokens = NULL,
num_oov_indices = 1L,
mask_token = NULL,
oov_token = -1L,
vocabulary = NULL,
invert = FALSE,
output_mode = "int",
sparse = FALSE,
pad_to_max_tokens = FALSE,

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
max_tokens The maximum size of the vocabulary for this layer. If NULL, there is no cap

on the size of the vocabulary. Note that this size includes the OOV and mask
tokens. Default to NULL.

num_oov_indices
The number of out-of-vocabulary tokens to use. If this value is more than 1,
OOV inputs are modulated to determine their OOV value. If this value is 0,
OOV inputs will cause an error when calling the layer. Defaults to 1.

mask_token An integer token that represents masked inputs. When output_mode is "int",
the token is included in vocabulary and mapped to index 0. In other output
modes, the token will not appear in the vocabulary and instances of the mask
token in the input will be dropped. If set to NULL, no mask term will be added.
Defaults to NULL.

oov_token Only used when invert is TRUE. The token to return for OOV indices. Defaults
to -1.
vocabulary Optional. Either an array of integers or a string path to a text file. If passing an

array, can pass a list, list, 1D numpy array, or 1D tensor containing the integer
vocabulary terms. If passing a file path, the file should contain one line per term
in the vocabulary. If this argument is set, there is no need to adapt the layer.

invert Only valid when output_mode is "int". If TRUE, this layer will map indices
to vocabulary items instead of mapping vocabulary items to indices. Default to
FALSE.

output_mode Specification for the output of the layer. Defaults to "int". Values can be

"int”, "one_hot", "multi_hot", "count”, or "tf_idf" configuring the layer
as follows:

292

layer_integer._lookup

n

e "int": Return the vocabulary indices of the input tokens.

* "one_hot": Encodes each individual element in the input into an array the
same size as the vocabulary, containing a 1 at the element index. If the last
dimension is size 1, will encode on that dimension. If the last dimension is
not size 1, will append a new dimension for the encoded output.

* "multi_hot"”: Encodes each sample in the input into a single array the
same size as the vocabulary, containing a 1 for each vocabulary term present
in the sample. Treats the last dimension as the sample dimension, if input
shape is (..., sample_length), output shape will be (..., num_tokens).

e "count”: As "multi_hot", but the int array contains a count of the number
of times the token at that index appeared in the sample.

o "tf_idf": As "multi_hot", but the TF-IDF algorithm is applied to find
the value in each token slot. For "int" output, any shape of input and
output is supported. For all other output modes, currently only output up to
rank 2 is supported.

sparse Boolean. Only applicable when output_mode is "multi_hot"”, "count”, or
"tf_idf". If TRUE, returns a SparseTensor instead of a dense Tensor. Defaults
to FALSE.

pad_to_max_tokens
Only applicable when output_mode is "multi_hot”, "count”, or "tf_idf". If
TRUE, the output will have its feature axis padded to max_tokens even if the
number of unique tokens in the vocabulary is less than max_tokens, resulting
in a tensor of shape [batch_size, max_tokens] regardless of vocabulary size.
Defaults to FALSE.

standard layer arguments.

Details

This layer maps a set of arbitrary integer input tokens into indexed integer output via a table-based
vocabulary lookup. The layer’s output indices will be contiguously arranged up to the maximum
vocab size, even if the input tokens are non-continguous or unbounded. The layer supports multiple
options for encoding the output via output_mode, and has optional support for out-of-vocabulary
(OOV) tokens and masking.

The vocabulary for the layer can be supplied on construction or learned via adapt(). During
adapt (), the layer will analyze a data set, determine the frequency of individual integer tokens, and
create a vocabulary from them. If the vocabulary is capped in size, the most frequent tokens will be
used to create the vocabulary and all others will be treated as OOV.

There are two possible output modes for the layer. When output_mode is "int", input integers
are converted to their index in the vocabulary (an integer). When output_mode is "multi_hot",
"count”, or "tf_idf", input integers are encoded into an array where each dimension corresponds
to an element in the vocabulary.

The vocabulary for the layer must be either supplied on construction or learned via adapt (). During
adapt (), the layer will analyze a data set, determine the frequency of individual integer tokens, and
create a vocabulary from them. If the vocabulary is capped in size, the most frequent tokens will be
used to create the vocabulary and all others will be treated as OOV.

layer_lambda 293

See Also

e adapt()
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/IntegerLookup
* https://keras.io/api/layers/preprocessing_layers/categorical/integer_lookup

Other categorical features preprocessing layers: layer_category_encoding(), layer_hashing(),
layer_string_lookup()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_normalization(), layer_random_contrast(), layer_random_crop(),
layer_random_f1lip(), layer_random_height(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_lambda Wraps arbitrary expression as a layer

Description

Wraps arbitrary expression as a layer

Usage

layer_lambda(
object,
f}
output_shape = NULL,
mask = NULL,
arguments = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/IntegerLookup
https://keras.io/api/layers/preprocessing_layers/categorical/integer_lookup

294 layer_layer_normalization

f The function to be evaluated. Takes input tensor as first argument.

output_shape Expected output shape from the function (not required when using TensorFlow
back-end).

mask mask

arguments optional named list of keyword arguments to be passed to the function.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.
Output shape

Arbitrary (based on tensor returned from the function)

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

layer_layer_normalization
Layer normalization layer (Ba et al., 2016).

Description

Normalize the activations of the previous layer for each given example in a batch independently,
rather than across a batch like Batch Normalization. i.e. applies a transformation that maintains the
mean activation within each example close to 0 and the activation standard deviation close to 1.

layer_layer_normalization 295

Usage

layer_layer_normalization(

object,

axis

epsilon = 0.001,

center TRUE,

scale = TRUE,
beta_initializer = "zeros”,
gamma_initializer = "ones",

beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,

gamma_constraint = NULL,

trainable
name = NULL

Arguments

object

axis

epsilon

center

scale

TRUE,

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned
Integer or List/Tuple. The axis or axes to normalize across. Typically this is
the features axis/axes. The left-out axes are typically the batch axis/axes. This
argument defaults to -1, the last dimension in the input.

Small float added to variance to avoid dividing by zero. Defaults to 1e-3

If True, add offset of beta to normalized tensor. If False, beta is ignored. Defaults
to True.

If True, multiply by gamma. If False, gamma is not used. Defaults to True.
When the next layer is linear (also e.g. nn.relu), this can be disabled since the
scaling will be done by the next layer.

beta_initializer

Initializer for the beta weight. Defaults to zeros.

gamma_initializer

Initializer for the gamma weight. Defaults to ones.

beta_regularizer

Optional regularizer for the beta weight. None by default.

gamma_regularizer

beta_constraint

Optional regularizer for the gamma weight. None by default.

Optional constraint for the beta weight. None by default.

gamma_constraint

Optional constraint for the gamma weight. None by default.

296 layer_locally_connected_1d

trainable Boolean, if True the variables will be marked as trainable. Defaults to True.

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Details

Given a tensor inputs, moments are calculated and normalization is performed across the axes spec-
ified in axis.

layer_locally_connected_1d
Locally-connected layer for 1D inputs.

Description

layer_locally_connected_1d() works similarly to layer_conv_1d() , except that weights are
unshared, that is, a different set of filters is applied at each different patch of the input.

Usage

layer_locally_connected_1d(
object,
filters,
kernel_size,
strides = 1L,
padding = "valid”,
data_format = NULL,
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
implementation = 1L,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

layer_locally_connected_1d 297

Arguments

object

filters

kernel_size

strides

padding

data_format

activation

use_bias

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

Integer, the dimensionality of the output space (i.e. the number output of filters
in the convolution).

An integer or list of a single integer, specifying the length of the 1D convolution
window.

An integer or list of a single integer, specifying the stride length of the con-
volution. Specifying any stride value != 1 is incompatible with specifying any
dilation_rate value !=1.

Currently only supports "valid” (case-insensitive). "same"” may be supported
in the future.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint

bias_constraint

implementation

Constraint function applied to the kernel matrix.

Constraint function applied to the bias vector.

either 1, 2, or 3. 1 loops over input spatial locations to perform the forward pass.
It is memory-efficient but performs a lot of (small) ops. 2 stores layer weights
in a dense but sparsely-populated 2D matrix and implements the forward pass
as a single matrix-multiply. It uses a lot of RAM but performs few (large) ops.
3 stores layer weights in a sparse tensor and implements the forward pass as a

298

batch_size

name

trainable

weights

Input shape

layer_locally_connected_2d

single sparse matrix-multiply. How to choose: 1: large, dense models, 2: small
models, 3: large, sparse models, where "large" stands for large input/output
activations (i.e. many filters, input_filters, large input_size, output_size), and
"sparse" stands for few connections between inputs and outputs, i.e. small ratio
filters x input_filters x kernel_size / (input_size * strides), where
inputs to and outputs of the layer are assumed to have shapes (input_size, in-
put_filters), (output_size, filters) respectively. It is recommended to benchmark
each in the setting of interest to pick the most efficient one (in terms of speed
and memory usage). Correct choice of implementation can lead to dramatic
speed improvements (e.g. 50X), potentially at the expense of RAM. Also, only
padding="valid" is supported by implementation=1.

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

3D tensor with shape: (batch_size, steps, input_dim)

Output shape

3D tensor with shape: (batch_size, new_steps, filters) steps value might have changed due to

padding or strides.

See Also

Other locally connected layers: layer_locally_connected_2d()

layer_locally_connected_2d

Locally-connected layer for 2D inputs.

Description

layer_locally_connected_2d works similarly to layer_conv_2d(), except that weights are un-
shared, that is, a different set of filters is applied at each different patch of the input.

Usage

layer_locally_connected_2d(

object,
filters,

kernel_size,
c(1L, 1),

strides

layer_locally_connected_2d 299

padding = "valid”,
data_format = NULL,
activation = NULL,

use_bias = TRUE,
kernel_initializer = "glorot_uniform"”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
implementation = 1L,
batch_size = NULL,

name = NULL,

trainable = NULL,

weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

filters Integer, the dimensionality of the output space (i.e. the number output of filters
in the convolution).

kernel_size An integer or list of 2 integers, specifying the width and height of the 2D convo-
Iution window. Can be a single integer to specify the same value for all spatial
dimensions.

strides An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value !=1.

padding Currently only supports "valid” (case-insensitive). "same"” may be supported
in the future.

data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, width, height, channels) while channels_first corresponds to inputs
with shape (batch, channels, width, height). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

activation Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

use_bias Boolean, whether the layer uses a bias vector.

300

layer_locally_connected_2d

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint

bias_constraint

implementation

batch_size

name

trainable

weights

Input shape

Constraint function applied to the kernel matrix.

Constraint function applied to the bias vector.

either 1, 2, or 3. 1 loops over input spatial locations to perform the forward pass.
It is memory-efficient but performs a lot of (small) ops. 2 stores layer weights
in a dense but sparsely-populated 2D matrix and implements the forward pass
as a single matrix-multiply. It uses a lot of RAM but performs few (large) ops.
3 stores layer weights in a sparse tensor and implements the forward pass as a
single sparse matrix-multiply. How to choose: 1: large, dense models, 2: small
models, 3: large, sparse models, where "large" stands for large input/output
activations (i.e. many filters, input_filters, large input_size, output_size), and
"sparse" stands for few connections between inputs and outputs, i.e. small ratio
filters x input_filters x kernel_size / (input_size * strides), where
inputs to and outputs of the layer are assumed to have shapes (input_size, in-
put_filters), (output_size, filters) respectively. It is recommended to benchmark
each in the setting of interest to pick the most efficient one (in terms of speed
and memory usage). Correct choice of implementation can lead to dramatic
speed improvements (e.g. S0X), potentially at the expense of RAM. Also, only
padding="valid” is supported by implementation=1.

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

4D tensor with shape: (samples, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (samples, rows, cols, channels) if data_format="channels_last’.

Output shape

4D tensor with shape: (samples, filters, new_rows, new_cols) if data_format="channels_first’ or 4D
tensor with shape: (samples, new_rows, new_cols, filters) if data_format="channels_last’. rows and
cols values might have changed due to padding.

layer_Istm 301

See Also

Other locally connected layers: layer_locally_connected_1d()

layer_lstm Long Short-Term Memory unit - Hochreiter 1997.

Description

For a step-by-step description of the algorithm, see this tutorial.

Usage
layer_1lstm(
object,
units,
activation = "tanh",
recurrent_activation = "sigmoid”,

use_bias = TRUE,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
time_major = FALSE,
unroll = FALSE,

kernel_initializer = "glorot_uniform"”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

302

layer_Istm

* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
units Positive integer, dimensionality of the output space.

activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass
NULL, no activation is applied (ie. "linear" activation: a(x) = x).
recurrent_activation
Activation function to use for the recurrent step.

use_bias Boolean, whether the layer uses a bias vector.

return_sequences
Boolean. Whether to return the last output in the output sequence, or the full
sequence.

return_state Boolean (default FALSE). Whether to return the last state in addition to the
output.

go_backwards Boolean (default FALSE). If TRUE, process the input sequence backwards and
return the reversed sequence.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a
batch will be used as initial state for the sample of index i in the following batch.

time_major If True, the inputs and outputs will be in shape [timesteps, batch, feature],
whereas in the False case, it will be [batch, timesteps, feature]. Using time_major
= TRUE is a bit more efficient because it avoids transposes at the beginning and
end of the RNN calculation. However, most TensorFlow data is batch-major, so
by default this function accepts input and emits output in batch-major form.

unroll Boolean (default FALSE). If TRUE, the network will be unrolled, else a sym-
bolic loop will be used. Unrolling can speed-up a RNN, although it tends to be
more memory-intensive. Unrolling is only suitable for short sequences.

kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.

recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.

bias_initializer
Initializer for the bias vector.

unit_forget_bias
Boolean. If TRUE, add 1 to the bias of the forget gate at initialization. Setting
it to true will also force bias_initializer="zeros". This is recommended in
Jozefowicz et al.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.
recurrent_regularizer

Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer

Regularizer function applied to the bias vector.
activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

https://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

layer_Istm 303

kernel_constraint
Constraint function applied to the kernel weights matrix.
recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.
recurrent_dropout

Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

Standard Layer args.
Input shapes
N-D tensor with shape (batch_size, timesteps, ...), or (timesteps, batch_size, ...) when time_major
= TRUE.
Output shape

e if return_state: a list of tensors. The first tensor is the output. The remaining tensors are
the last states, each with shape (batch_size, state_size), where state_size could be a high
dimension tensor shape.

* if return_sequences: N-D tensor with shape [batch_size, timesteps, output_size], where
output_size could be a high dimension tensor shape, or [timesteps, batch_size, output_size]
when time_major is TRUE

* else, N-D tensor with shape [batch_size, output_size], where output_size could be a high
dimension tensor shape.

Masking

This layer supports masking for input data with a variable number of timesteps. To introduce masks
to your data, use layer_embedding() with the mask_zero parameter set to TRUE.

Statefulness in RNNs

You can set RNN layers to be ’stateful’, which means that the states computed for the samples in
one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one
mapping between samples in different successive batches.

For intuition behind statefulness, there is a helpful blog post here: https://philipperemy.github.
io/keras-stateful-1stm/

To enable statefulness:

* Specify stateful = TRUE in the layer constructor.

* Specify a fixed batch size for your model. For sequential models, pass batch_input_shape =
list(...) to the first layer in your model. For functional models with 1 or more Input layers,
pass batch_shape = 1list(...) toall the first layers in your model. This is the expected shape

https://philipperemy.github.io/keras-stateful-lstm/
https://philipperemy.github.io/keras-stateful-lstm/

304

layer_Istm_cell

of your inputs including the batch size. It should be a list of integers, e.g. 1ist(32,10,100).
For dimensions which can vary (are not known ahead of time), use NULL in place of an integer,
e.g. 1ist(32,NULL,NULL).

» Specify shuffle = FALSE when calling fit().

To reset the states of your model, call layer$reset_states() on either a specific layer, or on your
entire model.

Initial State of RNNs

You can specify the initial state of RNN layers symbolically by calling them with the keyword ar-
gument initial_state. The value of initial_state should be a tensor or list of tensors representing
the initial state of the RNN layer.

You can specify the initial state of RNN layers numerically by calling reset_states with the
named argument states. The value of states should be an array or list of arrays representing the
initial state of the RNN layer.

Passing external constants to RNNs

You can pass "external" constants to the cell using the constants named argument of RNN$__call__
(as well as RNN$call) method. This requires that the cel1$call method accepts the same keyword
argument constants. Such constants can be used to condition the cell transformation on additional
static inputs (not changing over time), a.k.a. an attention mechanism.

References

* Long short-term memory (original 1997 paper)
* Supervised sequence labeling with recurrent neural networks

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

See Also

e https://www.tensorflow.org/guide/keras/rnn

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_gru(), layer_rnn(),
layer_simple_rnn()

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_gru(), layer_rnn(),
layer_simple_rnn()

layer_lstm_cell Cell class for the LSTM layer

Description

Cell class for the LSTM layer

http://www.bioinf.jku.at/publications/older/2604.pdf
https://www.cs.toronto.edu/~graves/preprint.pdf
https://arxiv.org/abs/1512.05287
https://www.tensorflow.org/guide/keras/rnn

layer_Istm_cell 305

Usage

layer_1lstm_cell(
units,
activation = "tanh",
recurrent_activation = "sigmoid”,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",
unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,

)
Arguments
units Positive integer, dimensionality of the output space.
activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass

NULL, no activation is applied (ie. "linear" activation: a(x) = x).
recurrent_activation
Activation function to use for the recurrent step. Default: sigmoid (sigmoid). If
you pass NULL, no activation is applied (ie. "linear" activation: a(x) = x).
use_bias Boolean, (default TRUE), whether the layer uses a bias vector.
kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs. Default: glorot_uniform
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state. Default: orthogonal.
bias_initializer
Initializer for the bias vector. Default: zeros.
unit_forget_bias
Boolean (default TRUE). If TRUE, add 1 to the bias of the forget gate at initial-
ization. Setting it to true will also force bias_initializer="zeros". This is

recommended in Jozefowicz et al.
kernel_regularizer

Regularizer function applied to the kernel weights matrix. Default: NULL.
recurrent_regularizer

Regularizer function applied to the recurrent_kernel weights matrix. Default:
NULL.

https://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

306 layer_Istm_cell

bias_regularizer
Regularizer function applied to the bias vector. Default: NULL.

kernel_constraint
Constraint function applied to the kernel weights matrix. Default: NULL.

recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix. Default:
NULL.

bias_constraint
Constraint function applied to the bias vector. Default: NULL.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs. Default: 0.

recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state. Default: 0.

standard layer arguments.

Details

See the Keras RNN API guide for details about the usage of RNN API.

This class processes one step within the whole time sequence input, whereas tf$keras$layer$LSTM
processes the whole sequence.

For example:

inputs <- k_random_normal(c(32, 10, 8))

rnn <- layer_rnn(cell = layer_lstm_cell(units = 4))
output <- rnn(inputs)
dim(output) # (32, 4)
rnn <- layer_rnn(cell = layer_lstm_cell(units = 4),

return_sequences = TRUE,
return_state = TRUE)
c(whole_seq_output, final_memory_state, final_carry_state) %<-% rnn(inputs)

dim(whole_seq_output) # (32, 10, 4)
dim(final_memory_state) # (32, 4)
dim(final_carry_state) # (32, 4)

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTMCell
Other RNN cell layers: layer_gru_cell(), layer_simple_rnn_cell(), layer_stacked_rnn_cells()

https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTMCell

layer_masking 307

layer_masking Masks a sequence by using a mask value to skip timesteps.

Description

For each timestep in the input tensor (dimension #1 in the tensor), if all values in the input tensor at
that timestep are equal to mask_value, then the timestep will be masked (skipped) in all downstream
layers (as long as they support masking). If any downstream layer does not support masking yet
receives such an input mask, an exception will be raised.

Usage

layer_masking(
object,
mask_value = 0,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
mask_value float, mask value
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.

308 layer_maximum

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_lambda(), layer_permute(), layer_repeat_vector(), layer_reshape()

layer_maximum Layer that computes the maximum (element-wise) a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage
layer_maximum(inputs, ...)
Arguments
inputs A list of input tensors (at least 2). Can be missing.
Standard layer arguments (must be named).
Value

A tensor, the element-wise maximum of the inputs. If inputs is missing, a keras layer instance is
returned.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/maximum
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Maximum
e https://keras.io/api/layers/merging_layers/maximum

Other merge layers: layer_average(), layer_concatenate(), layer_dot (), layer_minimum(),
layer_multiply(), layer_subtract()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/maximum
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Maximum
https://keras.io/api/layers/merging_layers/maximum

layer_max_pooling_1d

309

layer_max_pooling_1d Max pooling operation for temporal data.

Description

Max pooling operation for temporal data.

Usage
layer_max_pooling_1d(
object,
pool_size = 2L,
strides = NULL,
padding = "valid”,
data_format = "channels_last",
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
pool_size Integer, size of the max pooling windows.
strides Integer, or NULL. Factor by which to downscale. E.g. 2 will halve the input. If
NULL, it will default to pool_size.
padding One of "valid"” or "same" (case-insensitive).

data_format

batch_size

name

trainable

weights

A string, one of "channels_last" (default) or "channels_first". The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first corresponds to inputs with shape
(batch, features, steps).

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

310 layer_max_pooling_2d

Input Shape
If data_format="channels_last’: 3D tensor with shape (batch_size, steps, features). If data_format="channels_first’:
3D tensor with shape (batch_size, features, steps).
Output shape
If data_format="channels_last’: 3D tensor with shape (batch_size, downsampled_steps, features).
If data_format="channels_first’: 3D tensor with shape (batch_size, features, downsampled_steps).
See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_2d(), layer_global_max_pooling_3d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_max_pooling_2d Max pooling operation for spatial data.

Description

Max pooling operation for spatial data.

Usage

layer_max_pooling_2d(
object,
pool_size = c(2L, 2L),
strides = NULL,
padding = "valid”,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.

layer_max_pooling_3d 311

pool_size integer or list of 2 integers, factors by which to downscale (vertical, horizontal).
(2, 2) will halve the input in both spatial dimension. If only one integer is
specified, the same window length will be used for both dimensions.

strides Integer, list of 2 integers, or NULL. Strides values. If NULL, it will default to
pool_size.

padding One of "valid"” or "same" (case-insensitive).

data_format A string, one of channels_last (default) or channels_first. The ordering of

the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

» Ifdata_format="'channels_last': 4D tensor with shape: (batch_size, rows, cols, channels)

» Ifdata_format="'channels_first': 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape

» Ifdata_format="'channels_last': 4D tensor with shape: (batch_size, pooled_rows, pooled_cols, chan-
nels)

» Ifdata_format="'channels_first': 4D tensor with shape: (batch_size, channels, pooled_rows, pooled_cols)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_2d(), layer_global_max_pooling_3d(),
layer_max_pooling_1d(), layer_max_pooling_3d()

layer_max_pooling_3d Max pooling operation for 3D data (spatial or spatio-temporal).

Description

Max pooling operation for 3D data (spatial or spatio-temporal).

312 layer_max_pooling_3d

Usage

layer_max_pooling_3d(
object,
pool_size = c(2L, 2L, 2L),
strides = NULL,
padding = "valid”,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned
pool_size list of 3 integers, factors by which to downscale (diml, dim2, dim3). (2, 2, 2)
will halve the size of the 3D input in each dimension.
strides list of 3 integers, or NULL. Strides values.
padding One of "valid” or "same" (case-insensitive).
data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

* If data_format='channels_last': 5D tensor with shape: (batch_size, spatial_diml, spa-
tial_dim?2, spatial_dim3, channels)

e Ifdata_format="'channels_first': 5D tensor with shape: (batch_size, channels, spatial_dim1, spa-
tial_dim?2, spatial_dim3)

layer_minimum 313

Output shape

e Ifdata_format="'channels_last': 5D tensor with shape: (batch_size, pooled_dim1, pooled_dim2, pooled_dim3, cha
nels)

e Ifdata_format="'channels_first': 5D tensor with shape: (batch_size, channels, pooled_dim1, pooled_dim?2, pooled

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_2d(), layer_global_max_pooling_3d(),
layer_max_pooling_1d(), layer_max_pooling_2d()

layer_minimum Layer that computes the minimum (element-wise) a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage
layer_minimum(inputs, ...)
Arguments
inputs A list of input tensors (at least 2). Can be missing.
Standard layer arguments (must be named).
Value

A tensor, the element-wise maximum of the inputs. If inputs is missing, a keras layer instance is
returned.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/minimum
* https://www.tensorflow.org/api_docs/python/tf/keras/layers/Minimum
e https://keras.io/api/layers/merging_layers/minimum

Other merge layers: layer_average(), layer_concatenate(), layer_dot(), layer_maximum(),
layer_multiply(), layer_subtract()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/minimum
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Minimum
https://keras.io/api/layers/merging_layers/minimum

314 layer_multi_head_attention

layer_multiply Layer that multiplies (element-wise) a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage
layer_multiply(inputs, ...)
Arguments
inputs A list of input tensors (at least 2). Can be missing.
Standard layer arguments (must be named).
Value

A tensor, the element-wise product of the inputs. If inputs is missing, a keras layer instance is
returned.

See Also
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/multiply
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Multiply
e https://keras.io/api/layers/merging_layers/multiply

Other merge layers: layer_average(), layer_concatenate(), layer_dot(), layer_maximum(),
layer_minimum(), layer_subtract()

layer_multi_head_attention
MultiHeadAttention layer

Description

This is an implementation of multi-headed attention based on "Attention is all you Need". If query,
key, value are the same, then this is self-attention. Each timestep in query attends to the correspond-
ing sequence in key, and returns a fixed-width vector.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/multiply
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Multiply
https://keras.io/api/layers/merging_layers/multiply

layer_multi_head_attention 315

Usage

layer_multi_head_attention(
inputs,
num_heads,
key_dim,
value_dim =
dropout = 0,
use_bias = TRUE,
output_shape = NULL,
attention_axes = NULL,
kernel_initializer = "glorot_uniform"”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,

NULL,

)
Arguments
inputs a list of inputs first should be the query tensor, the second the value tensor
num_heads Number of attention heads.
key_dim Size of each attention head for query and key.
value_dim Size of each attention head for value.
dropout Dropout probability.
use_bias Boolean, whether the dense layers use bias vectors/matrices.

output_shape The expected shape of an output tensor, besides the batch and sequence dims. If
not specified, projects back to the key feature dim.

attention_axes axes over which the attention is applied. None means attention over all axes, but

batch, heads, and features.
kernel_initializer

Initializer for dense layer kernels.
bias_initializer

Initializer for dense layer biases.
kernel_regularizer

Regularizer for dense layer kernels.
bias_regularizer

Regularizer for dense layer biases.
activity_regularizer

Regularizer for dense layer activity.
kernel_constraint

Constraint for dense layer kernels.

316 layer_normalization

bias_constraint
Constraint for dense layer kernels.

Other arguments passed to the layer. Eg, name, training.

Details

This layer first projects query, key and value. These are (effectively) a list of tensors of length
num_attention_heads, where the corresponding shapes are [batch_size, , key_dim], [batch_size, , key_dim],
[batch_size, , value_dim].

Then, the query and key tensors are dot-producted and scaled. These are softmaxed to obtain atten-
tion probabilities. The value tensors are then interpolated by these probabilities, then concatenated
back to a single tensor.

Finally, the result tensor with the last dimension as value_dim can take an linear projection and
return.

Value

* attention_output: The result of the computation, of shape [B, T, E], where T is for target
sequence shapes and E is the query input last dimension if output_shape is None. Otherwise,
the multi-head outputs are project to the shape specified by output_shape.

* attention_scores: (Optional) multi-head attention coeffients over attention axes.

Call arguments

 query: Query Tensor of shape [B, T, dim].
* value: Value Tensor of shape [B, S, dim].

* key: Optional key Tensor of shape [B, S, dim]. If not given, will use value for both key and
value, which is the most common case.

* attention_mask: a boolean mask of shape [B, T, S], that prevents attention to certain positions.

* return_attention_scores: A boolean to indicate whether the output should be attention output
if TRUE, or (attention_output, attention_scores) if FALSE. Defaults to FALSE.

e training: Python boolean indicating whether the layer should behave in training mode (adding
dropout) or in inference mode (no dropout). Defaults to either using the training mode of the
parent layer/model, or FALSE (inference) if there is no parent layer.

layer_normalization A preprocessing layer which normalizes continuous features.

Description

A preprocessing layer which normalizes continuous features.

Usage

layer_normalization(object, axis = -1L, mean = NULL, variance = NULL, ...)

layer_normalization 317

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

axis Integer, list of integers, or NULL. The axis or axes that should have a sepa-
rate mean and variance for each index in the shape. For example, if shape is
(NULL, 5) and axis=1, the layer will track 5 separate mean and variance values
for the last axis. If axis is set to NULL, the layer will normalize all elements in
the input by a scalar mean and variance. Defaults to -1, where the last axis of the
input is assumed to be a feature dimension and is normalized per index. Note
that in the specific case of batched scalar inputs where the only axis is the batch
axis, the default will normalize each index in the batch separately. In this case,
consider passing axis = NULL.

mean The mean value(s) to use during normalization. The passed value(s) will be
broadcast to the shape of the kept axes above; if the value(s) cannot be broadcast,
an error will be raised when this layer’s build() method is called.

variance The variance value(s) to use during normalization. The passed value(s) will be
broadcast to the shape of the kept axes above; if the value(s) cannot be broadcast,
an error will be raised when this layer’s build() method is called.

standard layer arguments.

Details

This layer will shift and scale inputs into a distribution centered around O with standard deviation
1. It accomplishes this by precomputing the mean and variance of the data, and calling (input
-mean) / sqrt(var) at runtime.

The mean and variance values for the layer must be either supplied on construction or learned via
adapt(). adapt() will compute the mean and variance of the data and store them as the layer’s
weights. adapt () should be called before fit(), evaluate(), or predict().

See Also
e adapt()
* https://www.tensorflow.org/api_docs/python/tf/keras/layers/Normalization
* https://keras.io/api/layers/preprocessing_layers/numerical/normalization
Other numerical features preprocessing layers: layer_discretization()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_random_contrast(), layer_random_crop(),
layer_random_flip(), layer_random_height(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Normalization
https://keras.io/api/layers/preprocessing_layers/numerical/normalization

318

layer_permute

layer_permute

Permute the dimensions of an input according to a given pattern

Description

Permute the dimensions of an input according to a given pattern

Usage

layer_permute(
object,
dims,
input_shape =
batch_input_s
batch_size =
dtype = NULL,
name = NULL,
trainable = N
weights = NUL

Arguments

object

dims

input_shape

batch_input_sha

batch_size
dtype

name

trainable

weights

NULL,
hape = NULL,
NULL,

ULL,
L

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned
List of integers. Permutation pattern, does not include the samples dimension.
Indexing starts at 1. For instance, (2, 1) permutes the first and second dimension
of the input.

Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

pe

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

layer_random_contrast 319

Input and Output Shapes

Input shape: Arbitrary

Output shape: Same as the input shape, but with the dimensions re-ordered according to the speci-
fied pattern.
Note

Useful for e.g. connecting RNNs and convnets together.

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_lambda(), layer_masking(), layer_repeat_vector(), layer_reshape()

layer_random_contrast Adjust the contrast of an image or images by a random factor

Description

Adjust the contrast of an image or images by a random factor

Usage
layer_random_contrast(object, factor, seed = NULL, ...)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
factor a positive float represented as fraction of value, or a list of size 2 representing
lower and upper bound. When represented as a single float, lower = upper. The
contrast factor will be randomly picked between [1.0 - lower, 1.0 + upper].
seed Integer. Used to create a random seed.

standard layer arguments.

320 layer_random_crop

Details

Contrast is adjusted independently for each channel of each image during training.

For each channel, this layer computes the mean of the image pixels in the channel and then adjusts
each component x of each pixel to (x -mean) * contrast_factor + mean.

Input shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in
"channels_last" format.

Output shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in
"channels_last"” format.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomContrast
e https://keras.io/api/layers/preprocessing_layers/

Other image augmentation layers: layer_random_crop(), layer_random_flip(), layer_random_height(),
layer_random_rotation(), layer_random_translation(), layer_random_width(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_crop(),
layer_random_f1lip(), layer_random_height (), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_random_crop Randomly crop the images to target height and width

Description

Randomly crop the images to target height and width

Usage
layer_random_crop(object, height, width, seed = NULL, ...)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
height Integer, the height of the output shape.
width Integer, the width of the output shape.
seed Integer. Used to create a random seed.

standard layer arguments.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomContrast
https://keras.io/api/layers/preprocessing_layers/

layer_random_{lip 321

Details

This layer will crop all the images in the same batch to the same cropping location. By default,
random cropping is only applied during training. At inference time, the images will be first rescaled
to preserve the shorter side, and center cropped. If you need to apply random cropping at inference
time, set training to TRUE when calling the layer.

Input shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in
"channels_last"” format.

Output shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., target_height, target_width, chan-
nels).

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomCrop

* https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_
crop

Other image augmentation layers: layer_random_contrast(), layer_random_flip(), layer_random_height(),
layer_random_rotation(), layer_random_translation(), layer_random_width(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_f1lip(), layer_random_height(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_random_flip Randomly flip each image horizontally and vertically

Description

Randomly flip each image horizontally and vertically

Usage
layer_random_flip(object, mode = "horizontal_and_vertical”, seed = NULL, ...)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
mode String indicating which flip mode to use. Can be "horizontal”, "vertical”,

or "horizontal_and_vertical”. Defaults to "horizontal_and_vertical”.
"horizontal” is a left-right flip and "vertical” is a top-bottom flip.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomCrop
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_crop
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_crop

322 layer_random_height

seed Integer. Used to create a random seed.

standard layer arguments.

Details

This layer will flip the images based on the mode attribute. During inference time, the output will
be identical to input. Call the layer with training = TRUE to flip the input.

Input shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in
"channels_last"” format.

Output shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in
"channels_last"” format.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomFlip

e https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_
flip

Other image augmentation layers: layer_random_contrast(), layer_random_crop(), layer_random_height(),
layer_random_rotation(), layer_random_translation(), layer_random_width(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_height(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_random_height Randomly vary the height of a batch of images during training

Description

Randomly vary the height of a batch of images during training

Usage
layer_random_height(
object,
factor,
interpolation = "bilinear”,
seed = NULL,

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomFlip
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_flip
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_flip

layer_random_rotation 323

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

factor A positive float (fraction of original height), or a list of size 2 representing lower
and upper bound for resizing vertically. When represented as a single float,
this value is used for both the upper and lower bound. For instance, factor =
c(0.2,0.3) results in an output with height changed by a random amount in
the range [20%, 30%]. factor = c(-0.2,0.3) results in an output with height
changed by a random amount in the range [-20%, +30%]. factor=0. 2 results in
an output with height changed by a random amount in the range [-20%, +20%].

interpolation String, the interpolation method. Defaults to "bilinear”. Supports "bilinear”,

non non

"nearest”, "bicubic”, "area”, "lanczos3", "lanczos5", "gaussian", "mitchellcubic”.
seed Integer. Used to create a random seed.

standard layer arguments.

Details
Adjusts the height of a batch of images by a random factor. The input should be a 3D (unbatched)
or 4D (batched) tensor in the "channels_last" image data format.

By default, this layer is inactive during inference.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomHeight
e https://keras.io/api/layers/preprocessing_layers/

Other image augmentation layers: layer_random_contrast(), layer_random_crop(), layer_random_flip(),
layer_random_rotation(), layer_random_translation(), layer_random_width(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_flip(), layer_random_rotation(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_random_rotation Randomly rotate each image

Description

Randomly rotate each image

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomHeight
https://keras.io/api/layers/preprocessing_layers/

324 layer_random_rotation

Usage
layer_random_rotation(
object,
factor,
fill_mode = "reflect”,
interpolation = "bilinear"”,
seed = NULL,

fill_value = 0,

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

factor a float represented as fraction of 2 Pi, or a list of size 2 representing lower and
upper bound for rotating clockwise and counter-clockwise. A positive values
means rotating counter clock-wise, while a negative value means clock-wise.
When represented as a single float, this value is used for both the upper and
lower bound. For instance, factor = c(-0.2,0.3) results in an output rotation
by a random amount in the range [-20% * 2pi, 30% * 2pi]. factor = @. 2 results
in an output rotating by a random amount in the range [-20% * 2pi, 20% * 2pi].

fill_mode Points outside the boundaries of the input are filled according to the given mode

non non non

(one of {"constant", "reflect", "wrap", "nearest"}).
* reflect: (dcbalabcdldcba) The input is extended by reflecting about
the edge of the last pixel.

* constant: (kkkklabcdlkkk k) The input is extended by filling all
values beyond the edge with the same constant value k = 0.

* wrap: (abcdlabcdlabcd)The input is extended by wrapping around
to the opposite edge.

* nearest: (aaaalabcdldddd) The input is extended by the nearest
pixel.

interpolation Interpolation mode. Supported values: "nearest”, "bilinear”.
seed Integer. Used to create a random seed.
fill_value a float represents the value to be filled outside the boundaries when fill_mode="constant".

standard layer arguments.

Details

By default, random rotations are only applied during training. At inference time, the layer does
nothing. If you need to apply random rotations at inference time, set training to TRUE when
calling the layer.

layer_random_translation 325

Input shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in
"channels_last"” format

Output shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in
"channels_last"” format

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomRotation
* https://keras.io/api/layers/preprocessing_layers/

Other image augmentation layers: layer_random_contrast(), layer_random_crop(), layer_random_flip(),
layer_random_height(), layer_random_translation(), layer_random_width(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_flip(), layer_random_height(), layer_random_translation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

layer_random_translation
Randomly translate each image during training

Description

Randomly translate each image during training

Usage

layer_random_translation(
object,
height_factor,
width_factor,
fill_mode = "reflect”,
interpolation = "bilinear”,
seed = NULL,
fill_value = 0,

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomRotation
https://keras.io/api/layers/preprocessing_layers/

326 layer_random_translation

* a Tensor, the output tensor from layer_instance(object) is returned.

height_factor a float represented as fraction of value, or a list of size 2 representing lower
and upper bound for shifting vertically. A negative value means shifting image
up, while a positive value means shifting image down. When represented as
a single positive float, this value is used for both the upper and lower bound.
For instance, height_factor = c¢(-0.2,0.3) results in an output shifted by a
random amount in the range [-20%, +30%]. height_factor = @. 2 results in an
output height shifted by a random amount in the range [-20%, +20%].

width_factor a float represented as fraction of value, or a list of size 2 representing lower and
upper bound for shifting horizontally. A negative value means shifting image
left, while a positive value means shifting image right. When represented as
a single positive float, this value is used for both the upper and lower bound.
For instance, width_factor = c(-0.2,0.3) results in an output shifted left by
20%, and shifted right by 30%. width_factor = 0.2 results in an output height
shifted left or right by 20%.

fill_mode Points outside the boundaries of the input are filled according to the given mode

non non non

(one of {"constant", "reflect", "wrap", "nearest"}).
* reflect: (dcbalabcdldcb a)The input is extended by reflecting about
the edge of the last pixel.

» constant: (kkkklabcdlkkkk) The input is extended by filling all
values beyond the edge with the same constant value k = 0.

* wrap: (abcdlabcdlabcd)The input is extended by wrapping around
to the opposite edge.

* nearest: (aaaalabcdldddd) The input is extended by the nearest
pixel.

interpolation Interpolation mode. Supported values: "nearest”, "bilinear”.
seed Integer. Used to create a random seed.
fill_value a float represents the value to be filled outside the boundaries when fill_mode="constant".

standard layer arguments.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomTranslation
* https://keras.io/api/layers/preprocessing_layers/

Other image augmentation layers: layer_random_contrast(), layer_random_crop(), layer_random_flip(),
layer_random_height(), layer_random_rotation(), layer_random_width(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_f1lip(), layer_random_height(), layer_random_rotation(),
layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(),
layer_text_vectorization()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomTranslation
https://keras.io/api/layers/preprocessing_layers/

layer_random_width 327

layer_random_width Randomly vary the width of a batch of images during training

Description

Randomly vary the width of a batch of images during training

Usage
layer_random_width(
object,
factor,
interpolation = "bilinear”,
seed = NULL,
)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
factor A positive float (fraction of original height), or a list of size 2 representing lower

and upper bound for resizing vertically. When represented as a single float,
this value is used for both the upper and lower bound. For instance, factor =
c(0.2,0.3) results in an output with width changed by a random amount in the
range [20%, 30%]. factor=(-0.2, 0.3) results in an output with width changed by
a random amount in the range [-20%, +30%]. factor = @. 2 results in an output
with width changed by a random amount in the range [-20%, +20%].

interpolation String, the interpolation method. Defaults to bilinear. Supports "bilinear”,
"nearest”, "bicubic”, "area”, "lanczos3", "lanczos5”, "gaussian”, "mitchellcubic”.

il

seed Integer. Used to create a random seed.

standard layer arguments.

Details

Adjusts the width of a batch of images by a random factor. The input should be a 3D (unbatched)
or 4D (batched) tensor in the "channels_last"” image data format.

By default, this layer is inactive during inference.

328 layer_random_zoom

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomWidth
* https://keras.io/api/layers/preprocessing_layers/

Other image augmentation layers: layer_random_contrast(), layer_random_crop(), layer_random_f1lip(),
layer_random_height(), layer_random_rotation(), layer_random_translation(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_flip(), layer_random_height(), layer_random_rotation(),
layer_random_translation(), layer_random_zoom(), layer_rescaling(), layer_resizing(),
layer_string_lookup(), layer_text_vectorization()

layer_random_zoom A preprocessing layer which randomly zooms images during training.

Description

This layer will randomly zoom in or out on each axis of an image independently, filling empty space
according to fill_mode.

Usage

layer_random_zoom(
object,
height_factor,
width_factor = NULL,
fill_mode = "reflect”,
interpolation = "bilinear”,
seed = NULL,
fill_value = 0,

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
height_factor afloat represented as fraction of value, or a list of size 2 representing lower and
upper bound for zooming vertically. When represented as a single float, this
value is used for both the upper and lower bound. A positive value means zoom-

ing out, while a negative value means zooming in. For instance, height_factor
=¢(0.2,0.3) result in an output zoomed out by a random amount in the range

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomWidth
https://keras.io/api/layers/preprocessing_layers/

layer_repeat_vector 329

[+20%, +30%]. height_factor = c(-0.3,-0.2) result in an output zoomed in
by a random amount in the range [+20%, +30%].

width_factor a float represented as fraction of value, or a list of size 2 representing lower and
upper bound for zooming horizontally. When represented as a single float, this
value is used for both the upper and lower bound. For instance, width_factor =
c(0.2,0.3) resultin an output zooming out between 20% to 30%. width_factor
=c(-0.3,-0.2) result in an output zooming in between 20% to 30%. Defaults
to NULL, i.e., zooming vertical and horizontal directions by preserving the aspect
ratio.

fill_mode Points outside the boundaries of the input are filled according to the given mode

non non non

(one of {"constant", "reflect", "wrap", "nearest"}).
* reflect: (dcbalabcdldcba) The input is extended by reflecting about
the edge of the last pixel.

* constant: (kkkklabcdlkkk k) The input is extended by filling all
values beyond the edge with the same constant value k = 0.

* wrap: (abcdlabcdlabcd)The input is extended by wrapping around
to the opposite edge.

* nearest: (aaaalabcdldddd) The input is extended by the nearest
pixel.

interpolation Interpolation mode. Supported values: "nearest”, "bilinear”.
seed Integer. Used to create a random seed.
fill_value a float represents the value to be filled outside the boundaries when fill_mode="constant”.

standard layer arguments.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomZoom
e https://keras.io/api/layers/preprocessing_layers/

Other image augmentation layers: layer_random_contrast(), layer_random_crop(), layer_random_flip(),
layer_random_height(), layer_random_rotation(), layer_random_translation(), layer_random_width()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_flip(), layer_random_height (), layer_random_rotation(),
layer_random_translation(), layer_random_width(), layer_rescaling(), layer_resizing(),
layer_string_lookup(), layer_text_vectorization()

layer_repeat_vector Repeats the input n times.

Description

Repeats the input n times.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomZoom
https://keras.io/api/layers/preprocessing_layers/

330

Iayer_repea t_vector

Usage
layer_repeat_vector(
object,
n)
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
n integer, repetition factor.
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

2D tensor of shape (num_samples, features).

Output shape

3D tensor of shape (num_samples, n, features).

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_lambda(), layer_masking(), layer_permute(), layer_reshape()

layer_rescaling 331

layer_rescaling Multiply inputs by scale and adds offset

Description

Multiply inputs by scale and adds offset

Usage
layer_rescaling(object, scale, offset = 0, ...)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
scale Float, the scale to apply to the inputs.
offset Float, the offset to apply to the inputs.
standard layer arguments.
Details

For instance:

1. Torescale an input in the [0, 255] range to be in the [0, 1] range, you would pass scale=1./255.
2. Torescale an input in the [0, 255] range to be in the [-1, 1] range, you would pass scale = 1/127.5, oft-
set=-1.
The rescaling is applied both during training and inference.
Input shape: Arbitrary.

Output shape: Same as input.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Rescaling

* https://keras.io/api/layers/preprocessing_layers/image_preprocessing/rescaling
Other image preprocessing layers: layer_center_crop(), layer_resizing()
Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_f1lip(), layer_random_height(), layer_random_rotation(),

layer_random_translation(), layer_random_width(), layer_random_zoom(), layer_resizing(),
layer_string_lookup(), layer_text_vectorization()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Rescaling
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/rescaling

332

layer_reshape

layer_reshape

Reshapes an output to a certain shape.

Description

Reshapes an output to a certain shape.

Usage

layer_reshape(

object,

target_shape,
input_shape

NULL,

batch_input_shape = NULL,

NULL,

NULL,

batch_size
dtype = NULL,
name = NULL,
trainable
weights = NULL

)

Arguments
object

target_shape

input_shape

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

* a Sequential model, the model with an additional layer is returned

* a Tensor, the output tensor from layer_instance(object) is returned

List of integers, does not include the samples dimension (batch size).

Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

trainable

weights

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

layer_resizing 333

Input and Output Shapes

Input shape: Arbitrary, although all dimensions in the input shaped must be fixed.
Output shape: (batch_size,) + target_shape.

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_lambda(), layer_masking(), layer_permute(), layer_repeat_vector()

layer_resizing Image resizing layer

Description

Image resizing layer

Usage

layer_resizing(
object,
height,
width,
interpolation = "bilinear”,
crop_to_aspect_ratio = FALSE,

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
height Integer, the height of the output shape.
width Integer, the width of the output shape.

interpolation String, the interpolation method. Defaults to "bilinear”. Supports "bilinear”,
"nearest”, "bicubic”, "area”, "lanczos3", "lanczos5”, "gaussian”, and
"mitchellcubic”.

crop_to_aspect_ratio
If TRUE, resize the images without aspect ratio distortion. When the original as-
pect ratio differs from the target aspect ratio, the output image will be cropped so
as to return the largest possible window in the image (of size (height, width)) that
matches the target aspect ratio. By default (crop_to_aspect_ratio = FALSE),

aspect ratio may not be preserved.

334 layer_rnn
standard layer arguments.

Details

Resize the batched image input to target height and width. The input should be a 4D (batched) or
3D (unbatched) tensor in "channels_last"” format.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Resizing
* https://keras.io/api/layers/preprocessing_layers/image_preprocessing/resizing
Other image preprocessing layers: layer_center_crop(), layer_rescaling()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_f1lip(), layer_random_height(), layer_random_rotation(),
layer_random_translation(), layer_random_width(), layer_random_zoom(), layer_rescaling(),
layer_string_lookup(), layer_text_vectorization()

layer_rnn Base class for recurrent layers

Description

Base class for recurrent layers

Usage

layer_rnn(
object,
cell,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
unroll = FALSE,
time_major = FALSE,

L

zero_output_for_mask = FALSE

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Resizing
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/resizing

layer_rnn 335

* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

cell A RNN cell instance or a list of RNN cell instances. A RNN cell is a class that
has:

e Acall(input_at_t,states_at_t) method, returning (output_at_t, states_at_t_plus_1).
The call method of the cell can also take the optional argument constants,
see section "Note on passing external constants" below.
* A state_size attribute. This can be a single integer (single state) in which
case it is the size of the recurrent state. This can also be a list of integers
(one size per state). The state_size can also be TensorShape or list of

TensorShape, to represent high dimension state.

* A output_size attribute. This can be a single integer or a TensorShape,
which represent the shape of the output. For backward compatible reason,
if this attribute is not available for the cell, the value will be inferred by the
first element of the state_size.

e Aget_initial_state(inputs=NULL,batch_size=NULL,dtype=NULL) method
that creates a tensor meant to be fed to call() as the initial state, if the
user didn’t specify any initial state via other means. The returned initial
state should have a shape of [batch_size, cell$state_size]. The cell might
choose to create a tensor full of zeros, or full of other values based on the
cell’s implementation. inputs is the input tensor to the RNN layer, which
should contain the batch size as first dimension (inputs$shape[1]), and
also dtype (inputs$dtype). Note that the shape[1] might be NULL dur-
ing the graph construction. Either the inputs or the pair of batch_size
and dtype are provided. batch_size is a scalar tensor that represents the
batch size of the inputs. dtype is tf.DType that represents the dtype of
the inputs. For backward compatibility, if this method is not implemented
by the cell, the RNN layer will create a zero filled tensor with the size of
[batch_size, cell$state_size]. In the case that cell is a list of RNN cell in-
stances, the cells will be stacked on top of each other in the RNN, resulting
in an efficient stacked RNN.

return_sequences
Boolean (default FALSE). Whether to return the last output in the output se-
quence, or the full sequence.

return_state Boolean (default FALSE). Whether to return the last state in addition to the out-
put.

go_backwards Boolean (default FALSE). If TRUE, process the input sequence backwards and
return the reversed sequence.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in
a batch will be used as initial state for the sample of index i in the following
batch.

unroll Boolean (default FALSE). If TRUE, the network will be unrolled, else a symbolic

loop will be used. Unrolling can speed-up a RNN, although it tends to be more
memory-intensive. Unrolling is only suitable for short sequences.

time_major The shape format of the inputs and outputs tensors. If TRUE, the inputs and
outputs will be in shape (timesteps, batch, ...), whereas in the FALSE case, it

336

layer_rnn

will be (batch, timesteps, ...). Using time_major = TRUE is a bit more efficient
because it avoids transposes at the beginning and end of the RNN calculation.
However, most TensorFlow data is batch-major, so by default this function ac-
cepts input and emits output in batch-major form.

standard layer arguments.

zero_output_for_mask

Details

Boolean (default FALSE). Whether the output should use zeros for the masked
timesteps. Note that this field is only used when return_sequences is TRUE
and mask is provided. It can useful if you want to reuse the raw output sequence
of the RNN without interference from the masked timesteps, eg, merging bidi-
rectional RNNs.

See the Keras RNN API guide for details about the usage of RNN API.

Call arguments

inputs: Input tensor.

mask: Binary tensor of shape [batch_size, timesteps] indicating whether a given timestep
should be masked. An individual TRUE entry indicates that the corresponding timestep should
be utilized, while a FALSE entry indicates that the corresponding timestep should be ignored.

training: R or Python Boolean indicating whether the layer should behave in training mode
or in inference mode. This argument is passed to the cell when calling it. This is for use with
cells that use dropout.

initial_state: List of initial state tensors to be passed to the first call of the cell.

constants: List of constant tensors to be passed to the cell at each timestep.

Input shapes

N-D tensor with shape (batch_size, timesteps, ...), or (timesteps, batch_size, ...) when time_major
= TRUE.

Output shape

Masking

if return_state: a list of tensors. The first tensor is the output. The remaining tensors are
the last states, each with shape (batch_size, state_size), where state_size could be a high
dimension tensor shape.

if return_sequences: N-D tensor with shape [batch_size, timesteps, output_size], where
output_size could be a high dimension tensor shape, or [timesteps, batch_size, output_size]
when time_major is TRUE

else, N-D tensor with shape [batch_size, output_size], where output_size could be a high
dimension tensor shape.

This layer supports masking for input data with a variable number of timesteps. To introduce masks
to your data, use layer_embedding() with the mask_zero parameter set to TRUE.

https://www.tensorflow.org/guide/keras/rnn

layer_rnn 337

Statefulness in RNNs

You can set RNN layers to be ’stateful’, which means that the states computed for the samples in
one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one
mapping between samples in different successive batches.

For intuition behind statefulness, there is a helpful blog post here: https://philipperemy.github.
io/keras-stateful-1stm/

To enable statefulness:

* Specify stateful = TRUE in the layer constructor.

* Specify a fixed batch size for your model. For sequential models, pass batch_input_shape =
list(...) to the first layer in your model. For functional models with 1 or more Input layers,
pass batch_shape = 1list(...) toall the first layers in your model. This is the expected shape
of your inputs including the batch size. It should be a list of integers, e.g. 1ist(32,10,100).
For dimensions which can vary (are not known ahead of time), use NULL in place of an integer,
e.g. 1list(32,NULL,NULL).

* Specify shuffle = FALSE when calling fit().

To reset the states of your model, call layer$reset_states() on either a specific layer, or on your
entire model.

Initial State of RNNs

You can specify the initial state of RNN layers symbolically by calling them with the keyword ar-
gument initial_state. The value of initial_state should be a tensor or list of tensors representing
the initial state of the RNN layer.

You can specify the initial state of RNN layers numerically by calling reset_states with the
named argument states. The value of states should be an array or list of arrays representing the
initial state of the RNN layer.

Passing external constants to RNNs

You can pass "external" constants to the cell using the constants named argument of RNN$__call__
(as well as RNN$call) method. This requires that the cel1$call method accepts the same keyword
argument constants. Such constants can be used to condition the cell transformation on additional
static inputs (not changing over time), a.k.a. an attention mechanism.

See Also
e https://www.tensorflow.org/guide/keras/rnn
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/RNN

* https://keras.io/api/layers/recurrent_layers/rnn

* reticulate: :py_help(keras$layers$RNN)

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_gru(), layer_lstm(),
layer_simple_rnn()

https://philipperemy.github.io/keras-stateful-lstm/
https://philipperemy.github.io/keras-stateful-lstm/
https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/api_docs/python/tf/keras/layers/RNN
https://keras.io/api/layers/recurrent_layers/rnn

338 layer_separable_conv_1d

layer_separable_conv_1d
Depthwise separable 1D convolution.

Description

Separable convolutions consist in first performing a depthwise spatial convolution (which acts on
each input channel separately) followed by a pointwise convolution which mixes together the re-
sulting output channels. The depth_multiplier argument controls how many output channels are
generated per input channel in the depthwise step. Intuitively, separable convolutions can be under-
stood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version
of an Inception block.

Usage

layer_separable_conv_1d(
object,
filters,
kernel_size,
strides = 1,
padding = "valid”,
data_format = "channels_last",
dilation_rate = 1,
depth_multiplier = 1,
activation = NULL,
use_bias = TRUE,

depthwise_initializer = "glorot_uniform”,
pointwise_initializer = "glorot_uniform”,
bias_initializer = "zeros",

depthwise_regularizer = NULL,
pointwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
pointwise_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

layer_separable_conv_1d 339

Arguments

object

filters

kernel_size

strides

padding

data_format

dilation_rate

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

one of "valid” or "same"” (case-insensitive).

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

an integer or list of 2 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-
mensions. Currently, specifying any dilation_rate value != 1 is incompatible
with specifying any stride value != 1.

depth_multiplier

activation

use_bias

The number of depthwise convolution output channels for each input channel.
The total number of depthwise convolution output channels will be equal to
filters_in x depth_multiplier.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

depthwise_initializer

Initializer for the depthwise kernel matrix.

pointwise_initializer

Initializer for the pointwise kernel matrix.

bias_initializer

Initializer for the bias vector.

depthwise_regularizer

Regularizer function applied to the depthwise kernel matrix.

pointwise_regularizer

Regularizer function applied to the pointwise kernel matrix.

340 layer_separable_conv_1d

bias_regularizer

Regularizer function applied to the bias vector.
activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..
depthwise_constraint

Constraint function applied to the depthwise kernel matrix.
pointwise_constraint

Constraint function applied to the pointwise kernel matrix.

bias_constraint
Constraint function applied to the bias vector.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch, channels, steps) if data_format="channels_first’ or 3D tensor with
shape: (batch, steps, channels) if data_format="channels_last’.

Output shape

3D tensor with shape: (batch, filters, new_steps) if data_format="channels_first’ or 3D tensor with
shape: (batch, new_steps, filters) if data_format="channels_last’. new_steps values might have
changed due to padding or strides.

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(), layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_separable_conv_2d 341

layer_separable_conv_2d
Separable 2D convolution.

Description

Separable convolutions consist in first performing a depthwise spatial convolution (which acts on
each input channel separately) followed by a pointwise convolution which mixes together the re-
sulting output channels. The depth_multiplier argument controls how many output channels are
generated per input channel in the depthwise step. Intuitively, separable convolutions can be under-
stood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version
of an Inception block.

Usage

layer_separable_conv_2d(
object,
filters,
kernel_size,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = 1,
depth_multiplier = 1,
activation = NULL,
use_bias = TRUE,

depthwise_initializer = "glorot_uniform”,
pointwise_initializer = "glorot_uniform”,
bias_initializer = "zeros",

depthwise_regularizer = NULL,
pointwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
pointwise_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

342

Arguments

object

filters

kernel_size

strides

padding

data_format

dilation_rate

layer_separable_conv_2d

What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

one of "valid” or "same"” (case-insensitive).

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

an integer or list of 2 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-
mensions. Currently, specifying any dilation_rate value != 1 is incompatible
with specifying any stride value != 1.

depth_multiplier

activation

use_bias

The number of depthwise convolution output channels for each input channel.
The total number of depthwise convolution output channels will be equal to
filters_in x depth_multiplier.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

depthwise_initializer

Initializer for the depthwise kernel matrix.

pointwise_initializer

Initializer for the pointwise kernel matrix.

bias_initializer

Initializer for the bias vector.

depthwise_regularizer

Regularizer function applied to the depthwise kernel matrix.

pointwise_regularizer

Regularizer function applied to the pointwise kernel matrix.

layer_separable_conv_2d 343

bias_regularizer

Regularizer function applied to the bias vector.
activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..
depthwise_constraint

Constraint function applied to the depthwise kernel matrix.
pointwise_constraint

Constraint function applied to the pointwise kernel matrix.

bias_constraint
Constraint function applied to the bias vector.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape: (batch, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (batch, rows, cols, channels) if data_format="channels_last’.

Output shape

4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format="channels_first’ or 4D
tensor with shape: (batch, new_rows, new_cols, filters) if data_format="channels_last’. rows and
cols values might have changed due to padding.

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_upsampling_1d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

344 layer_simple_rnn

layer_simple_rnn Fully-connected RNN where the output is to be fed back to input.

Description

Fully-connected RNN where the output is to be fed back to input.

Usage
layer_simple_rnn(
object,
units,
activation = "tanh",

use_bias = TRUE,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,

unroll = FALSE,

kernel_initializer = "glorot_uniform”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned
units Positive integer, dimensionality of the output space.
activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass

NULL, no activation is applied (ie. "linear" activation: a(x) = x).

layer_simple_rnn 345

use_bias Boolean, whether the layer uses a bias vector.

return_sequences
Boolean. Whether to return the last output in the output sequence, or the full
sequence.

return_state Boolean (default FALSE). Whether to return the last state in addition to the
output.

go_backwards Boolean (default FALSE). If TRUE, process the input sequence backwards and
return the reversed sequence.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a
batch will be used as initial state for the sample of index i in the following batch.
unroll Boolean (default FALSE). If TRUE, the network will be unrolled, else a sym-

bolic loop will be used. Unrolling can speed-up a RNN, although it tends to be
more memory-intensive. Unrolling is only suitable for short sequences.
kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel weights matrix.
recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.
recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

Standard Layer args.

Input shapes

N-D tensor with shape (batch_size, timesteps, ...), or (timesteps, batch_size, ...) when time_major
= TRUE.

346 layer_simple_rnn

Output shape

* if return_state: a list of tensors. The first tensor is the output. The remaining tensors are
the last states, each with shape (batch_size, state_size), where state_size could be a high
dimension tensor shape.

* if return_sequences: N-D tensor with shape [batch_size, timesteps, output_size], where
output_size could be a high dimension tensor shape, or [timesteps, batch_size, output_size]
when time_major is TRUE

* else, N-D tensor with shape [batch_size, output_size], where output_size could be a high
dimension tensor shape.

Masking

This layer supports masking for input data with a variable number of timesteps. To introduce masks
to your data, use layer_embedding() with the mask_zero parameter set to TRUE.

Statefulness in RNNs

You can set RNN layers to be ’stateful’, which means that the states computed for the samples in
one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one
mapping between samples in different successive batches.

For intuition behind statefulness, there is a helpful blog post here: https://philipperemy.github.
io/keras-stateful-1stm/

To enable statefulness:

* Specify stateful = TRUE in the layer constructor.

* Specify a fixed batch size for your model. For sequential models, pass batch_input_shape =
list(...) to the first layer in your model. For functional models with 1 or more Input layers,
pass batch_shape = 1list(...) toall the first layers in your model. This is the expected shape
of your inputs including the batch size. It should be a list of integers, e.g. 1ist(32,10,100).
For dimensions which can vary (are not known ahead of time), use NULL in place of an integer,
e.g. 1ist(32,NULL,NULL).

» Specify shuffle = FALSE when calling fit().

To reset the states of your model, call layer$reset_states() on either a specific layer, or on your
entire model.

Initial State of RNNs

You can specify the initial state of RNN layers symbolically by calling them with the keyword ar-
gument initial_state. The value of initial_state should be a tensor or list of tensors representing
the initial state of the RNN layer.

You can specify the initial state of RNN layers numerically by calling reset_states with the
named argument states. The value of states should be an array or list of arrays representing the
initial state of the RNN layer.

https://philipperemy.github.io/keras-stateful-lstm/
https://philipperemy.github.io/keras-stateful-lstm/

layer_simple_rnn_cell 347

Passing external constants to RNNs

You can pass "external" constants to the cell using the constants named argument of RNN$__call__
(as well as RNN$call) method. This requires that the cell1$call method accepts the same keyword
argument constants. Such constants can be used to condition the cell transformation on additional
static inputs (not changing over time), a.k.a. an attention mechanism.

References

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

See Also

e https://www.tensorflow.org/guide/keras/rnn

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_gru(), layer_lstm(),
layer_rnn()

layer_simple_rnn_cell Cell class for SimpleRNN

Description

Cell class for SimpleRNN

Usage

layer_simple_rnn_cell(
units,
activation = "tanh",
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,

https://arxiv.org/abs/1512.05287
https://www.tensorflow.org/guide/keras/rnn

348 layer_simple_rnn_cell

Arguments
units Positive integer, dimensionality of the output space.
activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass
NULL, no activation is applied (ie. "linear" activation: a(x) = x).
use_bias Boolean, (default TRUE), whether the layer uses a bias vector.

kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs. Default: glorot_uniform.
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state. Default: orthogonal.
bias_initializer
Initializer for the bias vector. Default: zeros.
kernel_regularizer
Regularizer function applied to the kernel weights matrix. Default: NULL.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix. Default:

NULL.
bias_regularizer

Regularizer function applied to the bias vector. Default: NULL.
kernel_constraint

Constraint function applied to the kernel weights matrix. Default: NULL.
recurrent_constraint

Constraint function applied to the recurrent_kernel weights matrix. Default:
NULL.
bias_constraint

Constraint function applied to the bias vector. Default: NULL.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs. Default: 0.
recurrent_dropout

Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state. Default: 0.

standard layer arguments.

Details
See the Keras RNN API guide for details about the usage of RNN API.

This class processes one step within the whole time sequence input, whereas tf . keras.layer.SimpleRNN
processes the whole sequence.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNNCell
e https://keras.io/api/layers
Other RNN cell layers: layer_gru_cell(), layer_lstm_cell(), layer_stacked_rnn_cells()

https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNNCell
https://keras.io/api/layers

layer_spatial_dropout_1d 349

layer_spatial_dropout_1d
Spatial 1D version of Dropout.

Description

This version performs the same function as Dropout, however it drops entire 1D feature maps in-

stead of individual elements. If adjacent frames within feature maps are strongly correlated (as is
normally the case in early convolution layers) then regular dropout will not regularize the activations

and will otherwise just result in an effective learning rate decrease. In this case, layer_spatial_dropout_1d
will help promote independence between feature maps and should be used instead.

Usage
layer_spatial_dropout_1d(
object,
rate,
batch_size = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
rate float between 0 and 1. Fraction of the input units to drop.
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (samples, timesteps, channels)

Output shape

Same as input

350 layer_spatial_dropout_2d

References

- Efficient Object Localization Using Convolutional Networks

See Also

Other dropout layers: layer_dropout(), layer_spatial_dropout_2d(), layer_spatial_dropout_3d()

layer_spatial_dropout_2d
Spatial 2D version of Dropout.

Description

This version performs the same function as Dropout, however it drops entire 2D feature maps in-

stead of individual elements. If adjacent pixels within feature maps are strongly correlated (as is
normally the case in early convolution layers) then regular dropout will not regularize the activations

and will otherwise just result in an effective learning rate decrease. In this case, layer_spatial_dropout_2d
will help promote independence between feature maps and should be used instead.

Usage

layer_spatial_dropout_2d(
object,
rate,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
rate float between 0 and 1. Fraction of the input units to drop.
data_format ’channels_first’ or ’channels_last’. In ’channels_first’ mode, the channels di-

mension (the depth) is at index 1, in ’channels_last’ mode is it at index 3. It
defaults to the image_data_format value found in your Keras config file at
~/ keras/keras.json. If you never set it, then it will be "channels_last".

batch_size Fixed batch size for layer

https://arxiv.org/abs/1411.4280

layer_spatial_dropout_3d 351

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape: (samples, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (samples, rows, cols, channels) if data_format="channels_last’.

Output shape

Same as input

References

- Efficient Object Localization Using Convolutional Networks

See Also

Other dropout layers: layer_dropout(), layer_spatial_dropout_1d(), layer_spatial_dropout_3d()

layer_spatial_dropout_3d
Spatial 3D version of Dropout.

Description

This version performs the same function as Dropout, however it drops entire 3D feature maps in-

stead of individual elements. If adjacent voxels within feature maps are strongly correlated (as is
normally the case in early convolution layers) then regular dropout will not regularize the activations

and will otherwise just result in an effective learning rate decrease. In this case, layer_spatial_dropout_3d
will help promote independence between feature maps and should be used instead.

Usage

layer_spatial_dropout_3d(
object,
rate,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

https://arxiv.org/abs/1411.4280

352 layer_stacked_rnn_cells

Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
rate float between 0 and 1. Fraction of the input units to drop.
data_format ’channels_first’ or ’channels_last’. In ’channels_first’ mode, the channels di-
mension (the depth) is at index 1, in ’channels_last’ mode is it at index 4. It
defaults to the image_data_format value found in your Keras config file at
~/ .keras/keras.json. If you never set it, then it will be "channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

5D tensor with shape: (samples, channels, dim1, dim2, dim3) if data_format="channels_first’ or SD
tensor with shape: (samples, dim1, dim2, dim3, channels) if data_format="channels_last’.

Output shape

Same as input

References

- Efficient Object Localization Using Convolutional Networks

See Also

Other dropout layers: layer_dropout(), layer_spatial_dropout_1d(), layer_spatial_dropout_2d()

layer_stacked_rnn_cells
Wrapper allowing a stack of RNN cells to behave as a single cell

Description

Used to implement efficient stacked RNNs.

https://arxiv.org/abs/1411.4280

layer_string_lookup 353

Usage
layer_stacked_rnn_cells(cells, ...)
Arguments
cells List of RNN cell instances.
standard layer arguments.
See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/StackedRNNCells
Other RNN cell layers: layer_gru_cell(), layer_lstm_cell(), layer_simple_rnn_cell()

layer_string_lookup A preprocessing layer which maps string features to integer indices.

Description

A preprocessing layer which maps string features to integer indices.

Usage

layer_string_lookup(
object,
max_tokens = NULL,
num_oov_indices = 1L,
mask_token = NULL,
oov_token = "[UNK]",
vocabulary = NULL,
encoding = NULL,
invert = FALSE,
output_mode = "int",
sparse = FALSE,
pad_to_max_tokens = FALSE,

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/StackedRNNCells

354 layer_string_lookup

max_tokens The maximum size of the vocabulary for this layer. If NULL, there is no cap
on the size of the vocabulary. Note that this size includes the OOV and mask
tokens. Default to NULL .

num_oov_indices
The number of out-of-vocabulary tokens to use. If this value is more than 1,
OOV inputs are hashed to determine their OOV value. If this value is 0, OOV
inputs will cause an error when calling the layer. Defaults to 1.

mask_token A token that represents masked inputs. When output_mode is "int", the token
is included in vocabulary and mapped to index 0. In other output modes, the
token will not appear in the vocabulary and instances of the mask token in the
input will be dropped. If set to NULL, no mask term will be added. Defaults to

NULL.

oov_token Only used when invert is TRUE. The token to return for OOV indices. Defaults
to "[UNK]".

vocabulary Optional. Either an array of strings or a string path to a text file. If passing an

array, can pass a list, list, 1D numpy array, or 1D tensor containing the string
vocabulary terms. If passing a file path, the file should contain one line per term
in the vocabulary. If this argument is set, there is no need to adapt the layer.

encoding String encoding. Default of NULL is equivalent to "utf-8".

invert Only valid when output_mode is "int". If TRUE, this layer will map indices
to vocabulary items instead of mapping vocabulary items to indices. Default to
FALSE.

output_mode Specification for the output of the layer. Defaults to "int"”. Values can be
"int"”, "one_hot”, "multi_hot", "count”, or "tf_idf" configuring the layer
as follows:

e "int": Return the raw integer indices of the input tokens.

* "one_hot": Encodes each individual element in the input into an array the
same size as the vocabulary, containing a 1 at the element index. If the last
dimension is size 1, will encode on that dimension. If the last dimension is
not size 1, will append a new dimension for the encoded output.

* "multi_hot"”: Encodes each sample in the input into a single array the
same size as the vocabulary, containing a 1 for each vocabulary term present
in the sample. Treats the last dimension as the sample dimension, if input
shape is (..., sample_length), output shape will be (..., num_tokens).

e "count”: As "multi_hot", but the int array contains a count of the number
of times the token at that index appeared in the sample.

e "tf_idf": As "multi_hot", but the TF-IDF algorithm is applied to find
the value in each token slot. For "int" output, any shape of input and
output is supported. For all other output modes, currently only output up to
rank 2 is supported.

sparse Boolean. Only applicable when output_mode is "multi_hot"”, "count”, or
"tf_idf". If TRUE, returns a SparseTensor instead of a dense Tensor. De-
faults to FALSE.

pad_to_max_tokens
Only applicable when output_mode is "multi_hot", "count”, or "tf_idf". If
TRUE, the output will have its feature axis padded to max_tokens even if the

layer_subtract 355

number of unique tokens in the vocabulary is less than max_tokens, resulting
in a tensor of shape [batch_size, max_tokens] regardless of vocabulary size.
Defaults to FALSE.

standard layer arguments.

Details

This layer translates a set of arbitrary strings into integer output via a table-based vocabulary lookup.

The vocabulary for the layer must be either supplied on construction or learned via adapt (). During
adapt (), the layer will analyze a data set, determine the frequency of individual strings tokens, and
create a vocabulary from them. If the vocabulary is capped in size, the most frequent tokens will be
used to create the vocabulary and all others will be treated as out-of-vocabulary (OOV).

There are two possible output modes for the layer. When output_mode is "int", input strings
are converted to their index in the vocabulary (an integer). When output_mode is "multi_hot",
"count”, or "tf_idf", input strings are encoded into an array where each dimension corresponds
to an element in the vocabulary.

The vocabulary can optionally contain a mask token as well as an OOV token (which can optionally
occupy multiple indices in the vocabulary, as set by num_oov_indices). The position of these
tokens in the vocabulary is fixed. When output_mode is "int", the vocabulary will begin with
the mask token (if set), followed by OOV indices, followed by the rest of the vocabulary. When
output_mode is "multi_hot", "count”, or "tf_idf" the vocabulary will begin with OOV indices
and instances of the mask token will be dropped.

See Also
e adapt()
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Stringlookup
* https://keras.io/api/layers/preprocessing_layers/categorical/string_lookup

Other categorical features preprocessing layers: layer_category_encoding(), layer_hashing(),
layer_integer_lookup()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_flip(), layer_random_height(), layer_random_rotation(),
layer_random_translation(), layer_random_width(), layer_random_zoom(), layer_rescaling(),
layer_resizing(), layer_text_vectorization()

layer_subtract Layer that subtracts two inputs.

Description

It takes as input a list of tensors of size 2, both of the same shape, and returns a single tensor,
(inputs[[1]] -inputs[[21]), also of the same shape.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/StringLookup
https://keras.io/api/layers/preprocessing_layers/categorical/string_lookup

356 layer_text_vectorization

Usage
layer_subtract(inputs, ...)
Arguments
inputs A list of input tensors (exactly 2). Can be missing.
Standard layer arguments (must be named).
Value

A tensor, the difference of the inputs. If inputs is missing, a keras layer instance is returned.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/layers/subtract
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/Subtract
e https://keras.io/api/layers/merging_layers/subtract

Other merge layers: layer_average(), layer_concatenate(), layer_dot(), layer_maximum(),
layer_minimum(), layer_multiply()

layer_text_vectorization
A preprocessing layer which maps text features to integer sequences.

Description

A preprocessing layer which maps text features to integer sequences.

Usage
layer_text_vectorization(
object,
max_tokens = NULL,
standardize = "lower_and_strip_punctuation”,
split = "whitespace”,
ngrams = NULL,
output_mode = "int",

output_sequence_length = NULL,
pad_to_max_tokens = FALSE,
vocabulary = NULL,

)
get_vocabulary(object, include_special_tokens = TRUE)

set_vocabulary(object, vocabulary, idf_weights = NULL, ...)

https://www.tensorflow.org/api_docs/python/tf/keras/layers/subtract
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Subtract
https://keras.io/api/layers/merging_layers/subtract

layer_text_vectorization 357

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.

max_tokens The maximum size of the vocabulary for this layer. If NULL, there is no cap on
the size of the vocabulary. Note that this vocabulary contains 1 OOV token, so
the effective number of tokens is (max_tokens - 1 - (1 if output_mode == "int" else 0)).

standardize Optional specification for standardization to apply to the input text. Values can
be NULL (no standardization), "lower_and_strip_punctuation” (lowercase
and remove punctuation) or a Callable. Defaultis "lower_and_strip_punctuation”.

split Optional specification for splitting the input text. Values can be NULL (no split-
ting), "whitespace” (split on ASCII whitespace), or a Callable. The default is
"whitespace”.

ngrams Optional specification for ngrams to create from the possibly-split input text.
Values can be NULL, an integer or list of integers; passing an integer will create
ngrams up to that integer, and passing a list of integers will create ngrams for the
specified values in the list. Passing NULL means that no ngrams will be created.

output_mode Optional specification for the output of the layer. Values canbe "int", "multi_hot",
"count” or "tf_idf", configuring the layer as follows:

e "int": Outputs integer indices, one integer index per split string token.
When output_mode == "int", 0 is reserved for masked locations; this re-
duces the vocab size to max_tokens -2 instead of max_tokens -1.

* "multi_hot": Outputs a single int array per batch, of either vocab_size or
max_tokens size, containing 1s in all elements where the token mapped to
that index exists at least once in the batch item.

e "count”: Like "multi_hot", but the int array contains a count of the num-
ber of times the token at that index appeared in the batch item.

e "tf_idf": Like "multi_hot", but the TF-IDF algorithm is applied to find
the value in each token slot. For "int" output, any shape of input and
output is supported. For all other output modes, currently only rank 1 inputs
(and rank 2 outputs after splitting) are supported.

output_sequence_length
Only valid in INT mode. If set, the output will have its time dimension padded
or truncated to exactly output_sequence_length values, resulting in a tensor
of shape (batch_size, output_sequence_length) regardless of how many tokens
resulted from the splitting step. Defaults to NULL.

pad_to_max_tokens
Only valid in "multi_hot", "count”, and "tf_idf" modes. If TRUE, the out-
put will have its feature axis padded to max_tokens even if the number of unique
tokens in the vocabulary is less than max_tokens, resulting in a tensor of shape
(batch_size, max_tokens) regardless of vocabulary size. Defaults to FALSE.

358 layer_text_vectorization

vocabulary Optional for layer_text_vectorization(). Either an array of strings or a
string path to a text file. If passing an array, can pass an R list or character
vector, 1D numpy array, or 1D tensor containing the string vocabulary terms. If
passing a file path, the file should contain one line per term in the vocabulary. If
vocabulary is set (either by passing layer_text_vectorization(vocabulary
= ...) or by calling set_vocabulary(layer, vocabulary = ...), there is no need to
adapt () the layer.

e standard layer arguments.

include_special_tokens
If True, the returned vocabulary will include the padding and OOV tokens, and
a term’s index in the vocabulary will equal the term’s index when calling the
layer. If False, the returned vocabulary will not include any padding or OOV
tokens.

idf_weights An R vector, 1D numpy array, or 1D tensor of inverse document frequency
weights with equal length to vocabulary. Must be set if output_mode is "tf_idf".
Should not be set otherwise.

Details

This layer has basic options for managing text in a Keras model. It transforms a batch of strings
(one example = one string) into either a list of token indices (one example = 1D tensor of integer
token indices) or a dense representation (one example = 1D tensor of float values representing data
about the example’s tokens).

The vocabulary for the layer must be either supplied on construction or learned via adapt (). When
this layer is adapted, it will analyze the dataset, determine the frequency of individual string values,
and create a vocabulary from them. This vocabulary can have unlimited size or be capped, depend-
ing on the configuration options for this layer; if there are more unique values in the input than the
maximum vocabulary size, the most frequent terms will be used to create the vocabulary.

The processing of each example contains the following steps:

. Standardize each example (usually lowercasing + punctuation stripping)
. Split each example into substrings (usually words)
. Recombine substrings into tokens (usually ngrams)

. Index tokens (associate a unique int value with each token)

wn AW N =

. Transform each example using this index, either into a vector of ints or a dense float vector.
Some notes on passing callables to customize splitting and normalization for this layer:

1. Any callable can be passed to this Layer, but if you want to serialize this object you should only
pass functions that are registered Keras serializables (see tf$keras$utils$register_keras_serializable
for more details).

2. When using a custom callable for standardize, the data received by the callable will be
exactly as passed to this layer. The callable should return a tensor of the same shape as the
input.

3. When using a custom callable for split, the data received by the callable will have the

non

Ist dimension squeezed out - instead of matrix(c(”string to split”, "another string to

https://www.tensorflow.org/api_docs/python/tf/keras/utils/register_keras_serializable

layer_upsampling 1d 359

n o n

split")), the Callable will see c("string to split”,"another string to split”). The
callable should return a Tensor with the first dimension containing the split tokens - in this ex-

ample, we should see something like 1ist(c("string”,"to"”,"split"),c("another”,"string”,"to","split")).
This makes the callable site natively compatible with tf$strings$split().

See Also

e adapt()
e https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization
* https://keras.io/api/layers/preprocessing_layers/text/text_vectorization

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(),
layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(),
layer_random_crop(), layer_random_flip(), layer_random_height (), layer_random_rotation(),
layer_random_translation(), layer_random_width(), layer_random_zoom(), layer_rescaling(),
layer_resizing(), layer_string_lookup()

layer_upsampling_1d Upsampling layer for 1D inputs.

Description

Repeats each temporal step size times along the time axis.

Usage
layer_upsampling_1d(
object,
size = 2L,
batch_size = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
size integer. Upsampling factor.

batch_size Fixed batch size for layer

https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization
https://keras.io/api/layers/preprocessing_layers/text/text_vectorization

360 layer_upsampling_2d

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch, steps, features).

Output shape

3D tensor with shape: (batch, upsampled_steps, features).

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_2d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_upsampling_2d Upsampling layer for 2D inputs.

Description

Repeats the rows and columns of the data by size[[@]] and size[[1]] respectively.

Usage

layer_upsampling_2d(
object,
size = c(2L, 2L),
data_format = NULL,
interpolation = "nearest”,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

Arguments

object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:

* missing or NULL, the Layer instance is returned.

layer_upsampling_2d 361

* a Sequential model, the model with an additional layer is returned.

* a Tensor, the output tensor from layer_instance(object) is returned.
size int, or list of 2 integers. The upsampling factors for rows and columns.

data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

interpolation A string, one of nearest or bilinear. Note that CNTK does not support yet
the bilinear upscaling and that with Theano, only size=(2, 2) is possible.

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape:

e If data_format is "channels_last": (batch, rows, cols, channels)

e If data_format is "channels_first": (batch, channels, rows, cols)

Output shape

4D tensor with shape:

» If data_format is "channels_last": (batch, upsampled_rows, upsampled_cols, channels)

e If data_format is "channels_first": (batch, channels, upsampled_rows, upsampled_cols)

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1stm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

362 layer_upsampling_3d

layer_upsampling_3d Upsampling layer for 3D inputs.

Description

Repeats the 1st, 2nd and 3rd dimensions of the data by size[[@]], size[[1]] and size[[2]]
respectively.

Usage

layer_upsampling_3d(
object,
size = c(2L, 2L, 2L),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned
size int, or list of 3 integers. The upsampling factors for dim1, dim2 and dim3.
data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim?2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

layer_zero_padding_1d 363

Input shape

5D tensor with shape:

e If data_format is "channels_last”: (batch, dim1, dim2, dim3, channels)

e If data_format is "channels_first": (batch, channels, diml, dim2, dim3)

Output shape

5D tensor with shape:

» If data_format is "channels_last”: (batch, upsampled_diml, upsampled_dim?2, upsam-
pled_dim3, channels)

e Ifdata_formatis "channels_first": (batch, channels, upsampled_dim1, upsampled_dim2, up-
sampled_dim3)

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_2d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_zero_padding_1d Zero-padding layer for 1D input (e.g. temporal sequence).

Description

Zero-padding layer for 1D input (e.g. temporal sequence).

Usage

layer_zero_padding_1d(
object,
padding = 1L,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

364 layer_zero_padding_2d

Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
padding int, or list of int (length 2)
 If int: How many zeros to add at the beginning and end of the padding
dimension (axis 1).
* If list of int (length 2): How many zeros to add at the beginning and at the
end of the padding dimension ((left_pad, right_pad)).
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape (batch, axis_to_pad, features)

Output shape

3D tensor with shape (batch, padded_axis, features)

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_2d(), layer_zero_padding_3d()

layer_zero_padding_2d Zero-padding layer for 2D input (e.g. picture).

Description

This layer can add rows and columns of zeros at the top, bottom, left and right side of an image
tensor.

layer_zero_padding_2d 365

Usage

layer_zero_padding_2d(
object,
padding = c(1L, 1L),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned
* a Tensor, the output tensor from layer_instance(object) is returned
padding int, or list of 2 ints, or list of 2 lists of 2 ints.
e If int: the same symmetric padding is applied to width and height.
o If list of 2 ints: interpreted as two different symmetric padding values for
height and width: (symmetric_height_pad, symmetric_width_pad).
o Iflist of 2 lists of 2 ints: interpreted as ((top_pad, bottom_pad), (left_pad, right_pad))
data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape:

e If data_format is "channels_last": (batch, rows, cols, channels)

e If data_format is "channels_first": (batch, channels, rows, cols)

366 layer_zero_padding_3d

Output shape

4D tensor with shape:

* If data_format is "channels_last": (batch, padded_rows, padded_cols, channels)

e If data_format is "channels_first": (batch, channels, padded_rows, padded_cols)

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_3d()

layer_zero_padding_3d Zero-padding layer for 3D data (spatial or spatio-temporal).

Description

Zero-padding layer for 3D data (spatial or spatio-temporal).

Usage

layer_zero_padding_3d(
object,
padding = c(1L, 1L, 1L),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* a Sequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
padding int, or list of 3 ints, or list of 3 lists of 2 ints.

e If int: the same symmetric padding is applied to width and height.

o If list of 3 ints: interpreted as three different symmetric padding values:
(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad).

loss-functions 367

 Iflist of 3 lists of 2 ints: interpreted as ((left_dim1_pad, right_dim1_pad), (left_dim2_pad, right_dim?-

data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim?2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

5D tensor with shape:

e Ifdata_formatis "channels_last": (batch, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad, depth)

» Ifdata_formatis "channels_first": (batch, depth, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad)

Output shape

5D tensor with shape:

e Ifdata_formatis "channels_last": (batch, first_padded_axis, second_padded_axis, third_axis_to_pad, depth)

» Ifdata_formatis "channels_first": (batch, depth, first_padded_axis, second_padded_axis, third_axis_to_pad)

See Also

Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(),
layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1stm_2d(),
layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d()

loss-functions Loss functions

Description

Loss functions

368 loss-functions

Usage

loss_binary_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
label_smoothing = 0,

axis = -1L,

reduction = "auto”,

name = "binary_crossentropy”
)
loss_categorical_crossentropy(

y_true,

y_pred,

from_logits = FALSE,
label_smoothing = oL,

axis = -1L,
reduction = "auto”,
name = "categorical_crossentropy”
)
loss_categorical_hinge(
y_true,
y_pred,
reduction = "auto”,
name = "categorical_hinge"
)
loss_cosine_similarity(
y_true,
y_pred,
axis = -1L,
reduction = "auto”,
name = "cosine_similarity”
)
loss_hinge(y_true, y_pred, ..., reduction = "auto”, name = "hinge")

loss_huber(
y_true,
y_pred,
delta = 1,

L

reduction = "auto",

loss-functions 369

name = "huber_loss"
)
loss_kullback_leibler_divergence(
y_true,
y_pred,
reduction = "auto”,
name = "kl_divergence"
)
loss_kl_divergence(
y_true,
y_pred,
reduction = "auto”,
name = "kl_divergence”
)
loss_logcosh(y_true, y_pred, ..., reduction = "auto”, name = "log_cosh")

loss_mean_absolute_error(

y_true,
y_pred,
*
reduction = "auto",
name = "mean_absolute_error”
)
loss_mean_absolute_percentage_error(
y_true,
y_pred,
bl
reduction = "auto”,
name = "mean_absolute_percentage_error”
loss_mean_squared_error(
y_true,
y_pred,
L
reduction = "auto",
name = "mean_squared_error"

loss_mean_squared_logarithmic_error(
y_true,
y_pred,

370 loss-functions

L

reduction = "auto”,
name = "mean_squared_logarithmic_error”
loss_poisson(y_true, y_pred, ..., reduction = "auto”, name = "poisson")

loss_sparse_categorical_crossentropy(

y_true,
y_pred,
from_logits = FALSE,
axis = -1L,
reduction = "auto”,
name = "sparse_categorical_crossentropy”
)
loss_squared_hinge(
y_true,
y_pred,
reduction = "auto”,
name = "squared_hinge"
)
Arguments
y_true Ground truth values. shape = [batch_size, d1, .. dN].
y_pred The predicted values. shape = [batch_size, d1, .. dN]. (Tensor of the same shape
as y_true)
from_logits Whether y_pred is expected to be a logits tensor. By default we assume that

y_pred encodes a probability distribution.

label_smoothing
Float in [0, 1]. If > O then smooth the labels. For example, if 0.1, use 0.1
/ num_classes for non-target labels and @.9 + @.1 / num_classes for target
labels.

axis The axis along which to compute crossentropy (the features axis). Axis is 1-
based (e.g, first axis is axis=1). Defaults to -1 (the last axis).

Additional arguments passed on to the Python callable (for forward and back-
wards compatibility).

reduction Only applicable if y_true and y_pred are missing. Type of keras$losses$Reduction
to apply to loss. Default value is AUTO. AUTO indicates that the reduction option
will be determined by the usage context. For almost all cases this defaults to
SUM_OVER_BATCH_SIZE. When used with tf$distribute$Strategy, outside
of built-in training loops such as compile and fit, using AUTO or SUM_OVER_BATCH_SIZE
will raise an error. Please see this custom training tutorial for more details.

https://www.tensorflow.org/tutorials/distribute/custom_training

loss-functions 371

name Only applicable if y_true and y_pred are missing. Optional name for the Loss
instance.
delta A float, the point where the Huber loss function changes from a quadratic to
linear.
Details

Loss functions for model training. These are typically supplied in the loss parameter of the
compile.keras.engine.training.Model() function.

Value

If called with y_true and y_pred, then the corresponding loss is evaluated and the result re-
turned (as a tensor). Alternatively, if y_true and y_pred are missing, then a callable is returned
that will compute the loss function and, by default, reduce the loss to a scalar tensor; see the
reduction parameter for details. (The callable is a typically a class instance that inherits from
keras$losses$Loss).

binary_crossentropy

Computes the binary crossentropy loss.

label_smoothing details: Float in [0, 1]. If > O then smooth the labels by squeezing them towards
0.5 Thatis, using 1. -0.5 * label_smoothing for the target class and .5 * label_smoothing for
the non-target class.

categorical_crossentropy

Computes the categorical crossentropy loss.

When using the categorical_crossentropy loss, your targets should be in categorical format (e.g. if
you have 10 classes, the target for each sample should be a 10-dimensional vector that is all-zeros
except for a 1 at the index corresponding to the class of the sample). In order to convert integer
targets into categorical targets, you can use the Keras utility function to_categorical():

categorical_labels <-to_categorical (int_labels,num_classes =NULL)
huber

Computes Huber loss value. For each value x in error = y_true -y_pred:

loss = 0.5 * x*2 if |x] <= d
loss = d * |x] - 0.5 x d*2 if |x] > d

where d is delta. See: https://en.wikipedia.org/wiki/Huber_loss

log_cosh

Logarithm of the hyperbolic cosine of the prediction error.

log(cosh(x)) is approximately equal to (x ** 2) / 2 for small x and to abs(x) -log(2) for large
x. This means that ’logcosh’ works mostly like the mean squared error, but will not be so strongly
affected by the occasional wildly incorrect prediction. However, it may return NaNss if the interme-
diate value cosh(y_pred -y_true) is too large to be represented in the chosen precision.

372 make_sampling_table

See Also

compile.keras.engine.training.Model (), loss_binary_crossentropy()

make_sampling_table Generates a word rank-based probabilistic sampling table.

Description

Generates a word rank-based probabilistic sampling table.

Usage

make_sampling_table(size, sampling_factor = 1e-05)

Arguments

size Int, number of possible words to sample.
sampling_factor
The sampling factor in the word2vec formula.

Details

Used for generating the sampling_table argument for skipgrams(). sampling_table[[i]] is
the probability of sampling the word i-th most common word in a dataset (more common words
should be sampled less frequently, for balance).

The sampling probabilities are generated according to the sampling distribution used in word2vec:
p(word) =min(1,sqrt(word_frequency / sampling_factor) / (word_frequency / sampling_factor))

We assume that the word frequencies follow Zipf’s law (s=1) to derive a numerical approximation
of frequency(rank):

frequency(rank) ~ 1/(rank x (log(rank) + gamma) + 1/2 -1/ (12*rank))
where gamma is the Euler-Mascheroni constant.
Value

An array of length size where the ith entry is the probability that a word of rank i should be
sampled.

Note

The word2vec formula is: p(word) = min(1, sqrt(word.frequency/sampling_factor) / (word.frequency/sampling_factor))

See Also

Other text preprocessing: pad_sequences(), skipgrams(), text_hashing_trick(), text_one_hot(),
text_to_word_sequence()

Metric 373

Metric Metric

Description

A Metric object encapsulates metric logic and state that can be used to track model performance
during training. It is what is returned by the family of metric functions that start with prefix met-

ric_*.
Arguments
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

Usage with compile

model %>% compile(
optimizer = 'sgd',
loss = 'mse’,
metrics = list(metric_SOME_METRIC(), metric_SOME_OTHER_METRIC())

)

Standalone usage

m <- metric_SOME_METRIC()
for (e in seq(epochs)) {
for (i in seq(train_steps)) {
c(y_true, y_pred, sample_weight = NULL) %<-% ...
m$update_state(y_true, y_pred, sample_weight)
3
cat('Final epoch result:
m$reset_state()

}

, as.numeric(m$result()), "\n")

Custom Metric (subclass)
To be implemented by subclasses:

e initialize(): All state variables should be created in this method by calling self$add_weight ()
like:

self$var <- self$add_weight(...)

» update_state(): Has all updates to the state variables like:

374 metric_accuracy

selfvarassign_add(...)
* result(): Computes and returns a value for the metric from the state variables.

Example custom metric subclass:

metric_binary_true_positives(keras$metrics$Metric) %py_class% {

initialize <- function(name = 'binary_true_positives', ...) {
super$initialize(name = name, ...)
self$true_positives <- self$add_weight(name = 'tp', initializer = 'zeros')
}

update_state <- function(y_true, y_pred, sample_weight = NULL) {
y_true <- k_cast(y_true, "bool")
y_pred <- k_cast(y_pred, "bool”)

values <- y_true & y_pred

values <- k_cast(values, self$dtype)

if (lis.null(sample_weight)) {
sample_weight <- k_cast(sample_weight, self$dtype)
sample_weight <- tf$broadcast_to(sample_weight, values$shape)
values <- values * sample_weight

3

self$true_positives$assign_add(tf$reduce_sum(values))

b

result <- function()
self$true_positives

}
model %>% compile(..., metrics = list(metric_binary_true_positives()))
metric_accuracy Calculates how often predictions equal labels
Description

Calculates how often predictions equal labels

Usage
metric_accuracy(..., name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

metric_auc 375

Details

This metric creates two local variables, total and count that are used to compute the frequency
with which y_pred matches y_true. This frequency is ultimately returned as binary accuracy: an
idempotent operation that simply divides total by count.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_auc(),metric_binary_accuracy(),metric_binary_crossentropy(),
metric_categorical_accuracy(),metric_categorical_crossentropy(),metric_categorical_hinge(),
metric_cosine_similarity(),metric_false_negatives(),metric_false_positives(),metric_hinge(),
metric_kullback_leibler_divergence(),metric_logcosh_error(), metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper (), metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_auc Approximates the AUC (Area under the curve) of the ROC or PR
curves

Description

Approximates the AUC (Area under the curve) of the ROC or PR curves

Usage

metric_auc(
num_thresholds = 200L,
curve = "ROC",
summation_method = "interpolation”,
thresholds = NULL,
multi_label = FALSE,
num_labels = NULL,
label_weights = NULL,
from_logits = FALSE,
name = NULL,
dtype = NULL

376 metric_auc

Arguments

Passed on to the underlying metric. Used for forwards and backwards compati-
bility.

num_thresholds (Optional) Defaults to 200. The number of thresholds toa use when discretizing
the roc curve. Values must be > 1.

curve (Optional) Specifies the name of the curve to be computed, ’'ROC’ (default) or
PR’ for the Precision-Recall-curve.

summation_method
(Optional) Specifies the Riemann summation method used. ’interpolation’ (de-
fault) applies mid-point summation scheme for ROC. For PR-AUC, interpolates
(true/false) positives but not the ratio that is precision (see Davis & Goadrich
2006 for details); *'minoring’ applies left summation for increasing intervals and
right summation for decreasing intervals; *'majoring’ does the opposite.

thresholds (Optional) A list of floating point values to use as the thresholds for discretiz-
ing the curve. If set, the num_thresholds parameter is ignored. Values should
be in [0, 1]. Endpoint thresholds equal to -epsilon, 1+epsilon for a small posi-
tive epsilon value will be automatically included with these to correctly handle
predictions equal to exactly O or 1.

multi_label boolean indicating whether multilabel data should be treated as such, wherein
AUC is computed separately for each label and then averaged across labels, or
(when FALSE) if the data should be flattened into a single label before AUC
computation. In the latter case, when multilabel data is passed to AUC, each
label-prediction pair is treated as an individual data point. Should be set to
FALSE for multi-class data.

num_labels (Optional) The number of labels, used whenmulti_label is TRUE. If num_labels
is not specified, then state variables get created on the first call to update_state.

label_weights (Optional) list, array, or tensor of non-negative weights used to compute AUCs
for multilabel data. When multi_label is TRUE, the weights are applied to the
individual label AUCs when they are averaged to produce the multi-label AUC.
When it’s FALSE, they are used to weight the individual label predictions in
computing the confusion matrix on the flattened data. Note that this is unlike
class_weights in that class_weights weights the example depending on the value
of its label, whereas label_weights depends only on the index of that label before
flattening; therefore label_weights should not be used for multi-class data.

from_logits boolean indicating whether the predictions (y_pred in update_state) are prob-
abilities or sigmoid logits. As a rule of thumb, when using a keras loss, the
from_logits constructor argument of the loss should match the AUC from_logits
constructor argument.

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

The AUC (Area under the curve) of the ROC (Receiver operating characteristic; default) or PR
(Precision Recall) curves are quality measures of binary classifiers. Unlike the accuracy, and like
cross-entropy losses, ROC-AUC and PR-AUC evaluate all the operational points of a model.

https://en.wikipedia.org/wiki/Riemann_sum

metric_binary_accuracy 377

This class approximates AUCs using a Riemann sum. During the metric accumulation phrase,
predictions are accumulated within predefined buckets by value. The AUC is then computed by
interpolating per-bucket averages. These buckets define the evaluated operational points.

This metric creates four local variables, true_positives, true_negatives, false_positives
and false_negatives that are used to compute the AUC. To discretize the AUC curve, a linearly
spaced set of thresholds is used to compute pairs of recall and precision values. The area under
the ROC-curve is therefore computed using the height of the recall values by the false positive rate,
while the area under the PR-curve is the computed using the height of the precision values by the
recall.

This value is ultimately returned as auc, an idempotent operation that computes the area under a dis-
cretized curve of precision versus recall values (computed using the aforementioned variables). The
num_thresholds variable controls the degree of discretization with larger numbers of thresholds
more closely approximating the true AUC. The quality of the approximation may vary dramati-
cally depending on num_thresholds. The thresholds parameter can be used to manually specify
thresholds which split the predictions more evenly.

For a best approximation of the real AUC, predictions should be distributed approximately uni-
formly in the range [0, 1] (if from_logits=FALSE). The quality of the AUC approximation may
be poor if this is not the case. Setting summation_method to minoring’ or ’majoring’ can help
quantify the error in the approximation by providing lower or upper bound estimate of the AUC.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_binary_accuracy(),metric_binary_crossentropy(),
metric_categorical_accuracy(),metric_categorical_crossentropy(),metric_categorical_hinge(),
metric_cosine_similarity(),metric_false_negatives(),metric_false_positives(),metric_hinge(),
metric_kullback_leibler_divergence(),metric_logcosh_error(), metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_binary_accuracy
Calculates how often predictions match binary labels

Description

Calculates how often predictions match binary labels

378 metric_binary_accuracy

Usage

metric_binary_accuracy(
y_true,
y_pred,
threshold = 0.5,

L

name = "binary_accuracy”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
threshold (Optional) Float representing the threshold for deciding whether prediction val-

ues are 1 or 0.

Passed on to the underlying metric. Used for forwards and backwards compati-

bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

Details

This metric creates two local variables, total and count that are used to compute the frequency
with which y_pred matches y_true. This frequency is ultimately returned as binary accuracy: an
idempotent operation that simply divides total by count.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_crossentropy(),
metric_categorical_accuracy(),metric_categorical_crossentropy(),metric_categorical_hinge(),
metric_cosine_similarity(),metric_false_negatives(),metric_false_positives(),metric_hinge(),
metric_kullback_leibler_divergence(),metric_logcosh_error(), metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(), metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(), metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_

metric_binary_crossentropy 379

metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_binary_crossentropy
Computes the crossentropy metric between the labels and predictions

Description

Computes the crossentropy metric between the labels and predictions

Usage

metric_binary_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
label_smoothing = 0,

axis = -1L,
name = "binary_crossentropy”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
from_logits (Optional) Whether output is expected to be a logits tensor. By default, we

consider that output encodes a probability distribution.

label_smoothing
(Optional) Float in [0, 1]. When > 0, label values are smoothed, meaning the
confidence on label values are relaxed. e.g. label_smoothing = 0.2 means that
we will use a value of @. 1 for label @ and @. 9 for label 1".

axis (Optional) (1-based) Defaults to -1. The dimension along which the metric is
computed.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.

name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

Details

This is the crossentropy metric class to be used when there are only two label classes (0 and 1).

380 metric_categorical_accuracy

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_categorical_accuracy(),metric_categorical_crossentropy(),metric_categorical_hinge(),
metric_cosine_similarity(),metric_false_negatives(),metric_false_positives(),metric_hinge(),
metric_kullback_leibler_divergence(),metric_logcosh_error(),metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_categorical_accuracy
Calculates how often predictions match one-hot labels

Description

Calculates how often predictions match one-hot labels

Usage
metric_categorical_accuracy(
y_true,
y_pred,
name = "categorical_accuracy”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

metric_categorical_crossentropy 381

Details

You can provide logits of classes as y_pred, since argmax of logits and probabilities are same.

This metric creates two local variables, total and count that are used to compute the frequency
with which y_pred matches y_true. This frequency is ultimately returned as categorical accuracy:
an idempotent operation that simply divides total by count.

y_pred and y_true should be passed in as vectors of probabilities, rather than as labels. If neces-
sary, use tf.one_hot to expand y_true as a vector.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_crossentropy(),metric_categorical_hinge(),
metric_cosine_similarity(),metric_false_negatives(),metric_false_positives(),metric_hinge(),
metric_kullback_leibler_divergence(),metric_logcosh_error(),metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper (), metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_categorical_crossentropy
Computes the crossentropy metric between the labels and predictions

Description

Computes the crossentropy metric between the labels and predictions

Usage

metric_categorical_crossentropy(
y_true,
y_pred,
from_logits = FALSE,

382 metric_categorical_crossentropy

label_smoothing = 0,

axis = -1L,
name = "categorical_crossentropy”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
from_logits (Optional) Whether output is expected to be a logits tensor. By default, we

consider that output encodes a probability distribution.
label_smoothing

(Optional) Float in [0, 1]. When > 0, label values are smoothed, meaning the
confidence on label values are relaxed. e.g. label_smoothing=0.2 means that
we will use a value of @.1 for label @ and 0.9 for label 1"

axis (Optional) (1-based) Defaults to -1. The dimension along which the metric is
computed.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.

name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

Details

This is the crossentropy metric class to be used when there are multiple label classes (2 or more).
Here we assume that labels are given as a one_hot representation. eg., When labels values are
c(2,0,1):

y_true = rbind(c(@, 0, 1),
c(1, o, 9,
c(o, 1, 0))°

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_hinge(),
metric_cosine_similarity(),metric_false_negatives(),metric_false_positives(),metric_hinge(),

metric_categorical_hinge 383

metric_kullback_leibler_divergence(),metric_logcosh_error(), metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),

metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge

metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_categorical_hinge
Computes the categorical hinge metric between y_true and y_pred

Description

Computes the categorical hinge metric between y_true and y_pred

Usage
metric_categorical_hinge(..., name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_cosine_similarity(),metric_false_negatives(),metric_false_positives(),metric_hinge(),
metric_kullback_leibler_divergence(),metric_logcosh_error(),metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(), metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper (), metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),

metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

384 metric_cosine_similarity

metric_cosine_similarity
Computes the cosine similarity between the labels and predictions

Description

Computes the cosine similarity between the labels and predictions

Usage

metric_cosine_similarity(

L

axis = -1L,
name = "cosine_similarity"”,
dtype = NULL
)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
axis (Optional) (1-based) Defaults to -1. The dimension along which the metric is
computed.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details
cosine similarity = (a . b) / [|lal|l ||b]]

See: Cosine Similarity.

This metric keeps the average cosine similarity between predictions and labels over a stream of
data.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

Note

If you want to compute the cosine_similarity for each case in a mini-batch you can use loss_cosine_similarity().

https://en.wikipedia.org/wiki/Cosine_similarity

metric_false_negatives 385

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(),metric_false_negatives(),metric_false_positives(),metric_hinge(),
metric_kullback_leibler_divergence(),metric_logcosh_error(), metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(), metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(), metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_false_negatives
Calculates the number of false negatives

Description

Calculates the number of false negatives

Usage
metric_false_negatives(..., thresholds = NULL, name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
thresholds (Optional) Defaults to 0.5. A float value or a list of float threshold values in
[0, 1]. A threshold is compared with prediction values to determine the truth
value of predictions (i.e., above the threshold is TRUE, below is FALSE). One
metric value is generated for each threshold value.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

If sample_weight is given, calculates the sum of the weights of false negatives. This metric creates
one local variable, accumulator that is used to keep track of the number of false negatives.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

386 metric_false_positives

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_positives(),
metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),metric_mean_absolute_err
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(), metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_false_positives
Calculates the number of false positives

Description

Calculates the number of false positives

Usage
metric_false_positives(..., thresholds = NULL, name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
thresholds (Optional) Defaults to 0.5. A float value or a list of float threshold values in
[0, 1]. A threshold is compared with prediction values to determine the truth
value of predictions (i.e., above the threshold is true, below is false). One
metric value is generated for each threshold value.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

If sample_weight is given, calculates the sum of the weights of false positives. This metric creates
one local variable, accumulator that is used to keep track of the number of false positives.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

metric_hinge 387

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_hinge(),metric_kullback_leibler_divergence(), metric_logcosh_error(),metric_mean_absolute_err
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper (), metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_hinge Computes the hinge metric between y_true and y_pred

Description

y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them

to-1orl.
Usage
metric_hinge(y_true, y_pred, ..., name = "hinge", dtype = NULL)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

loss = tf$reduce_mean(tf$maximum(l - y_true * y_pred, OL), axis=-1L)

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

388 metric_kullback_leibler_divergence

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(),metric_mean_absolute_percentage_error (), metric_mean_iou(),
metric_mean_relative_error(), metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(), metric_mean_wrapper (), metric_mean(), metric_poisson(),metric_precision_at_recal:
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_kullback_leibler_divergence
Computes Kullback-Leibler divergence

Description

Computes Kullback-Leibler divergence

Usage
metric_kullback_leibler_divergence(
y_true,
y_pred,
name = "kullback_leibler_divergence”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

metric = y_true * log(y_true / y_pred)
See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

metric_logcosh_error 389

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(), metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_logcosh_error(),metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error (), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_logcosh_error Computes the logarithm of the hyperbolic cosine of the prediction er-
ror

Description

logcosh = log((exp(x) + exp(-x))/2), where X is the error (y_pred -y_true)

Usage
metric_logcosh_error(..., name = "logcosh”, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

390 metric_mean

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),

metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_mean_absolute_el

metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),

metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge

metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_mean Computes the (weighted) mean of the given values

Description

Computes the (weighted) mean of the given values

Usage
metric_mean(..., name = "mean"”, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

For example, if values is c(1, 3,5, 7) then the mean is 4. If the weights were specified as c(1,1,0,0)
then the mean would be 2.

This metric creates two variables, total and count that are used to compute the average of values.
This average is ultimately returned as mean which is an idempotent operation that simply divides
total by count.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

metric_mean_absolute_error 391

Note

Unlike most other metrics, this only takes a single tensor as input to update state.

Example usage with compile():

model$add_metric(metric_mean(name='mean_1") (outputs))
model %>% compile(optimizer='sgd', loss='mse')

Example standalone usage:

m <- metric_mean()
m$update_state(c(1, 3, 5, 7))
m$result()

m$reset_state()

m$update_state(c(1, 3, 5, 7), sample_weight=c(1, 1, @, 0))
m$result()

as.numeric(m$result())

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_poisson(),metric_precision_at_recall(),
metric_precision(), metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_mean_absolute_error
Computes the mean absolute error between the labels and predictions

Description

Computes the mean absolute error between the labels and predictions

Usage
metric_mean_absolute_error(
y_true,
y_pred,
name = "mean_absolute_error”,
dtype = NULL

392 metric_mean_absolute_percentage_error

Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

loss =mean(abs(y_true -y_pred),axis=-1)

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_percentage_error(),metric_mean_iou(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_mean_absolute_percentage_error
Computes the mean absolute percentage error between y_true and
y_pred

Description

Computes the mean absolute percentage error between y_true and y_pred

metric_mean_absolute_percentage_error 393

Usage
metric_mean_absolute_percentage_error(
y_true,
y_pred,
name = "mean_absolute_percentage_error”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

loss =100 * mean(abs((y_true -y_pred) / y_true),axis=-1)

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_iou(),metric_mean_relative_error(), metric_mean_squared_err
metric_mean_squared_logarithmic_error(),metric_mean_tensor(),metric_mean_wrapper(),

metric_mean(), metric_poisson(), metric_precision_at_recall(), metric_precision(),
metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),metric_sensitivity_at.
metric_sparse_categorical_accuracy(),metric_sparse_categorical_crossentropy(),metric_sparse_top_k_c
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(), metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

394 metric_mean_iou

metric_mean_iou Computes the mean Intersection-Over-Union metric

Description

Computes the mean Intersection-Over-Union metric

Usage
metric_mean_iou(..., num_classes, name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
num_classes The possible number of labels the prediction task can have. This value must be
provided, since a confusion matrix of dim c(num_classes,num_classes) will
be allocated.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation,
which first computes the IOU for each semantic class and then computes the average over classes.
IOU is defined as follows:

I0U = true_positive / (true_positive + false_positive + false_negative)

The predictions are accumulated in a confusion matrix, weighted by sample_weight and the metric
is then calculated from it.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(), metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_relative_error(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),

metric_mean_relative_error 395

metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_mean_relative_error
Computes the mean relative error by normalizing with the given values

Description

Computes the mean relative error by normalizing with the given values

Usage
metric_mean_relative_error(..., normalizer, name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
normalizer The normalizer values with same shape as predictions.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

This metric creates two local variables, total and count that are used to compute the mean relative
error. This is weighted by sample_weight, and it is ultimately returned as mean_relative_error:
an idempotent operation that simply divides total by count.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.
metric = mean(|y_pred - y_true| / normalizer)
For example:

m = metric_mean_relative_error(normalizer=c(1, 3, 2, 3))
m$update_state(c(1, 3, 2, 3), c(2, 4, 6, 8))

result = mean(c(1, 1, 4, 5 / c(1, 3, 2, 3)) = mean(c(1, 1/3, 2, 5/3))
=5/4 =1.25
m$result()

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

396 metric_mean_squared_error

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_squared_error(), metric_mean_squared_logarithmic_error(),metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_mean_squared_error
Computes the mean squared error between labels and predictions

Description

Computes the mean squared error between labels and predictions

Usage
metric_mean_squared_error(
y_true,
y_pred,
name = "mean_absolute_percentage_error”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

After computing the squared distance between the inputs, the mean value over the last dimension is
returned.

loss =mean(square(y_true -y_pred),axis=-1)

metric_mean_squared_logarithmic_error 397

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_logarithmic_error(), metric_mean_tensor(),
metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_mean_squared_logarithmic_error
Computes the mean squared logarithmic error

Description

Computes the mean squared logarithmic error

Usage
metric_mean_squared_logarithmic_error(
y_true,
y_pred,
name = "mean_squared_logarithmic_error”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

398 metric_mean_tensor

Details

loss =mean(square(log(y_true + 1) -log(y_pred + 1)),axis=-1)

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_tensor(),metric_mean_wrapper(),
metric_mean(), metric_poisson(), metric_precision_at_recall(), metric_precision(),
metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),metric_sensitivity_at.
metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(),metric_sparse_top_k_c
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(), metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

metric_mean_tensor Computes the element-wise (weighted) mean of the given tensors

Description

Computes the element-wise (weighted) mean of the given tensors

Usage
metric_mean_tensor(..., shape = NULL, name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
shape (Optional) A list of integers, a list of integers, or a 1-D Tensor of type int32.
If not specified, the shape is inferred from the values at the first call of up-
date_state.
name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

metric_mean_wrapper 399

Details

MeanTensor returns a tensor with the same shape of the input tensors. The mean value is updated
by keeping local variables total and count. The total tracks the sum of the weighted values, and
count stores the sum of the weighted counts.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_mean_wrapper Wraps a stateless metric function with the Mean metric

Description

Wraps a stateless metric function with the Mean metric

Usage
metric_mean_wrapper(..., fn, name = NULL, dtype = NULL)
Arguments
named arguments to pass on to fn.
fn The metric function to wrap, with signature fn(y_true,y_pred,...).
name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

400 metric_poisson

Details

You could use this class to quickly build a mean metric from a function. The function needs to have
the signature fn(y_true,y_pred) and return a per-sample loss array. MeanMetricWrappers$result()
will return the average metric value across all samples seen so far.

For example:

accuracy <- function(y_true, y_pred)
k_cast(y_true == y_pred, 'float32')

accuracy_metric <- metric_mean_wrapper(fn = accuracy)

model %>% compile(..., metrics=accuracy_metric)

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor (), metric_mean(),metric_poisson(),metric_precision_at_recall(),
metric_precision(), metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_poisson Computes the Poisson metric between y_true and y_pred

Description

metric =y_pred -y_true *x log(y_pred)

Usage

metric_poisson(y_true, y_pred, ..., name = "poisson”, dtype = NULL)

metric_precision 401

Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(), metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_mean(),metric_precision_at_recall(),
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_precision Computes the precision of the predictions with respect to the labels

Description

Computes the precision of the predictions with respect to the labels

Usage

metric_precision(

thresholds = NULL,

top_k = NULL,
class_id = NULL,
name = NULL,
dtype = NULL

402 metric_precision

Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
thresholds (Optional) A float value or a list of float threshold values in [0, 1]. A threshold is
compared with prediction values to determine the truth value of predictions (i.e.,
above the threshold is true, below is false). One metric value is generated for
each threshold value. If neither thresholds nor top_k are set, the default is to
calculate precision with thresholds=0.5.
top_k (Optional) Unset by default. An int value specifying the top-k predictions to
consider when calculating precision.
class_id (Optional) Integer class ID for which we want binary metrics. This must be in
the half-open interval [0, num_classes), where num_classes is the last dimen-
sion of predictions.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

The metric creates two local variables, true_positives and false_positives that are used to
compute the precision. This value is ultimately returned as precision, an idempotent operation
that simply divides true_positives by the sum of true_positives and false_positives.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

If top_k is set, we’ll calculate precision as how often on average a class among the top-k classes
with the highest predicted values of a batch entry is correct and can be found in the label for that
entry.

If class_id is specified, we calculate precision by considering only the entries in the batch for
which class_id is above the threshold and/or in the top-k highest predictions, and computing the
fraction of them for which class_id is indeed a correct label.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(), metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall
metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),metric_sensitivity_at.
metric_sparse_categorical_accuracy(),metric_sparse_categorical_crossentropy(),metric_sparse_top_k_c
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(), metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

metric_precision_at_recall 403

metric_precision_at_recall
Computes best precision where recall is >= specified value

Description

Computes best precision where recall is >= specified value

Usage

metric_precision_at_recall(
recall,
num_thresholds = 200L,
class_id = NULL,

name = NULL,
dtype = NULL
)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
recall A scalar value in range [0, 1].

num_thresholds (Optional) Defaults to 200. The number of thresholds to use for matching the
given recall.

class_id (Optional) Integer class ID for which we want binary metrics. This must be in
the half-open interval [0, num_classes), where num_classes is the last dimen-
sion of predictions.

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

This metric creates four local variables, true_positives, true_negatives, false_positives
and false_negatives that are used to compute the precision at the given recall. The threshold for
the given recall value is computed and used to evaluate the corresponding precision.

If sample_weight is NULL, weights default to 1. Use sample_weight of 0 to mask values.

If class_id is specified, we calculate precision by considering only the entries in the batch for
which class_id is above the threshold predictions, and computing the fraction of them for which
class_id is indeed a correct label.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

404 metric_recall

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor (), metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision(),
metric_recall_at_precision(),metric_recall(), metric_root_mean_squared_error(),metric_sensitivity_at.
metric_sparse_categorical_accuracy(),metric_sparse_categorical_crossentropy(),metric_sparse_top_k_c
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(), metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

metric_recall Computes the recall of the predictions with respect to the labels

Description

Computes the recall of the predictions with respect to the labels

Usage

metric_recall(

thresholds = NULL,

top_k = NULL,
class_id = NULL,
name = NULL,
dtype = NULL
)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
thresholds (Optional) A float value or a list of float threshold values in [0, 1]. A threshold is
compared with prediction values to determine the truth value of predictions (i.e.,
above the threshold is true, below is false). One metric value is generated for
each threshold value. If neither thresholds nor top_k are set, the default is to
calculate recall with thresholds=0.5.
top_k (Optional) Unset by default. An int value specifying the top-k predictions to
consider when calculating recall.
class_id (Optional) Integer class ID for which we want binary metrics. This must be in
the half-open interval [0, num_classes), where num_classes is the last dimen-
sion of predictions.
name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

metric_recall_at_precision 405

Details

This metric creates two local variables, true_positives and false_negatives, that are used to
compute the recall. This value is ultimately returned as recall, an idempotent operation that simply
divides true_positives by the sum of true_positives and false_negatives.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

If top_k is set, recall will be computed as how often on average a class among the labels of a batch
entry is in the top-k predictions.

If class_id is specified, we calculate recall by considering only the entries in the batch for which
class_id is in the label, and computing the fraction of them for which class_id is above the
threshold and/or in the top-k predictions.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper (), metric_mean(), metric_poisson(),metric_precision_at_recal:
metric_precision(),metric_recall_at_precision(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(),metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_recall_at_precision
Computes best recall where precision is >= specified value

Description

Computes best recall where precision is >= specified value

Usage

metric_recall_at_precision(
precision,
num_thresholds = 200L,
class_id = NULL,
name = NULL,

406 metric_recall_at_precision

dtype = NULL
)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
precision A scalar value in range [0, 1].

num_thresholds (Optional) Defaults to 200. The number of thresholds to use for matching the
given precision.

class_id (Optional) Integer class ID for which we want binary metrics. This must be in
the half-open interval [0, num_classes), where num_classes is the last dimen-
sion of predictions.

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

For a given score-label-distribution the required precision might not be achievable, in this case 0.0
is returned as recall.

This metric creates four local variables, true_positives, true_negatives, false_positives
and false_negatives that are used to compute the recall at the given precision. The threshold for
the given precision value is computed and used to evaluate the corresponding recall.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

If class_id is specified, we calculate precision by considering only the entries in the batch for
which class_id is above the threshold predictions, and computing the fraction of them for which
class_idis indeed a correct label.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(), metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall
metric_precision(),metric_recall(),metric_root_mean_squared_error(),metric_sensitivity_at_specifici-
metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(),metric_sparse_top_k_c
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(), metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

metric_root_mean_squared_error 407

metric_root_mean_squared_error
Computes root mean squared error metric between y_true and
y_pred

Description

Computes root mean squared error metric between y_true and y_pred

Usage
metric_root_mean_squared_error(..., name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor (), metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recal:
metric_precision(), metric_recall_at_precision(),metric_recall(),metric_sensitivity_at_specificity(),
metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(),metric_sparse_top_k_c
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(), metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

408 metric_sensitivity_at_specificity

metric_sensitivity_at_specificity
Computes best sensitivity where specificity is >= specified value

Description

The sensitivity at a given specificity.

Usage

metric_sensitivity_at_specificity(
specificity,
num_thresholds = 200L,
class_id = NULL,

name = NULL,
dtype = NULL
)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
specificity A scalar value in range [0, 1].

num_thresholds (Optional) Defaults to 200. The number of thresholds to use for matching the
given specificity.

class_id (Optional) Integer class ID for which we want binary metrics. This must be in
the half-open interval [0, num_classes), where num_classes is the last dimen-
sion of predictions.

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

Sensitivity measures the proportion of actual positives that are correctly identified as such (tp /
(tp + fn)). Specificity measures the proportion of actual negatives that are correctly identified
as such (tn / (tn + fp)).

This metric creates four local variables, true_positives, true_negatives, false_positives
and false_negatives that are used to compute the sensitivity at the given specificity. The threshold
for the given specificity value is computed and used to evaluate the corresponding sensitivity.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

If class_id is specified, we calculate precision by considering only the entries in the batch for
which class_id is above the threshold predictions, and computing the fraction of them for which
class_id is indeed a correct label.

For additional information about specificity and sensitivity, see the following.

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

metric_sparse_categorical_accuracy 409

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(),
metric_mean_relative_error(), metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor (), metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(),metric_sparse_top_k_c
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(),metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

metric_sparse_categorical_accuracy
Calculates how often predictions match integer labels

Description

Calculates how often predictions match integer labels

Usage
metric_sparse_categorical_accuracy(
y_true,
y_pred,
name = "sparse_categorical_accuracy”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

410 metric_sparse_categorical_crossentropy

Details

acc = k_dot(sample_weight, y_true == k_argmax(y_pred, axis=2))
You can provide logits of classes as y_pred, since argmax of logits and probabilities are same.

This metric creates two local variables, total and count that are used to compute the frequency
with which y_pred matches y_true. This frequency is ultimately returned as sparse categorical ac-
curacy: an idempotent operation that simply divides total by count.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(),metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper (), metric_mean(), metric_poisson(),metric_precision_at_recal.
metric_precision(), metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_crossentropy(),metric_sparse_top_k_ca
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(),metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

metric_sparse_categorical_crossentropy
Computes the crossentropy metric between the labels and predictions

Description

Computes the crossentropy metric between the labels and predictions

Usage

metric_sparse_categorical_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
axis = -1L,

metric_sparse_categorical_crossentropy 411

L

name = "sparse_categorical_crossentropy”,
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
from_logits (Optional) Whether output is expected to be a logits tensor. By default, we
consider that output encodes a probability distribution.
axis (Optional) (1-based) Defaults to -1. The dimension along which the metric is
computed.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

Use this crossentropy metric when there are two or more label classes. We expect labels to be
provided as integers. If you want to provide labels using one-hot representation, please use
CategoricalCrossentropy metric. There should be # classes floating point values per feature
for y_pred and a single floating point value per feature for y_true.

In the snippet below, there is a single floating point value per example for y_true and # classes
floating pointing values per example for y_pred. The shape of y_true is [batch_size] and the
shape of y_pred is [batch_size, num_classes].

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor (), metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recal:
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_top_k_catego

412 metric_sparse_top_k_categorical_accuracy

metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(),metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

metric_sparse_top_k_categorical_accuracy
Computes how often integer targets are in the top K predictions

Description

Computes how often integer targets are in the top K predictions

Usage
metric_sparse_top_k_categorical_accuracy(
y_true,
y-pred,
k = 5L,
name = "sparse_top_k_categorical_accuracy",
dtype = NULL
)
Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
k (Optional) Number of top elements to look at for computing accuracy. Defaults
to 5.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

metric_specificity_at_sensitivity 413

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(), metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_mean(), metric_poisson(),metric_precision_at_recal:
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_specificity_at_sensitivity(),metric_squared_hinge(),metric_sum(),metric_top_k_categorical_ac
metric_true_negatives(), metric_true_positives()

metric_specificity_at_sensitivity
Computes best specificity where sensitivity is >= specified value

Description

Computes best specificity where sensitivity is >= specified value

Usage

metric_specificity_at_sensitivity(
sensitivity,
num_thresholds = 200L,
class_id = NULL,

name = NULL,
dtype = NULL
)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
sensitivity A scalar value in range [0, 1].

num_thresholds (Optional) Defaults to 200. The number of thresholds to use for matching the
given sensitivity.

class_id (Optional) Integer class ID for which we want binary metrics. This must be in
the half-open interval [0, num_classes), where num_classes is the last dimen-
sion of predictions.

name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

414 metric_squared_hinge

Details

Sensitivity measures the proportion of actual positives that are correctly identified as such (tp /
(tp + fn)). Specificity measures the proportion of actual negatives that are correctly identified
as such (tn/ (tn+ fp)).

This metric creates four local variables, true_positives, true_negatives, false_positives
and false_negatives that are used to compute the specificity at the given sensitivity. The threshold
for the given sensitivity value is computed and used to evaluate the corresponding specificity.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

If class_id is specified, we calculate precision by considering only the entries in the batch for
which class_id is above the threshold predictions, and computing the fraction of them for which
class_id is indeed a correct label.

For additional information about specificity and sensitivity, see the following.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall
metric_precision(),metric_recall_at_precision(),metric_recall(), metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(), metric_squared_hinge(), metric_sum(),
metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_squared_hinge Computes the squared hinge metric

Description

y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them
to-1or 1.

Usage

metric_squared_hinge(y_true, y_pred, ..., name = "squared_hinge"”, dtype = NULL)

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

metric_sum 415

Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper (), metric_mean(), metric_poisson(),metric_precision_at_recal.
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_sum(),
metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_sum Computes the (weighted) sum of the given values

Description

Computes the (weighted) sum of the given values

Usage
metric_sum(..., name = NULL, dtype = NULL)
Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.

dtype (Optional) data type of the metric result.

416 metric_top_k_categorical_accuracy

Details

For example, if valuesis c(1, 3,5, 7) then the sum is 16. If the weights were specifiedas c(1,1,0,0)
then the sum would be 4.

This metric creates one variable, total, that is used to compute the sum of values. This is ulti-
mately returned as sum.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(),metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_mean(),metric_poisson(), metric_precision_at_recall
metric_precision(),metric_recall_at_precision(),metric_recall(), metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_top_k_categorical_accuracy(),metric_true_negatives(),metric_true_positives()

metric_top_k_categorical_accuracy
Computes how often targets are in the top K predictions

Description

Computes how often targets are in the top K predictions

Usage
metric_top_k_categorical_accuracy(
y_true,
y_pred,
k = 5L,
name = "top_k_categorical_accuracy”,
dtype = NULL

metric_true_negatives 417

Arguments
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
k (Optional) Number of top elements to look at for computing accuracy. Defaults
to 5.
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object
can be passed directly to compile(metrics =) or used as a standalone object. See ?Metric for
example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for
the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(),
metric_mean_relative_error(), metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper (), metric_mean(), metric_poisson(),metric_precision_at_recal:
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_true_negatives(), metric_true_positives()

metric_true_negatives Calculates the number of true negatives

Description

Calculates the number of true negatives

Usage

metric_true_negatives(..., thresholds = NULL, name = NULL, dtype = NULL)

418 metric_true_positives

Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
thresholds (Optional) Defaults to 0.5. A float value or a list of float threshold values in
[0, 1]. A threshold is compared with prediction values to determine the truth
value of predictions (i.e., above the threshold is true, below is false). One
metric value is generated for each threshold value.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

If sample_weight is given, calculates the sum of the weights of true negatives. This metric creates
one local variable, accumulator that is used to keep track of the number of true negatives.

If sample_weight is NULL, weights default to 1. Use sample_weight of O to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(),metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(), metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_mean(),metric_poisson(),metric_precision_at_recal:
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_top_k_categorical_accuracy(), metric_true_positives()

metric_true_positives Calculates the number of true positives

Description

Calculates the number of true positives

Usage

metric_true_positives(..., thresholds = NULL, name = NULL, dtype = NULL)

model_from_saved_model 419

Arguments
Passed on to the underlying metric. Used for forwards and backwards compati-
bility.
thresholds (Optional) Defaults to 0.5. A float value or a list of float threshold values in
[0, 1]. A threshold is compared with prediction values to determine the truth
value of predictions (i.e., above the threshold is true, below is false). One
metric value is generated for each threshold value.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
Details

If sample_weight is given, calculates the sum of the weights of true positives. This metric creates
one local variable, true_positives that is used to keep track of the number of true positives.

If sample_weight is NULL, weights default to 1. Use sample_weight of 0 to mask values.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics =), or used as a
standalone object. See ?Metric for example usage.

See Also

Other metrics: custom_metric(),metric_accuracy(),metric_auc(),metric_binary_accuracy(),
metric_binary_crossentropy(), metric_categorical_accuracy(),metric_categorical_crossentropy(),
metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(),
metric_false_positives(),metric_hinge(),metric_kullback_leibler_divergence(),metric_logcosh_error(),
metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(),
metric_mean_relative_error(),metric_mean_squared_error(),metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),metric_mean_wrapper(),metric_mean(), metric_poisson(),metric_precision_at_recal:
metric_precision(),metric_recall_at_precision(),metric_recall(),metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),metric_sparse_categorical_accuracy(),metric_sparse_categorical_
metric_sparse_top_k_categorical_accuracy(),metric_specificity_at_sensitivity(),metric_squared_hinge
metric_sum(), metric_top_k_categorical_accuracy(), metric_true_negatives()

model_from_saved_model
Load a Keras model from the Saved Model format

Description

Load a Keras model from the Saved Model format

Usage

model_from_saved_model (saved_model_path, custom_objects = NULL)

420 model_to_json

Arguments

saved_model_path
a string specifying the path to the SavedModel directory.

custom_objects Optional dictionary mapping string names to custom classes or functions (e.g.
custom loss functions).

Value

a Keras model.

Note

This functionality is experimental and only works with TensorFlow version >="2.0".

See Also

Other saved_model: model_to_saved_model ()

model_to_json Model configuration as JSSON

Description

Save and re-load models configurations as JSON. Note that the representation does not include the
weights, only the architecture.

Usage

model_to_json(object)

model_from_json(json, custom_objects = NULL)

Arguments
object Model object to save
json JSON with model configuration

custom_objects Optional named list mapping names to custom classes or functions to be consid-
ered during deserialization.

See Also

Other model persistence: get_weights(), model_to_yaml(), save_model_hdf5(), save_model_tf (),
save_model_weights_hdf5(), serialize_model()

model_to_yaml 421

model_to_yaml Model configuration as YAML

Description

Save and re-load models configurations as YAML Note that the representation does not include the
weights, only the architecture.

Usage

model_to_yaml (object)

model_from_yaml(yaml, custom_objects = NULL)

Arguments
object Model object to save
yaml YAML with model configuration

custom_objects Optional named list mapping names to custom classes or functions to be consid-
ered during deserialization.

See Also

Other model persistence: get_weights(), model_to_json(), save_model_hdf5(), save_model_tf (),
save_model_weights_hdf5(), serialize_model()

normalize Normalize a matrix or nd-array

Description

Normalize a matrix or nd-array

Usage
normalize(x, axis = -1, order = 2)
Arguments
X Matrix or array to normalize
axis Axis along which to normalize. Axis indexes are 1-based (pass -1 to select the
last axis).
order Normalization order (e.g. 2 for L2 norm)
Value

A normalized copy of the array.

422 optimizer_adadelta

optimizer_adadelta Adadelta optimizer.

Description

Adadelta optimizer as described in ADADELTA: An Adaptive Learning Rate Method.

Usage

optimizer_adadelta(
learning_rate = 1,
rho = 0.95,
epsilon = NULL,
decay = 0,
clipnorm = NULL,
clipvalue = NULL,

Arguments

learning_rate float >= 0. Learning rate.

rho float >= 0. Decay factor.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.
clipvalue Gradients will be clipped when their absolute value exceeds this value.

Unused, present only for backwards compatability

Note

It is recommended to leave the parameters of this optimizer at their default values.

See Also

Other optimizers: optimizer_adagrad(), optimizer_adamax(), optimizer_adam(), optimizer_nadam(),
optimizer_rmsprop(), optimizer_sgd()

https://arxiv.org/abs/1212.5701

optimizer_adagrad 423

optimizer_adagrad Adagrad optimizer.

Description

Adagrad optimizer as described in Adaptive Subgradient Methods for Online Learning and Stochas-
tic Optimization.

Usage

optimizer_adagrad(
learning_rate = 0.01,
epsilon = NULL,
decay = 0,
clipnorm = NULL,
clipvalue = NULL,

Arguments

learning_rate float >= 0. Learning rate.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.
clipvalue Gradients will be clipped when their absolute value exceeds this value.

Unused, present only for backwards compatability

Note

It is recommended to leave the parameters of this optimizer at their default values.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adamax(), optimizer_adam(), optimizer_nadam(),
optimizer_rmsprop(), optimizer_sgd()

https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

424

optimizer_adam

optimizer_adam Adam optimizer

Description

Adam optimizer as described in Adam - A Method for Stochastic Optimization.

Usage

optimizer_adam(
learning_rate = 0.001,

beta_1 = 0.9,
beta_2 = 0.999,
epsilon = NULL,
decay = 0,
amsgrad = FALSE,

clipnorm = NULL,
clipvalue = NULL,

Arguments

learning_rate float >= 0. Learning rate.

beta_1 The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1.
Generally close to 1.

beta_2 The exponential decay rate for the 2nd moment estimates. float, O < beta < 1.
Generally close to 1.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

amsgrad Whether to apply the AMSGrad variant of this algorithm from the paper "On the
Convergence of Adam and Beyond".

clipnorm Gradients will be clipped when their L2 norm exceeds this value.

clipvalue Gradients will be clipped when their absolute value exceeds this value.

Unused, present only for backwards compatability

References

* Adam - A Method for Stochastic Optimization

* On the Convergence of Adam and Beyond

Note

Default parameters follow those provided in the original paper.

https://arxiv.org/abs/1412.6980v8
https://arxiv.org/abs/1412.6980v8
https://openreview.net/forum?id=ryQu7f-RZ

optimizer_adamax 425

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_nadam(),
optimizer_rmsprop(), optimizer_sgd()

optimizer_adamax Adamax optimizer

Description

Adamax optimizer from Section 7 of the Adam paper. It is a variant of Adam based on the infinity
norm.

Usage

optimizer_adamax(
learning_rate = 0.002,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = NULL,
decay = 0,
clipnorm = NULL,
clipvalue = NULL,

Arguments

learning_rate float >= 0. Learning rate.

beta_1 The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1.
Generally close to 1.

beta_2 The exponential decay rate for the 2nd moment estimates. float, 0 < beta < 1.
Generally close to 1.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.

clipvalue Gradients will be clipped when their absolute value exceeds this value.

Unused, present only for backwards compatability

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adam(), optimizer_nadam(),
optimizer_rmsprop(), optimizer_sgd()

https://arxiv.org/abs/1412.6980v8

426 optimizer_nadam

optimizer_nadam Nesterov Adam optimizer

Description

Much like Adam is essentially RMSprop with momentum, Nadam is Adam RMSprop with Nesterov
momentum.

Usage

optimizer_nadam(
learning_rate = 0.002,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = NULL,
schedule_decay = 0.004,
clipnorm = NULL,
clipvalue = NULL,

Arguments

learning_rate float >= 0. Learning rate.

beta_1 The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1.
Generally close to 1.

beta_2 The exponential decay rate for the 2nd moment estimates. float, O < beta < 1.
Generally close to 1.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

schedule_decay Schedule deacy.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.

clipvalue Gradients will be clipped when their absolute value exceeds this value.

Unused, present only for backwards compatability

Details
Default parameters follow those provided in the paper. It is recommended to leave the parameters
of this optimizer at their default values.

See Also

On the importance of initialization and momentum in deep learning.

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_adam(),
optimizer_rmsprop(), optimizer_sgd()

https://www.cs.toronto.edu/~fritz/absps/momentum.pdf

optimizer_rmsprop 427

optimizer_rmsprop RMSProp optimizer

Description

RMSProp optimizer

Usage

optimizer_rmsprop(
learning_rate = 0.001,
rho = 0.9,
epsilon = NULL,
decay = 0,
clipnorm = NULL,
clipvalue = NULL,

Arguments

learning_rate float >= 0. Learning rate.

rho float >= 0. Decay factor.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.
clipvalue Gradients will be clipped when their absolute value exceeds this value.

Unused, present only for backwards compatability

Note

It is recommended to leave the parameters of this optimizer at their default values (except the
learning rate, which can be freely tuned).

This optimizer is usually a good choice for recurrent neural networks.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_adam(),
optimizer_nadam(), optimizer_sgd()

428 optimizer_sgd

optimizer_sgd Stochastic gradient descent optimizer

Description

Stochastic gradient descent optimizer with support for momentum, learning rate decay, and Nes-
terov momentum.

Usage

optimizer_sgd(
learning_rate = 0.01,
momentum = @,
decay = 0,
nesterov = FALSE,
clipnorm = NULL,
clipvalue = NULL,

Arguments

learning_rate float >=0. Learning rate.

momentum float >= 0. Parameter that accelerates SGD in the relevant direction and dampens
oscillations.

decay float >= 0. Learning rate decay over each update.

nesterov boolean. Whether to apply Nesterov momentum.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.

clipvalue Gradients will be clipped when their absolute value exceeds this value.

Unused, present only for backwards compatability

Value

Optimizer for use with compile.keras.engine.training.Model.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_adam(),
optimizer_nadam(), optimizer_rmsprop()

pad_sequences

429

pad_sequences Pads sequences to the same length

Description

Pads sequences to the same length

Usage

pad_sequences(

sequences,
maxlen = NULL,

dtype = "int32",
padding = "pre”,

truncating = "pre”,
value = @
)
Arguments
sequences List of lists where each element is a sequence
maxlen int, maximum length of all sequences
dtype type of the output sequences
padding pre’ or 'post’, pad either before or after each sequence.
truncating ‘pre’ or ‘post’, remove values from sequences larger than maxlen either in the
beginning or in the end of the sequence
value float, padding value
Details

This function transforms a list of num_samples sequences (lists of integers) into a matrix of shape
(num_samples, num_timesteps). num_timesteps is either the maxlen argument if provided, or the
length of the longest sequence otherwise.

Sequences that are shorter than num_timesteps are padded with value at the end.

Sequences longer than num_timesteps are truncated so that they fit the desired length. The position
where padding or truncation happens is determined by the arguments padding and truncating,

respectively.

Pre-padding is the default.

Value

Matrix with dimensions (number_of_sequences, maxlen)

430 plot.keras_training_history

See Also

Other text preprocessing: make_sampling_table(), skipgrams(), text_hashing_trick(), text_one_hot(),
text_to_word_sequence()

plot.keras_training_history
Plot training history

Description

Plots metrics recorded during training.

Usage
S3 method for class 'keras_training_history'
plot(
X,
Y,
metrics = NULL,
method = c("auto”, "ggplot2"”, "base"),

smooth = getOption("keras.plot.history.smooth”, TRUE),
theme_bw = getOption("keras.plot.history.theme_bw", FALSE),

Arguments

X Training history object returned from fit.keras.engine.training.Model().

y Unused.

metrics One or more metrics to plot (e.g. c('loss', 'accuracy')). Defaults to plotting
all captured metrics.

method Method to use for plotting. The default "auto" will use ggplot2 if available, and
otherwise will use base graphics.

smooth Whether a loess smooth should be added to the plot, only available for the
ggplot2 method. If the number of epochs is smaller than ten, it is forced to
false.

theme_bw Use ggplot2: : theme_bw() to plot the history in black and white.

Additional parameters to pass to the plot() method.

pop_layer 431

pop_layer Remove the last layer in a model

Description

Remove the last layer in a model

Usage

pop_layer(object)

Arguments

object Keras model object

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model (), multi_gpu_model(), predict.keras.engine.training.!
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

predict.keras.engine.training.Model
Generate predictions from a Keras model

Description

Generates output predictions for the input samples, processing the samples in a batched way.

Usage

S3 method for class 'keras.engine.training.Model'
predict(

object,

X,

batch_size = NULL,

verbose = 0,

steps = NULL,

callbacks = NULL,

432 predict_on_batch

Arguments
object Keras model
X Input data (vector, matrix, or array). You can also pass a tfdataset or a gener-
ator returning a list with (inputs, targets) or (inputs, targets, sample_weights).
batch_size Integer. If unspecified, it will default to 32.
verbose Verbosity mode, O or 1.
steps Total number of steps (batches of samples) before declaring the evaluation round
finished. Ignored with the default value of NULL.
callbacks List of callbacks to apply during prediction.
Unused
Value

vector, matrix, or array of predictions

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),
get_layer(), keras_model_sequential (), keras_model (), multi_gpu_model(), pop_layer(),
predict_generator (), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

predict_on_batch Returns predictions for a single batch of samples.

Description

Returns predictions for a single batch of samples.

Usage

predict_on_batch(object, x)

Arguments
object Keras model object
X Input data (vector, matrix, or array). You can also pass a tfdataset or a gener-
ator returning a list with (inputs, targets) or (inputs, targets, sample_weights).
Value

array of predictions.

regularizer_I11 433

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model(), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model(),multi_gpu_model(), pop_layer(),
predict.keras.engine.training.Model (), predict_generator(), predict_proba(), summary.keras.engine.traii
train_on_batch()

regularizer_11 L1 and L2 regularization

Description

L1 and L2 regularization

Usage
regularizer_11(1 = 0.01)
regularizer_12(1 = 0.01)

regularizer_11_12(11 = 0.01, 12 = 0.01)

Arguments
1 Regularization factor.
11 L1 regularization factor.
12 L2 regularization factor.
reset_states Reset the states for a layer
Description

Reset the states for a layer

Usage

reset_states(object)

Arguments

object Model or layer object

See Also

Other layer methods: count_params(), get_config(), get_input_at(), get_weights()

434 save_model_hdf5

save_model_hdf5 Save/Load models using HDF files

Description

Save/Load models using HDFS5 files

Usage

save_model_hdf5(object, filepath, overwrite = TRUE, include_optimizer = TRUE)

load_model_hdf5(filepath, custom_objects = NULL, compile = TRUE)

Arguments
object Model object to save
filepath File path
overwrite Overwrite existing file if necessary

include_optimizer
If TRUE, save optimizer’s state.

custom_objects Mapping class names (or function names) of custom (non-Keras) objects to
class/functions (for example, custom metrics or custom loss functions). This
mapping can be done with the dict() function of reticulate.

compile Whether to compile the model after loading.

Details

The following components of the model are saved:

* The model architecture, allowing to re-instantiate the model.
* The model weights.
* The state of the optimizer, allowing to resume training exactly where you left off. This allows

you to save the entirety of the state of a model in a single file.

Saved models can be reinstantiated via load_model_hdf5(). The model returned by 1load_model_hdf5()
is a compiled model ready to be used (unless the saved model was never compiled in the first place
or compile = FALSE is specified).

As an alternative to providing the custom_objects argument, you can execute the definition and
persistence of your model using the with_custom_object_scope() function.
Note

The serialize_model() function enables saving Keras models to R objects that can be persisted
across R sessions.

save_model_tf 435

See Also

Other model persistence: get_weights(),model_to_json(),model_to_yaml(), save_model_tf (),
save_model_weights_hdf5(), serialize_model()

save_model_tf Save/Load models using SavedModel format

Description

Save/Load models using SavedModel format

Usage

save_model_tf(
object,
filepath,
overwrite = TRUE,
include_optimizer = TRUE,
signatures = NULL,
options = NULL

)

load_model_tf(filepath, custom_objects = NULL, compile = TRUE)

Arguments
object Model object to save
filepath File path
overwrite Overwrite existing file if necessary

include_optimizer
If TRUE, save optimizer’s state.

signatures Signatures to save with the SavedModel. Please see the signatures argument in
tf$saved_model$save for details.

options Optional tf$saved_model$SaveOptions object that specifies options for sav-
ing to SavedModel

custom_objects Mapping class names (or function names) of custom (non-Keras) objects to
class/functions (for example, custom metrics or custom loss functions). This
mapping can be done with the dict() function of reticulate.

compile Whether to compile the model after loading.

See Also

Other model persistence: get_weights(), model_to_json(), model_to_yaml(), save_model_hdf5(),
save_model_weights_hdf5(), serialize_model ()

436 save_model_weights_hdf5

save_model_weights_hdf5
Save/Load model weights using HDFS files

Description

Save/Load model weights using HDFS5 files

Usage

save_model_weights_hdf5(object, filepath, overwrite = TRUE)

load_model_weights_hdf5¢(
object,
filepath,
by_name = FALSE,
skip_mismatch = FALSE,
reshape = FALSE

)
Arguments
object Model object to save/load
filepath Path to the file
overwrite Whether to silently overwrite any existing file at the target location
by_name Whether to load weights by name or by topological order.

skip_mismatch Logical, whether to skip loading of layers where there is a mismatch in the
number of weights, or a mismatch in the shape of the weight (only valid when
by_name = FALSE).

reshape Reshape weights to fit the layer when the correct number of values are present
but the shape does not match.

Details
The weight file has:

* layer_names (attribute), a list of strings (ordered names of model layers).
* For every layer, a group named layer.name

* For every such layer group, a group attribute weight_names, a list of strings (ordered names
of weights tensor of the layer).

* For every weight in the layer, a dataset storing the weight value, named after the weight tensor.

For load_model_weights(), if by_name is FALSE (default) weights are loaded based on the net-
work’s topology, meaning the architecture should be the same as when the weights were saved.
Note that layers that don’t have weights are not taken into account in the topological ordering, so
adding or removing layers is fine as long as they don’t have weights.

save_model_weights_tf 437

If by_name is TRUE, weights are loaded into layers only if they share the same name. This is useful
for fine-tuning or transfer-learning models where some of the layers have changed.

See Also

Other model persistence: get_weights(), model_to_json(), model_to_yaml(), save_model_hdf5(),
save_model_tf (), serialize_model()

save_model_weights_tf Save model weights in the SavedModel format

Description

Save model weights in the SavedModel format

Usage

save_model_weights_tf(object, filepath, overwrite = TRUE)

load_model_weights_tf(
object,
filepath,
by_name = FALSE,
skip_mismatch = FALSE,
reshape = FALSE

)
Arguments
object Model object to save/load
filepath Path to the file
overwrite Whether to silently overwrite any existing file at the target location
by_name Whether to load weights by name or by topological order.

skip_mismatch Logical, whether to skip loading of layers where there is a mismatch in the
number of weights, or a mismatch in the shape of the weight (only valid when
by_name = FALSE).

reshape Reshape weights to fit the layer when the correct number of values are present
but the shape does not match.

Details

When saving in TensorFlow format, all objects referenced by the network are saved in the same
format as tf. train.Checkpoint, including any Layer instances or Optimizer instances assigned to
object attributes. For networks constructed from inputs and outputs using tf.keras.Model (inputs,outputs),
Layer instances used by the network are tracked/saved automatically. For user-defined classes which

438 save_text_tokenizer

inherit from tf.keras.Model, Layer instances must be assigned to object attributes, typically in
the constructor.

See the documentation of tf.train.Checkpoint and tf.keras.Model for details.

save_text_tokenizer Save a text tokenizer to an external file

Description

Enables persistence of text tokenizers alongside saved models.

Usage

save_text_tokenizer(object, filename)

load_text_tokenizer(filename)

Arguments
object Text tokenizer fit with fit_text_tokenizer()
filename File to save/load

Details

You should always use the same text tokenizer for training and prediction. In many cases however
prediction will occur in another session with a version of the model loaded via load_model_hdf5().

In this case you need to save the text tokenizer object after training and then reload it prior to
prediction.

See Also

Other text tokenization: fit_text_tokenizer(), sequences_to_matrix(), text_tokenizer(),
texts_to_matrix(), texts_to_sequences_generator(), texts_to_sequences()

Examples

Not run:
vectorize texts then save for use in prediction
tokenizer <- text_tokenizer(num_words = 10000) %>%

fit_text_tokenizer(tokenizer, texts)
save_text_tokenizer(tokenizer, "tokenizer")

(train model, etc.)

...later in another session
tokenizer <- load_text_tokenizer("tokenizer")

sequences_to_matrix 439

(use tokenizer to preprocess data for prediction)

End(Not run)

sequences_to_matrix Convert a list of sequences into a matrix.

Description

Convert a list of sequences into a matrix.

Usage
sequences_to_matrix(
tokenizer,
sequences,
mode = c("binary”, "count”, "tfidf", "freq")
)
Arguments
tokenizer Tokenizer
sequences List of sequences (a sequence is a list of integer word indices).
mode one of "binary", "count", "tfidf", "freq".
Value
A matrix
See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), text_tokenizer(),
texts_to_matrix(), texts_to_sequences_generator(), texts_to_sequences()

440 sequential_model_input_layer

sequential_model_input_layer
sequential_model_input_layer

Description

sequential_model_input_layer

Usage

sequential_model_input_layer(
input_shape = NULL,
batch_size = NULL,
dtype = NULL,
input_tensor = NULL,
sparse = NULL,
name = NULL,
ragged = NULL,
type_spec = NULL,

input_layer_name = NULL

)
Arguments
input_shape an integer vector of dimensions (not including the batch axis), or a tf$TensorShape
instance (also not including the batch axis).
batch_size Optional input batch size (integer or NULL).
dtype Optional datatype of the input. When not provided, the Keras default float type

will be used.

input_tensor Optional tensor to use as layer input. If set, the layer will use the tf$TypeSpec
of this tensor rather than creating a new placeholder tensor.

sparse Boolean, whether the placeholder created is meant to be sparse. Default to
FALSE.
ragged Boolean, whether the placeholder created is meant to be ragged. In this case,

values of "NULL’ in the ’shape’ argument represent ragged dimensions. For
more information about RaggedTensors, see this guide. Default to FALSE.

type_spec A tf$TypeSpec object to create Input from. This tf$TypeSpec represents the
entire batch. When provided, all other args except name must be NULL.
additional arguments passed on to keras$layers$InputLayer.
input_layer_name, name
Optional name of the input layer (string).

https://www.tensorflow.org/guide/ragged_tensor

serialize_model 441

serialize_model Serialize a model to an R object

Description

Model objects are external references to Keras objects which cannot be saved and restored across
R sessions. The serialize_model() and unserialize_model() functions provide facilities to
convert Keras models to R objects for persistence within R data files.

Usage

serialize_model(model, include_optimizer = TRUE)

unserialize_model(model, custom_objects = NULL, compile = TRUE)

Arguments

model Keras model or R "raw" object containing serialized Keras model.

include_optimizer
If TRUE, save optimizer’s state.

custom_objects Mapping class names (or function names) of custom (non-Keras) objects to
class/functions (for example, custom metrics or custom loss functions). This
mapping can be done with the dict() function of reticulate.

compile Whether to compile the model after loading.

Value
serialize_model() returns an R "raw" object containing an hdf5 version of the Keras model.
unserialize_model () returns a Keras model.

Note

The save_model_hdf5() function enables saving Keras models to external hdf5 files.

See Also

Other model persistence: get_weights(), model_to_json(), model_to_yaml(), save_model_hdf5(),
save_model_tf (), save_model_weights_hdf5()

442

skipgrams

skipgrams

Generates skipgram word pairs.

Description

Generates skipgram word pairs.

Usage

skipgrams(
sequence,

vocabulary_size,
window_size = 4,
negative_samples = 1,
shuffle = TRUE,

categorical =

FALSE,

sampling_table = NULL,

seed = NULL

Arguments

sequence

vocabulary_size

window_size

A word sequence (sentence), encoded as a list of word indices (integers). If
using a sampling_table, word indices are expected to match the rank of the
words in a reference dataset (e.g. 10 would encode the 10-th most frequently
occuring token). Note that index O is expected to be a non-word and will be
skipped.

Int, maximum possible word index + 1

Int, size of sampling windows (technically half-window). The window of a word
w_i will be [i-window_size, i+window_size+1]

negative_samples

shuffle

categorical

sampling_table

seed

Details

float >= 0. 0 for no negative (i.e. random) samples. 1 for same number as
positive samples.

whether to shuffle the word couples before returning them.

bool. if FALSE, labels will be integers (eg. [0, 1, 1 ..]), if TRUE labels will be
categorical eg. [[1,0],[0,11,[0,1] ..]

1D array of size vocabulary_size where the entry i encodes the probabibily to
sample a word of rank 1.

Random seed

This function transforms a list of word indexes (lists of integers) into lists of words of the form:

* (word, word in the same window), with label 1 (positive samples).

summary.keras.engine.training. Model 443

¢ (word, random word from the vocabulary), with label O (negative samples).

Read more about Skipgram in this gnomic paper by Mikolov et al.: Efficient Estimation of Word
Representations in Vector Space

Value

List of couples, labels where:

* couples is a list of 2-element integer vectors: [word_index, other_word_index].

* labels is an integer vector of O and 1, where 1 indicates that other_word_index was found
in the same window as word_index, and O indicates that other_word_index was random.

* if categorical is set to TRUE, the labels are categorical, ie. 1 becomes [0,1], and 0 becomes
[1, 0].
See Also

Other text preprocessing: make_sampling_table(), pad_sequences(), text_hashing_trick(),
text_one_hot(), text_to_word_sequence()

summary.keras.engine.training.Model
Print a summary of a Keras model

Description

Print a summary of a Keras model

Usage

S3 method for class 'keras.engine.training.Model'
summary (object, ...)

S3 method for class 'keras.engine.training.Model'
format

X,

line_length = getOption("width"),

positions = NULL,

expand_nested = FALSE,

show_trainable = FALSE,

)

S3 method for class 'keras.engine.training.Model'
print(x, ...)

https://arxiv.org/pdf/1301.3781v3.pdf
https://arxiv.org/pdf/1301.3781v3.pdf

444 texts_to_matrix

Arguments

object, x Keras model instance

for summary () and print(), passed on to format(). For format(), passed on
to model$summary ().

line_length Total length of printed lines

positions Relative or absolute positions of log elements in each line. If not provided,
defaults to c(0.33,0.55,0.67,1.0).

expand_nested Whether to expand the nested models. If not provided, defaults to FALSE.
show_trainable Whether to show if a layer is trainable. If not provided, defaults to FALSE.

Value

format () returns a length 1 character vector. print () returns the model object invisibly. summary ()
returns the output of format () invisibly after printing it.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),
get_layer(), keras_model_sequential(), keras_model(),multi_gpu_model(), pop_layer(),
predict.keras.engine.training.Model (), predict_generator(), predict_on_batch(), predict_proba(),
train_on_batch()

texts_to_matrix Convert a list of texts to a matrix.

Description

Convert a list of texts to a matrix.

Usage

texts_to_matrix(tokenizer, texts, mode = c("binary”, "count”, "tfidf"”, "freq"))
Arguments

tokenizer Tokenizer

texts Vector/list of texts (strings).

mode one of "binary", "count", "tdf", "freq".
Value

A matrix

texts_to_sequences 445

See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer (), sequences_to_matrix(),
text_tokenizer(), texts_to_sequences_generator(), texts_to_sequences()

texts_to_sequences Transform each text in texts in a sequence of integers.

Description
Only top "num_words" most frequent words will be taken into account. Only words known by the
tokenizer will be taken into account.

Usage

texts_to_sequences(tokenizer, texts)

Arguments

tokenizer Tokenizer

texts Vector/list of texts (strings).
See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), sequences_to_matrix(),
text_tokenizer(), texts_to_matrix(), texts_to_sequences_generator()

texts_to_sequences_generator
Transforms each text in texts in a sequence of integers.

Description

Only top "num_words" most frequent words will be taken into account. Only words known by the
tokenizer will be taken into account.

Usage

texts_to_sequences_generator(tokenizer, texts)

Arguments

tokenizer Tokenizer

texts Vector/list of texts (strings).

446

Value

text_dataset_from_directory

Generator which yields individual sequences

See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), sequences_to_matrix(),
text_tokenizer(), texts_to_matrix(), texts_to_sequences()

text_dataset_from_directory

Generate a tf .data.Dataset from text files in a directory

Description

Generate a tf.data.Dataset from text files in a directory

Usage
text_dataset_from_directory(

directory,
labels = "inferred",
label_mode = "int",
class_names = NULL,
batch_size = 32L,
max_length = NULL,
shuffle = TRUE,
seed = NULL,

validation_split = NULL,
subset = NULL,
follow_links

Arguments

directory

labels

label_mode

= FALSE,

Directory where the data is located. If labels is "inferred", it should contain
subdirectories, each containing text files for a class. Otherwise, the directory
structure is ignored.

Either "inferred" (labels are generated from the directory structure), NULL (no
labels), or a list of integer labels of the same size as the number of text files
found in the directory. Labels should be sorted according to the alphanumeric
order of the text file paths (obtained via os.walk(directory) in Python).

e 'int': means that the labels are encoded as integers (e.g. for sparse_categorical_crossentropy
loss).

* 'categorical' means that the labels are encoded as a categorical vector
(e.g. for categorical_crossentropy loss).

text_dataset_from_directory 447

* 'binary' means that the labels (there can be only 2) are encoded as float32
scalars with values O or 1 (e.g. for binary_crossentropy).

¢ NULL (no labels).
class_names Only valid if labels is "inferred”. This is the explicit list of class names

(must match names of subdirectories). Used to control the order of the classes
(otherwise alphanumerical order is used).

batch_size Size of the batches of data. Default: 32.

max_length Maximum size of a text string. Texts longer than this will be truncated to
max_length.

shuffle Whether to shuffle the data. Default: TRUE. If set to FALSE, sorts the data in

alphanumeric order.

seed Optional random seed for shuffling and transformations.

validation_split
Optional float between 0 and 1, fraction of data to reserve for validation.

subset One of "training" or "validation". Only used if validation_split is set.
follow_links Whether to visits subdirectories pointed to by symlinks. Defaults to FALSE.

For future compatibility (unused presently).

Details

If your directory structure is:

main_directory/
...class_a/

...... a_text_1.txt
...... a_text_2.txt
...class_b/

...... b_text_1.txt
...... b_text_2.txt

Then calling text_dataset_from_directory(main_directory,labels = "inferred') will re-
turn a tf.data.Dataset that yields batches of texts from the subdirectories class_a and class_b,
together with labels 0 and 1 (O corresponding to class_a and 1 corresponding to class_b).

Only . txt files are supported at this time.

See Also

* https://www.tensorflow.org/api_docs/python/tf/keras/utils/text_dataset_from_
directory

https://www.tensorflow.org/api_docs/python/tf/keras/utils/text_dataset_from_directory
https://www.tensorflow.org/api_docs/python/tf/keras/utils/text_dataset_from_directory

448 text_hashing_trick

text_hashing_trick Converts a text to a sequence of indexes in a fixed-size hashing space.

Description

Converts a text to a sequence of indexes in a fixed-size hashing space.

Usage

text_hashing_trick(
text,
n,
hash_function = NULL,
filters = "IN"#$%&(O)*+,-./:;<=>?@[\\1*_*{|}~\t\n",

lower = TRUE,
split = " "
)
Arguments
text Input text (string).
n Dimension of the hashing space.

hash_function if NULL uses the Python hash() function. Otherwise can be 'md5' or any func-
tion that takes in input a string and returns an int. Note that hash is not a stable
hashing function, so it is not consistent across different runs, while 'md5' is a
stable hashing function.

filters Sequence of characters to filter out such as punctuation. Default includes basic
punctuation, tabs, and newlines.
lower Whether to convert the input to lowercase.
split Sentence split marker (string).
Details
Two or more words may be assigned to the same index, due to possible collisions by the hashing
function.
Value

A list of integer word indices (unicity non-guaranteed).

See Also

Other text preprocessing: make_sampling_table(), pad_sequences(), skipgrams(), text_one_hot(),
text_to_word_sequence()

text_one_hot 449

text_one_hot One-hot encode a text into a list of word indexes in a vocabulary of
size n.

Description

One-hot encode a text into a list of word indexes in a vocabulary of size n.

Usage
text_one_hot(
input_text,
n,
filters = "IN"#$%&()*+,-./:;<=>2@[\\1*_*{|}~\t\n",
lower = TRUE,
split = " ",
text = NULL
)
Arguments
input_text Input text (string).
n Size of vocabulary (integer)
filters Sequence of characters to filter out such as punctuation. Default includes basic
punctuation, tabs, and newlines.
lower Whether to convert the input to lowercase.
split Sentence split marker (string).
text for compatibility purpose. use input_text instead.
Value

List of integers in [1, n]. Each integer encodes a word (unicity non-guaranteed).

See Also

Other text preprocessing: make_sampling_table(), pad_sequences(), skipgrams(), text_hashing_trick(),
text_to_word_sequence()

450 text_tokenizer

text_tokenizer Text tokenization utility

Description

Vectorize a text corpus, by turning each text into either a sequence of integers (each integer being
the index of a token in a dictionary) or into a vector where the coefficient for each token could be
binary, based on word count, based on tf-idf...

Usage

text_tokenizer(
num_words = NULL,
filters = "IN"#$%&()*+,-./:;<=>?@[\\1*_*{|}~\t\n",
lower = TRUE,
split =" ",
char_level = FALSE,
oov_token = NULL

)
Arguments
num_words the maximum number of words to keep, based on word frequency. Only the
most common num_words words will be kept.
filters a string where each element is a character that will be filtered from the texts.
The default is all punctuation, plus tabs and line breaks, minus the ’ character.
lower boolean. Whether to convert the texts to lowercase.
split character or string to use for token splitting.
char_level if TRUE, every character will be treated as a token
oov_token NULL or string If given, it will be added to ‘word_index* and used to replace
out-of-vocabulary words during text_to_sequence calls.
Details

By default, all punctuation is removed, turning the texts into space-separated sequences of words
(words maybe include the ’ character). These sequences are then split into lists of tokens. They will
then be indexed or vectorized. @ is a reserved index that won’t be assigned to any word.

Attributes

The tokenizer object has the following attributes:

* word_counts — named list mapping words to the number of times they appeared on during
fit. Only set after fit_text_tokenizer() is called on the tokenizer.

* word_docs — named list mapping words to the number of documents/texts they appeared on
during fit. Only set after fit_text_tokenizer() is called on the tokenizer.

text_to_word_sequence 451

* word_index — named list mapping words to their rank/index (int). Only set after fit_text_tokenizer()
is called on the tokenizer.

e document_count — int. Number of documents (texts/sequences) the tokenizer was trained
on. Only set after fit_text_tokenizer () is called on the tokenizer.

See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), sequences_to_matrix(),
texts_to_matrix(), texts_to_sequences_generator(), texts_to_sequences()

text_to_word_sequence Convert text to a sequence of words (or tokens).

Description

Convert text to a sequence of words (or tokens).

Usage
text_to_word_sequence(
text,
filters = "IN"#$%&()*+,-./:;<=>2@[\\1*_*{|}~\t\n",
lower = TRUE,
split = " "
)
Arguments
text Input text (string).
filters Sequence of characters to filter out such as punctuation. Default includes basic
punctuation, tabs, and newlines.
lower Whether to convert the input to lowercase.
split Sentence split marker (string).
Value

Words (or tokens)

See Also

Other text preprocessing: make_sampling_table(), pad_sequences(), skipgrams(), text_hashing_trick(),
text_one_hot()

452

timeseries_dataset_from_array

timeseries_dataset_from_array

Creates a dataset of sliding windows over a timeseries provided as
array

Description

Creates a dataset of sliding windows over a timeseries provided as array

Usage

timeseries_dataset_from_array(

data,
targets,

sequence_length,
sequence_stride = 1L,

sampling_rate

batch_size

=1L,

128L,

shuffle = FALSE,

D

seed = NULL,

start_index =
end_index =
)
Arguments
data
targets

sequence_length

sequence_stride

sampling_rate

batch_size
shuffle

seed

NULL,

NULL

array or eager tensor containing consecutive data points (timesteps). The first
axis is expected to be the time dimension.

Targets corresponding to timesteps in data. targets[i] should be the target
corresponding to the window that starts at index i (see example 2 below). Pass
NULL if you don’t have target data (in this case the dataset will only yield the
input data).

Length of the output sequences (in number of timesteps).

Period between successive output sequences. For stride s, output samples would
start at index data[i], data[i + s], datal[i + (2 * s) 1, etc.

Period between successive individual timesteps within sequences. For rate r,
timesteps data[i], data[i + r], ... data[i + sequence_length] are used for create a
sample sequence.

Number of timeseries samples in each batch (except maybe the last one).
Whether to shuffle output samples, or instead draw them in chronological order.
For backwards and forwards compatibility, ignored presently.

Optional int; random seed for shuffling.

timeseries_dataset_from_array 453

start_index Optional int; data points earlier (exclusive) than start_index will not be used
in the output sequences. This is useful to reserve part of the data for test or
validation.

end_index Optional int; data points later (exclusive) than end_index will not be used in the

output sequences. This is useful to reserve part of the data for test or validation.

Details

This function takes in a sequence of data-points gathered at equal intervals, along with time series
parameters such as length of the sequences/windows, spacing between two sequence/windows, etc.,
to produce batches of timeseries inputs and targets.

Value
A tf.data.Dataset instance. If targets was passed, the dataset yields batches of two items:
(batch_of_sequences, batch_of_targets). If not, the dataset yields only batch_of_sequences.

Example 1

Consider indices 0:99. With sequence_length=10, sampling_rate=2, sequence_stride=3,
shuffle=FALSE, the dataset will yield batches of sequences composed of the following indices:

6 8 10 12 14 16 18
9 11 13 1517 19 21
2 14 16 18 20 22 24

First sequence: @ 2 4
Second sequence: 3 5 7
Third sequence: 6 8 10 1
Last sequence: 78 80 82 84 86 88 90 92 94 96

In this case the last 3 data points are discarded since no full sequence can be generated to include
them (the next sequence would have started at index 81, and thus its last step would have gone over
99).

Example 2

Temporal regression.

Consider an array data of scalar values, of shape (steps). To generate a dataset that uses the past
10 timesteps to predict the next timestep, you would use:

steps <- 100
data is integer seq with some noise
data <- array(l:steps + abs(rnorm(steps, sd = .25)))
inputs_data <- head(data, -10) # drop last 10
targets <- tail(data, -10) # drop first 10
dataset <- timeseries_dataset_from_array(
inputs_data, targets, sequence_length=10)
library(tfdatasets)
dataset_iterator <- as_iterator(dataset)
repeat {
batch <- iter_next(dataset_iterator)

454

if(is.null(batch)) break

c(input, target
stopifnot(exprs
First seque
Correspondi
all.equal(as.
all.equal(as.

all.equal(as.
all.equal(as

all.equal(as.
all.equal(as.
D
3

Example 3

) %<-% batch

={

nce: steps [1-10]

ng target: step 11
array(inputl[1, 1), datal1:10])
array(target[1]), datal[11]1)

array(inputl[2, 1), data[2:11])

.array(target[2]), datal[12])

array(input[3, 1), data[3:12])
array(target[3]), datal[13])

Temporal regression for many-to-many architectures.

timeseries_dataset_from_array

Consider two arrays of scalar values X and Y, both of shape (100). The resulting dataset should
consist of samples with 20 timestamps each. The samples should not overlap. To generate a dataset
that uses the current timestamp to predict the corresponding target timestep, you would use:

X <- seq(100)
Y <- X*2

sample_length <-
input_dataset <-

20
timeseries_dataset_from_array(

X, NULL, sequence_length=sample_length, sequence_stride=sample_length)

target_dataset <- timeseries_dataset_from_array(

Y, NULL, sequence_length=sample_length, sequence_stride=sample_length)

library(tfdatasets)
dataset_iterator <-

zip_datasets(input_dataset, target_dataset) %>%

as_array_iterator()
while(!is.null(batch <- iter_next(dataset_iterator))) {

c(inputs, targe
stopifnot(

ts) %<-% batch

all.equal(inputs[1,], X[1:sample_lengthl),
all.equal(targets[1,], Y[1:sample_lengthl),

second sample equals output timestamps 20-40

all.equal(inputs[2,], X[(1:sample_length) + sample_lengthl]),
all.equal(targets[2,], Y[(1:sample_length) + sample_length])

timeseries_generator 455

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/utils/timeseries_dataset_
from_array

timeseries_generator Utility function for generating batches of temporal data.

Description

Utility function for generating batches of temporal data.

Usage
timeseries_generator(
data,
targets,
length,
sampling_rate = 1,
stride = 1,

start_index = 0,
end_index = NULL,
shuffle = FALSE,
reverse = FALSE,
batch_size = 128

)
Arguments
data Object containing consecutive data points (timesteps). The data should be 2D,
and axis 1 is expected to be the time dimension.
targets Targets corresponding to timesteps in data. It should have same length as data.
length Length of the output sequences (in number of timesteps).

sampling_rate Period between successive individual timesteps within sequences. For rate r,
timesteps datali], datali-r], ... datali -length] are used for create a sam-
ple sequence.

stride Period between successive output sequences. For stride s, consecutive output
samples would be centered around datal[i], data[i+s], datal[i+2#s], etc.

start_index, end_index

Data points earlier than start_index or later than end_index will not be used
in the output sequences. This is useful to reserve part of the data for test or

validation.
shuffle Whether to shuffle output samples, or instead draw them in chronological order.
reverse Boolean: if true, timesteps in each output sample will be in reverse chronolog-
ical order.

batch_size Number of timeseries samples in each batch (except maybe the last one).

https://www.tensorflow.org/api_docs/python/tf/keras/utils/timeseries_dataset_from_array
https://www.tensorflow.org/api_docs/python/tf/keras/utils/timeseries_dataset_from_array

456 time_distributed

Value

An object that can be passed to generator based training functions (e.g. fit_generator()).ma

time_distributed This layer wrapper allows to apply a layer to every temporal slice of
an input

Description

This layer wrapper allows to apply a layer to every temporal slice of an input

Usage
time_distributed(object, layer, ...)
Arguments
object What to compose the new Layer instance with. Typically a Sequential model
or a Tensor (e.g., as returned by layer_input()). The return value depends on
object. If object is:
* missing or NULL, the Layer instance is returned.
* aSequential model, the model with an additional layer is returned.
* a Tensor, the output tensor from layer_instance(object) is returned.
layer a tf.keras.layers.Layer instance.
standard layer arguments.
Details

Every input should be at least 3D, and the dimension of index one of the first input will be considered
to be the temporal dimension.

Consider a batch of 32 video samples, where each sample is a 128x128 RGB image with channels_last
data format, across 10 timesteps. The batch input shape is (32, 10, 128, 128, 3).

You can then use TimeDistributed to apply the same Conv2D layer to each of the 10 timesteps,
independently:

input <- layer_input(c(10, 128, 128, 3))

conv_layer <- layer_conv_2d(filters = 64, kernel_size = c(3, 3))
output <- input %>% time_distributed(conv_layer)

output$shape # TensorShape([None, 10, 126, 126, 64])

Because TimeDistributed applies the same instance of Conv2D to each of the timestamps, the
same set of weights are used at each timestamp.

See Also

e https://www.tensorflow.org/api_docs/python/tf/keras/layers/TimeDistributed
Other layer wrappers: bidirectional()

https://www.tensorflow.org/api_docs/python/tf/keras/layers/TimeDistributed

to_categorical 457

to_categorical Converts a class vector (integers) to binary class matrix.

Description

Converts a class vector (integers) to binary class matrix.

Usage

to_categorical(y, num_classes = NULL, dtype = "float32")

Arguments
y Class vector to be converted into a matrix (integers from 0 to num_classes).
num_classes Total number of classes.
dtype The data type expected by the input, as a string

Details

E.g. for use with loss_categorical_crossentropy().

Value

A binary matrix representation of the input.

train_on_batch Single gradient update or model evaluation over one batch of samples.

Description

Single gradient update or model evaluation over one batch of samples.

Usage
train_on_batch(object, x, y, class_weight = NULL, sample_weight = NULL)

test_on_batch(object, x, y, sample_weight = NULL)

Arguments
object Keras model object
X input data, as an array or list of arrays (if the model has multiple inputs).
y labels, as an array.

class_weight named list mapping classes to a weight value, used for scaling the loss function
(during training only).

sample_weight sample weights, as an array.

458 use_implementation

Value

Scalar training or test loss (if the model has no metrics) or list of scalars (if the model computes
other metrics). The property model$metrics_names will give you the display labels for the scalar
outputs.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model(),multi_gpu_model(), pop_layer(),
predict.keras.engine.training.Model (), predict_generator(), predict_on_batch(), predict_proba(),
summary.keras.engine.training.Model ()

use_implementation Select a Keras implementation and backend

Description

Select a Keras implementation and backend

Usage

use_implementation(implementation = c("keras”, "tensorflow"))

use_backend(backend = c("tensorflow”, "cntk”, "theano”, "plaidml”))

Arguments

implementation One of "keras" or "tensorflow" (defaults to "keras").

backend One of "tensorflow", "cntk", or "theano" (defaults to "tensorflow")

Details

Keras has multiple implementations (the original keras implementation and the implementation na-

tive to TensorFlow) and supports multiple backends ("tensorflow", "cntk", "theano", and "plaidml").
These functions allow switching between the various implementations and backends.

The functions should be called after 1ibrary(keras) and before calling other functions within the
package (see below for an example).

The default implementation and backend should be suitable for most use cases. The "tensorflow"
implementation is useful when using Keras in conjunction with TensorFlow Estimators (the tfesti-
mators R package).

with_custom_object_scope 459

Examples

Not run:

use the tensorflow implementation
library(keras)
use_implementation("tensorflow”)

use the cntk backend
library(keras)

use_backend(”theano")

End(Not run)

with_custom_object_scope
Provide a scope with mappings of names to custom objects

Description

Provide a scope with mappings of names to custom objects

Usage

with_custom_object_scope(objects, expr)

Arguments
objects Named list of objects
expr Expression to evaluate
Details

There are many elements of Keras models that can be customized with user objects (e.g. losses,
metrics, regularizers, etc.). When loading saved models that use these functions you typically need
to explicitily map names to user objects via the custom_objects parmaeter.

The with_custom_object_scope() function provides an alternative that lets you create a named
alias for a user object that applies to an entire block of code, and is automatically recognized when
loading saved models.

Examples

Not run:
define custom metric
metric_top_3_categorical_accuracy <-
custom_metric("top_3_categorical_accuracy”, function(y_true, y_pred) {
metric_top_k_categorical_accuracy(y_true, y_pred, k = 3)

D

460

with_custom_object_scope(c(top_k_acc = sparse_top_k_cat_acc), {

...define model...

compile model (refer to "top_k_acc” by name)
model %>% compile(

loss = "binary_crossentropy"”,

optimizer = optimizer_nadam(),

metrics = c("top_k_acc")

)

save the model
save_model_hdf5("my_model.h5")

loading the model within the custom object scope doesn't
require explicitly providing the custom_object
load_model_hdf5("my_model.h5")

»

End(Not run)

%py_class%

%py_class% Make a python class constructor

Description

Make a python class constructor

Usage

spec %py_class% body

Arguments
spec a bare symbol MyClassName, or a call MyClassName (SuperClass)
body an expression that can be evaluated to construct the class methods.
Value

The python class constructor, invisibly. Note, the same constructor is also assigned in the parent

frame.

Examples

Not run:
MyClass %py_class% {
initialize <- function(x) {
print("Hi from MyClass$initialize()!")

%<-active % 461

self$x <- x

}

my_method <- function() {
self$x

}

}

my_class_instance <- MyClass(42)
my_class_instance$my_method()

MyClass2(MyClass) %py_class% {
"This will be a __doc__ string for MyClass2"”
initialize <- function(...) {
"This will be the __doc__ string for the MyClass2.__init__() method”
print("Hi from MyClass2$initialize()!")
super$initialize(...)
}
}

my_class_instance2 <- MyClass2(42)
my_class_instance2$my_method()

reticulate: :py_help(MyClass2) # see the __doc__ strings and more!

End(Not run)

%<-active% Make an Active Binding

Description

Make an Active Binding

Usage

sym %<-active% value

Arguments

sym symbol to bind

value A function to call when the value of sym is accessed.
Details

Active bindings defined in a %py_class% are converted to @property decorated methods.

Value

value, invisibly

462 %<-active %

See Also

makeActiveBinding()

Examples

X %<-active% function(value) {
message("Evaluating function of active binding")
if(missing(value))
runif(1)
else
message ("Received:

n

, value)

<- "foo"
<- "foo"

X X X X <

X
rm(x) # cleanup

Index

* RNN cell layers
layer_gru_cell, 285
layer_lstm_cell, 304
layer_simple_rnn_cell, 347
layer_stacked_rnn_cells, 352
* activation layers
layer_activation, 202
layer_activation_elu, 204
layer_activation_leaky_relu, 205
layer_activation_parametric_relu
206
layer_activation_relu, 207
layer_activation_selu, 209
layer_activation_softmax, 210
layer_activation_thresholded_relu,
211
x attention layers
layer_attention, 217
x callbacks
callback_csv_logger, 41
callback_early_stopping, 42
callback_lambda, 43
callback_learning_rate_scheduler,
44
callback_model_checkpoint, 45
callback_progbar_logger, 46
callback_reduce_lr_on_plateau, 47
callback_remote_monitor, 48
callback_tensorboard, 49
callback_terminate_on_naan, 50
* categorical features preprocessing layers
layer_category_encoding, 226
layer_hashing, 287
layer_integer_lookup, 290
layer_string_lookup, 353
* convolutional layers
layer_conv_1d, 229
layer_conv_1d_transpose, 231
layer_conv_2d, 234

463

layer_conv_2d_transpose, 237
layer_conv_3d, 240
layer_conv_3d_transpose, 242
layer_conv_lstm_2d, 248
layer_cropping_1d, 253
layer_cropping_2d, 255
layer_cropping_3d, 256
layer_depthwise_conv_1d, 261
layer_depthwise_conv_2d, 263
layer_separable_conv_1d, 338
layer_separable_conv_2d, 341
layer_upsampling_1d, 359
layer_upsampling_2d, 360
layer_upsampling_3d, 362
layer_zero_padding_1d, 363
layer_zero_padding_2d, 364
layer_zero_padding_3d, 366

* core layers
layer_activation, 202
layer_activity_regularization, 212
layer_attention, 217
layer_dense, 258
layer_dense_features, 260
layer_dropout, 268
layer_flatten, 271
layer_input, 289
layer_lambda, 293
layer_masking, 307
layer_permute, 318
layer_repeat_vector, 329
layer_reshape, 332

+ datasets
dataset_boston_housing, 58
dataset_cifar10, 59
dataset_cifar100, 59
dataset_fashion_mnist, 60
dataset_imdb, 61
dataset_mnist, 62
dataset_reuters, 63

464

keras, 99

* dropout layers
layer_dropout, 268
layer_spatial_dropout_1d, 349
layer_spatial_dropout_2d, 350
layer_spatial_dropout_3d, 351

* image augmentation layers
layer_random_contrast, 319
layer_random_crop, 320
layer_random_f1lip, 321
layer_random_height, 322
layer_random_rotation, 323
layer_random_translation, 325
layer_random_width, 327
layer_random_zoom, 328

* image preprocessing layers
layer_center_crop, 227
layer_rescaling, 331
layer_resizing, 333

* image preprocessing
fit_image_data_generator, 68
flow_images_from_data, 69
flow_images_from_dataframe, 71
flow_images_from_directory, 73
image_load, 86
image_to_array, 87

x initializers
initializer_constant, 88
initializer_glorot_normal, 89
initializer_glorot_uniform, 89
initializer_he_normal, 90
initializer_he_uniform, 91
initializer_identity, 91
initializer_lecun_normal, 92
initializer_lecun_uniform, 93
initializer_ones, 93
initializer_orthogonal, 94
initializer_random_normal, 94
initializer_random_uniform, 95
initializer_truncated_normal, 95
initializer_variance_scaling, 96
initializer_zeros, 97

* layer methods
count_params, 55
get_config, 77
get_input_at, 79
get_weights, 80
reset_states, 433

INDEX

* layer wrappers
bidirectional, 40
time_distributed, 456

+ locally connected layers
layer_locally_connected_1d, 296
layer_locally_connected_2d, 298

+ merge layers
layer_average, 218
layer_concatenate, 228
layer_dot, 267
layer_maximum, 308
layer_minimum, 313
layer_multiply, 314
layer_subtract, 355

* merging_layers
layer_add, 214

* metrics
custom_metric, 57
metric_accuracy, 374
metric_auc, 375
metric_binary_accuracy, 377
metric_binary_crossentropy, 379
metric_categorical_accuracy, 380
metric_categorical_crossentropy,

381
metric_categorical_hinge, 383
metric_cosine_similarity, 384
metric_false_negatives, 385
metric_false_positives, 386
metric_hinge, 387
metric_kullback_leibler_divergence
388

metric_logcosh_error, 389
metric_mean, 390
metric_mean_absolute_error, 391

metric_mean_absolute_percentage_error,

392
metric_mean_iou, 394
metric_mean_relative_error, 395
metric_mean_squared_error, 396

metric_mean_squared_logarithmic_error,

397
metric_mean_tensor, 398
metric_mean_wrapper, 399
metric_poisson, 400
metric_precision, 401
metric_precision_at_recall, 403
metric_recall, 404

INDEX

metric_recall_at_precision, 405
metric_root_mean_squared_error,
407
metric_sensitivity_at_specificity,
408
metric_sparse_categorical_accuracy,
409

metric_sparse_categorical_crossentropy,

410

metric_sparse_top_k_categorical_accuracy,

412
metric_specificity_at_sensitivity,
413
metric_squared_hinge, 414
metric_sum, 415
metric_top_k_categorical_accuracy,
416
metric_true_negatives, 417
metric_true_positives, 418

+x model functions

compile.keras.engine.training.Model,
51
evaluate.keras.engine.training.Model
64
fit.keras.engine.training.Model,
66
get_config, 77
get_layer, 80
keras_model, 100
keras_model_sequential, 101
pop_layer, 431
predict.keras.engine.training.Model,
431
predict_on_batch, 432
summary.keras.engine.training.Model,
443
train_on_batch, 457

* model persistence

get_weights, 80
model_to_json, 420
model_to_yaml, 421
save_model_hdf5, 434
save_model_tf, 435
save_model_weights_hdf5, 436
serialize_model, 441

* noise layers

layer_alpha_dropout, 215
layer_gaussian_dropout, 272

465

layer_gaussian_noise, 273
+ numerical features preprocessing layers
layer_discretization, 266
layer_normalization, 316
* optimizers
optimizer_adadelta, 422
optimizer_adagrad, 423
optimizer_adam, 424
optimizer_adamax, 425
optimizer_nadam, 426
optimizer_rmsprop, 427
optimizer_sgd, 428
* pooling layers
layer_average_pooling_1d, 219
layer_average_pooling_2d, 220
layer_average_pooling_3d, 221
layer_global_average_pooling_1d,
274
layer_global_average_pooling_2d,
276
layer_global_average_pooling_3d,
277
layer_global_max_pooling_1d, 278
layer_global_max_pooling_2d, 279
layer_global_max_pooling_3d, 280
layer_max_pooling_1d, 309
layer_max_pooling_2d, 310
layer_max_pooling_3d, 311
* preprocessing layer methods
adapt, 14
* preprocessing layers
layer_category_encoding, 226
layer_center_crop, 227
layer_discretization, 266
layer_hashing, 287
layer_integer_lookup, 290
layer_normalization, 316
layer_random_contrast, 319
layer_random_crop, 320
layer_random_f1lip, 321
layer_random_height, 322
layer_random_rotation, 323
layer_random_translation, 325
layer_random_width, 327
layer_random_zoom, 328
layer_rescaling, 331
layer_resizing, 333
layer_string_lookup, 353

466

layer_text_vectorization, 356
* recurrent layers
layer_gru, 281
layer_1lstm, 301
layer_rnn, 334
layer_simple_rnn, 344
* saved_model
model_from_saved_model, 419
* text preprocessing layers
layer_text_vectorization, 356
* text preprocessing
make_sampling_table, 372
pad_sequences, 429
skipgrams, 442
text_hashing_trick, 448
text_one_hot, 449
text_to_word_sequence, 451
* text tokenization
fit_text_tokenizer, 69
save_text_tokenizer, 438
sequences_to_matrix, 439
text_tokenizer, 450
texts_to_matrix, 444
texts_to_sequences, 445
texts_to_sequences_generator, 445
%<-active¥%, 461
%py_class%, 460, 461
_PACKAGE (keras-package), 11

activation_elu (activation_relu), 12
activation_exponential
(activation_relu), 12
activation_gelu (activation_relu), 12
activation_hard_sigmoid
(activation_relu), 12
activation_linear (activation_relu), 12
activation_relu, 12
activation_selu (activation_relu), 12

activation_sigmoid (activation_relu), 12
activation_softmax (activation_relu), 12

activation_softplus (activation_relu),
12

activation_softsign (activation_relu),
12

activation_swish (activation_relu), 12

activation_tanh (activation_relu), 12

adapt, 14

adapt(), 267, 293, 317, 355, 359

application_densenet, 15

INDEX

application_densenet121
(application_densenet), 15
application_densenet169
(application_densenet), 15
application_densenet201
(application_densenet), 15
application_efficientnet, 17
application_efficientnet_bo
(application_efficientnet), 17
application_efficientnet_b1
(application_efficientnet), 17
application_efficientnet_b2
(application_efficientnet), 17
application_efficientnet_b3
(application_efficientnet), 17
application_efficientnet_b4
(application_efficientnet), 17
application_efficientnet_b5
(application_efficientnet), 17
application_efficientnet_b6
(application_efficientnet), 17
application_efficientnet_b7
(application_efficientnet), 17
application_inception_resnet_v2, 20
application_inception_v3, 22
application_mobilenet, 23
application_mobilenet_v2, 25
application_mobilenet_v3, 27
application_mobilenet_v3_large
(application_mobilenet_v3), 27
application_mobilenet_v3_small
(application_mobilenet_v3), 27
application_nasnet, 30
application_nasnetlarge
(application_nasnet), 30
application_nasnetmobile
(application_nasnet), 30
application_resnet, 32
application_resnet101
(application_resnet), 32
application_resnet101_v2
(application_resnet), 32
application_resnet152
(application_resnet), 32
application_resnet152_v2
(application_resnet), 32
application_resnet50
(application_resnet), 32

INDEX

application_resnet50_v2
(application_resnet), 32

application_vgg, 35

application_vggl6 (application_vgg), 35

application_vggl19 (application_vgg), 35

application_xception, 37

backend, 39

backend(), 54

bidirectional, 40, 456

binary_crossentropy, (loss-functions),
367

callback_csv_logger, 41, 42, 44, 4648, 50
callback_early_stopping, 41,42, 44,
4648, 50
callback_lambda, 41, 42, 43, 44, 4648, 50
callback_learning_rate_scheduler, 41,
42,44, 44, 4648, 50
callback_model_checkpoint, 41, 42, 44, 45,
4648, 50
callback_progbar_logger, 41, 42, 44, 46,
46, 47, 48, 50
callback_reduce_lr_on_plateau, 41, 42,
44,46, 47,48, 50
callback_remote_monitor, 41, 42, 44, 46,
47,48, 50
callback_tensorboard, 41, 42, 44, 4648,
49, 50
callback_terminate_on_naan, 41, 42, 44,
46—48, 50, 50
clone_model, 51
compile(), 64, 67
compile.keras.engine.training.Model,
51, 65,68, 77,80, 101, 102, 428,
431433, 444, 458
compile.keras.engine.training.Model(),
371, 372
conda_binary(), 98
constraint_maxnorm (constraints), 53
constraint_maxnorm(), 262
constraint_minmaxnorm (constraints), 53
constraint_nonneg (constraints), 53
constraint_unitnorm (constraints), 53
constraints, 53
count_params, 55, 77,79, 81, 433
create_layer, 55
create_layer_wrapper, 56

467

custom_metric, 57, 375, 377, 378, 380-383,
385-394, 396402, 404—407,
409-411, 413419

dataset_boston_housing, 58, 59, 60, 62, 64
dataset_cifar1o, 58, 59, 59, 60, 62, 64
dataset_cifar100, 58, 59, 59, 60, 62, 64
dataset_fashion_mnist, 58, 59, 60, 62, 64
dataset_imdb, 58-60, 61, 62, 64
dataset_imdb(), 63
dataset_imdb_word_index (dataset_imdb),
61
dataset_mnist, 58-60, 62, 62, 64
dataset_reuters, 58-60, 62, 63
dataset_reuters_word_index
(dataset_reuters), 63
densenet_preprocess_input
(application_densenet), 15

evaluate.keras.engine.training.Model,
53,64,68, 77,80, 101, 102,
431433, 444, 458

evaluate_generator, 53, 65, 68, 77, 80, 101,
102, 431433, 444,458

evaluate_generator(), 74

export_savedmodel.keras.engine.training.Model,

65

fit.keras.engine.training.Model, 53, 65,
66, 77,80, 101, 102, 431-433, 444,
458
fit_generator, 53, 65, 68, 77, 80, 101, 102,
431433, 444, 458
fit_generator(), 456
fit_image_data_generator, 68, 70, 73, 75,
87
fit_text_tokenizer, 69, 438, 439, 445, 446,
451
fit_text_tokenizer(), 438
flow_images_from_data, 68, 69, 73, 75, 87
flow_images_from_dataframe, 68, 70, 71,
75,87
flow_images_from_directory, 68, 70, 73,
73,87
format.keras.engine.training.Model

(summary.keras.engine.training.Model),

443
freeze_weights, 75
from_config (get_config), 77

468

generator_next, 76
get_config, 53,55, 65,68, 77, 79-81, 101,
102, 431-433, 444, 458

get_file, 78
get_input_at, 55, 77,79, 81,433
get_input_mask_at (get_input_at), 79
get_input_shape_at (get_input_at), 79
get_layer, 53, 65, 68, 77, 80, 101, 102,
431433, 444, 458
get_output_at (get_input_at), 79
get_output_mask_at (get_input_at), 79
get_output_shape_at (get_input_at), 79
get_vocabulary
(layer_text_vectorization), 356
get_weights, 55, 77, 79, 80, 420, 421, 433,
435,437,441

hdf5_matrix, 81

image_array_resize (image_to_array), 87
image_array_save (image_to_array), 87
image_data_generator, 84
image_data_generator(), 68, 70, 72, 74, 76
image_dataset_from_directory, 83
image_load, 68, 70, 73, 75, 86, 87
image_to_array, 68, 70, 73, 75, 87, 87
imagenet_decode_predictions, 82
imagenet_preprocess_input, 82
implementation, 88
inception_resnet_v2_preprocess_input
(application_inception_resnet_v2),
20
inception_v3_preprocess_input
(application_inception_v3), 22
initializer_constant, 88, 89-97
initializer_glorot_normal, 88, 89, 90-97
initializer_glorot_uniform, 88, 89, 89,
90-97, 262
initializer_he_normal, 88-90, 90, 91-97
initializer_he_uniform, 88-90, 91, 92-97
initializer_identity, 88-91, 91, 92-97
initializer_lecun_normal, 88§-92, 92,
93-97,210
initializer_lecun_uniform, 88-93, 93,
94-97
initializer_ones, 88-93, 93, 94-97
initializer_orthogonal, 88-93, 94, 95-97
initializer_random_normal, 8§-94, 94,
95-97

INDEX

initializer_random_normal(), 95
initializer_random_uniform, 8§-95, 95,

96, 97
initializer_truncated_normal, 88-95, 95,
97
initializer_variance_scaling, 88-96, 96,
97

initializer_zeros, 88-97, 97
install_keras, 97
is_keras_available, 98

k_abs, 103

k_all, 104

k_any, 104

k_arange, 105

k_argmax, 106

k_argmin, 106
k_backend, 107
k_batch_dot, 107
k_batch_flatten, 108
k_batch_get_value, 109
k_batch_get_value(), 110
k_batch_normalization, 109
k_batch_set_value, 110
k_batch_set_value(), 109
k_bias_add, 111
k_binary_crossentropy, 111
k_cast, 112
k_cast_to_floatx, 113
k_categorical_crossentropy, 113
k_clear_session, 114
k_clip, 114
k_concatenate, 115
k_constant, 116
k_convld, 116

k_conv2d, 117
k_conv2d_transpose, 118
k_conv3d, 119
k_conv3d_transpose, 120
k_cos, 121
k_count_params, 121
k_ctc_batch_cost, 122
k_ctc_decode, 123
k_ctc_label_dense_to_sparse, 124
k_cumprod, 124
k_cumsum, 125
k_depthwise_conv2d, 126
k_dot, 127

k_dropout, 127

INDEX

k_dtype, 128

k_elu, 129
k_epsilon, 129
k_equal, 130

k_eval, 130

k_exp, 131
k_expand_dims, 132
k_eye, 132
k_flatten, 133
k_floatx, 134
k_foldl, 134
k_foldr, 135
k_function, 136
k_gather, 136
k_get_session, 137
k_get_uid, 138
k_get_value, 138
k_get_variable_shape, 139
k_gradients, 139
k_greater, 140
k_greater_equal, 141
k_greater_equal(), 54
k_hard_sigmoid, 141
k_identity, 142
k_image_data_format, 142
k_in_test_phase, 144
k_in_top_k, 144
k_in_train_phase, 145
k_int_shape, 143
k_is_keras_tensor, 146
k_is_placeholder, 146
k_is_sparse, 147
k_is_tensor, 147
k_12_normalize, 148
k_learning_phase, 149
k_less, 149
k_less_equal, 150
k_local_convid, 150
k_local_conv2d, 151
k_log, 152
k_manual_variable_initialization, 153
k_map_fn, 153

k_max, 154
k_maximum, 155

k_mean, 155

k_min, 156
k_minimum, 157
k_moving_average_update, 157

469

k_ndim, 158

k_normalize_batch_in_training, 159

k_not_equal, 159

k_one_hot, 161

k_ones, 160

k_ones_like, 161

k_permute_dimensions, 162

k_placeholder, 163

k_pool2d, 164

k_pool3d, 165

k_pow, 166

k_print_tensor, 166

k_prod, 167

k_random_bernoulli (k_random_binomial),
168

k_random_binomial, 168

k_random_normal, 168

k_random_normal_variable, 169

k_random_uniform, 170

k_random_uniform_variable, 171

k_relu, 172

k_repeat, 172

k_repeat_elements, 173

k_reset_uids, 174

k_reshape, 174

k_resize_images, 175

k_resize_volumes, 175

k_reverse, 176

k_rnn, 177

k_round, 178

k_separable_conv2d, 178

k_set_epsilon (k_epsilon), 129

k_set_floatx (k_floatx), 134

k_set_image_data_format
(k_image_data_format), 142

k_set_learning_phase, 179

k_set_session (k_get_session), 137

k_set_value, 180

k_shape, 180

k_sigmoid, 181

k_sign, 182

k_sin, 182

k_softmax, 183

k_softplus, 184

k_softsign, 184

k_sparse_categorical_crossentropy, 185

k_spatial_2d_padding, 186

k_spatial_3d_padding, 186

470

k_sqrt, 187

k_square, 188

k_squeeze, 188

k_stack, 189

k_std, 190

k_stop_gradient, 190

k_sum, 191

k_switch, 192

k_tanh, 192

k_temporal_padding, 193

k_tile, 194

k_to_dense, 194

k_transpose, 195

k_truncated_normal, 195

k_update, 196

k_update_add, 197

k_update_sub, 197

k_var, 198

k_variable, 199

k_zeros, 199

k_zeros_like, 200

keras, 99

keras-package, 11

keras_array, 100

keras_model, 53, 65, 68, 77, 80, 100, 102,
431-433, 444, 458

keras_model_sequential, 53, 65, 68, 77, 80,
101, 101, 431433, 444, 458

keras_model_sequential (), 55

KerasConstraint, 55

Layer, 201
layer_activation, 202, 205-208, 210-213,
218, 259, 261, 269, 272, 290, 294,
308, 319, 330, 333
layer_activation(), 13
layer_activation_elu, 203, 204, 206208,
210-212
layer_activation_leaky_relu, 203, 205,
205, 207, 208, 210-212
layer_activation_parametric_relu, 203,
205, 206, 206, 208, 210-212
layer_activation_relu, 203, 205-207, 207,
210-212
layer_activation_selu, 203, 205-208, 209,
211,212
layer_activation_softmax, 203, 205-208,
210,210, 212

INDEX

layer_activation_thresholded_relu, 203,
205-208, 210, 211,211
layer_activity_regularization, 203, 212,
218,259, 261, 269, 272, 290, 294,
308, 319, 330, 333
layer_add, 214
layer_additive_attention, 214
layer_alpha_dropout, 210, 215, 273, 274
layer_attention, 203, 213, 217, 259, 261,
269, 272, 290, 294, 308, 319, 330,
333
layer_average, 218, 229, 267, 308, 313, 314,
356
layer_average_pooling_1d, 219, 221, 223,
275,277-281, 310, 311, 313
layer_average_pooling_2d, 220, 220, 223,
275,277-281, 310, 311, 313
layer_average_pooling_3d, 220, 221, 221,
275,277-281, 310, 311, 313
layer_batch_normalization, 223
layer_category_encoding, 226, 228, 267,
289, 293, 317, 320-323, 325, 326,
328, 329, 331, 334, 355, 359
layer_center_crop, 227, 227, 267, 289, 293,
317,320-323, 325, 326, 328, 329,
331, 334, 355, 359
layer_concatenate, 218, 228, 267, 308, 313
314, 356
layer_conv_1d, 229, 234, 237, 239, 242, 245,
251,254, 256, 257, 263, 265, 340,
343, 360, 361, 363, 364, 366, 367
layer_conv_1d(), 296
layer_conv_1d_transpose, 231, 231, 237,
239,242,245, 251, 254, 256, 257,
263, 265, 340, 343, 360, 361, 363,
364, 366, 367
layer_conv_2d, 231, 234, 234, 239, 242, 245,
251, 254, 256, 257, 263, 265, 340,
343, 360, 361, 363, 364, 366, 367
layer_conv_2d(), 298
layer_conv_2d_transpose, 231, 234, 237,
237,242, 245, 251, 254, 256, 257,
263, 265, 340, 343, 360, 361, 363,
364, 366, 367
layer_conv_3d, 231, 234, 237, 239, 240, 245,
251,254, 256, 257, 263, 265, 340,
343, 360, 361, 363, 364, 366, 367
layer_conv_3d_transpose, 231, 234, 237,

INDEX

239,242,242, 251, 254, 256, 257,
263, 265, 340, 343, 360, 361, 363
364, 366, 367
layer_conv_1lstm_1d, 245
layer_conv_1stm_2d, 231, 234, 237, 239,
242,245, 248, 254, 256, 257, 263,
265, 340, 343, 360, 361, 363, 364,
366, 367
layer_conv_1stm_3d, 251
layer_cropping_1d, 231, 234, 237, 239, 242,
245,251,253, 256, 257, 263, 265,
340, 343, 360, 361, 363, 364, 366,
367
layer_cropping_2d, 231,234, 237, 239, 242,
245,251, 254, 255, 257, 263, 265,
340, 343, 360, 361, 363, 364, 366,
367
layer_cropping_3d, 231, 234, 237, 239, 242,
245,251, 254, 256, 256, 263, 265,
340, 343, 360, 361, 363, 364, 366,
367
layer_cudnn_gru, 285, 304, 337, 347
layer_cudnn_1stm, 285, 304, 337, 347
layer_dense, 203, 213, 218, 258, 261, 269,
272,290, 294, 308, 319, 330, 333
layer_dense_features, 203, 213, 218, 259,
260, 269, 272, 290, 294, 308, 319,
330, 333
layer_depthwise_conv_1d, 231, 234, 237,
239,242, 245, 251, 254, 256, 257,
261, 265, 340, 343, 360, 361, 363,
364, 366, 367
layer_depthwise_conv_2d, 231, 234, 237,
239,242, 245, 251, 254, 256, 257,
263,263, 340, 343, 360, 361, 363
364, 366, 367
layer_discretization, 227, 228, 266, 289,
293,317, 320-323, 325, 326, 328,
329, 331, 334, 355, 359
layer_dot, 218, 229, 267, 308, 313, 314, 356
layer_dropout, 203, 213, 218, 259, 261, 268,
272,290, 294, 308, 319, 330, 333,
350-352
layer_embedding, 269
layer_embedding(), 284, 303, 336, 346
layer_flatten, 203, 213, 218, 259, 261, 269,
271, 290, 294, 308, 319, 330, 333
layer_gaussian_dropout, 217, 272, 274

471

layer_gaussian_noise, 217,273,273
layer_global_average_pooling_1d, 220,
221,223,274, 277-281, 310, 311,
313
layer_global_average_pooling_2d, 220,
221,223,275,276,278-281, 310,
311,313
layer_global_average_pooling_3d, 220,
221,223,275,277,2717, 279-281,
310, 311,313
layer_global_max_pooling_1d, 220, 221,
223,275,277, 278, 278, 280, 281,
310, 311,313
layer_global_max_pooling_2d, 220, 221,
223,275,277-279, 279, 281, 310,
311,313
layer_global_max_pooling_3d, 220, 221,
223,275, 277-280, 280, 310, 311,
313
layer_gru, 281, 304, 337, 347
layer_gru_cell, 285, 306, 348, 353
layer_hashing, 227, 228, 267, 287, 293, 317,
320-323, 325, 326, 328, 329, 331,
334, 355, 359
layer_input, 203, 213, 218, 259, 261, 269,
272,289, 294, 308, 319, 330, 333
layer_integer_lookup, 227, 228, 267, 289,
290, 317, 320-323, 325, 326, 328,
329, 331, 334, 355, 359
layer_integer_lookup(), 226
layer_lambda, 203, 213, 218, 259, 261, 269,
272, 290, 293, 308, 319, 330, 333
layer_layer_normalization, 294
layer_locally_connected_1d, 296, 301
layer_locally_connected_2d, 298, 298
layer_lstm, 285, 301, 337, 347
layer_lstm_cell, 287, 304, 348, 353
layer_masking, 203, 213, 218, 259, 261, 269,
272,290, 294, 307, 319, 330, 333
layer_max_pooling_1d, 220, 221, 223, 275,
277-281,309, 311, 313
layer_max_pooling_2d, 220, 221, 223, 275,
277-281, 310, 310, 313
layer_max_pooling_3d, 220, 221, 223, 275,
277-281, 310, 311, 311
layer_maximum, 218, 229, 267, 308, 313, 314,
356
layer_minimum, 218, 229, 267, 308, 313, 314,

472

356
layer_multi_head_attention, 314
layer_multiply, 218, 229, 267, 308, 313,

314, 356
layer_normalization, 227, 228, 267, 289,

293,316, 320-323, 325, 326, 328,

329, 331, 334, 355, 359
layer_permute, 203, 213, 218, 259, 261, 269,

272, 290, 294, 308, 318, 330, 333
layer_random_contrast, 227, 228, 267, 289,

293,317,319, 321-323, 325, 326,

328, 329, 331, 334, 355, 359
layer_random_crop, 227, 228, 267, 289, 293,

317,320, 320, 322, 323, 325, 326,

328, 329, 331, 334, 355, 359
layer_random_f1lip, 227, 228, 267, 289, 293,

317,320, 321, 321, 323, 325, 326,

328, 329, 331, 334, 355, 359
layer_random_height, 227, 228, 267, 289,

293,317, 320-322, 322, 325, 326,

328, 329, 331, 334, 355, 359
layer_random_rotation, 227, 228, 267, 289,

293,317, 320-323, 323, 326, 328,

329, 331, 334, 355, 359
layer_random_translation, 227, 228, 267

289, 293, 317, 320-323, 325, 325,

328, 329, 331, 334, 355, 359
layer_random_width, 227, 228, 267, 289,

293,317, 320-323, 325, 326, 327,

329, 331, 334, 355, 359
layer_random_zoom, 227, 228, 267, 289, 293,

317, 320-323, 325, 326, 328, 328,

331, 334, 355, 359
layer_repeat_vector, 203, 213, 218, 259,

261, 269, 272, 290, 294, 308, 319,

329, 333
layer_rescaling, 227, 228, 267, 289, 293,

317,320-323, 325, 326, 328, 329,

331, 334, 355, 359
layer_reshape, 203, 213, 218, 259, 261, 269,

272,290, 294, 308, 319, 330, 332
layer_resizing, 227, 228, 267, 289, 293,

317,320-323, 325, 326, 328, 329,

331, 333, 355, 359
layer_rnn, 285, 304, 334, 347
layer_separable_conv_1d, 231, 234, 237,

239,242, 245, 251, 254, 256, 257,

263, 265, 338, 343, 360, 361, 363

INDEX

364, 366, 367
layer_separable_conv_2d, 231, 234, 237,
239,242, 245, 251, 254, 256, 257,
263, 265, 340, 341, 360, 361, 363,
364, 366, 367
layer_simple_rnn, 285, 304, 337, 344
layer_simple_rnn_cell, 287, 306, 347, 353
layer_spatial_dropout_1d, 269, 349, 351,
352
layer_spatial_dropout_2d, 269, 350, 350,
352
layer_spatial_dropout_3d, 269, 350, 351,
351
layer_stacked_rnn_cells, 287, 306, 348,
352
layer_string_lookup, 227, 228, 267, 289,
293,317, 320-323, 325, 326, 328,
329, 331, 334, 353, 359
layer_subtract, 218, 229, 267, 308, 313
314, 355
layer_text_vectorization, 227, 228, 267,
289, 293, 317, 320-323, 325, 326,
328, 329, 331, 334, 355, 356
layer_upsampling_1d, 231, 234, 237, 239,
242,245,251, 254, 256, 257, 263,
265, 340, 343, 359, 361, 363, 364,
366, 367
layer_upsampling_2d, 231, 234, 237, 239,
242,245,251, 254, 256, 257, 263,
265, 340, 343, 360, 360, 363, 364,
366, 367
layer_upsampling_3d, 231, 234, 237, 239,
242,245,251, 254, 256, 257, 263,
265, 340, 343, 360, 361, 362, 364,
366, 367
layer_zero_padding_1d, 231, 234, 237, 239,
242,245,251, 254, 256, 257, 263,
265, 340, 343, 360, 361, 363, 363,
366, 367
layer_zero_padding_2d, 231, 234, 237, 239,
242,245,251, 254, 256, 257, 263,
265, 340, 343, 360, 361, 363, 364,
364, 367
layer_zero_padding_3d, 231, 234, 237, 239,
242,245,251, 254, 256, 257, 263,
265, 340, 343, 360, 361, 363, 364,
366, 366
load_model_hdf5 (save_model_hdf5), 434

INDEX

load_model_hdf5(), 57, 438
load_model_tf (save_model_tf), 435
load_model_weights_hdf5
(save_model_weights_hdf5), 436
load_model_weights_tf
(save_model_weights_tf), 437
load_text_tokenizer
(save_text_tokenizer), 438
loss-functions, 367
loss_binary_crossentropy
(loss-functions), 367
loss_binary_crossentropy(), 372
loss_categorical_crossentropy
(loss-functions), 367
loss_categorical_crossentropy(), 457
loss_categorical_hinge
(loss-functions), 367
loss_cosine_similarity
(loss-functions), 367
loss_hinge (loss-functions), 367
loss_huber (loss-functions), 367
loss_kl_divergence (loss-functions), 367
loss_kullback_leibler_divergence
(loss-functions), 367
loss_logcosh (loss-functions), 367
loss_mean_absolute_error
(loss-functions), 367
loss_mean_absolute_percentage_error
(loss-functions), 367
loss_mean_squared_error
(loss-functions), 367
loss_mean_squared_logarithmic_error
(loss-functions), 367
loss_poisson (loss-functions), 367
loss_sparse_categorical_crossentropy
(loss-functions), 367
loss_squared_hinge (loss-functions), 367

make_sampling_table, 372, 430, 443, 448,
449,451

makeActiveBinding(), 462

Metric, 373

metric_accuracy, 57, 374, 377, 378,
380-383, 385-394, 396402,
404-407, 409411, 413419

metric_auc, 57, 375, 375, 378, 380-383,
385-394, 396402, 404407,
409-411, 413419

473

metric_binary_accuracy, 57, 375, 377, 371,
380-383, 385-394, 396402,
404-407, 409411, 413419

metric_binary_crossentropy, 57, 375, 377,
378,379, 381-383, 385-394,
396402, 404407, 409411,
413-419

metric_categorical_accuracy, 57, 375,
377, 378, 380, 380, 382, 383,
385-394, 396402, 404-407,
409411, 413419

metric_categorical_crossentropy, 57,
375,377, 378, 380, 381, 381, 383,
385-394, 396402, 404—407,
409411, 413419

metric_categorical_hinge, 57, 375, 377,
378, 380-382, 383, 385394,
396402, 404—407, 409411,
413419

metric_cosine_similarity, 57, 375, 377,
378, 380-383, 384, 386—394,
396402, 404407, 409411,
413-419

metric_false_negatives, 57, 375, 377, 378,
380-383, 385, 385, 387-394,
396402, 404407, 409411,
413419

metric_false_positives, 57, 375, 377, 378,
380-383, 385, 386, 386, 388-394,
396402, 404—407, 409411,
413419

metric_hinge, 57, 375, 377, 378, 380-383,
385-387, 387, 389-394, 396402,
404-407, 409411, 413419

metric_kullback_leibler_divergence, 57,
375,377, 378, 380, 381, 383,
385-388, 388, 390-394, 396402,
404-407, 409411, 413419

metric_logcosh_error, 57, 375, 377, 378,
380, 381, 383, 385-389, 389,
391-394, 396402, 404-407,
409-411, 413419

metric_mean, 57, 375, 377, 378, 380, 381
383, 385-390, 390, 392, 393,
395-402, 404407, 409411,
413419

metric_mean_absolute_error, 57, 375, 377,
378, 380, 381, 383, 385-391, 391,

474

393, 394, 396402, 404—407,
409—-411,413—419

metric_mean_absolute_percentage_error,

57,375,377, 378, 380, 381, 383,
385-392, 392, 394, 396402,
404-407, 409411, 413419

metric_mean_iou, 57, 375, 377, 378, 380,

381, 383, 385-393, 394, 396402,
404-407, 409411, 413419

metric_mean_relative_error, 57, 375, 377,

378, 380, 381, 383, 385-394, 395,
397-402, 404-407, 409411,
413419

metric_mean_squared_error, 57, 375, 377,

378, 380, 381, 383, 385-394, 396,
396, 398—402, 404-407, 409411,
413419

metric_mean_squared_logarithmic_error,

57,375,377, 378, 380, 381, 383,
385-394, 396, 397, 397, 399-402,
404-407, 409411, 413419

metric_mean_tensor, 57, 375, 377, 378, 380,

381, 383, 385-394, 396-398, 398,
400-402, 404—407, 409411,
413-419

metric_mean_wrapper, 57, 375, 377, 378,

380, 381, 383, 385-393, 395-399,
399, 401, 402, 404-407, 409411,
413419

metric_mean_wrapper(), 57
metric_poisson, 57, 375, 377, 378, 380, 381,

383, 385-393, 395400, 400, 402,
404-407, 409411, 413—419

metric_precision, 58, 375, 377, 378, 380

381, 383, 385-393, 395-401, 401,
404-407, 409411, 413419

metric_precision_at_recall, 57, 375, 377,

378, 380, 381, 383, 385-393,
395402, 403, 405407, 409411,
413419

metric_recall, 58, 375, 377, 378, 380, 381

383, 385-393, 395402, 404, 404,
406, 407, 409411, 413—419

metric_recall_at_precision, 58, 375, 377,

378, 380, 381, 383, 385-393,
395-402, 404, 405, 405, 407,
409411, 413419

metric_root_mean_squared_error, 58, 375,

INDEX

377, 378, 380, 381, 383, 385-393,
395402, 404-406, 407, 409411,
413419
metric_sensitivity_at_specificity, 58,
375,377, 378, 380, 381, 383,
385-393, 395402, 404—407, 408,
410,411, 413419
metric_sparse_categorical_accuracy, 58,
375,377, 378, 380, 381, 383,
385-393, 395-402, 404407, 409,
409,411, 413419
metric_sparse_categorical_crossentropy,
58, 375, 377, 378, 380, 381, 383,
385-393, 395-402, 404407, 409,
410,410, 413419
metric_sparse_top_k_categorical_accuracy,
58, 375,377, 379-381, 383,
385-393, 395402, 404—407,
409411, 412,414-419
metric_specificity_at_sensitivity, 58,
375,377, 379-381, 383, 385-393,
395402, 404-407, 409, 410, 412,
413,413, 415419
metric_squared_hinge, 58, 375, 377,
379-381, 383, 385-393, 395402,
404407, 409, 410, 412414, 414,
416419
metric_sum, 58, 375, 377, 379-381, 383,
385-393, 395402, 404—407, 409,
410,412-415,415,417-419
metric_top_k_categorical_accuracy, 58,
375,377, 379-381, 383, 385-393,
395-402, 404—407, 409, 410,
412-416, 416,418, 419
metric_true_negatives, 58, 375, 377,
379-381, 383, 385-393, 395402,
404407, 409, 410, 412417, 417,
419
metric_true_positives, 58, 375, 377,
379-381, 383, 385-393, 395402,
404407, 409, 410, 412-418, 418
mobilenet_decode_predictions
(application_mobilenet), 23
mobilenet_load_model_hdf5
(application_mobilenet), 23
mobilenet_preprocess_input
(application_mobilenet), 23
mobilenet_v2_decode_predictions

INDEX

(application_mobilenet_v2), 25
mobilenet_v2_load_model_hdf5
(application_mobilenet_v2), 25
mobilenet_v2_preprocess_input
(application_mobilenet_v2), 25
model_from_json (model_to_json), 420
model_from_saved_model, 419
model_from_yaml (model_to_yaml), 421
model_to_json, 81,420,421, 435, 437,441
model_to_saved_model, 420
model_to_yaml, 81, 420, 421, 435, 437, 441
multi_gpu_model, 53, 65, 68, 77, 80, 101,
102, 431433, 444, 458

nasnet_preprocess_input
(application_nasnet), 30
normalize, 421

optimizer_adadelta, 422, 423, 425428
optimizer_adagrad, 422, 423, 425-428
optimizer_adam, 422, 423, 424, 425-428
optimizer_adamax, 422, 423,425, 425,
426428
optimizer_nadam, 422, 423,425, 426, 427,
428
optimizer_rmsprop, 422, 423, 425, 426, 427,
428
optimizer_sgd, 422, 423, 425427, 428

pad_sequences, 372, 429, 443, 448, 449, 451
plot(), 430
plot.keras_training_history, 430
pop_layer, 53, 65, 68, 77, 80, 101, 102, 431,
432, 433, 444, 458
predict.keras.engine.training.Model,
53,65,68,77,80, 101, 102, 431,
431,433,444, 458
predict_generator, 53, 65, 68, 77, 80, 101,
102, 431-433, 444, 458
predict_generator(), 74
predict_on_batch, 53, 65, 68, 77, 80, 101,
102,431, 432,432, 444, 458
predict_proba, 53, 65, 68, 77, 80, 101, 102,
431433, 444, 458
print.keras.engine.training.Model

475

regularizer_11, 433
regularizer_11(), 262
regularizer_11_12 (regularizer_11),433
regularizer_12 (regularizer_11),433
reset_states, 55, 77,79, 81, 433
resnet_preprocess_input
(application_resnet), 32
resnet_v2_preprocess_input
(application_resnet), 32
reticulate::conda_install(), 98
reticulate: :virtualenv_install(), 98

save_model_hdf5, 81, 420, 421, 434, 435,
437,441
save_model_hdf5(), 54, 441
save_model_tf, 81,420, 421, 435, 435, 437,
441
save_model_weights_hdf5, 81, 420, 421,
435,436, 441
save_model_weights_hdf5(), 54
save_model _weights_tf, 437
save_text_tokenizer, 69, 438, 439, 445,
446,451
sequences_to_matrix, 69, 438, 439, 445,
446,451
sequences_to_matrix(), 69
sequential_model_input_layer, 101, 440
serialize_model, 81,420, 421,435,437, 441
serialize_model(), 434
set_vocabulary
(layer_text_vectorization), 356
set_weights (get_weights), 80
skipgrams, 372, 430, 442, 448, 449, 451
skipgrams(), 372
summary.keras.engine.training.Model,
53,65,68,77,80, 101, 102,
431433, 443, 458

tensorflow: :install_tensorflow(), 97,
98

test_on_batch (train_on_batch), 457

text_dataset_from_directory, 446

text_hashing_trick, 372, 430, 443, 448,
449,451

text_one_hot, 372, 430, 443, 448, 449, 451

(summary.keras.engine.training.Model),text_to_word_sequence, 372, 430, 443, 448

443
py_class (%py_class%), 460
py_to_r(), 39

449, 451
text_tokenizer, 69, 438, 439, 445, 446, 450
text_tokenizer(), 69

476

texts_to_matrix, 69, 438, 439, 444, 445,
446, 451
texts_to_matrix(), 69
texts_to_sequences, 69, 438, 439, 445, 445,
446,451
texts_to_sequences(), 69
texts_to_sequences_generator, 69, 438,
439,445,445, 451
time_distributed, 417, 456
timeseries_dataset_from_array, 452
timeseries_generator, 455
to_categorical, 457
to_categorical(), 371
train_on_batch, 53, 65, 68, 77, 80, 101, 102,
431-433, 444, 457

unfreeze_weights (freeze_weights), 75
unserialize_model (serialize_model), 441
use_backend (use_implementation), 458
use_implementation, 458

with_custom_object_scope, 459
with_custom_object_scope(), 57, 434

xception_preprocess_input
(application_xception), 37

INDEX

	keras-package
	activation_relu
	adapt
	application_densenet
	application_efficientnet
	application_inception_resnet_v2
	application_inception_v3
	application_mobilenet
	application_mobilenet_v2
	application_mobilenet_v3
	application_nasnet
	application_resnet
	application_vgg
	application_xception
	backend
	bidirectional
	callback_csv_logger
	callback_early_stopping
	callback_lambda
	callback_learning_rate_scheduler
	callback_model_checkpoint
	callback_progbar_logger
	callback_reduce_lr_on_plateau
	callback_remote_monitor
	callback_tensorboard
	callback_terminate_on_naan
	clone_model
	compile.keras.engine.training.Model
	constraints
	count_params
	create_layer
	create_layer_wrapper
	custom_metric
	dataset_boston_housing
	dataset_cifar10
	dataset_cifar100
	dataset_fashion_mnist
	dataset_imdb
	dataset_mnist
	dataset_reuters
	evaluate.keras.engine.training.Model
	export_savedmodel.keras.engine.training.Model
	fit.keras.engine.training.Model
	fit_image_data_generator
	fit_text_tokenizer
	flow_images_from_data
	flow_images_from_dataframe
	flow_images_from_directory
	freeze_weights
	generator_next
	get_config
	get_file
	get_input_at
	get_layer
	get_weights
	hdf5_matrix
	imagenet_decode_predictions
	imagenet_preprocess_input
	image_dataset_from_directory
	image_data_generator
	image_load
	image_to_array
	implementation
	initializer_constant
	initializer_glorot_normal
	initializer_glorot_uniform
	initializer_he_normal
	initializer_he_uniform
	initializer_identity
	initializer_lecun_normal
	initializer_lecun_uniform
	initializer_ones
	initializer_orthogonal
	initializer_random_normal
	initializer_random_uniform
	initializer_truncated_normal
	initializer_variance_scaling
	initializer_zeros
	install_keras
	is_keras_available
	keras
	keras_array
	keras_model
	keras_model_sequential
	k_abs
	k_all
	k_any
	k_arange
	k_argmax
	k_argmin
	k_backend
	k_batch_dot
	k_batch_flatten
	k_batch_get_value
	k_batch_normalization
	k_batch_set_value
	k_bias_add
	k_binary_crossentropy
	k_cast
	k_cast_to_floatx
	k_categorical_crossentropy
	k_clear_session
	k_clip
	k_concatenate
	k_constant
	k_conv1d
	k_conv2d
	k_conv2d_transpose
	k_conv3d
	k_conv3d_transpose
	k_cos
	k_count_params
	k_ctc_batch_cost
	k_ctc_decode
	k_ctc_label_dense_to_sparse
	k_cumprod
	k_cumsum
	k_depthwise_conv2d
	k_dot
	k_dropout
	k_dtype
	k_elu
	k_epsilon
	k_equal
	k_eval
	k_exp
	k_expand_dims
	k_eye
	k_flatten
	k_floatx
	k_foldl
	k_foldr
	k_function
	k_gather
	k_get_session
	k_get_uid
	k_get_value
	k_get_variable_shape
	k_gradients
	k_greater
	k_greater_equal
	k_hard_sigmoid
	k_identity
	k_image_data_format
	k_int_shape
	k_in_test_phase
	k_in_top_k
	k_in_train_phase
	k_is_keras_tensor
	k_is_placeholder
	k_is_sparse
	k_is_tensor
	k_l2_normalize
	k_learning_phase
	k_less
	k_less_equal
	k_local_conv1d
	k_local_conv2d
	k_log
	k_manual_variable_initialization
	k_map_fn
	k_max
	k_maximum
	k_mean
	k_min
	k_minimum
	k_moving_average_update
	k_ndim
	k_normalize_batch_in_training
	k_not_equal
	k_ones
	k_ones_like
	k_one_hot
	k_permute_dimensions
	k_placeholder
	k_pool2d
	k_pool3d
	k_pow
	k_print_tensor
	k_prod
	k_random_binomial
	k_random_normal
	k_random_normal_variable
	k_random_uniform
	k_random_uniform_variable
	k_relu
	k_repeat
	k_repeat_elements
	k_reset_uids
	k_reshape
	k_resize_images
	k_resize_volumes
	k_reverse
	k_rnn
	k_round
	k_separable_conv2d
	k_set_learning_phase
	k_set_value
	k_shape
	k_sigmoid
	k_sign
	k_sin
	k_softmax
	k_softplus
	k_softsign
	k_sparse_categorical_crossentropy
	k_spatial_2d_padding
	k_spatial_3d_padding
	k_sqrt
	k_square
	k_squeeze
	k_stack
	k_std
	k_stop_gradient
	k_sum
	k_switch
	k_tanh
	k_temporal_padding
	k_tile
	k_to_dense
	k_transpose
	k_truncated_normal
	k_update
	k_update_add
	k_update_sub
	k_var
	k_variable
	k_zeros
	k_zeros_like
	Layer
	layer_activation
	layer_activation_elu
	layer_activation_leaky_relu
	layer_activation_parametric_relu
	layer_activation_relu
	layer_activation_selu
	layer_activation_softmax
	layer_activation_thresholded_relu
	layer_activity_regularization
	layer_add
	layer_additive_attention
	layer_alpha_dropout
	layer_attention
	layer_average
	layer_average_pooling_1d
	layer_average_pooling_2d
	layer_average_pooling_3d
	layer_batch_normalization
	layer_category_encoding
	layer_center_crop
	layer_concatenate
	layer_conv_1d
	layer_conv_1d_transpose
	layer_conv_2d
	layer_conv_2d_transpose
	layer_conv_3d
	layer_conv_3d_transpose
	layer_conv_lstm_1d
	layer_conv_lstm_2d
	layer_conv_lstm_3d
	layer_cropping_1d
	layer_cropping_2d
	layer_cropping_3d
	layer_dense
	layer_dense_features
	layer_depthwise_conv_1d
	layer_depthwise_conv_2d
	layer_discretization
	layer_dot
	layer_dropout
	layer_embedding
	layer_flatten
	layer_gaussian_dropout
	layer_gaussian_noise
	layer_global_average_pooling_1d
	layer_global_average_pooling_2d
	layer_global_average_pooling_3d
	layer_global_max_pooling_1d
	layer_global_max_pooling_2d
	layer_global_max_pooling_3d
	layer_gru
	layer_gru_cell
	layer_hashing
	layer_input
	layer_integer_lookup
	layer_lambda
	layer_layer_normalization
	layer_locally_connected_1d
	layer_locally_connected_2d
	layer_lstm
	layer_lstm_cell
	layer_masking
	layer_maximum
	layer_max_pooling_1d
	layer_max_pooling_2d
	layer_max_pooling_3d
	layer_minimum
	layer_multiply
	layer_multi_head_attention
	layer_normalization
	layer_permute
	layer_random_contrast
	layer_random_crop
	layer_random_flip
	layer_random_height
	layer_random_rotation
	layer_random_translation
	layer_random_width
	layer_random_zoom
	layer_repeat_vector
	layer_rescaling
	layer_reshape
	layer_resizing
	layer_rnn
	layer_separable_conv_1d
	layer_separable_conv_2d
	layer_simple_rnn
	layer_simple_rnn_cell
	layer_spatial_dropout_1d
	layer_spatial_dropout_2d
	layer_spatial_dropout_3d
	layer_stacked_rnn_cells
	layer_string_lookup
	layer_subtract
	layer_text_vectorization
	layer_upsampling_1d
	layer_upsampling_2d
	layer_upsampling_3d
	layer_zero_padding_1d
	layer_zero_padding_2d
	layer_zero_padding_3d
	loss-functions
	make_sampling_table
	Metric
	metric_accuracy
	metric_auc
	metric_binary_accuracy
	metric_binary_crossentropy
	metric_categorical_accuracy
	metric_categorical_crossentropy
	metric_categorical_hinge
	metric_cosine_similarity
	metric_false_negatives
	metric_false_positives
	metric_hinge
	metric_kullback_leibler_divergence
	metric_logcosh_error
	metric_mean
	metric_mean_absolute_error
	metric_mean_absolute_percentage_error
	metric_mean_iou
	metric_mean_relative_error
	metric_mean_squared_error
	metric_mean_squared_logarithmic_error
	metric_mean_tensor
	metric_mean_wrapper
	metric_poisson
	metric_precision
	metric_precision_at_recall
	metric_recall
	metric_recall_at_precision
	metric_root_mean_squared_error
	metric_sensitivity_at_specificity
	metric_sparse_categorical_accuracy
	metric_sparse_categorical_crossentropy
	metric_sparse_top_k_categorical_accuracy
	metric_specificity_at_sensitivity
	metric_squared_hinge
	metric_sum
	metric_top_k_categorical_accuracy
	metric_true_negatives
	metric_true_positives
	model_from_saved_model
	model_to_json
	model_to_yaml
	normalize
	optimizer_adadelta
	optimizer_adagrad
	optimizer_adam
	optimizer_adamax
	optimizer_nadam
	optimizer_rmsprop
	optimizer_sgd
	pad_sequences
	plot.keras_training_history
	pop_layer
	predict.keras.engine.training.Model
	predict_on_batch
	regularizer_l1
	reset_states
	save_model_hdf5
	save_model_tf
	save_model_weights_hdf5
	save_model_weights_tf
	save_text_tokenizer
	sequences_to_matrix
	sequential_model_input_layer
	serialize_model
	skipgrams
	summary.keras.engine.training.Model
	texts_to_matrix
	texts_to_sequences
	texts_to_sequences_generator
	text_dataset_from_directory
	text_hashing_trick
	text_one_hot
	text_tokenizer
	text_to_word_sequence
	timeseries_dataset_from_array
	timeseries_generator
	time_distributed
	to_categorical
	train_on_batch
	use_implementation
	with_custom_object_scope
	%py_class%
	%<-active%
	Index

