
Knowledge Space Theory

Christina Stahl Cord Hockemeyer

April 7, 2019

Abstract

This document explains algorithms and basic operations of knowledge structures and
knowledge spaces available in R through the kst package.

Contents

1 Introduction 1

2 Classes introduced in the kst package 1

3 Knowledge Structures 2
3.1 Assessment and Validation . 4
3.2 Set–related Methods . 7
3.3 Families of Sets . 7

4 Knowledge Spaces 8

5 Learning Paths 9

6 Utilities 10

1 Introduction

Knowledge Space Theory (Doignon and Falmagne, 1999) is a set- and order-theoretical framework,
which proposes mathematical formalisms to operationalize knowledge structures in a particular
domain. The most basic assumption of knowledge space theory is that every knowledge domain can
be represented in terms of a set of domain problems or items. Moreover, knowledge space theory
assumes dependencies between these items in that knowledge of a given item or a subset of items
may be a prerequisite for knowledge of another, more difficult or complex item. These prerequisite
relations are realized by surmise relations, which create a quasi-order between different items.
One advantage of these surmise relations is that they reduce the quantity of all possible solution
patterns to a more manageable amount of knowledge states. Each of these knowledge states
represents the subset of items an individual is capable of solving. The collection of all knowledge
states captures the organization of the domain and is referred to as knowledge structure.

2 Classes introduced in the kst package

The kst package makes heavily usage of R classes. Figure 1 gives an overview of these classes and
the relationships between them.

The basic class is the kfamset class which describes quite genereally a family of sets. All other
classes are effectively sub-classes of kfamset.

1

Figure 1: R classes in the kst package

The kstructure class describes knowledge structures. The difference between a kfamset and
a kstructure is that the latter contains the empty set ∅ and the full item set. A special case
of knowledge structures are the knowldge spaces described by the kspace class: they are closed
under union.

The fourth class defined in kst ist the kbasis class which describes the basis of a knowledge
space. Please note that a kbasis does not contain the empty set ∅ and often neither the full item
set.

3 Knowledge Structures

The kstructure() function in package kst is the basic constructor for knowledge structures.
It takes an endorelation representing a surmise relation or a set of sets each representing one
knowledge state (e.g., one clause of a surmise system) and returns the corresponding knowledge
structure:

> # An endorelation representing a surmise relation

> kst <- endorelation(graph=set(tuple(1,1), tuple(2,2), tuple(3,3),

+ tuple(4,4), tuple(2,1), tuple(3,1), tuple(4,1), tuple(3,2), tuple(4,2)))

> kstructure(kst)

{{}, {"3"}, {"4"}, {"2", "3", "4"}, {"1", "2", "3", "4"}}

> # A set of sets representing knowledge states (e.g., clauses of a surmise system)

> kst <- kstructure(set(set("a"), set("a","b"), set("a","c"), set("d","e"),

+ set("a","b","d","e"), set("a","c","d","e"), set("a","b","c","d","e")))

> kst

{{}, {"a"}, {"a", "b"}, {"a", "c"}, {"d", "e"}, {"a", "b", "d", "e"},

{"a", "c", "d", "e"}, {"a", "b", "c", "d", "e"}}

Note that by default the quotes indicate the fact that the items are represented by characters.
For displaying purposes, these quotes may be turned off:

> sets_options("quote",FALSE)

> kst

{{}, {a}, {a, b}, {a, c}, {d, e}, {a, b, d, e}, {a, c, d, e}, {a, b, c,

d, e}}

2

On the resulting knowledge structure several operations can be performed. Firstly, the knowl-
edge domain of the knowledge structure can be determined by means of the kdomain() function:

> kdomain(kst)

{a, b, c, d, e}

Secondly, the notions of the knowledge structure can be determined by means of the
knotions() function. A notion is a set of items always jointly contained in all knowledge states.
Consequently, these items carry the same information and may therefore be considered equivalent:

> knotions(kst)

{{a}, {b}, {c}, {d, e}}

Thirdly, the atoms of the knowledge structure can be determined by means of the katoms()

function. For any item of the knowledge domain, an atom is a minimal knowledge state containing
the respective item, where minimal refers to the fact that the respective knowledge state is not
the union of any other knowledge states:

> katoms(kst, items=set("a","b","c"))

$a

{{a}}

$b

{{a, b}}

$c

{{a, c}}

Forthly, the trace of the knowledge structure can be determined by means of the ktrace()

function. The trace of a knowledge structure on a set of items is the substructure of the knowledge
structure on these items, i.e., the substructure resulting from restricting the knowledge structure
to the specified item(s):

> ktrace(kst, items=set("c","d","e"))

{{}, {c}, {d, e}, {c, d, e}}

Fifthly, the kneighbourhood() function computers the neighbourhood of a knowledge state.

> kneighbourhood(kst, state=set("a", "b"))

{{a}}

Finally, the kfringe() function allows for determining the fringe of a knowledge state. Fringes
determine the symmetric difference between a given knowledge state and its neighbouring states.

> kfringe(kst, state=set("a", "b"))

{b}

In addition, several properties of knowledge structures may be tested. Currently, only the
functions kstructure_is_wellgraded() and the kstructure_is_space() are implemented (see
Section 2 for the latter).

A knowledge structure is considered well-graded if any two of its states are connected by a
bounded path, i.e., each knowledge state (except the empty set {}) has at least one predecessor
state that contains the same domain items with the exception of exactly one and each knowledge
state (except the state for the full set of domain problems Q) has at least one immediate successor
state that comprises the same domain items plus exactly one.

3

> kstructure_is_wellgraded(kst)

[1] FALSE

Apart from these basic operations, the kst package also provides plotting functionalities for
knowledge structures (see README for details). The plot() method takes an arbitrary knowledge
structure and plots a Hasse Diagram of the respective knowledge structure (see Figure 2):

> if(requireNamespace("Rgraphviz")) {Rgraphviz::plot(kst)}

Partial Order

{}

{a}

{a, b} {a, c}{d, e}

{a, b, d, e} {a, c, d, e}

{a, b, c, d, e}

Figure 2: Knowledge Structure

In order to allow for plotting the surmise relation underlying a knowledge structure, the kst
package provides the as.relation() method, which computes its underlying surmise relation, i.e.,
the set of item pairs corresponding to the knowledge dependencies. Antisymmetric and transitive
surmise relations may then be plotted as a Hasse diagram:

> as.relation(kst)

A binary relation of size 5 x 5.

In those cases where individuals’ response patterns are available, they may be used to assess
individuals or validate a knowledge structure.

3.1 Assessment and Validation

The kassess() function assigns individuals to their corresponding knowledge state in a knowledge
structure. Currently only “deterministic” assessment is implemented. Assessing individuals based
on a deterministic procedure starts by determining an item a, which is contained in approximately
half of the available knowledge states. If the individual being assessed has successfully solved the
respective item a, all knowledge states that do not contain item a are removed from the set of
potential knowledge states of the individual. If, on the other hand, the individual has not solved
the respective item a, all knowledge states that do contain item a are removed from the set of
potential knowledge states of the individual. From the remaining knowledge states an item b,
which again is contained in approximately half of the still available knowledge states, is selected.

4

If the individual has successfully solved the respective item b, all knowledge states that do not
contain item b are removed from the set of potential knowledge states of the individual. If, on the
other hand, the individual has solved the respective item b, all knowledge states that do contain
item b are removed from the set of potential knowledge states of the individual. This procedure
is repeated until only one knowledge state is left. This is the knowledge state the individual is
currently located in.

> rp <- data.frame(a=c(1,1,0,1,1,1,1,0,0,0),b=c(0,1,0,1,0,1,0,1,0,0),

+ c=c(0,0,0,0,1,1,1,0,1,0),d=c(0,0,1,1,1,1,0,0,0,1), e=c(0,0,1,1,1,1,0,0,0,0))

> kassess(kst, rpatterns=rp)

$Respondent1

{a}

$Respondent2

{a, b}

$Respondent3

{d, e}

$Respondent4

{a, b, d, e}

$Respondent5

{a, c, d, e}

$Respondent6

{a, b, c, d, e}

$Respondent7

{a, c}

$Respondent8

{}

$Respondent9

{}

$Respondent10

{d, e}

The kvalidate() function on the other hand calculates validity coefficients for prerequisite
relations and knowledge structures. The γ-Index (Goodman and Kruskal, 1972) validates the
prerequisite relation underlying a knowledge structure and assumes that not every response pattern
is represented by a prerequisite relation. For this purpose it compares the number of response
patterns that are represented by a prerequisite relation (i.e., concordant pairs) with the number
of response patterns that are not represented by a prerequisite relation (i.e., discordant pairs).
Formally, the γ-Index is defined as

γ =
Nc −Nd

Nc +Nd

where Nc is the number of concordant pairs and Nd the number of discordant pairs. Generally, a
positive γ-value supports the validity of prerequisite relations.

The validation method percent likewise validates prerequisite relations and assumes that more
difficult or complex items are solved less frequently than less difficult or complex items. For this
purpose it calculates the relative solution frequency for each of the items in the domain.

5

The Violational Coefficient (Schrepp, Held, and Albert, 1999) also validates prerequisite re-
lations. For this purpose, the number of violations (i.e., the earlier mentioned discordant pairs)
against a prerequisite relation are calculated. Formally, the VC is defined as

V C =
1

n(|S| −m)

∑
x,y

vxy

where n denotes the number of response vectors, |S| refers to the number of pairs in the relation,
m denotes the number of items, and vxy again refers to the number of discordant pairs. Generally,
a low VC supports the validity of prerequisite relations.

In contrast to the other three indices, the Distance Agreement Coefficient (Schrepp, 1999)
validates the resulting knowledge structure. For this purpose it compares the average symmetric
distance between the knowledge structure and respone patterns (referred to as ddat) to the aver-
age symmetric distance between the knowledge structure and the power set of response patterns
(referred to as dpot). By calculating the ratio of ddat and dpot, the DA is determined. Generally, a
lower DA-value indicates a better fit between a knowledge structure and a set of response patterns.

> kvalidate(kst, rpatterns=rp, method="gamma")

$gamma

[1] 0.4

$nc

[1] 7

$nd

[1] 3

> kvalidate(kst, rpatterns=rp, method="percent")

%

a 60

b 40

c 40

d 50

e 40

> kvalidate(kst, rpatterns=rp, method="VC")

$vc

[1] 0.075

$nd

[1] 3

> kvalidate(kst, rpatterns=rp, method="DA")

$ddat

[1] 0.3

$ddat_dist

Distances

0 1

7 3

$dpot

6

[1] 0.96875

$dpot_dist

Distances

0 1 2

8 17 7

$DA

[1] 0.3096774

3.2 Set–related Methods

Apart from these kst-specific functions, the kst package also provides general set-related methods.
In particular, these include methods pertaining to the closure and reduction of sets.

The closure() method for objects of class kstructure performs the closure of a knowledge
structure by computing the union or intersection of any two knowledge states. union() is also
used as a basis for the kspace() function (see next section).

> closure(kst, operation="union")

{{}, {a}, {a, b}, {a, c}, {d, e}, {a, b, c}, {a, d, e}, {a, b, d, e},

{a, c, d, e}, {a, b, c, d, e}}

The reduction() method performs the reduction of a knowledge structure by computing the
minimal subset having the same closure as the knowledge structure. Additionally, it allows for
computing the discriminative reduction of a knowledge structure. Such a discriminative reduction
is a knowledge structure in which each notion contains a single item.

> reduction(kst, operation="discrimination")

{{}, {a}, {de}, {a, b}, {a, c}, {a, b, de}, {a, c, de}, {a, b, c, de}}

3.3 Families of Sets

A more general concept than the knowledge structures represented by kstructures are the fam-
ilies of (sub)sets represented by the kfamset class. The kfamset() constructor takes the same
arguments as the kstructure() constructor.

> # An endorelation representing a surmise relation

> # A set of sets representing knowledge states (e.g., clauses of a surmise system)

> kfs <- kfamset(set(set("a"), set("a","b"), set("a","c"), set("d","e"),

+ set("a","b","d","e"), set("a","c","d","e"), set("a","b","c","d","e")))

> kfs

{{a}, {a, b}, {a, c}, {d, e}, {a, b, d, e}, {a, c, d, e}, {a, b, c, d,

e}}

Figure 3 shows the Hasse diagram of this family of sets. Please note the difference to Fig. 2 which
also contains the empty set ∅.

> if(requireNamespace("Rgraphviz")) {Rgraphviz::plot(kfs)}

7

Partial Order

{a}

{a, b} {a, c}{d, e}

{a, b, d, e} {a, c, d, e}

{a, b, c, d, e}

Figure 3: Family of sets

4 Knowledge Spaces

Apart from knowledge structures, knowledge space theory also suggests the concept of knowledge
spaces. A knowledge structure is considered a knowledge space if it includes one state for the empty
set {}, one state for the full set of domain items, and a state for the union of any two knowledge
states (i.e., the closure under union). The basic constructor for creating knowledge spaces is
the kspace() function. It takes an arbitrary knowledge structure and returns the corresponding
knowledge space:

> ksp <- kspace(kst)

> ksp

{{}, {a}, {a, b}, {a, c}, {d, e}, {a, b, c}, {a, d, e}, {a, b, d, e},

{a, c, d, e}, {a, b, c, d, e}}

In order to test for the space property of a knowledge structure, the kst package provides the
function kstructure_is_space():

> kstructure_is_kspace(ksp)

[1] TRUE

Apart from the functions described in the previous section, which can likewise be performed
on knowledge spaces, the package kst provides the additional function kbase(), which is only
applicable to knowledge spaces. The kbase() function takes an arbitrary knowledge space and
computes its base. A base for a knowledge space is a minimal family of knowledge states spanning
the knowledge space, i.e., the base includes the minimal states sufficient to reconstruct the full
knowledge space. A knowledge structure has a base only if it is a knowledge space.

> kbase(ksp)

{{a}, {a, b}, {a, c}, {d, e}}

8

5 Learning Paths

Both, knowledge structures and knowledge spaces, involve the concept of learning paths. A learning
path is a maximal sequence of knowledge states, which allows learners to gradually traverse a
knowledge structure or space from the empty set {} (or any other bottom state) to the full set of
domain problems Q. The basic constructor for creating learning paths is the lpath() function. It
takes an arbitrary knowledge structure or space and computes all possible learning paths in the
respective knowledge structure or space. The result is a list where each element represents one
learning path:

> lp <- lpath(ksp)

> lp

[[1]]

{{}, {a}, {a, b}, {a, b, c}, {a, b, c, d, e}}

[[2]]

{{}, {a}, {a, c}, {a, b, c}, {a, b, c, d, e}}

[[3]]

{{}, {a}, {a, b}, {a, b, d, e}, {a, b, c, d, e}}

[[4]]

{{}, {a}, {a, d, e}, {a, b, d, e}, {a, b, c, d, e}}

[[5]]

{{}, {d, e}, {a, d, e}, {a, b, d, e}, {a, b, c, d, e}}

[[6]]

{{}, {a}, {a, c}, {a, c, d, e}, {a, b, c, d, e}}

[[7]]

{{}, {a}, {a, d, e}, {a, c, d, e}, {a, b, c, d, e}}

[[8]]

{{}, {d, e}, {a, d, e}, {a, c, d, e}, {a, b, c, d, e}}

A learning path is considered a gradation if each state in the respective learning path differs
from its predecessor and/or successor state by a single item/notion. The lpath_is_gradation()

function allows for testing the gradation property of a list of learning paths:

> lpath_is_gradation(lp)

[[1]]

[1] FALSE

[[2]]

[1] FALSE

[[3]]

[1] FALSE

[[4]]

[1] FALSE

9

[[5]]

[1] FALSE

[[6]]

[1] FALSE

[[7]]

[1] FALSE

[[8]]

[1] FALSE

6 Utilities

Other KST related R packages (DAKS and pks) use matrices as representation for knowledge
structures and data sets. The as.famset() function converts such matrices into families (i.e.
sets) of sets.

> m <- matrix(c(1, 0, 0, 1, 1, 0), nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 0 1

[2,] 0 1 0

> as.famset(m)

{{b}, {a, c}}

> as.famset(m, as.letters = FALSE)

{{2L}, {1L, 3L}}

The inverse function is given by the as.binaryMatrix() function which returns the matrix rep-
resentation of a kstructure.

> as.binaryMatrix(ksp)

a b c d e

[1,] 0 0 0 0 0

[2,] 1 0 0 0 0

[3,] 1 1 0 0 0

[4,] 1 0 1 0 0

[5,] 0 0 0 1 1

[6,] 1 1 1 0 0

[7,] 1 0 0 1 1

[8,] 1 1 0 1 1

[9,] 1 0 1 1 1

[10,] 1 1 1 1 1

References

J.-P. Doignon and J.-C. Falmagne. Knowledge Spaces. Springer Verlag, Heidelberg, 1999.

L. A. Goodman and W. H. Kruskal. Measures of association for cross classification. Journal of the
American Statistical Association, 67:415–421, 1972.

10

M. Schrepp. An empirical test of a process model for letter series completion problems. In D. Albert and
J. Lukas, editors, Knowledge Spaces: Theories, Empirical Research, Applications. Lawrence Erlbaum
Associates, 1999.

M. Schrepp, T. Held, and D. Albert. Component-based construction of surmise relations for chess problems.
In D. Albert and J. Lukas, editors, Knowledge Spaces: Theories, Empirical Research, Applications.
Lawrence Erlbaum Associates, 1999.

11

Index

as.binaryMatrix, 10
as.famset, 10
as.relation, 4
closure, 7
kassess, 4
katoms, 3
kbase, 8
kbasis, 2
kdomain, 3
kfamset, 1, 7
kfringe, 3
kneighbourhood, 3
knotions, 3
kspace, 7, 8
kstructure_is_space, 3, 8
kstructure_is_wellgraded, 3
kstructure, 2, 7
ktrace, 3
kvalidate, 5
lpath_is_gradation, 9
lpath, 9
plot, 4
reduction, 7
union, 7

12

	Introduction
	Classes introduced in the kst package
	Knowledge Structures
	Assessment and Validation
	Set–related Methods
	Families of Sets

	Knowledge Spaces
	Learning Paths
	Utilities

