Package 'kitagawa'

June 24, 2020

Type Package

Title Spectral Response of Water Wells to Harmonic Strain and Pressure Signals

Version 3.1.0

Date 2020-06-21

Description Provides tools to calculate the theoretical hydrodynamic response of an aquifer undergoing harmonic straining or pressurization, or analyze measured responses. There are two classes of models here, designed for use with confined aquifers: (1) for sealed wells, based on the model of Kitagawa et al (2011, <doi:10.1029/2010JB007794>), and (2) for open wells, based on the models of Cooper et al (1965, <doi:10.1029/JZ070i016p03915>), Hsieh et al (1987, <doi:10.1029/WR023i010p01824>), Rojstaczer (1988, <doi:10.1029/JB093iB11p13619>), Liu et al (1989, <doi:10.1029/JB094iB07p09453>), and Wang et al (2018, <doi:10.1029/2018WR022793>). Wang's solution is a special exception which allows for leakage out of the aquifer (semi-confined); it is equivalent to Hsieh's model when there is no leakage (the confined case). These models treat strain (or aquifer head) as an input to the physical system, and fluid-pressure (or water height) as the output. The applicable frequency band of these models is characteristic of seismic waves, atmospheric pressure fluctuations, and solid earth tides.

License GPL (>= 2)

URL https://github.com/abarbour/kitagawa

BugReports https://github.com/abarbour/kitagawa/issues

Depends R (>= 2.10.1), stats

Imports Bessel, kelvin (>= 1.2.0), psd (>= 2.0.0)

Suggests dplyr, tibble, RColorBrewer, signal, testthat, knitr,

rmarkdown, formatR, covr

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.0

NeedsCompilation no

Author Andrew J. Barbour [aut, cre] (<https://orcid.org/0000-0002-6890-2452>), Jonathan Kennel [ctb] (<https://orcid.org/0000-0003-4474-6886>)

Maintainer Andrew J. Barbour <andy.barbour@gmail.com>

Repository CRAN

Date/Publication 2020-06-24 08:40:13 UTC

R topics documented:

kitagawa-package	2
alpha_constants	4
cross_spectrum	5
kitagawa-constants	6
kitagawa-utilities	7
logsmoo	8
logticks	9
omega_constants	11
omega_norm	12
open_well_response	13
owrsp-methods	15
sensing_volume	17
well_response	19
wrsp-methods	21
	24

Index

kitagawa-package

Spectral Response of Water Wells to Harmonic Strain and Pressure Signals

Description

Provides tools to calculate the theoretical hydrodynamic response of an aquifer undergoing harmonic straining or pressurization. There are two classes of models here: (1) for sealed wells, based on the model of Kitagawa et al (2011), and (2) for open wells, based on the models of Cooper et al (1965), Hsieh et al (1987), Rojstaczer (1988), Liu et al (1989), and Wang et al (2018). These models treat strain (or aquifer head) as an input to the physical system, and fluid-pressure (or water height) as the output. The applicable frequency band of these models is characteristic of seismic waves, atmospheric pressure fluctuations, and solid earth tides. The Wang et al (2018) can explicitly model vertical leakage.

kitagawa-package

Details

The following functions provide the primary features of the package:

well_response and open_well_response, which take in arguments for well- and aquifer-parameters, and the frequencies at which to calculate the response functions. They both access the constants-calculation routines as necessary, meaning the user need not worry about those functions (e.g., alpha_constants).

Helper functions:

sensing_volume can be used to compute the sensing volume of fluid, for the specified well dimensions.

Scientific background

The underlying model is based upon the assumption that fluid flows radially through an homogeneous, isotropic, confined aquifer.

The underlying principle is as follows. When a harmonic wave induces strain in a confined aquifer (one having aquitards above and below it), fluid flows radially into, and out of a well penetrating the aquifer. The flow-induced drawdown, s, is governed by the following partial differential equation, expressed in radial coordinates(r):

$$\frac{\partial^2 s}{\partial r^2} + \frac{1}{r} \frac{\partial s}{\partial r} - \frac{S}{T} \frac{\partial s}{\partial t} = 0$$

where S, T are the aquifer storativity and transmissivity respectively.

The solution to this PDE, with periodic discharge boundary conditions, gives the amplitude and phase response we wish to calculate. The solution for an open well was presented by Cooper et al (1965), and subsequently modified by Liu et al (1989). Wang et al (2018) modified this solution for the leaky aquifer case. Kitagawa et al (2011) adapted the solution of Hsieh et al (1987) for the case of a sealed well. When there is no leakage, Wang et al (2018) is equivalent to Hsieh et al (1987).

These models are applicable to any quasi-static process involving harmonic, volumetric strain of an aquifer (e.g. passing Rayleigh waves, or changes in the Earth's tidal potential). In practice, however, the presence of permeable fractures can violate the assumption of isotropic permeability, which may substantially alter the response by introducing shear-strain coupling. But these complications are beyond the scope of this model.

Author(s)

Andrew J. Barbour <andy.barbour@gmail.com> with contributions from Jonathan Kennel

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Kelvin Functions." §9.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 379-381, 1972.

Cooper, H. H., Bredehoeft, J. D., Papadopulos, I. S., and Bennett, R. R. (1965), The response of well-aquifer systems to seismic waves, *J. Geophys. Res.*, **70** (16)

Hsieh, P. A., J. D. Bredehoeft, and J. M. Farr (1987), Determination of aquifer transmissivity from Earth tide analysis, *Water Resour. Res.*, **23** (10)

Kitagawa, Y., S. Itaba, N. Matsumoto, and N. Koisumi (2011), Frequency characteristics of the response of water pressure in a closed well to volumetric strain in the high-frequency domain, *J. Geophys. Res.*, **116**, B08301

Liu, L.-B., Roeloffs, E., and Zheng, X.-Y. (1989), Seismically Induced Water Level Fluctuations in the Wali Well, Beijing, China, J. Geophys. Res., 94 (B7)

Roeloffs, E. (1996), Poroelastic techniques in the study of earthquake-related hydrologic phenomena, *Advances in Geophysics*, **37**

Wang C.-Y., Doan, M.-L., Xue, L., Barbour, A. (2018), Tidal Response of Groundwater in a Leaky Aquifer—Application to Oklahoma, *Water Resour. Res.*, **54** (10)

See Also

open_well_response, well_response, sensing_volume, wrsp-methods

alpha_constants Calculate any constants depending on effective stress coefficient α

Description

This function accesses the appropriate method to calculate the α -dependent constant associated with the choice of c.type. There are currently four such constants, which correspond to **Equations 10**, **11**, **18**, **19** in Kitagawa et al (2011).

This function is not likely to be needed by the user.

Usage

```
alpha_constants(alpha = 0, c.type = c("Phi", "Psi", "A", "Kel"))
```

```
## Default S3 method:
alpha_constants(alpha = 0, c.type = c("Phi", "Psi", "A", "Kel"))
```

Arguments

alpha	the constant alpha (see omega_constants)
c.type	the constant to calculate

Details

What is "alpha"?: The constant α is a function of frequency ω as well as aquifer and well parameters; it is formally defined as

$$\alpha \equiv R_S \sqrt{\omega S/T}$$

where S is the storativity, T is the aquifer's effective transmissivity, and R_S is the radius of the screened portion of the well.

What is calculated?: The various constants which may be calculated with this function are

cross_spectrum

Phi Given as Φ in Eqn. 10 Psi Given as Ψ in Eqn. 11 A Given as $A_i, i = 1, 2$ in Eqns. 18, 19 Kel The complex Kelvin functions (see Abramowitz and Stegun, 1972)

Value

Complex matrix having values representing the constant represented by c.type, as well as any other α -dependent constants which are needed in the computation.

Author(s)

A. J. Barbour <andy.barbour@gmail.com>

See Also

omega_constants, well_response

Other ConstantsCalculators: kitagawa-constants, omega_constants()

Examples

```
alpha_constants() # kelvin::Keir gives warning
alpha_constants(1) # defaults to constant 'Phi' (note output also has Kel)
alpha_constants(1:10, c.type="A") # constant 'A' (again, note output)
```

cross_spectrum Calculate the cross-spectrum of two timeseries

Description

Calculate the cross-spectrum of two timeseries

```
cross_spectrum(x, ...)
## S3 method for class 'mts'
cross_spectrum(x, ...)
## Default S3 method:
cross_spectrum(
    x,
    y,
    k = 10,
    samp = 1,
    q,
    adaptive = FALSE,
```

```
verbose = FALSE,
...
```

х	numeric; timeseries
	additional arguments to pspectrum
У	numeric; timeseries. if missing, assumed to be column no. 2 in x
k	integer; the number of sine tapers, unless this is NULL; in the latter case a Welch- based spectrum is calculated rather than a multitaper spectrum. There are dis- tinct advantages and disadvantages to either of these.
samp	numeric; the sampling rate (e.g., deltat) of the data; must be the same for \boldsymbol{x} and \boldsymbol{y}
q	numeric; the probability quantile $[0,1]$ to calculate coherence significance levels; if missing, a pre-specified sequence is included. This is will be ignored for Welch-based spectra (see k).
adaptive	logical; should adaptive multitaper estimation be used?
verbose	logical; should messages be printed?

Examples

```
require(stats)
require(psd)
n <- 1000
ramp <- seq_len(n)
parab <- ramp^2
set.seed(1255)
X <- ts(rnorm(n) + ramp/2)
Y <- ts(rnorm(n) + ramp/10 + parab/100)
# Calculate the multitaper cross spectrum
csd <- cross_spectrum(X, Y, k=20)</pre>
```

kitagawa-constants Access to constants used by default

Description

The response of an aquifer depends on its mechanical and hydrological properties; if these are not known or specified, these constants are used.

kitagawa-utilities

Usage

constants(do.str = TRUE)

Arguments

do.str logical; should the structure be printed?

Details

The function constants shows the structure of (optionally), and returns the assumed constants, which do *not* reside in the namespace.

Values:

For water: Density and bulk modulus Gravity: Standard gravitational acceleration at 6371km radius (Earth) Conversions: Degrees to radians

Value

The constants, invisibly.

See Also

well_response and open_well_response
kitagawa-package

Other ConstantsCalculators: alpha_constants(), omega_constants()

Examples

constants()
constants(FALSE) # returns invisibly

kitagawa-utilities General utility functions

Description

General utility functions

Usage

.nullchk(X)

.in0to1(X)

is.wrsp(X)

is.owrsp(X)

Х

something to be checked (vector, scalar, wrsp object, ...)

Details

.nullchk quickly checks for NULL and NA, and raises an error if TRUE; *This function is not likely to be needed by the user.*

. in0to1 checks if values are numeric and in [0,1] (inclusive).

is.wrsp and is.owrsp report whether an object has S3 class 'wrsp' or 'owrsp', respectively. Such an object would be returned by, for example, well_response.

Author(s)

A. J. Barbour <andy.barbour@gmail.com>

See Also

kitagawa-package

Examples

```
## Not run:
.nullchk(1:10) # OK
.nullchk(NULL) # error
.nullchk(c(1:10,NULL)) # error
.nullchk(c(1:10,NA)) # error
.nullchk(c(1:10,NA)) # error
.in0to1(1:10) # error
.in0to1(NULL) # error
.in0to1(C(1:10,NULL)) # error
.in0to1(C(1:10,NA)) # error
.in0to1(c(1:10,NA)) # error
.in0to1(c(1,NA)) # error
.in0to1(c(1,NA)) # error
```

```
logsmoo
```

Logarithmic smoothing with loess

Description

Logarithmic smoothing with loess

Usage

logsmoo(x, y, x.is.log = FALSE, ...)

logticks

Arguments

х	numeric; the index series (cannot contain NA)
У	numeric; the series of values associated with x
x.is.log	logical; determines whether the series in x has been log-transformed already. If FALSE then log10 is used.
	additional parameters (e.g., span) passed to loess.smooth

Value

The result of loess.smooth

References

Barbour, A. J., and D. C. Agnew (2011), Noise levels on Plate Boundary Observatory borehole strainmeters in southern California, Bulletin of the Seismological Society of America, 101(5), 2453-2466, doi: 10.1785/0120110062

See Also

loess.smooth and approxfun

Examples

set.seed(11133)
n <- 101
lx <- seq(-1,1,length.out=n)
y <- rnorm(n) + cumsum(rnorm(n))
plot(lx, y, col='grey')
lines(logsmoo(lx, y, x.is.log=TRUE))</pre>

logticks

Add proper logarithm ticks to a plot axis.

Description

Add proper logarithm ticks to a plot axis.

```
logticks(
    ax = 1,
    n.minor = 9,
    t.lims,
    t.ratio = 0.5,
    major.ticks = NULL,
    base = c("ten", "ln", "two"),
```

```
...
)
log_ticks(...)
log2_ticks(...)
log10_ticks(...)
```

ах	numeric; the axis number to add tick-marks to
n.minor	numeric; the number of minor ticks to display
t.lims	numeric; the upper and lower tick limits (in log space)
t.ratio	numeric; the ratio of minor to major tick lengths.
major.ticks	numeric; the axis limits.
base	numeric; the base of the logarithm (somewhat experimental)
	additional parameters passed to the axis call for the major ticks.

Details

This uses pretty with n==5, and assumes that the data along the axis ax has *already* been transformed into its logarithm. *Only integer exponents are labeled*.

The functions log_ticks, log2_ticks, and log10_ticks are wrapper functions.

Set the axt parameter (e.g. xaxt) to 'n' in the original plot command to prevent adding default tick marks.

Author(s)

A. J. Barbour <andy.barbour@gmail.com>

References

This was modified from a post on StackOverflow: http://stackoverflow.com/questions/6955440/ displaying-minor-logarithmic-ticks-in-x-axis-in-r

See Also

Other PlotUtilities: wrsp-methods

Examples

```
x <- 10^(0:8)
y <- 1:9
plot(log10(x),y,xaxt="n",xlab="x",xlim=c(0,9))
logticks()
```

10

omega_constants

Description

This function accesses the appropriate method to calculate the ω -dependent constant associated with the choice of c.type.

This function is not likely to be needed by the user.

Usage

```
omega_constants(omega = 0, c.type = c("alpha", "diffusivity_time"), ...)
## Default S3 method:
omega_constants(omega = 0, c.type = c("alpha", "diffusivity_time"), ...)
```

Arguments

omega	frequency, [rad/sec]
c.type	the constant to calculate
	additional params passed to calculator. In the case of ctype="alpha", set S., T., Rs.; and, in the case of ctype="diffusivity_time", set D. or S., T

Details

What is "omega"?: The name is in reference to radial frequency ω , which is defined as

$$\omega \equiv 2\pi/\tau$$

where τ is the period of oscillation.

What is the "alpha" calculation?:

The parameter α is defined as

$$\alpha \equiv r_w \sqrt{\omega S/T}$$

where r_w is the radius of the well, where S is the storativity, and T is transmissivity. See the parameter . . . for details on how to pass these values.

This definition is common to many papers on the topic. For example, it corresponds to **Equation** 12 in Kitagawa et al (2011). Because the computation of α depends also on physical properties, additional parameters can be passed through (e.g. the transmissivity).

What is the "diffusivity_time" calculation?: This is a similar calculation to omega_norm. It uses the effective hydraulic diffusivity D, which is defined in this case as the ratio of transmissivity to storativity:

$$D \equiv \frac{T}{S}$$

Value

Values of the constant represented by c.type for the given parameters

Warnings Issued

In the case c.type='alpha', the parameters S., T., and Rs. should be passed; otherwise, values are assumed to ensure the calculation does not fail, and the results are essentially meaningless.

Warnings will be issued if any necessary parameters are missing, indicating default values were used.

Author(s)

A. J. Barbour <andy.barbour@gmail.com>

See Also

alpha_constants, well_response, and kitagawa-package for references and more background.
Other ConstantsCalculators: alpha_constants(), kitagawa-constants

Examples

```
# alpha
omega_constants() # default is alpha, but will give warnings about S., T., Rs.
omega_constants(T.=1,S.=1,Rs.=1) # 0, no warnings
omega_constants(1:10) # sequence, with warnings about S., T., Rs.
omega_constants(1:10,T.=1,S.=1,Rs.=1) # sequence, no warnings
# diffusivity time
omega_constants(c.type="diffusivity_time", D.=1) # 0, no warnings
omega_constants(c.type="diff", D.=1) # 0, no warnings (arg matching)
omega_constants(c.type="diff") # 0, warnings about S., T. because no D.
omega_constants(c.type="diff", S.=1) # 0, warnings about T. because no D. or S.
```

omega_norm

Dimensionless frequency from diffusivity and depth

Description

Dimensionless frequency from diffusivity and depth

Usage

```
omega_norm(omega, Diffusiv, z, invert = FALSE)
```

Arguments

omega	numeric; angular frequency
Diffusiv	numeric; hydraulic diffusivity
z	numeric; depth
invert	logical; should omega be taken as normalized frequency?

Details

Dimensionless frequency Q is defined as

$$Q = \frac{z^2\omega}{2D}$$

where z is the well depth, ω is the angular frequency and D is the hydraulic diffusivity.

Value

omega_norm returns dimensionless frequency, unless invert=TRUE where it will assume omega is dimensionless frequency, and return radial frequency.

Author(s)

A. J. Barbour <andy.barbour@gmail.com>

See Also

open_well_response, kitagawa-package
Other utilities: sensing_volume()

open_well_response Spectral response for an open well

Description

This is the primary function to calculate the response for an open (exposed to air) well.

```
open_well_response(omega, T., S., ...)
## Default S3 method:
open_well_response(
 omega,
 Τ.,
 S.,
 Rs. = (8/12) * (1200/3937),
 rho,
  grav,
  z,
 Hw,
 Ta,
  leak.
  freq.units = c("rad_per_sec", "Hz"),
 model = c("rojstaczer", "liu", "cooper", "hsieh", "wang"),
 as.pressure = TRUE,
  . . .
)
```

omega	numeric; frequency, (see freq.units)
т.	numeric; effective aquifer transmissivity $[m^2/s]$
S.	numeric; well storativity, [unitless]
	additional arguments
Rs.	numeric; the radius of the open (screened) section
rho	numeric; fluid density (assumed if missing)
grav	numeric; the local gravitational acceleration (assumed if missing)
Z	numeric; From Rojstaczer (1988): the depth from the water table (assumed if missing and if needed)
Hw	numeric; height of water column above confined surface (assumed if missing and if needed)
Та	numeric; thickness of aquifer (assumed if missing and if needed)
leak	numeric; specific leakage K'/b' [1/s]
freq.units	character; setup the units of omega
model	character; use the response model from either Rojstaczer (1988), Liu et al (1989), Cooper et al (1965), Hsieh et al (1987), or Wang et al (2018).
as.pressure	logical; should the response be relative to aquifer pressure? (default is aquifer head)

Details

As opposed to well_response, this calculates the theoretical, complex well response for an unsealed (open) well.

The response depends strongly on the physical properties given. Default values are assumed where reasonable–for instance, the pore-fluid is assumed to be water–but considerable care should be invested in the choice of parameters, especially in the case of starting parameters in an optimization scheme.

The responses returned here are, effectively, the amplification of water levels in a well, relative to the pressure head in the aquifer; or

$$Z = \frac{z}{h} \equiv \frac{\rho g z}{p}$$

If as.pressure=TRUE, then the responses are scaled by rho*grav so that they represent water levels relative to aquifer pressure:

$$Z = \frac{z}{p}$$

Not all parameters need to be given, but should be. For example, if either rho or grav are not specified, they are taken from constants. Parameters which do not end in . do not need to be specified (they may be excluded); if they are missing, assumptions may be made and warnings will be thrown.

Value

An object with class 'owrsp'

owrsp-methods

Models

"rojstaczer": Rojstaczer (1988) is based on measurements of water level and strain from volumetric or areal strainmeters.

"cooper", "hsieh", and "liu": Cooper et al (1965), Hsieh et al (1987) and Liu et al (1989) are based on measurements of water level and displacements from seismometers or strainmeters; these models are expressed succinctly in Roeloffs (1996).

The sense of the phase shift for the Liu and Rojstaczer models are reversed from their original presentation, in order to account for differences in sign convention.

"wang": Wang et al (2018) allows for specific leakage – vertical conductivity across a semipermeable aquitard – but the perfectly confined case (i.e., Hsieh, et al 1987) is recovered when leakage is zero.

Author(s)

A. J. Barbour and J. Kennel

References

See kitagawa-package for references and more background.

See Also

well_response for the sealed-well equivalents, and owrsp-methods for a description of the class 'owrsp' and its methods.

Other WellResponseFunctions: well_response()

Examples

```
OWR <- open_well_response(1:10,1,1)
plot(OWR)
OWR <- open_well_response(1/(1:200),1,1,Ta=100,Hw=10,model="liu",freq.units="Hz")
plot(OWR)</pre>
```

```
owrsp-methods
```

Generic methods for objects with class 'owrsp'.

Description

An object with class 'owrsp' is a list containing the response information, and the mechanical, hydraulic, and material properties used to generate the response for an open well.

Usage

```
## S3 method for class 'owrsp'
as.data.frame(x, ...)
data.frame.owrsp(x, ...)
## S3 method for class 'owrsp'
print(x, n = 3, ...)
## S3 method for class 'owrsp'
summary(object, ...)
## S3 method for class 'summary.owrsp'
print(x, ...)
## S3 method for class 'owrsp'
lines(x, series = c("amp", "phs"), ...)
## S3 method for class 'owrsp'
points(x, series = c("amp", "phs"), pch = "+", ...)
## S3 method for class 'owrsp'
plot(
  х,
 xlims = c(-3, 1),
 ylims = list(amp = NULL, phs = 185 * c(-1, 1)),
  logamp = TRUE,
  . . .
)
```

Arguments

Х	'owrsp' object
• • •	optional arguments
n	numeric; the number of head and tail to print
object	'owrsp' object
series	character; the series to plot (amplitude or phase)
pch	point character, as in par
xlims	limits for x-axis (applies to both amp and phs frames)
ylims	<pre>optional list of limits for y-axis (i.e., list(amp=c(), phs=c()))</pre>
logamp	logical; should the amplitude be in log10 units

Details

The response information is a matrix with frequency, complex response $[\omega, Z_{\alpha}(\omega)]$ where the units of ω will be as they were input. The amplitude of Z is in meters per strain, and the phase is in radians.

sensing_volume

Author(s)

A. J. Barbour <andy.barbour@gmail.com>

See Also

```
open_well_response
kitagawa-package
```

Examples

```
S. <- 1e-5 # Storativity [nondimensional]</pre>
T. <- 1e-4 # Transmissivity [m**2 / s]
frq <- 1/(1:200)
# Defaults to the Rojstaczer formulation
W <- open_well_response(frq, T. = T., S. = S., Rs. = 0.12, freq.units="Hz")
# (warning message about missing 'z')
W <- open_well_response(frq, T. = T., S. = S., Rs. = 0.12, freq.units="Hz", z=1)
str(W)
print(W)
print(summary(W))
plot(rnorm(10), xlim=c(-1,11), ylim=c(-2,2))
lines(W)
lines(W, "phs", col="red")
points(W)
points(W, "phs")
#
Wdf <- as.data.frame(W)
plot(Mod(wellresp) ~ omega, Wdf) # amplitude
plot(Arg(wellresp) ~ omega, Wdf) # phase
plot(W)
# change limits:
plot(W, xlims=c(-4,0), ylims=list(amp=c(-7,-3), phs=185*c(-1,1)))
```

sensing_volume	Calculate	volume	of fluids in	ı the	sensing	region	of the	borehole
----------------	-----------	--------	--------------	-------	---------	--------	--------	----------

Description

This function calculates the volume of fluid in the screened section, namely **Equation 2** in Kitagawa et al (2011).

```
sensing_volume(rad_grout, len_grout, rad_screen, len_screen)
```

rad_grout	radius of the grouting $[m]$
len_grout	length of the grouting $[m]$
rad_screen	radius of the screened interval $\left[m\right]$
len_screen	length of the screened interval $[m]$

Details

Although typical scientific boreholes with water-level sensors are drilled very deeply, pore-fluids are only allowed to flow through a relatively short section, known as the "screened" section. The calculation assumes two pairs of radii and lengths: one for the cemented (grout) section, and another for the screened section.

The volume calculated is

$$\pi R_C^2 (L_C - L_S) + \pi R_S^2 L_S$$

where R and L denote radius and length respectively, and subscripts C and S denote the cemented and screened sections respectively.

This calculation assumes the measurement is for a sealed well.

Value

scalar, with units of $[m^3]$

Author(s)

A. J. Barbour <andy.barbour@gmail.com>

See Also

well_response
Other utilities: omega_norm()

Examples

```
#### dummy example
sensing_volume(1, 1, 1, 1)
#
#### a more physically realistic calculation:
# Physical params applicable for B084 borehole
# (see: http://pbo.unavco.org/station/overview/B084/ for details)
#
Rc <- 0.0508 # m, radius of water-sensing (2in)
Lc <- 146.9
              # m, length of grouted region (482ft)
              # m, radius of screened region (6in)
Rs <- 3*Rc
Ls <- 9.14
              # m, length of screened region (30ft)
#
# calculate the sensing volume for the given well parameters
sensing_volume(Rc, Lc, Rs, Ls) # m**3, ~= 1.8
```

18

well_response

Description

This is the primary function to calculate the response for a sealed well.

Usage

```
well_response(omega, T., S., Vw., Rs., Ku., B., ...)
## Default S3 method:
well_response(
 omega,
 Τ.,
  S.,
  Vw.,
 Rs.,
 Ku.,
 В.,
 Avs,
 Aw,
  rho,
 Kf,
  grav,
 freq.units = c("rad_per_sec", "Hz"),
  as.pressure = TRUE,
  • • •
)
```

Arguments

omega	frequency, (see freq.units)
т.	effective aquifer transmissivity $[m^2/s]$
S.	well storativity, [unitless]
Vw.	well volume, $[m^3]$
Rs.	radius of screened portion, $[m]$
Ku.	undrained bulk modulus, $[Pa]$
В.	Skempton's coefficient, [unitless, bounded]
	additional arguments
Avs	amplification factor for volumetric strain $E_{kk,obs}/E_{kk}$, []
Aw	amplification factor of well volume change for E_{kk} , []
rho	fluid density $[kg/m^3]$
Kf	bulk modulus of fluid, [Pa]

grav	local gravitational acceleration $[m/s^2]$
freq.units	set the units of omega
as.pressure	logical; should the response for water pressure? (default is water height)

Details

The response depends strongly on the physical properties given. Default values are assumed where reasonable–for instance, the pore-fluid is assumed to be water–but considerable care should be invested in the choice of parameters, unless the function is used in an optimization scheme.

Assumed values are:

Avs	1	amplification factor for volumetric strain
Aw	1	amplification factor for water well

The responses returned here are, effectively, the amplification of water levels in a well, relative to the aquifer strain; or

$$Z = \frac{z}{\epsilon} \equiv \frac{p}{\rho g \epsilon}$$

If as.pressure=TRUE, then the responses are scaled by rho*grav so that they represent water pressure relative to aquifer strain:

$$Z = \frac{p}{\epsilon}$$

Not all parameters need to be given, but should be. For example, if either rho or grav are not specified, they are taken from constants. *Parameters which do not end in*. *do not need to be specified (they may be excluded); if they are missing, warnings will be thrown.*

Value

An object with class 'wrsp'

Author(s)

A. J. Barbour

References

See kitagawa-package for references and more background.

See Also

open_well_response for the open-well equivalents wrsp-methods for a description of the class 'wrsp' and its methods, sensing_volume to easily estimate the volume Vw., and kitagawa-package for references and more background.

Other WellResponseFunctions: open_well_response()

wrsp-methods

Examples

```
#### dummy example
well_response(1:10, T.=1, S.=1, Vw.=1, Rs.=1, Ku.=1, B.=1)
#### a more physically realistic calculation:
# Physical params applicable for B084 borehole
# (see: http://pbo.unavco.org/station/overview/B084/ for details)
#
Rc <- 0.0508 # m, radius of water-sensing (2in)
Lc <- 146.9
               # m, length of grouted region (482ft)
               # m, radius of screened region (6in)
Rs <- 3*Rc
Ls <- 9.14
               # m, length of screened region (30ft)
#
# calculate the sensing volume for the given well parameters
Volw <- sensing_volume(Rc, Lc, Rs, Ls) # m**3, ~= 1.8</pre>
#
Frgs <- 10**seq.int(from=-4,to=0,by=0.1) # log10-space</pre>
head(Rsp <- well_response(omega=Frqs, T.=1e-6, S.=1e-5,</pre>
Vw.=Volw, Rs.=Rs, Ku.=40e9, B.=0.2, freq.units="Hz"))
# Access plot.wrsp:
plot(Rsp)
```

wrsp-methods

Generic methods for objects with class 'wrsp'.

Description

An object with class 'wrsp' is a list containing the response information, and the mechanical, hydraulic, and material properties used to generate the response for a sealed well.

```
## S3 method for class 'wrsp'
as.data.frame(x, ...)
data.frame.wrsp(x, ...)
## S3 method for class 'wrsp'
print(x, n = 3, ...)
## S3 method for class 'wrsp'
summary(object, ...)
## S3 method for class 'summary.wrsp'
print(x, ...)
```

```
## S3 method for class 'wrsp'
lines(x, series = c("amp", "phs"), ...)
## S3 method for class 'wrsp'
points(x, series = c("amp", "phs"), pch = "+", ...)
## S3 method for class 'wrsp'
plot(
 х,
 xlims = c(-3, 1),
 ylims = list(amp = NULL, phs = 185 * c(-1, 1)),
 logamp = TRUE,
  . . .
)
kitplot(x, ...)
## S3 method for class 'wrsp'
kitplot(
  х,
 xlims = c(-3, 1),
 ylims = list(amp = NULL, phs = 185 * c(-1, 1)),
 logamp = TRUE,
  . . .
)
```

Х	'wrsp' object
	optional arguments
n	numeric; the number of head and tail to print
object	'wrsp' object
series	character; the series to plot (amplitude or phase)
pch	point character, as in par
xlims	limits for x-axis (applies to both amp and phs frames)
ylims	<pre>optional list of limits for y-axis (i.e., list(amp=c(), phs=c()))</pre>
logamp	logical; should the amplitude be in log10 units

Details

The response information is a matrix with frequency, complex response $[\omega, Z_{\alpha}(\omega)]$ where the units of ω will be as they were input. The amplitude of Z is in meters per strain, and the phase is in radians.

kitplot was previously a standalone function, but is now simply a reference to plot.wrsp.

22

wrsp-methods

Author(s)

A. J. Barbour <andy.barbour@gmail.com>

See Also

well_response
kitagawa-package
Other PlotUtilities: logticks()

Examples

```
W <- well_response(1:10, T.=1, S.=1, Vw.=1, Rs.=1, Ku.=1, B.=1)
str(W)
print(W)
print(summary(W))
#
# Plot the response
plot(rnorm(10), xlim=c(-1,11), ylim=c(-2,2))
lines(W)
lines(W, "phs", col="red")
points(W)
points(W, "phs")
#
Wdf <- as.data.frame(W)
plot(Mod(wellresp) ~ omega, Wdf) # amplitude
plot(Arg(wellresp) ~ omega, Wdf) # phase
#
# or use the builtin method plot.wrsp
plot(W)
# change limits:
plot(W, xlims=c(-1,1), ylims=list(amp=c(5,8), phs=185*c(-1,1)))
```

Index

.in0to1,8 .in0to1(kitagawa-utilities),7 .nullchk,8 .nullchk(kitagawa-utilities),7

alpha_constants, 3, 4, 7, 12
approxfun, 9
as.data.frame.owrsp(owrsp-methods), 15
as.data.frame.wrsp(wrsp-methods), 21

constants, 7, 14, 20
constants (kitagawa-constants), 6
cross_spectrum, 5

data.frame.owrsp(owrsp-methods), 15 data.frame.wrsp(wrsp-methods), 21 deltat, 6

is.owrsp, 8
is.owrsp(kitagawa-utilities), 7
is.wrsp, 8
is.wrsp(kitagawa-utilities), 7

```
kitagawa (kitagawa-package), 2
kitagawa-constants, 6
kitagawa-package, 2
kitagawa-utilities, 7
kitplot, 22
kitplot (wrsp-methods), 21
```

lines.owrsp (owrsp-methods), 15
lines.wrsp (wrsp-methods), 21
loess.smooth, 9
log10_ticks, 10
log2_ticks, 10
log2_ticks, 10
log2_ticks, 10
log_ticks, 10
log_ticks, 10
log_ticks, 9
logsmoo, 8
logticks, 9, 23

omega_constants, *4*, *5*, *7*, 11 omega_norm, *11*, 12, *13*, *18* open_well_response, *3*, *4*, *7*, *13*, 13, *17*, *20* owrsp (owrsp-methods), 15 owrsp-methods, 15

par, 16, 22 plot.owrsp (owrsp-methods), 15 plot.wrsp, 22 plot.wrsp (wrsp-methods), 21 points.owrsp (owrsp-methods), 15 points.wrsp (wrsp-methods), 21 pretty, 10 print.owrsp (owrsp-methods), 15 print.summary.owrsp (owrsp-methods), 15 print.summary.wrsp (wrsp-methods), 21 print.wrsp (wrsp-methods), 21 pspectrum, 6

sensing_volume, 3, 4, 13, 17, 20
summary.owrsp(owrsp-methods), 15
summary.wrsp(wrsp-methods), 21

well_response, *3*–*5*, *7*, *8*, *12*, *14*, *15*, *18*, 19, *23* wrsp (wrsp-methods), 21 wrsp-methods, 21