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Abstract

Gaussian process (GP) regression models make for powerful predictors in out of sam-
ple exercises, but cubic runtimes for dense matrix decompositions severely limit the size
of data—training and testing—on which they can be deployed. That means that in com-
puter experiment, spatial/geo-physical, and machine learning contexts, GPs no longer
enjoy privileged status as data sets continue to balloon in size. We discuss an implemen-
tation of local approximate Gaussian process models, in the laGP package for R, that
offers a particular sparse-matrix remedy uniquely positioned to leverage modern parallel
computing architectures. The laGP approach can be seen as an update on the spatial
statistical method of local kriging neighborhoods. We briefly review the method, and
provide extensive illustrations of the features in the package through worked-code exam-
ples. The appendix covers custom building options for symmetric multi-processor and
graphical processing units, and built-in wrapper routines that automate distribution over
a simple network of workstations.

Keywords: sequential design, active learning, surrogate/emulator, calibration, local kriging,
symmetric multi-processor, graphical processing unit, cluster computing, big data.

1. Introduction

The laGP package (Gramacy 2014) for R (R Core Team 2014) provides functions for (local)
approximate Gaussian process modeling and prediction for large spatial data and the emu-
lation of large computer experiments. This document provides a review of the underlying
methodology, with background on conventional Gaussian process modeling, and worked code
examples demonstrating most of the features of the package. There are several packages on
the Comprehensive R Archive Network (CRAN, cran.R-project.org) which implement full
(i.e., not approximated) Gaussian process regression. These include mleGP (Dancik 2013),
GPfit (MacDoanld, Chipman, and Ranjan 2014), spatial (Venables and Ripley 2002), and
fields (Nychka, Furrer, and Sain 2014)—all performing maximum likelihood (or a’ posteri-
ori) inference; and tgp (Gramacy 2007; Gramacy and Taddy 2010) and spBayes (Finley and
Banerjee 2013)—performing fully Bayesian inference. Approximate methods for large-scale
inference include tgp and sparseEM (Kaufman, Bingham, Habib, Heitmann, and Frieman
2012, which is not on CRAN). In what follows we motivate laGP by, in part, arguing that
none of these methods (or their accompanying software) cope well with the modern scale of
data collection/generation for spatial, computer experiment, or machine learning applications.

cran.R-project.org
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The laGP package also provides hooks that allow limited non-approximate inference. These
subroutines have been carefully engineered to support the the package’s main approximation
features, and in their own right largely out-perform conventional alternatives in terms of data
size capability. An important exception is the distributed computations offered by the bigGP

package (Paciorek, Lipshitz, Prabhat, Kaufman, Zhuo, and Thomas 2014). As we discuss, an
attractive feature of the nature of the approximations implemented by laGP is that they too
can be parallelized in several ways.

1.1. Gaussian process regression and sparse approximation

The Gaussian process (GP) regression model, sometimes called a Gaussian spatial processes
(GaSP), has been popular for decades in spatial data contexts like geostatistics (e.g., Cressie
1993) where they are known as kriging (Matheron 1963), and in computer experiments where
they are deployed as surrogate models or emulators (Sacks, Welch, Mitchell, and Wynn 1989;
Santner, Williams, and Notz 2003). More recently, they have become a popular prediction
engine in the machine learning literature (Rasmussen and Williams 2006). The reasons are
many, but the most important are probably that: the Gaussian structure affords a large degree
of analytic capability not enjoyed by other general-purpose approaches to nonparametric
nonlinear modeling; and because they perform well in out-of-sample tests. They are not,
however, without their drawbacks. Two important ones are computational tractability and
nonstationary flexibility, which we shall return to shortly.

A GP is technically a prior over functions (Stein 1999), with finite dimensional distributions
defined by a mean µ(x) and positive definite covariance Σ(x, x′), for p-dimensional input(s)
x and x′. For N input x-values this defines a µN N -vector and ΣN positive definite N ×N
matrix whereby the output is a random N -vector YN ∼ NN (µN ,ΣN ). However, for regression
applications a likelihood perspective provides a more direct view of the relevant quantities
for inference and prediction. In that setup, N data (training) pairs DN = (XN , YN ) define
a multivariate normal (MVN) likelihood for an N -vector of scalar responses YN through a
small number of parameters θ that describe how XN , an (N × p)-dimensional design matrix,
is related to µN and ΣN . Linear regression is a special case where θ = (β, τ2) and µN = XNβ
and ΣN = τ2IN .

Whereas the linear case puts most of the “modeling” structure in the mean, GP regression
focuses more squarely on the covariance structure. In many computer experiments contexts
the mean is taken to be zero (e.g., Santner et al. 2003). This is a simplifying assumption we
shall make throughout, although it is easy to generalize to a mean described by a polynomial
basis. Let Kθ(x, x′) be a correlation function so that YN ∼ NN (0, τ2KN ) where KN is a N×N
positive definite matrix comprised of entries Kθ(xi, xj) from the rows of XN . Here we are
changing the notation slightly so that θ is reserved explicitly for Kθ, isolating τ2 as a separate
scale parameter. Choices of Kθ(·, ·) determine stationarity, smoothness, differentiability, etc.,
but most importantly they determine the decay of spatial correlation.

A common first choice is the so-called isotropic Gaussian: Kθ(x, x′) = exp{−
∑p

k=1(xk −
x′

k)2/θ}, where correlation decays exponentially fast at rate θ. SinceKθ(x, x) = 1 the resulting
regression function is an interpolator, which is appropriate for many deterministic computer
experiments. For smoothing noisy data, or for a more robust approach to modeling computer
experiments (Gramacy and Lee 2011), a nugget can be added to Kθ,η(x, x′) = Kθ(x, x′) +
ηI{x=x′}. Much of the technical work described below, and particularly in Section 2, is generic
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to the particular choice of K(·, ·), excepting that it be differentiable in all parameters. The
laGP package favors the isotropic Gaussian case. Many of the drawbacks of that overly
simplistic choice, which leads theorists and practitioners alike to prefer other choices like
the Matérn (Stein 1999), are less of a concern in our particular local approach to sparse
approximation. The package also provides a limited set of routines that can accommodate
a separable Gaussian correlation function; more details are provided in Section 3.2. Our
empirical work will contain examples where correlation parameters (θ, η) are both estimated
from data, however we emphasize cases where η is fixed at a small value which is typical for
numerically robust near-interpolation of computer experiments.

1.2. Inference and prediction

GP regression is popular because inference (for all parameters but particularly for θ) is easy,
and (out-of-sample) prediction is highly accurate and conditionally (on θ and η) analytic.
It the spatial and computer experiments literatures it has become convention to deploy a
reference π(τ2) ∝ 1/τ2 prior (Berger, De Oliveira, and Sanso 2001) and obtain a marginal
likelihood for the remaining unknowns:

p(YN |Kθ(·, ·)) =
Γ[N/2]

(2π)N/2|KN |1/2
×

(

ψN

2

)− N
2

where ψN = Y ⊤
N K−1

N YN . (1)

Derivatives are available analytically, leading to fast Newton-like schemes for maximizing.
Some complications can arise when the likelihood is multi-modal for θ, however, where fully
Bayesian inference may be preferred (e.g., Rasmussen and Williams 2006, Chapter 5).1

The predictive distribution p(y(x)|DN ,Kθ(·, ·)), is Student-t with degrees of freedom N ,

mean µ(x|DN ,Kθ(·, ·)) = k⊤
N (x)K−1

N YN , (2)

and scale σ2(x|DN ,K(·, ·)) =
ψN [Kθ(x, x)− k⊤

N (x)K−1
N kN (x)]

N
, (3)

where k⊤
N (x) is the N -vector whose ith component is Kθ(x, xi). Using properties of the

Student-t, the variance of Y (x) is VN (x) ≡ Var[Y (x)|DN ,Kθ(·, ·)] = σ2(x|DN ,Kθ(·, ·)) ×
N/(N − 2).

As an example illustrating both inference and prediction, consider a simple sinusoidal “data
set” treated as a deterministic computer simulation, i.e., modeled without noise.

R> X <- matrix(seq(0, 2 * pi,length = 6), ncol = 1)

R> Z <- sin(X)

The code below uses some low-level routines in the package to initialize a full GP represen-
tation with θ = 2 and η = 10−6. Then, a derivative-based MLE sub-routine is used to find
θ̂N=6, maximizing the expression in Equation 1.

R> gp <- newGP(X, Z, 2, 1e-6, dK = TRUE)

R> mleGP(gp, tmax=20)

1Equation 1 emphasizes Kθ(·, ·), dropping η to streamline the notation in the following discussion. Every-
thing applies to Kθ,η(·, ·) as well.
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$d

[1] 4.386202

$its

[1] 6

The output printed to the screen shows the inferred θ̂N value, called d in the package, and
the number of Newton iterations required. The mleGP command alters the stored GP object
(gp) to contain the new representation of the GP using θ̂N=6. By default, mleGP maximizes
over the lengthscale, however by specifying param = "g" it can maximize over the nugget η
instead. The function jmleGP automates a profile-likelihood approach to “joint” optimization
over lengthscale (θ/d) and nugget (η/g) values.

The code below obtains the parameters of the predictive equations on a grid of new x-values
XX, following Equations 2–3.

R> XX <- matrix(seq(-1, 2 * pi + 1, length = 499), ncol = ncol(X))

R> p <- predGP(gp, XX)

R> deleteGP(gp)

The last line, above, frees the internal representation of the GP object, as we no longer need
it to complete this example. The moments stored in p can be used to plot mean predictions
and generate sample predictive paths via multivariate Student-t draws using the mvtnorm

package (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn 2014; Genz and Bretz 2009).

R> library("mvtnorm")

R> N <- 100

R> ZZ <- rmvt(N, p$Sigma, p$df)

R> ZZ <- ZZ + t(matrix(rep(p$mean, N), ncol = N))

Figure 1 provides a visualization of those sample paths on a scatter plot of the data. Each
gray line, plotted by matplot, is a single random realization of Y (x)|DN , θ̂N . Observe how
the predictive variance narrows for x nearby elements of XN and expands out in a “football
shape” away from them. This feature has attractive uses in design: high variance inputs
represent sensible choices for new simulations (Gramacy and Lee 2009).

1.3. Supercomputing and sparse approximation for big data

Despite its many attractive features, GP regression implementations are buckling under the
weight of the growing size of data sets in many modern applications. For example, super-
computers make submitting one job as easy as thousands, leading to ever larger computer
simulation data. The problem is the O(N3) matrix decompositions required to calculate K−1

N

and |KN | in Equations 1–3. In practice that limits N to the mid-upper thousands for point
inference, and lower thousands for sampling-based inference like the bootstrap or Bayesian
MCMC. This has pushed some practitioners towards wholly new modeling apparatuses, say
via trees (Pratola, Chipman, Gattiker, Higdon, McCulloch, and Rust 2014; Gramacy, Taddy,
and Wild 2013; Chipman, Ranjan, and Wang 2012). Although trees offer an appealing divide-
and-conquer approach, their obvious drawback is that they struggle to capture the smoothness
known, in many cases, to exist in the physical and mathematical quantities being modeled.
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R> matplot(XX, t(ZZ), col = "gray", lwd = 0.5, lty = 1, type = "l",

+ bty = "n", main = "simple sinusoidal example", xlab = "x",

+ ylab = "Y(x) | thetahat")

R> points(X, Z, pch = 19)
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Figure 1: Predictions from fitted GP regression model on simple sinusoidal data.

One approach to salvaging GP inference for use in larger contexts has been to allocate su-
percomputer resources. Franey, Ranjan, and Chipman (2012) were the first to use graphical
processing unit (GPU) linear algebra subroutines, extending the N by an order of magni-
tude. Paciorek, Lipshitz, Zhuo, Prabhat, Kaufman, and Thomas (2015) developed a package
for R called bigGP (Paciorek et al. 2014) that combined symmetric-multiprocessor, cluster,
and GPU facilities to gain yet another order of magnitude. Paciorek et al. were able to
handle N = 67275. To go too far down that road, however, may miss the point in certain
contexts. Computer model emulation is meant to avoid expensive computer simulation, not
be a primary consumer of it.

An orthogonal approach is to perform approximate GP regression, and a common theme
in that literature is sparsity, leading to fast matrix decompositions (e.g., Kaufman et al.
2012; Sang and Huang 2012). Again, the expansion of capability is one-to-two orders of
magnitude, albeit without tapping supercomputer resources which is more practical for most
applications. For example, Kaufman et al. reported on an experiment with N = 20000. Some
approaches in a similar vein include fixed rank kriging (Cressie and Johannesson 2008) and
using ‘’‘pseudo-inputs” (Snelson and Ghahramani 2006).
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Hybrid approximate GP regression and big-computer resources have been combined to push
the boundary even farther. Eidsvik, Shaby, Reich, Wheeler, and Niemi (2014) suggest com-
posite likelihood approach, rather than directly leveraging a sparse matrix library, and when
combined with a GPU implementation their method is able to cope with N = 173405. This
represents a substantial inroad into retaining many of the attractive features of GP regres-
sion in larger data applications. However, a larger (and thriftier) capability would certainly
be welcome. Pratola et al. (2014) found it necessary to modify a tree-based approach for
distribution over the nodes of a supercomputer in order to handle an N = 7M sized design.

The remainder of the paper is outlined as follows. In Section 2 we discuss the local approx-
imate Gaussian process method for large scale inference and prediction. Several variations
are discussed, including parallelized and GPU versions for combining with supercomputing
resources in order to handle large-N problems in reasonable computation times (e.g., under
an hour). Live-code examples, demonstrating the features of the laGP package for R, are
peppered throughout paper, however Sections 3 and 4 are devoted to larger scale and more
exhaustive illustration: first demonstrating local emulation/regression/smoothing and then
with application to large scale computer model calibration. Section 5 discusses extra features,
and the potential for end-user customization. Appendix A discusses default priors, and Ap-
pendix B describes how the package can be compiled to enable SMP and GPU support, as
well as a variation a the key wrapper function aGP enabling distribution of predictions across
the nodes of a cluster.

2. Local approximate Gaussian process models

The methods in the laGP package take a two-pronged approach to large data GP regression.
They (1) leverage sparsity, but in fact only work with small dense matrices. And (2) the
many-independent nature of calculations facilitates massive parallelization. The result is
an approximate GP regression capability that can accommodate orders of magnitude larger
training and testing sets than ever before. The method can be seen as a modernization
of local kriging from the spatial statistics literature (Cressie 1993, pp,131–134). It involves
approximating the predictive equations at a particular generic location, x, via a subset of
the data Dn(x) ⊆ DN , where the sub-design Xn(x) is (primarily) comprised of XN close
to x. The thinking is that, with the typical choices of Kθ(x, x′), where correlation between
elements x′ ∈ XN decays quickly for x′ far from x, remote x′s have vanishingly small influence
on prediction. Ignoring them in order to work with much smaller, n-sized, matrices will bring
a big computational savings with little impact on accuracy.

This is a sensible idea: It can be shown to induce a valid stochastic process (Datta, Banerjee,
Finley, and Gelfand 2015); when n ≪ 1000 the method is fast and accurate, and as n grows
the predictions increasingly resemble their full N -data counterparts; and, for smaller n, Vn(x)
is organically inflated relative to VN (x), acknowledging greater uncertainty in approximation.
The simplest version of such a scheme would be via nearest neighbors (NN): Xn(x) comprised
of closest elements of XN to x. Emory (2009) showed that this works well for many common
choices of Kθ. However, NN designs are known to be sub-optimal (Vecchia 1988; Stein, Chi,
and Welty 2004) as it pays to have some spread in Xn(x) in order to obtain good estimates of
correlation hyperparameters like θ. Still, searching for the optimal sub-design, which involves
choosing n from N things, is a combinatorially huge undertaking.
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Gramacy and Apley (2015) showed how a greedy search could provide designs Xn(x) where
predictors based on Dn(x) out-performed the NN alternative out-of-sample, yet required no
more computational effort than NN, i.e., they worked in O(n3) time. The idea is to search
iteratively, starting with a small NN set Dn0

(x), and choosing xj+1 to augment Xj(x) to
form Dj+1(x) according to one of several simple objective criteria. Importantly, they showed
that the criteria they chose, on which we elaborate below, along with the the other relevant
GP quantities for inference and prediction (Equations 1–3) can be calculated, or updated as
j → j + 1, in O(j2) time as long as the parameters, θ, remain constant across iterations.
Therefore over the entirety of j = n0, . . . , n iterations the scheme is in O(n3). The idea of
sequential updating for GP inference is not new (Gramacy and Polson 2011; Haaland and
Qian 2011), however the focus of previous approaches has been global. Working local to
particular x brings both computational and modeling/accuracy advantages.

2.1. Criterion for local design

Gramacy and Apley considered two criteria in addition to NN, one being a special case of the
other. The first is to minimize the empirical Bayes mean-square prediction error (MSPE)

J(xj+1, x) = E{[Y (x)− µj+1(x|Dj+1, θ̂j+1)]2|Dj(x)}

where θ̂j+1 is the estimate for θ based on Dj+1. The predictive mean µj+1(x|Dj+1, θ̂j+1)
follows Equation 2, except that a j+1 subscript has been added to indicate dependence on
xj+1 and the future, unknown yj+1. They then derive the approximation

J(xj+1, x) ≈ Vj(x|xj+1; θ̂j) +

(

∂µj(x; θ)

∂θ

∣

∣

∣

θ=θ̂j

)2
/

Gj+1(θ̂j). (4)

The first term in Equation 4 estimates variance at x after xj+1 is added into the design,

Vj(x|xj+1; θ) =
ψjvj+1(x; θ)

j − 2
, where vj+1(x; θ) =

[

Kj+1(x, x)− k⊤
j+1(x)K−1

j+1kj+1(x)
]

. (5)

Minimizing predictive variance at x is a sensible goal. The second term in Equation 4 estimates
the rate of change of the predictive mean at x, weighted by the expected future inverse
information, Gj+1(θ̂j), after xj+1 and the corresponding yj+1 are added into the design. The
weight, which is constant in x comments on the value of xj+1 for estimating the parameter
of the correlation function, θ, by controlling the influence of the rate of change (derivative)
of the predictive mean at x on the overall criteria.

The influence of that extra term beyond the reduced variance is small. The full MSPE
criteria tends to yield qualitatively similar local designs Xn(x) as ones obtained using just
Vj(x|xj+1; θ̂j), which incurs a fraction of the computational cost (since no derivative calcu-
lations are necessary). This simplified criteria is equivalent to choosing xj+1 to maximize
reduction in variance:

vj(x; θ)− vj+1(x; θ), (dropping θ below for compactness) (6)

= k⊤
j (x)Gj(xj+1)vj(xj+1)kj(x) + 2k⊤

j (x)gj(xj+1)K(xj+1, x) +K(xj+1, x)2/vj(xj+1),

where Gj(x′) ≡ gj(x′)g⊤
j (x′), and gj(x′) = −K−1

j kj(x′)/vj(x′). Observe that only O(j2)
calculations are required above. Although known for some time in other contexts, Gramacy
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and Apley chose the acronym ALC to denote use of that decomposition in local design,
recognizing similar approach to global design via a method called active learning Cohn (1996).

To illustrate local designs derived under greedy application of both criteria, consider the
following gridded global design in [−2, 2]2.

R> x <- seq(-2, 2, by = 0.02)

R> X <- as.matrix(expand.grid(x, x))

R> N <- nrow(X)

Here we have N = 40401, a very large design by traditional GP standards. You cannot invert
an N×N matrix for N that big on even the best modern workstation. As a point of reference,
it takes about seven seconds to perform a single decomposition of an 4000×4000 matrix using
hyperthreaded libraries on a 2010 iMac.

The laGP function requires a vector of responses to perform local design, even though the
design itself doesn’t directly depend on the responses—a point which we will discuss at greater
length shortly. The synthetic response Gramacy and Apley used for illustrations is coded
below, and we shall elucidate the nature of input/output relationships therein in due course.

R> f2d <- function(x)

+ {

+ g <- function(z)

+ return(exp( - (z - 1)^2) + exp( -0.8 * (z + 1)^2)

+ - 0.05 * sin(8 * (z + 0.1)))

+ -g(x[,1]) * g(x[,2])

+ }

R> Y <- f2d(X)

Now, consider a prediction location x, denoted by Xref in the code below, and local designs
for prediction at that x based on MSPE and ALC criteria.

R> Xref <- matrix(c(-1.725, 1.725), nrow = 1)

R> p.mspe <- laGP(Xref, 6, 50, X, Y, d = 0.1, method="mspe")

R> p.alc <- laGP(Xref, 6, 50, X, Y, d = 0.1, method="alc")

Both designs use n0 = 6 nearest neighbors to start, make greedy selections until n = 50
locations are chosen, and use θ = 0.1. The output object from laGP contains indices into
the original design. Those locations, and the order in which they were chosen, are plotted
in Figure 2. They are not identical under the two criteria, but any qualitative differences
are subtle. Both contain a clump of nearby points with satellite points emanating along rays
from x, the green dot. The satellite points are still relatively close to x considering the full
scope of locations in XN —all locations chosen are in the upper-left quadrant of the space.

It is perhaps intriguing that the greedy local designs differ from NN ones. An exponentially
decaying Kθ(·, ·), like our isotropic Gaussian choice, should substantially devalue locations far
from x. Gramacy and Haaland (2015) offer an explanation, which surprisingly has little to
do with the particular choice of Kθ. The explanation lies the form of Equation 6. Although
quadratic in Kθ(xj+1, x), the “distance” between the x and the potential new local design
location xj+1, it is also quadratic in gj(xj+1), a vector measuring “inverse distance”, via K−1

j ,
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R> Xi <- rbind(X[p.mspe$Xi, ], X[p.alc$Xi, ])

R> plot(X[p.mspe$Xi, ], xlab = "x1", ylab = "x2", type = "n",

+ main = "comparing local designs", xlim = range(Xi[ ,1]),

+ ylim = range(Xi[ ,2]))

R> text(X[p.mspe$Xi, ], labels = 1:length(p.mspe$Xi), cex = 0.7)

R> text(X[p.alc$Xi, ], labels = 1:length(p.alc$Xi), cex = 0.7, col = 2)

R> points(Xref[1], Xref[2], pch=19, col=3)

R> legend("topright", c("mspe", "alc"), text.col = c(1, 2), bty="n")
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Figure 2: Local designs at x (green dot), derived under MSPE and ALC criteria.

between xj+1 and the current local design Xj(x). So the criteria makes a tradeoff: minimize
“distance” to x while maximizing “distance” (or minimizing “inverse distance”) to the existing
design. Or in other words, the potential value of new design element (xj+1, yj+1) depends not
just on its proximity to x, but also on how potentially different that information is to where
we already have (lots of) it, at Xj(x).

Returning to the code example, we see below that the predictive equations are also very
similar under both local designs.

R> p <- rbind(c(p.mspe$mean, p.mspe$s2, p.mspe$df),

+ c(p.alc$mean, p.alc$s2, p.alc$df))

R> colnames(p) <- c("mean", "s2", "df")

R> rownames(p) <- c("mspe", "alc")

R> p
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mean s2 df

mspe -0.3725312 2.518566e-06 50

alc -0.3724820 2.445078e-06 50

Although the designs are built using a fixed θ = 0.1, the predictive equations output at the
end use local MLE calculation given the data Dn(x).

R> p.mspe$mle

d dits

1 0.3588186 7

R> p.alc$mle

d dits

1 0.3378369 7

MLE calculations can be turned off by adjusting the laGP call to include d=list(start=0.1,

mle=FALSE) as an argument. More about local inference for θ is deferred until Section 2.2. For
now we note that the implementation is same as the one behind the mleGP routine described
earlier in Section 1.2, under modest regularization [see Appendix A].

Finally, both local design methods are fast,

R> c(p.mspe$time, p.alc$time)

elapsed elapsed

0.177 0.061

though ALC is about 2.9 times faster since it doesn’t require evaluation of derivatives. Al-
though a more thorough out-of-sample comparison on both time and accuracy fronts is left
to Section 3, the factor of (at least) two speedup in execution time, together with the simpler
implementation, led Gramacy and Apley to prefer ALC in most cases.

2.2. Global inference, prediction and parallelization

The simplest way to extend the analysis to cover a dense design of predictive locations x ∈ X
is to serialize: loop over each x collecting approximate predictive equations, each in O(n3)
time. For T = |X | the total computational time is in O(Tn3). Obtaining each of the full GP
sets of predictive equations, by contrast, would require computational time in O(TN2 +N3),
where the latter N3 is attributable to obtaining K−1.2 One of the nice features of standard
GP emulation is that once K−1 has been obtained the computations are fast O(N2) operations
for each location x. However, as long as n≪ N our approximate method is even faster despite
having to rebuild and re-decompose Kj(x)’s for each x.

The approximation at x is built up sequentially, but completely independently of other pre-
dictive locations. Since a high degree of local spatial correlation is a key modeling assumption

2If only the predictive mean is needed, and not the variance, then the time reduces to O(T N + N3).
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this may seem like an inefficient use of computational resources, and indeed it would be in
serial computation for each x. However, independence allows trivial parallelization requiring
token programmer effort. When compiled correctly [see Appendix B.1] the laGP package can
exploit symmetric multiprocessor (SMP) parallelization via OpenMP pragmas in its underlying
C implementation. The simplest way this is accomplished is via a “parallel-for” pragma.

#ifdef _OPENMP

#pragma omp parallel for private(i)

#endif

for(i = 0; i < npred; i++) { ...

That is actual code from an early implementation, where npred = |X |, leading to a nearly
linear speedup: runtimes for P processors scale roughly as 1/P . Later versions of the package
use the “parallel” pragma which involves more code but incurs slightly less overhead.

To illustrate, consider the following predictive grid in [−2, 2]2 spaced to avoid the original
N = 40K design.

R> xx <- seq(-1.97, 1.95, by = 0.04)

R> XX <- as.matrix(expand.grid(xx, xx))

R> YY <- f2d(XX)

The aGP function iterates over the elements of X̃ ≡ XX. The package used in this illustration is
compiled for OpenMP support, and the omp.threads argument controls the number of threads
used by aGP, divvying up XX. You can specify any positive integer for omp.threads, however
a good rule-of-thumb is to match the number of cores. Here we set the default to two, since
nearly all machines these days have at least one hyperthreaded core (meaning it behaves like
two cores). However, this can be overwritten by the OMP_NUM_THREADS environment variable.

R> nth <- as.numeric(Sys.getenv("OMP_NUM_THREADS"))

R> if(is.na(nth)) nth <- 2

R> print(nth)

[1] 8

If your machine has fewer cores, if your laGP is not compiled with OpenMP or if your operating
system caps the number of OpenMP threads to a lower value (see Appendix B.1), then it will
take longer to run the examples here.

R> P.alc <- aGP(X, Y, XX, omp.threads = nth, verb = 0)

Note that the default method is ALC. The results obtained with method = "mspe" are similar,
but require more computation time. Further comparison is delayed until Section 3. The verb

= 0 argument suppresses a progress meter that is otherwise printed to the screen.

Figure 3 shows the resulting (predictive mean) emulation surface.3 Although the input di-
mension is low, the input-output relationship is nuanced and merits a dense design in the
input space to fully map.

3The negative is shown for better visibility.
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R> persp(xx, xx, -matrix(P.alc$mean, ncol = length(xx)), phi=45, theta=45,

+ main = "", xlab = "x1", ylab = "x2", zlab = "yhat(x)")

x1 x2

yh
a
t(x)

Figure 3: Emulated surface based on N = 40K and |X | = 10K gridded predictive locations.

For a closer look, Figure 4 shows a slice through that predictive surface at x2 = 0.51 along
with the true responses (completely covered by the prediction) and error-bars. Observe that
the error bars are very tight on the scale of the response, and that although no continuity is
enforced—calculations at nearby locations are independent and potentially occur in parallel—
the resulting surface looks smooth to the eye. This is not always the case, as we illustrate in
Section 3.3.

Accuracy, however, is not uniform. Figure 5 shows that predictive bias oscillates across the
same slice of the input space shown in Figure 4. Crucially, however, notice that the magnitude
of the bias is small: one-hundredth of a tick on the scale of the response. Still, given the
density of the input design one could easily guess that the model may not be flexible enough
to characterize the fast-moving changes in the input-output relationships.

Although an approximation, the local nature of modeling means that, from a global per-
spective, the predictor is more flexible that the full-N stationary Gaussian process predictor.
Here, stationary loosely means that the covariance structure is modeled uniformly across the
input space. Most choices of Kθ(·, ·), like the isotropic Gaussian we use, induce stationarity
in the spatial field. Inferring separate independent predictors across the elements of a vast
predictive grid lends aGP a degree of nonstationarity. In fact, by default, aGP goes beyond that
by learning separate θ̂n(x) local to each x ∈ X by maximizing the local likelihoods (or pos-
terior probabilities). Figure 6 shows that, indeed, the estimated lengthscales vary spatially.
So even though the spatial field may be locally restricted to isotropy, and therefore assumes
stationarity to a certain extent, globally the characteristics of the field are less constrained.
Nevertheless, even the extra degree of flexibility afforded by spatially varying θ̂n(x) is not
enough to entirely mitigate the small amount of bias shown in Figure 5.

Several enhancements offer scope for improvement. One is to explicitly accommodate global
anisotropy with a separable correlation structure. A simple way to do that is discussed in
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R> med <- 0.51

R> zs <- XX[, 2] == med

R> sv <- sqrt(P.alc$var[zs])

R> r <- range(c(-P.alc$mean[zs] + 2 * sv, -P.alc$mean[zs] - 2 * sv))

R> plot(XX[zs,1], -P.alc$mean[zs], type="l", lwd = 2, ylim = r, xlab = "x1",

+ ylab = "predicted & true response", bty = "n",

+ main = "slice through surface")

R> lines(XX[zs, 1], -P.alc$mean[zs] + 2 * sv, col = 2, lty = 2, lwd = 2)

R> lines(XX[zs, 1], -P.alc$mean[zs] - 2 * sv, col = 2, lty = 2, lwd = 2)

R> lines(XX[zs, 1], YY[zs], col = 3, lwd = 2, lty = 3)
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Figure 4: Slice of the predictive surface shown in Figure 3 including the true surface [covered
by the mean] and predictive interval.

Section 3.2. Another is to refine the local analysis, enhancing the degree of nonstationarity.
Gramacy and Apley recommend a two-stage scheme wherein the above process is repeated
and new Xn(x) are chosen conditional upon θ̂n(x) values from the first stage. i.e., so that
the second iteration’s local designs use locally estimated parameters. This leads to a globally
nonstationary model and generally more accurate predictions than the single-stage scheme.
The full scheme is outlined algorithmically in Figure 7. Step 2(b) of the algorithm implements
the ALC reduction in variance scheme, via Equation 6, although MSPE (Equation 4) or any
other criteria could be deployed there, at each greedy stage of local design. Of course, more
than two repetitions of the global search scheme can be performed, but in many examples two
has been sufficient to achieve rough convergence of the overall iterative scheme. Optionally,
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R> diff <- P.alc$mean - YY

R> plot(XX[zs,1], diff[zs], type = "l", lwd = 2,

+ main = "systematic bias in prediction",

+ xlab = "x1", ylab = "y(x) - yhat(x)", bty = "n")
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Figure 5: Bias in the predictive mean surface shown the same slice as in Figure 4.

the θ̂n(x)-values can be smoothed (e.g., by loess, as illustrated in Figure 4) before they are
fed back into the local design schemes. Smoothing can guard against extreme and abrupt
changes in lengthscale from one stage to the next. Considering other popular approaches to
adapting a stationary model to achieve nonstationary surfaces—usually involving orders of
magnitude more computation (e.g., Schmidt and O’Hagan 2003, and references therein)—this
small adaptation is a thrifty alternative that does not change the overall computational order
of the scheme.

Consider the following illustration continuing on from our example above.

R> P.alc2 <- aGP(X, Y, XX, d = exp(lo$fitted), omp.threads = nth, verb = 0)

This causes the design, for each element of XX, to initialize search based on the smoothed d-
values output from the previous aGP run. Comparing the predictions from the first iteration
to those from the second, we can see that the latter has lower RMSE.

R> rmse <- data.frame(alc = sqrt(mean((P.alc$mean - YY)^2)),

+ alc2 = sqrt(mean((P.alc2$mean - YY)^2)))

R> rmse
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R> plot(XX[zs,1], P.alc$mle$d[zs], type = "l", lwd=2,

+ main = "spatially varying lengthscale",

+ xlab = "x1", ylab = "thetahat(x)", bty = "n")

R> df <- data.frame(y = log(P.alc$mle$d), XX)

R> lo <- loess(y ~ ., data = df, span = 0.01)

R> lines(XX[zs,1], exp(lo$fitted)[zs], col=2, lty=2, lwd=2)

R> legend("topright", "loess smoothed", col=2, lty=2, lwd=2, bty="n")
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Figure 6: Spatially varying lengthscale estimated along the slice shown in Figure 4.

alc alc2

1 0.0006227472 0.0003031522

This result is not impressive, but it is statistically significant across a wide range of examples.
For example Gramacy and Apley (2015) provided an experiment based on the borehole data
[more in Section 3] showing that the second iteration consistently improves upon predictions
from the first. Although explicitly facilitating a limited degree of nonstationarity, second
stage local designs do not solve the bias problem completely. The method is still locally
stationary, and indeed locally isotropic in its laGP implementation. Finally, we note that
subsequent stages of design tend to be slightly faster than earlier stages since the number of
Newton iterations required for θ̂n(x) is reduced given refined starting values for search.
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1. Choose a sensible starting global θx = θ0 for all x.

2. Calculate local designs Xn(x, θx) based on ALC, independently for each
x:

(a) Choose a NN design Xn0
(x) of size n0.

(b) For j = n0, . . . , n− 1, set

xj+1 = arg max
xj+1∈XN \Xj(x)

vj(x; θx)− vj+1(x; θx),

and then update Dj+1(x, θx) = Dj(x, θx) ∪ (xj+1, y(xj+1)).

3. Also independently, calculate the MLE θ̂n(x)|Dn(x, θx) thereby explicitly
obtaining a globally nonstationary predictive surface. Set θx = θ̂n(x).

4. Repeat steps 2–3 as desired.

5. Output predictions Y (x)|Dn(x, θx) for each x.

Figure 7: Multi-stage approximate local GP modeling algorithm.

2.3. Computational techniques for speeding up local search

The most expensive step in Algorithm 7 is the inner-loop of Step 2(b), iterating over all
N − j remaining candidates in XN \Xj(x) in search of Xj+1. Assuming the criteria involves
predictive variance (Equation 3) in some way, every candidate entertained involves an O(j2)
calculation. Viewed pessimistically, one could argue the scheme actually requires computation
in O(Nn3) not O(n3). However, there are several reasons to remain optimistic about com-
putational aspects. One is that O(Nn3) is not O(N3). The others require more explanation,
and potentially slight adjustments in implementation.

Not all N − j candidates need be entertained for the method to work well. For the same
reason prediction is localized to x in the first place, that correlation decays quickly away from
x, we can usually afford to limit search to N ′ ≪ N − j candidates near to x. By default,
laGP and aGP limit search to the nearest N ′ = 1000 locations, although this can be adjusted
with the close argument. One can check [not shown here] that increasing close by an order
of magnitude, to 2000 or 10,000 uses more compute cycles but yields identical results in the
applications described in this document.

But it is risky to reduce close too much, as doing so will negate the benefits of search,
eventually yielding the NN GP predictor. Another option, allowing N ′ to be greatly increased
if desired, is to deploy further parallelization. Gramacy, Niemi, and Weiss (2014) showed that
ALC-based greedy search is perfect for GPU parallelization. Each potential candidate, up to
65K candidates, can be entertained on a separate GPU block, and threads within that block
can be used to perform many of the required dense linear algebra operations in Equation 6
in parallel. In practice they illustrate that this can result in speedups of between twenty and
seventy times, with greater efficiencies for large n and N ′. Enabling GPU subroutines requires
custom compilation of CUDA source code via the NVIDIA compiler nvcc and re-compilation
of the C code in the laGP package. For more details see Appendix B.2. For best results,
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enabling OpenMP support [Appendix B.1] is also recommended.

Finally, Gramacy and Haaland (2015) suggested that the discrete and exhaustive nature
of search could be bypassed all together. They studied the topology of the reduction in
variance landscape—the spatial surface searched in Step 2(b) via Equation 6—and observed
that many regularities persist over choices of Kθ(·, ·) and its parameterization. As long as XN

is reasonably space-filling, local designs predictably exhibit the features observed in Figure 2: a
substantial proportion of NNs accompanied by farther out satellite points positioned roughly
along rays emanating from the reference predictive location, x. To mimic that behavior
without exhaustive search they proposed a continuous one-dimensional line search along rays
emanating from x. Optimizing along the ray is fast and can be implemented with library
routines, like Brent_fmin (Brent 1973), the workhorse behind R’s optimize function.

The code below calculates such an ALC-ray based design, augmenting our example from
Section 2.

R> p.alcray <- laGP(Xref, 6, 50, X, Y, d = 0.1, method = "alcray")

Although a similar idea could be deployed for finding MSPE-based designs based on rays, this
is not implemented in the laGP package at the present time. Figure 8 compares local designs
based on ray and exhaustive search. The exhaustive search design is identical to the ALC
one shown in Figure 2, and just like in that example the ray-based version is not identical to
the others but clearly exhibits similar qualitative features. The time required to derive the
ALC-ray local design is:

R> p.alcray$time

elapsed

0.011

and this is 5.5 times better than the exhaustive alternative. The predictive equations are
nearly identical.

R> p <- rbind(p, c(p.alcray$mean, p.alcray$s2, p.alcray$df))

R> rownames(p)[3] <- c("alcray")

R> p

mean s2 df

mspe -0.3725312 2.518566e-06 50

alc -0.3724820 2.445078e-06 50

alcray -0.3723245 1.840874e-06 50

Gramacy and Haaland recommend using p rays per greedy search iteration, where p is the
dimension of the input space. However this can be adjusted with the numrays argument,
fine-tuning the exhaustiveness of search relative to the computational expense.

To complete the picture, the code below performs two stage global/local design based on
ALC-ray searches.
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R> plot(X[p.alc$Xi,], xlab = "x1", ylab = "x2", type = "n",

+ main="comparing local designs", xlim = range(Xi[ ,1]),

+ ylim = range(Xi[ ,2]))

R> text(X[p.alc$Xi,], labels = 1:length(p.alc$Xi), cex = 0.7, col = 2)

R> text(X[p.alcray$Xi,], labels=1:length(p.mspe$Xi), cex=0.7, col = 3)

R> points(Xref[1], Xref[2], pch = 19, col = 3)

R> legend("topright", c("alc", "alcray"), text.col = c(2,3), bty = "n")
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Figure 8: Local designs at x (green dot), derived under ALC and ALC-ray search criteria.

R> P.alcray <- aGP(X, Y, XX, method = "alcray", omp.threads = nth, verb = 0)

R> dfray <- data.frame(y = log(P.alcray$mle$d), XX)

R> loray <- loess(y ~ ., data = dfray, span = 0.01)

R> P.alcray2 <- aGP(X, Y, XX, method = "alcray", d = exp(loray$fitted),

+ omp.threads = nth, verb = 0)

The result is a global predictor that is 5.5 times faster than the non-raw version, echoing the
single-x results from laGP above

R> c(P.alcray$time, P.alcray2$time)

elapsed elapsed

19.128 15.989

and provides nearly identical out-of-sample accuracy via RMSE:
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R> rmse <- cbind(rmse,

+ data.frame(alcray=sqrt(mean((P.alcray$mean - YY)^2)),

+ alcray2=sqrt(mean((P.alcray2$mean - YY)^2))))

R> rmse

alc alc2 alcray alcray2

1 0.0006227472 0.0003031522 0.0004478262 0.0002069136

35 seconds on a 2010 desktop to accurately emulate at 10K locations from an input design of
N = 40K is an unmatched capability in the recent computer experiment literature.

3. Examples

The 2-d example above, while illustrative, was somewhat simplistic. Below we present three
further examples that offer a more convincing demonstration of the merits of local GP predic-
tion and expand its feature set to accommodate a wider range of application. After exploring
its performance on the “borehole” data, a classic computer experiment benchmark, we illus-
trate how noisy data can be accommodated by estimating local nuggets. Section 4 provides
a further example of how it can be deployed for computer model calibration.

3.1. Borehole data

The borehole experiment (Worley 1987; Morris, Mitchell, and Ylvisaker 1993) involves an
8-dimensional input space, and our use of it here follows the setup of Kaufman et al. (2012);
more details can be found therein. The response y is given by

y =
2πTu[Hu −Hl]

log
(

r
rw

) [

1 + 2LTu

log(r/rw)r2
wKw

+ Tu

Tl

] . (7)

The eight inputs are constrained to lie in a rectangular domain:

rw ∈ [0.05, 0.15] r ∈ [100, 5000] Tu ∈ [63070, 115600] Tl ∈ [63.1, 116]

Hu ∈ [990, 1110] Hl ∈ [700, 820] L ∈ [1120, 1680] Kw ∈ [9855, 12045].

We use the following implementation in R which accepts inputs in the unit 8-cube.

R> borehole <- function(x){

+ rw <- x[1] * (0.15 - 0.05) + 0.05

+ r <- x[2] * (50000 - 100) + 100

+ Tu <- x[3] * (115600 - 63070) + 63070

+ Hu <- x[4] * (1110 - 990) + 990

+ Tl <- x[5] * (116 - 63.1) + 63.1

+ Hl <- x[6] * (820 - 700) + 700

+ L <- x[7] * (1680 - 1120) + 1120

+ Kw <- x[8] * (12045 - 9855) + 9855

+ m1 <- 2 * pi * Tu * (Hu - Hl)

+ m2 <- log(r / rw)
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+ m3 <- 1 + 2 * L * Tu / (m2 * rw^2 * Kw) + Tu / Tl

+ return(m1/m2/m3)

+ }

We consider a modestly big training set (N = 100000), to illustrate how large emulations
can proceed with relatively little computational effort. However, we keep the testing set
somewhat smaller so that we can so that we can duplicate part of a Monte Carlo experiment
(i.e., multiple repeats of random training and testing sets) from Gramacy and Apley (2015)
without requiring too many compute cycles.

R> N <- 100000

R> Npred <- 1000

R> dim <- 8

R> library("lhs")

The experiment involves ten repetitions wherein a Latin hypercube sample (LHS; McKay,
Conover, and Beckman 1979) defines random training data and testing sets, with responses
from borehole. In each repetition a sequence of (local GP) estimators is fit to the training sets
followed by out-of-sample RMSE calculations on the testing sets. Storage for those RMSEs,
along with timing info, is allocated as follows

R> T <- 10

R> nas <- rep(NA, T)

R> times <- rmse <- data.frame(mspe = nas, mspe2 = nas,

+ alc.nomle = nas, alc = nas, alc2 = nas,

+ nn.nomle = nas, nn=nas, big.nn.nomle = nas, big.nn = nas,

+ big.alcray = nas, big.alcray2 = nas)

The names of the columns of the data frame are indicative of the corresponding estimator.
For example, big.nn.nomle indicates a nearest neighbor (NN) estimator fit to with a larger
local neighborhood (n = 200) using a sensible, but not likelihood maximizing, global value of
θ. The other estimators describe variations either via a smaller local neighborhood (n = 50),
greedy search, and local calculation of θ̂n(x).

The for loop below iterates over each Monte Carlo repetition. The first chunk in the loop
generates the data via the lhs package (Carnell 2012); the second chunk assigns arguments
common to all comparators; the remaining lines gather predictions and measure performance.

R> for(t in 1:T) {

+

+ x <- randomLHS(N + Npred, dim)

+ y <- apply(x, 1, borehole)

+ ypred.0 <- y[-(1:N)]; y <- y[1:N]

+ xpred <- x[-(1:N),]; x <- x[1:N,]

+

+ formals(aGP)[c("omp.threads", "verb")] <- c(nth, 0)

+ formals(aGP)[c("X", "Z", "XX")] <- list(x, y, xpred)

+
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+ out1<- aGP(d=list(mle = FALSE, start = 0.7))

+ rmse$alc.nomle[t] <- sqrt(mean((out1$mean - ypred.0)^2))

+ times$alc.nomle[t] <- out1$time

+

+ out2 <- aGP(d = list(max = 20))

+ rmse$alc[t] <- sqrt(mean((out2$mean - ypred.0)^2))

+ times$alc[t] <- out2$time

+

+ out3 <- aGP(d = list(start = out2$mle$d, max = 20))

+ rmse$alc2[t] <- sqrt(mean((out3$mean - ypred.0)^2))

+ times$alc2[t] <- out3$time

+

+ out4 <- aGP(d = list(max = 20), method="alcray")

+ rmse$alcray[t] <- sqrt(mean((out4$mean - ypred.0)^2))

+ times$alcray[t] <- out4$time

+

+ out5 <- aGP(d = list(start = out4$mle$d, max = 20), method="alcray")

+ rmse$alcray2[t] <- sqrt(mean((out5$mean - ypred.0)^2))

+ times$alcray2[t] <- out5$time

+

+ out6<- aGP(d = list(max = 20), method="mspe")

+ rmse$mspe[t] <- sqrt(mean((out6$mean - ypred.0)^2))

+ times$mspe[t] <- out6$time

+

+ out7 <- aGP(d = list(start = out6$mle$d, max = 20), method="mspe")

+ rmse$mspe2[t] <- sqrt(mean((out7$mean - ypred.0)^2))

+ times$mspe2[t] <- out7$time

+

+ out8 <- aGP(d = list(mle = FALSE, start = 0.7), method = "nn")

+ rmse$nn.nomle[t] <- sqrt(mean((out8$mean - ypred.0)^2))

+ times$nn.nomle[t] <- out8$time

+

+ out9 <- aGP(end = 200, d = list(mle = FALSE), method = "nn")

+ rmse$big.nn.nomle[t] <- sqrt(mean((out9$mean - ypred.0)^2))

+ times$big.nn.nomle[t] <- out9$time

+

+ out10 <- aGP(d = list(max = 20), method = "nn")

+ rmse$nn[t] <- sqrt(mean((out10$mean - ypred.0)^2))

+ times$nn[t] <- out10$time

+

+ out11 <- aGP(end = 200, d = list(max = 20), method="nn")

+ rmse$big.nn[t] <- sqrt(mean((out11$mean - ypred.0)^2))

+ times$big.nn[t] <- out11$time

+

+ out12 <- aGP(end = 200, d = list(max = 20), method="alcray")

+ rmse$big.alcray[t] <- sqrt(mean((out12$mean - ypred.0)^2))

+ times$big.alcray[t] <- out12$time
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+

+ out13 <- aGP(end = 200, d = list(start = out12$mle$d, max = 20),

+ method="alcray")

+ rmse$big.alcray2[t] <- sqrt(mean((out13$mean - ypred.0)^2))

+ times$big.alcray2[t] <- out13 $time

+ }

The code below collects summary information into a table, whose rows are ordered by average
RMSE value. The final column of the table shows the p-value of a one-sided t-test for differ-
ences between adjacent rows in the table—indicating if the RMSE in the row is statistically
distinguishable from the one below it.

R> timev <- apply(times, 2, mean, na.rm = TRUE)

R> rmsev <- apply(rmse, 2, mean)

R> tab <- cbind(timev, rmsev)

R> o <- order(rmsev, decreasing = FALSE)

R> tt <- rep(NA, length(rmsev))

R> for(i in 1:(length(o)-1)) {

+ tto <- t.test(rmse[ ,o[i]], rmse[ ,o[i+1]], alternative = "less",

+ paired = TRUE)

+ tt[o[i]] <- tto$p.value

+ }

R> tab <- cbind(tab, data.frame(tt))

R> tab[o, ]

timev rmsev tt

big.alcray2 128.3286 0.1896538 5.463523e-08

big.alcray 142.2292 0.2095144 4.568460e-11

alc2 13.8594 0.2646101 1.443727e-01

mspe2 40.3029 0.2655748 2.144497e-09

big.nn 40.6807 0.2971100 9.275897e-07

alc 14.3571 0.3215997 3.758175e-01

mspe 40.9844 0.3225452 5.136214e-09

alcray2 5.8327 0.3962093 2.153505e-04

alcray 5.9097 0.4218566 5.695679e-15

big.nn.nomle 2.4568 0.8798026 5.857637e-08

alc.nomle 13.4565 1.0079727 6.777112e-08

nn 1.2816 1.1801521 2.842154e-15

nn.nomle 0.5027 3.0325168 NA

The two biggest takeaways from the table are that (1) everything is fast on a data set of
this size by comparison to the state of the art in GP emulation, approximately or otherwise;
(2) local inference of the lengthscale parameter, θ̂n(x) leads to substantial improvements
in accuracy. Gramacy and Apley’s similar experiments included variations on the method
of compactly supported covariances (CSC) (Kaufman et al. 2012) yielding estimators with
similar accuracies, but requiring at least an order magnitude more compute time. In fact, they
commented that N = 10000 was the limit that CSC could accommodate on their machine due
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to memory swapping issues. Moreover, the laGP method, despite restrictions to local isotropy,
is competitive with, and often outperforms, comparators which model spatial correlations
separably. CSC is one example. Gramacy and Haaland (2015) provide a detailed case study
along these lines, including hybrid global/local approaches like those described in the following
subsection.

The best methods, based on a larger local neighborhood and ray-based search, point to an
impressive emulation capability. In a time that is comparable to a plain NN-based emulation
strategy (with local inference for θ̂n(x); i.e., nn in the table), a greedy design is three times
more accurate out-of-sample. Gramacy and Haaland (2015) show that the trend continues
as N is increased, indicating the potential for extremely accurate emulation on testing and
training sets of size N > 1M in a few hours. Pairing with cluster-style distribution, across
96 16-CPU nodes, that can be reduced to 188 seconds, or extended to N > 8M in just
over an hour. They show that for smaller (yet still large) designs N < 100000, searching
exhaustively rather than by rays leads to more accurate predictors. In those cases, massive
parallelization over a cluster and/or with GPUs (Gramacy et al. 2014) can provide (more)
accurate predictions on a commensurately sized testing set (N) in about a minute.

3.2. Challenging global/local isotropy

Our choice of isotropic correlation function was primarily one of convenience. It is a common
first choice for computer experiments, and since it has just one parameter, θ, inferential
schemes like maximum likelihood via Newton methods are vastly simplified. When deployed
for local inference over thousands of elements of a vast predictive grid, that simplicity is a near
necessity from an engineering perspective. However, the local GP methodology is not limited
to this choice. Indeed Gramacy and Apley (2015) developed all of the relevant equations for
a generic choice of separable correlation function. Here, separable means the joint correlation
over all input directions factors as a product of a simpler one in each direction, independently.
The simplest example is a separable Gaussian form, Kθ(x, x′) = exp{−

∑p
k=1(xk − x

′
k)2/θk}.

It is easy to imagine, as in our eight-dimensional borehole example above, that the spatial
model could benefit for allowing differential rate of decay θk in each input direction.

The laGP package contains limited support for a separable correlation function. Functions
like laGPsep and aGPsep perform the analog of laGP and aGP, and are currently considered
to be beta functionality. Release-quality subroutines are provided for separable modeling in
the context of global, that is canonical, GP inference. On a data set of size N = 100K like
the one we entertain above, this is not a reasonable undertaking. But we have found it useful
on subsets of the data for the purpose of obtaining a rough re-scaling of the inputs so that a
(local) isotropic analysis is less objectionable. For example, the code below, after allocating
space and setting reasonable starting values and ranges, considers ten random subsets of size
n = 1K from the full N = 100K design, and collects θ̂ vectors under the separable Gaussian
formulation.

R> thats <- matrix(NA, nrow = T, ncol = dim)

R> its <- rep(NA, T)

R> n <- 1000

R> g2 <- garg(list(mle = TRUE), y)

R> d2 <- darg(list(mle = TRUE, max = 100), x)

R> for(t in 1:T) {
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+

+ subs <- sample(1:N, n, replace = FALSE)

+

+ gpsepi <- newGPsep(x[subs, ], y[subs], rep(d2$start, dim), g = 1/1000,

+ dK = TRUE)

+ that <- mleGPsep(gpsepi, param = "d", tmin = d2$min, tmax = d2$max,

+ ab = d2$ab, maxit = 200)

+ thats[t,] <- that$d

+ its[t] <- that$its

+

+ deleteGPsep(gpsepi)

+ }

The mleGPsep function uses optim with method="L-BFGS-B" together with analytic deriva-
tives of the log likelihood; the function mleGP offers a similar feature for the isotropic Gaussian
correlation, except that it uses a Newton-like method with analytic first and second deriva-
tives. For details on darg and garg, which lightly regularize and determine initial values for
the MLE calculations, see Appendix A.

The package also offers jmleGPsep, an analog of jmleGP, automating a profile approach to
iterating over θ|η and η|θ where the latter is performed with a Newton-like scheme leveraging
first and second derivatives.4 We do not demonstrate jmleGPsep on this example since
the large data subset (n = 1000) combined with very smooth deterministic outputs from
moderately size (8-dim) inputs, via borehole, leads to estimating near-zero nuggets and
ill-conditioning in the matrix decompositions owing to our choice of Gaussian decay. For
estimating nuggets in this setup, where the response is both deterministic and extremely
smooth (and stationary), we recommend GPfit (MacDoanld et al. 2014) based on the methods
of Ranjan, Haynes, and Karsten (2011). However, we caution that in our experience GPfit

can be slow on data sets as large as N = 1000.

Figure 9 shows the distribution of estimated lengthscales obtained by randomizing over subsets
of size n = 1000. We see that some lengthscales are orders of magnitude smaller than others,
suggesting that some inputs may be more important than others. Input one (rw) has a
distribution that is highly concentrated near small values, so it may be the most important.
Perhaps treating all inputs equally when performing a global/local approximation, as in
Section 3.1, is leaving some predictability on the table. The laGP package does not support
using a separable correlation function for local analysis, however we can pre-scale the data
globally to explore whether there is any benefit from a differential treatment of inputs.

R> scales <- sqrt(apply(thats, 2, median))

R> xs <- x; xpreds <- xpred

R> for(j in 1:ncol(xs)) {

+ xs[,j] <- xs[,j] / scales[j]

4Newer versions of the package also provide a param = "both" option to mleGPsep, leveraging a gradient
over both separable lengthscale and nugget parameters for joint inference; i.e., not taking a profile approach.
This setup usually requires fewer total iterations to converge unless one of the two parameters sets is already
very close to the MLE setting. See the package documentation for more details. Unfortunately an analog in
mleGP is not available at this time.
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R> boxplot(thats, main = "distribution of thetas", xlab = "input",

+ ylab = "theta")
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Figure 9: Distribution of maximum a’ posteriori lengthscales over random subsets of the
borehole data.

+ xpreds[,j] <- xpreds[,j] / scales[j]

+ }

Using the new inputs, consider the following global approximation for the final iteration in
the Monte Carlo experiment from Section 3.1.

R> out14 <- aGP(xs, y, xpreds, d=list(start=1, max=20), method="alcray")

Since the imputs have been pre-scaled by an estimate of (square-root) lengthscale(s), it makes
sense to initialize with a local lengthscale of one. The RMSE obtained,

R> sqrt(mean((out14$mean - ypred.0)^2))

[1] 0.1619715

is competitive with the best methods in the study above—those are based on n = 200 whereas
only the default n = 50 was used here. Also observe that the RMSE we just obtained is better
than half of the one we reported for “alcray” in the Monte Carlo experiment.
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Determining if this reduction is statistically significant would require incorporating it into
the Monte Carlo. We encourage the reader to test that off-line, if so inclined. We conclude
here that it can be beneficial to perform a cursory global analysis with a separable correlation
function to determine if the inputs should be scaled before performing a local (isotropic)
analysis on the full data set.

3.3. Motorcycle data

For a simple illustration of heteroskedastic local GP modeling, consider the motorcycle acci-
dent data (Silverman 1985), simulating the acceleration of the head of a motorcycle rider as a
function of time in the first moments after an impact. It can be found in the MASS package
(Venables and Ripley 2002) for R. For comparison, we first fit a simple GP model to the full
data set (N = 133), estimating both lengthscale θ and nugget η.

R> library("MASS")

R> d <- darg(NULL, mcycle[, 1, drop = FALSE])

R> g <- garg(list(mle = TRUE), mcycle[,2])

R> motogp <- newGP(mcycle[ , 1, drop=FALSE], mcycle[ ,2], d = d$start,

+ g = g$start, dK = TRUE)

R> jmleGP(motogp, drange = c(d$min, d$max), grange = c(d$min, d$max),

+ dab = d$ab, gab = g$ab)

d g tot.its dits gits

1 54.28291 0.2771448 95 26 69

Now consider the predictive equations derived from that full-data, alongisde a local approxi-
mate alternative (via ALC) with a local neighborhood size of n = 30.

R> XX <- matrix(seq(min(mcycle[ ,1]), max(mcycle[ ,1]), length = 100),

+ ncol = 1)

R> motogp.p <- predGP(motogp, XX = XX, lite = TRUE)

R> motoagp <- aGP(mcycle[ , 1, drop=FALSE], mcycle[,2], XX, end = 30,

+ d = d, g = g, verb = 0)

Figure 10 shows the predictive surfaces obtained for the two predictors in terms of means
and 90% credible intervals. The (full) GP mean surface, shown as solid-black, is smooth and
tracks the center of the data nicely from left to right over the range of x-values. However, it is
poor at capturing the heteroskedastic nature of the noise (dashed-black). The local GP mean
is similar, except near x = 35 where it is not smooth. This is due to the small design. With
only N = 132 there isn’t much opportunity for smooth transition as the local predictor tracks
across the input space, leaving little wiggle room to make a trade-off between smoothness
(n = 132, reproducing the full GP results exactly) and adaptivity (n ≪ 132). Although the
mean of the local GP may disappoint, the variance offers an improvement over the full GP. It
is conservative where the response is wiggly, being similar to the full GP but slightly wider,
and narrower where the response is flat.

It is interesting to explore how the local GP approximation would fare on a larger version of
the same problem, where otherwise a local approach is not only essential for computational
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R> plot(mcycle, cex = 0.5, main = "motorcycle data")

R> lines(XX, motogp.p$mean, lwd = 2)

R> q1 <- qnorm(0.05, mean = motogp.p$mean, sd = sqrt(motogp.p$s2))

R> q2 <- qnorm(0.95, mean = motogp.p$mean, sd = sqrt(motogp.p$s2))

R> lines(XX, q1, lty = 2, lwd = 2)

R> lines(XX, q2, lty = 2, lwd = 2)

R> lines(XX, motoagp$mean, col = 2, lwd = 2)

R> q1 <- qnorm(0.05, mean = motoagp$mean, sd = sqrt(motoagp$var))

R> q2 <- qnorm(0.95, mean = motoagp$mean, sd = sqrt(motoagp$var))

R> lines(XX, q1, lty = 2, col = 2, lwd = 2)

R> lines(XX, q2, lty = 2, col = 2, lwd = 2)
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Figure 10: Comparison of a global GP predictive surface (black) with a local one (red).
Predictive means (solid) and 90% interval (dashed) shown.

reasons, but also potentially more appropriate from a nonstationary modeling perspective on
this data. For a crude simulation of a larger data setup we replicated the data ten times with
a little bit of noise on the inputs.

R> X <- matrix(rep(mcycle[ ,1], 10), ncol = 1)

R> X <- X + rnorm(nrow(X), sd = 1)

R> Z <- rep(mcycle[ ,2], 10)

R> motoagp2 <- aGP(X, Z, XX, end = 30, d = d, g = g, verb = 0)

Figure 11 shows the resulting predictive surface. Notice how it does a much better job
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of tracing predictive uncertainty across the input space. The predictive mean is still overly

R> plot(X, Z, main = "simulating a larger data setup", xlab = "times",

+ ylab = "accel")

R> lines(XX, motoagp2$mean, col = 2, lwd = 2)

R> q1 <- qnorm(0.05, mean = motoagp2$mean, sd = sqrt(motoagp2$var))

R> q2 <- qnorm(0.95, mean = motoagp2$mean, sd = sqrt(motoagp2$var))

R> lines(XX, q1, col = 2, lty = 2, lwd = 2)

R> lines(XX, q2, col = 2, lty = 2, lwd = 2)
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Figure 11: Predictive surface obtained after combining ten replications of the data with
jittered x-values.

wiggly, but also reveals structure in the data that may not have been evident from the scatter-
plot alone, and likewise is disguised (or overly smoothed) by the full GP fit. The local GP
is picking up oscillations for larger input values which makes sense considering the output is
measuring a whiplash effect. However, that may simply be wishful thinking; the replicated
response values paired with the jittered predictors may not be representative of what would
have been observed in a larger simulation.

4. Calibration

Computer model calibration is the enterprise of matching a simulation engine with real, or
field, data to ultimately build an accurate predictor for the real process at novel inputs. In
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the case of large computer simulations, calibration represents a capstone application uniquely
blending (and allowing review of) features, for both large and small-scale spatial modeling
via GPs, provided by the laGP package.

Kennedy and O’Hagan (2001) described a statistical framework for combining potentially
biased simulation output and noisy field observations for model calibration, via a hierarchical
model. They proposed a Bayesian inferential framework for jointly estimating, using data
from both processes, the bias, noise level, and any parameters required to run the computer
simulation—so-called calibration parameter(s)—but which cannot be controlled or observed
in the field. The setup, which we review below, has many attractive features, however it scales
poorly when simulations get large. We explain how Gramacy, Bingham, Holloway, Grosskopf,
Kuranz, Rutter, Trantham, and Drake (2015) modified that setup using laGP and provide a
live demonstration via an example extracted from that paper.

4.1. A hierarchical model for Bayesian inference

Consider data comprised of runs of a computer model M at a large space-filling design, and
a much smaller number observations from a physical or field experiment F following a design
that respects limitations of the experimental apparatus. It is typical to assume that the runs
of M are deterministic, and that its input space fully contains that of F . Use x to denote
design variables that can be adjusted, or at leased measured, in the physical system; and
let u to denote calibration or tuning parameters, whose values are required to simulate the
system, but are unknown in the field. The primary goal is to predict the result of new field
data experiments, via M , which in turn means finding a good u.

Toward that goal, Kennedy and O’Hagan (2001, hereafter KOH) proposed the following
coupling of M and F . Let yF (x) denote a field observation at x, and yM (x, u) denote the
(deterministic) output of a computer model run. KOH represent the real mean process R
as the computer model output at the best setting of the tuning parameters, u∗, plus a bias
term acknowledging potential for systematic discrepancies between the computer model and
the underlying mean of the physical process. In symbols, the mean of the physical process is
yR(x) = yM (x, u∗) + b(x). The field observations connect reality with data:

yF (x) = yR(x) + ε = yM (x, u∗) + b(x) + ε, where ε
iid
∼ N (0, σ2

ε). (8)

The unknown parameters are u∗, σ2
ε , and the discrepancy or bias b(·).

If evaluating the computer model is fast, then inference can proceed via residuals yF (x) −
yM (x, u), which can be computed at will for any (x, u) (Higdon, Kennedy, Cavendish, Cafeo,
and Ryne 2004). However, yM simulations are usually time consuming, in which case it helps
to build an emulator ŷM (·, ·) fit to code outputs obtained on a computer experiment design
of NM locations (x, u). KOH recommend a GP prior for yM , however rather than learn ŷM

in isolation, using just the NM runs, as we have been doing throughout this document, they
recommend inference joint with b(·), u, and σ2

ε using both field observations and runs of the
computer model. From a Bayesian perspective this is the coherent thing to do: infer all
unknowns jointly given all data.

This is a practical approach when the computer model is very slow, giving small NM . In
that setup, the field data can be informative for emulation of yM (·, ·), especially when the
bias b(·) is very small or easy to estimate. Generally however, the computation required for
inference in this setup is fraught with challenges, especially in the fully Bayesian formulation
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recommended by KOH. The coupled b(·) and yM (·, ·) lead to parameter identification and
MCMC mixing issues. And GP regression, taking a substantial computational toll when
deployed in isolation, faces a compounded burden when coupled with other processes.

4.2. Calibration as optimization

Gramacy et al. (2015) proposed a thriftier approach pairing local approximate GP models
for emulation with a modularized calibration framework (Liu, Bayarri, and Berger 2009) and
derivative free optimization (Conn, Scheinberg, and Vicente. 2009). Modularized calibration
sounds fancy, but it really represents a reduction rather than expansion of ideas: fitting the
emulator ŷM (·, ·) separately or independently from the bias, using only the outputs of runs
at a design of NM inputs (x, u). Liu et al.’s justification for modularization stemmed from a
“contamination” concern echoed by other researchers (e.g., Joseph 2006; Santner et al. 2003)
where, in the fully Bayesian scheme, joint inference allows “pristine” field observations to be
contaminated by an imperfect computer model.

Gramacy et al. motivate modularization from a more practical perspective, that of de-
coupling inference for computational tractability in large NM settings. They argue that
there is little harm in doing so for most modern calibration applications, in terms of the qual-
ity of estimates obtained irrespective of computational considerations. Due to the relative
costs, the number of computer model runs involved increasingly dwarfs the data available
from the field, i.e., NM ≫ NF , making it unlikely that field data would substantively enhance
the quality of the emulator, leaving only risk that joint inference with the bias will obfuscate
traditional computer model diagnostics, and possibly stunt their subsequent re-development
or refinement.

Combining modularization with local approximate GPs for emulation, and full GP regressions
(with nugget η) for estimating bias-plus-noise from a relatively small number of field data
observations, NF , Gramacy et al. recommend viewing calibration as an optimization, acting
as the glue that “sticks it all together”. Algorithm 1 provides pseudocode comprised of library

Require: Calibration parameter u, fidelity parameter nM , computer data DM
NM

,

and field data DF
NF

.
1: for j = 1, . . . , NF do

2: I ← laGP(xF
j , u | nM , DM

NM
) {get indicies of local design}

3: θ̂j ← mleGP(DM
NM

[I]) {local MLE of correlation parameter(s)}

4: ŷ
M |u
j ← muGP(xF

j | D
M
NM

[I], θ̂j) {predictive mean emulation following Eq. (3)}
5: end for

6: Ŷ
B|u

NF
← Y F

NF
− Ŷ M |u {vectorized bias calculation}

7: DB
NF

(u)← (Ŷ
B|u

NF
, XF

NF
) {create data for estimating b̂(·)|u}

8: θ̂b ← mleGP(DB
NF

(u)) {full GP estimate of b̂(·)|u}

9: return llikGP(θ̂n, D
B
NF

(u)) {the objective value of the mleGP call above}

Algorithm 1: Objective function evaluation for modularized local GP calibration.

functions describing the objective function. In laGP, this objective is implemented as fcalib,
comprising of first (steps 1–5) a call to aGP.seq to emulate on a schedule of sequential stages
of local refinements [Figure 7]; and then (6–8) a call to discrep.est which estimates the GP
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discrepancy or bias term. The notation used in the psuedo-code, and further explanation, is
provided below.

Let the field data be denoted as DF
NF

= (XF
NF
, Y F

NF
) where XF

NF
is the design matrix of NF

field data inputs, paired with an NF vector of yF observations Y F
NF

. Similarly, let DM
NM

=

([XM
NM

, UNM
], Y M

NM
) be the NM computer model input-output combinations with column-

combined x- and u-design(s) and yM -outputs. Then, with an emulator ŷM (·, u) trained on

DM
NM

, let Ŷ
M |u

NF
= ŷM (XF

NF
, u) denote a vector of NF emulated output y-values at the XF

locations obtained under a setting, u, of the calibration parameter. With local approximate

GP modeling, each ŷ
M |u
j -value therein, for j = 1, . . . , NF , can be obtained independently (and

in parallel) with the others via local sub-design XnM
(xF

j , u) ⊂ [XM
NM

, UNM
] and local inference

for the correlation structure. A key advantage of this approach, which makes laGP methods
well-suited to the task, is that emulation is performed only where it is needed, at a small
number NF of locations XF

NF
, regardless of the size NM of the computer model data. The

size of the local sub-design, nM , is a fidelity parameter, meaning that larger values provide
more accurate emulation at greater computational expense. Finally, denote the NF -vector of

fitted discrepancies as Ŷ
B|u

NF
= Y F

NF
− Ŷ

M |u
NF

. Given these quantities, the objective function for

calibration of u, coded in Algorithm 1, is the (log) joint probability density of observing Y F
NF

at inputs XF
NF

. Since NF is small, this can be obtained from a best-fitting GP regression

model trained on data DB
NF

(u) = (Ŷ
B|u

NF
, XF

NF
), representing the bias estimate b̂(·).

Objective function in hand, we turn to optimizing. The discrete nature of independent local
design searches for ŷM (xF

j , u) ensures that the objective is not continuous in u. It can look
‘noisy’, although it is in fact deterministic. This means that optimization with derivatives—
even numerically approximated ones—is fraught with challenges. Gramacy et al. suggest
a derivative-free approach via the mesh adaptive direct search (MADS) algorithm (Audet
and Dennis, Jr. 2006) implemented as NOMAD (Le Digabel 2011). The authors of the crs

package (Racine and Nie 2012) provide snomadr, an R wrapper to the underlying C++.
MADS/NOMAD proceeds by successive pairs of search and poll steps, trying inputs to the
objective function on a sequence of meshes that are refined in such a way as to guarantee
convergence to a local optima under very weak regularity conditions; for more details see
Audet and Dennis, Jr. (2006).

As MADS is a local solver, NOMAD requires initialization. Gramacy et al. recommend
choosing starting u-values from the best value(s) of the objective found on a small random
space-filling design. We note here that although laGP provides functions like fcalib, aGP.seq

and discrep.est to facilitate calibration via optimization, there is no single subroutine au-
tomating the combination of all elements: selection of initial search point, executing search,
and finally utilizing the solution to make novel predictions in the field. The illustrative exam-
ple below in Section 4.3 is intended to double as a skeleton for novel application. It involves a
snomadr call with objective fcalib, after pre-processing to find an initial u-value via simple
iterative search over fcalib calls. Then, after optimization returns an optimal u∗ value, the
example demonstrates how estimates of b̂(x) and ŷM (x, u∗) can be obtained by retracing steps
in Algorithm 1 to extract a local design and correlation parameter (via aGP.seq), parallelized
for many x. Finally, using saved DB

NF
(u) and θ̂ from the optimization, or quickly re-computing

them via discrep.est, it builds a predictor for the field at new x locations. Emulations and
biases are thus combined to form a distribution for yF (x)|u∗, a sum of Student-t’s for ŷM (x, u)
and b̂(x) comprising yF (x)|u∗. However, if NF , nM ≥ 30 summing normals suffices.



32 laGP: Local Approximate Gaussian Processes

4.3. An illustrative example

Consider the following computer model test function used by Goh, Bingham, Holloway,
Grosskopf, Kuranz, and Rutter (2013), which is an elaboration of one first described by
Bastos and O’Hagan (2009).

R> M <- function(x,u)

+ {

+ x <- as.matrix(x)

+ u <- as.matrix(u)

+ out <- (1 - exp(-1 / (2 * x[,2])))

+ out <- out * (1000 * u[,1] * x[,1]^3 + 1900 * x[ ,1]^2

+ + 2092 * x[ ,1] + 60)

+ out <- out / (100 * u[,2] * x[,1]^3 + 500 * x[ ,1]^2 + 4 * x[ ,1] + 20)

+ return(out)

+ }

Goh et al. paired this with the following discrepancy function to simulate real data under a
process like in Equation 8.

R> bias <- function(x)

+ {

+ x <- as.matrix(x)

+ out <- 2 * (10 * x[ ,1]^2 + 4 * x[ ,2]^2) / (50 * x[ ,1] * x[ ,2] + 10)

+ return(out)

+ }

Data coming from the “real” process is simulated under a true (but unknown) u-value, and
then augmented with bias and noise.

R> library("tgp")

R> rect <- matrix(rep(0:1, 4), ncol = 2, byrow = 2)

R> ny <- 50

R> X <- lhs(ny, rect[1:2,] )

R> u <- c(0.2, 0.1)

R> Zu <- M(X, matrix(u, nrow = 1))

R> sd <- 0.5

R> reps <- 2

R> Y <- rep(Zu, reps) + rep(bias(X), reps) +

+ rnorm(reps * length(Zu), sd = sd)

The code uses Y denote field data observations Y F
NF

with NF = 2*ny = 100, storing two

replicates at each XF
NF

= X location. Gramacy et al. (2015) illustrated this example with
ten replicates. We keep it smaller here for faster execution in live demonstration. Observe
that the code uses uses lhs from the tgp library (Gramacy 2007; Gramacy and Taddy 2010),
rather than from lhs, because the tgp version allows a non-unit rectangle, which is required
for our second use of lhs below.

The computer model runs are generated as follows
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R> nz <- 10000

R> XU <- lhs(nz, rect)

R> XU2 <- matrix(NA, nrow=10 * ny, ncol = 4)

R> for(i in 1:10) {

+ I <- ((i - 1) * ny + 1):(ny * i)

+ XU2[I, 1:2] <- X

+ }

R> XU2[ ,3:4] <- lhs(10 * ny, rect[3:4, ])

R> XU <- rbind(XU, XU2)

R> Z <- M(XU[ ,1:2], XU[ ,3:4])

Observe that the design XM
NM

= XU is a large LHS in four dimensions, i.e., over design and
calibration parameters jointly, augmented with ten-fold replicated field design inputs paired
with LHS u-values. This recognizes that it is sensible to run the computer model at inputs
where field runs have been observed. Z is used to denote Y M

NM
.

The following block sets default priors, initial values and specifies details of the model(s) to
be estimated. For more details on darg and garg, see Appendix A.

R> bias.est <- TRUE

R> methods <- rep("alc", 2)

R> da <- d <- darg(NULL, XU)

R> g <- garg(list(mle = TRUE), Y)

Changing bias.est = FALSE will cause estimation of bias b̂(·) to be skipped, and instead
only the level of noise between computer model and field data is estimated. The methods

vector specifies the nature of search and number of passes through the data for local design
and inference. Finally da, d and g contain default priors for the lengthscale of the computer
model emulator, and the bias parameters respectively. The prior is completed with a (log)
prior density on the calibration parameter, u, which we choose to be an independent Beta
with a mode in the middle of the space.

R> beta.prior <- function(u, a = 2, b = 2, log = TRUE)

+ {

+ if(length(a) == 1) a <- rep(a, length(u))

+ else if(length(a) != length(u)) stop("length(a) must be 1 or length(u)")

+ if(length(b) == 1) b <- rep(b, length(u))

+ else if(length(b) != length(u)) stop("length(b) must be 1 or length(u)")

+ if(log) return(sum(dbeta(u, a, b, log=TRUE)))

+ else return(prod(dbeta(u, a, b, log=FALSE)))

+ }

Now we are ready to evaluate the objective function on a “grid” to search for a starting value
for NOMAD. The “grid” is comprised of a space-filling design on a slightly smaller domain
than the input space allows. Experience suggests that initializing too close to the boundary
of the input space leads to poor performance in NOMAD searches.

R> initsize <- 10*ncol(X)

R> imesh <- 0.1
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R> irect <- rect[1:2,]

R> irect[,1] <- irect[,1] + imesh/2

R> irect[,2] <- irect[,2] - imesh/2

R> uinit.cand <- lhs(10 * initsize, irect)

R> uinit <- dopt.gp(initsize, Xcand = lhs(10 * initsize, irect))$XX

R> llinit <- rep(NA, nrow(uinit))

R> for(i in 1:nrow(uinit)) {

+ llinit[i] <- fcalib(uinit[i,], XU, Z, X, Y, da, d, g, beta.prior,

+ methods, M, bias.est, nth, verb = 0)

+ }

By default, fcalib echoes the input and calculated objective value (log likelihood or posterior
probability) to the screen. This can be useful for tracking progress for an optimization, say
via NOMAD, however we suppress this here to eliminate clutter. The fcalib function has
an argument called save.global that (when not FALSE) causes the information that would
otherwise be printed to the screen to be saved in a global variable called fcalib.save in
the environment indicated (e.g., save.global = .GlobalEnv). Those prints can be handy
for inspection once the optimization has completed. That flag isn’t engaged above, since the
required quantities, uinit and llinit respectively, are already in hand. We will, however,
utilize this feature below as snomadr does not provide an alternative mechanism for saving
progress information for later inspection.

The next code chunk loads the crs library containing snomadr, the R interface to NOMAD,
and then creates a list of options that are passed to NOMAD via snomadr.

R> library("crs")

R> opts <- list("MAX_BB_EVAL" = 1000, "INITIAL_MESH_SIZE" = imesh,

+ "MIN_POLL_SIZE" = "r0.001", "DISPLAY_DEGREE" = 0)

We have found that these options work well when the input space is scaled to the unit cube.
They are derived from defaults recommended in the NOMAD documentation.

Now we are ready to invoke snomadr on the best input(s) found on grid established above.
The code below orders those inputs by their objective value, and then loops over them until a
minimum number of NOMAD iterations has been reached. Usually, this threshold results in
just one pass through the while loop, however it offers some robustness in the face of occa-
sional pre-mature convergence. In practice it may be sensible to perform a more exhaustive
search if computational resources are abundant.

R> its <- 0

R> o <- order(llinit)

R> i <- 1

R> out <- NULL

R> while(its < 10) {

+ outi <- snomadr(fcalib, 2, c(0,0), 0, x0 = uinit[o[i],],

+ lb = c(0,0), ub = c(1,1), opts = opts, XU = XU,

+ Z = Z, X = X, Y = Y, da = da, d = d, g = g,

+ methods = methods, M = M, bias = bias.est,

+ omp.threads = nth, uprior = beta.prior,
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+ save.global = .GlobalEnv, verb = 0)

+ its <- its + outi$iterations

+ if(is.null(out) || outi$objective < out$objective) out <- outi

+ i <- i + 1;

+ }

iterations: 18

time: 138

From the two major chunks of code above, we collect evaluations of fcalib, combining a
space-filling set of u-values and ones placed along stencils in search of the u-value maximizing
the likelihood (or posterior probability). In this 2-d problem, that’s enough to get good
resolution on the log likelihood/posterior surface in u. The code below discards any input
pairs that are not finite. Infinite values result when NOMAD tries input settings that lie
exactly on the bounding box.

R> Xp <- rbind(uinit, as.matrix(fcalib.save[ ,1:2]))

R> Zp <- c(-llinit, fcalib.save[ ,3])

R> wi <- which(!is.finite(Zp))

R> if(length(wi) > 0) { Xp <- Xp[-wi, ]; Zp <- Zp[-wi]}

R> surf <- interp(Xp[ ,1], Xp[ ,2], Zp, duplicate = "mean")

Figure 12 shows an image plot of the surface, projected to a mesh via interp in the akima

package (Akima, Gebhardt, Petzoldt, and Maechler 2013), with lighter-colored values in-
dicating a larger value of likelihood/posterior probability. The initialization points (open
circles), evaluations along the NOMAD search (black dots), and the ultimate value found in
optimization (green dot) are also shown.

Observe, by comparing to the true u-value (cross-hairs), that the u.hat value we found is far
from the value that generated the data. In fact, while the surface is fairly peaked around the
best u.hat-value that we found, it gives very little support to the true value. Since there are
were far fewer evaluations made near the true value, it is worth checking if the solver missed
an area of high likelihood/probability.

R> Xu <- cbind(X, matrix(rep(u, ny), ncol = 2, byrow = TRUE))

R> Mhat.u <- aGP.seq(XU, Z, Xu, da, methods, ncalib = 2, omp.threads = nth,

+ verb = 0)

R> cmle.u <- discrep.est(X, Y, Mhat.u$mean, d, g, bias.est, FALSE)

R> cmle.u$ll <- cmle.u$ll + beta.prior(u)

Comparing log likelihood/posterior probabilities yields:

R> data.frame(u.hat = -outi$objective, u = cmle.u$ll)

u.hat u

1 -128.479 -132.7951
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R> image(surf, xlab = "u1", ylab = "u2", main = "posterior surface",

+ col = heat.colors(128), xlim = c(0,1), ylim = c(0,1))

R> points(uinit)

R> points(fcalib.save[,1:2], col = 3, pch = 18)

R> u.hat <- outi$solution

R> points(u.hat[1], u.hat[2], col = 4, pch = 18)

R> abline(v = u[1], lty = 2)

R> abline(h = u[2], lty = 2)
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Figure 12: A view of the log likelihood/posterior surface as a function of the calibration
inputs, with the optimal u.hat value (green dot), the initial grid (open circles) and points of
evaluation along the NOMAD search (black dots), and the true u-value (cross-hairs) shown.

Well that’s reassuring in some ways—the optimization part is performing well—but not in
others. Perhaps modeling apparatus introduces some identification issues that prevent recov-
ering the data-generating u-value by maximizing likelihood/posterior probability.

Before searching for an explanation, lets check predictive accuracy in the field on a holdout
set, again pitting the true u-value against our u.hat. We first create a random testing design
and set aside the true predicted values on those inputs for later comparison.

R> nny <- 1000

R> XX <- lhs(nny, rect[1:2,])

R> ZZu <- M(XX, matrix(u, nrow = 1))

R> YYtrue <- ZZu + bias(XX)
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Now we can calculate an out-of-sample RMSE value, first based on the true u-value.

R> XXu <- cbind(XX, matrix(rep(u, nny), ncol = 2, byrow = TRUE))

R> Mhat.oos.u <- aGP.seq(XU, Z, XXu, da, methods, ncalib = 2,

+ omp.threads = nth, verb = 0)

R> YYm.pred.u <- predGP(cmle.u$gp, XX)

R> YY.pred.u <- YYm.pred.u$mean + Mhat.oos.u$mean

R> rmse.u <- sqrt(mean((YY.pred.u - YYtrue)^2))

R> deleteGP(cmle.u$gp)

Turning to an RMSE calculation using the estimated u.hat value, we must re-build some key
objects under that value as those objects are not returned to us via either fcalib or snomadr.

R> Xu <- cbind(X, matrix(rep(u.hat, ny), ncol = 2, byrow = TRUE))

R> Mhat <- aGP.seq(XU, Z, Xu, da, methods, ncalib = 2, omp.threads = nth,

+ verb = 0)

R> cmle <- discrep.est(X, Y, Mhat$mean, d, g, bias.est, FALSE)

R> cmle$ll <- cmle$ll + beta.prior(u.hat)

As a sanity check, it is nice to see that the value of the log likelihood/posterior probability
matches with the one we obtained from snomadr:

R> print(c(cmle$ll, -outi$objective))

[1] -128.479 -128.479

Now we can repeat what we did with the true u-value with our estimated one u.hat.

R> XXu <- cbind(XX, matrix(rep(u.hat, nny), ncol = 2, byrow = TRUE))

R> Mhat.oos <- aGP.seq(XU, Z, XXu, da, methods, ncalib = 2,

+ omp.threads = nth, verb = 0)

R> YYm.pred <- predGP(cmle$gp, XX)

R> YY.pred <- YYm.pred$mean + Mhat.oos$mean

R> rmse <- sqrt(mean((YY.pred - YYtrue)^2))

Wrapping up the comparison, we obtain the following:

R> data.frame(u.hat = rmse, u = rmse.u)

u.hat u

1 0.1849574 0.2250721

Indeed, our estimated u.hat-value leads to better predictions of the field data out-of-sample.
Gramacy et al. (2015) offer an explanation. The KOH model is, with GPs for emulation and
bias, overly flexible and consequently challenges identification of the unknown parameters.
Authors have commented on this before, including KOH to a limited extent. Interlocking GP
predictors (Ba and Joseph 2012) and the introduction of auxiliary inputs (Bornn, Shaddick,
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and Zidek 2012), of which the u-values are an example, have recently been proposed as delib-
erate mechanisms for handling nonstationary features in response surface models, particularly
for computer experiments. The KOH framework combines both, and predates those works
by more than a decade, so in some sense the model being fit is leveraging tools designed
for flexibility in response surface modeling, possibly at the expense of being faithful to the
underlying meanings of parameters like u and bias processes b(·). In any event, we draw
comfort from evidence that the method yields accurate predictions, which in most calibration
applications is the primary aim.

5. Ongoing development and extensions

The laGP package is under active development, and the corpus of code was developed with
ease of extension in mind. The calibration application from Section 4 is a perfect example:
simple functions tap into local GP emulators and full GP discrepancies alike, and are paired
with existing direct optimizing subroutines from other packages for a powerful solution to
large scale calibration problems that are becoming commonplace in the recent literature.
As mentioned in Section 3.2, the implementation of separable modeling for local analysis is
under active development and testing. Many of the associated subroutines (e.g., laGPsep and
aGPsep) are available for use in the latest version of the package.

The library comprises roughly fifty R functions, although barely a fraction of those are elevated
to the user’s namespace for use in a typical R session. Many of the inaccesible/undocumented
functions have a purpose which, at this time, seem less directly useful outside their calling
environment, but may eventually be promoted. Many higher level functions, like laGP and aGP

which access C subroutines, have a development-analog (laGP.R and aGP.R) implementing
similar (usually with identical output, our a superset of output) subroutines entirely in R.
These were used as stepping stones in the development of the C versions; however they
remain relevant as a window into the inner-workings of the package and as a skeleton for
curious users’ ambitions for new extensions. The local approximate GP methodology is, in
a nutshell, just a judicious combination of established subroutines from the recent spatial
statistics and computer experiments literature. We hope that exposing those combinations in
well-organized code will spur others to take a similar tack in developing their own solutions
in novel contexts.

One example involves deploying basic package functionality—only utilizing full (non local) GP
subroutines—for solving blackbox optimization problems under constraints. Gramacy, Gray,
Le Digabel, Lee, Ranjan, Wells, and Wild (2014) showed how the augmented Lagrangian
(AL), an apparatus popular for solving similar constrained optimization problems in the
recent literature (see, e.g., Kannan and Wild 2012), could be combined with the method of
expected improvement (EI; Jones, Schonlau, and Welch 1998) to solve a particular type of
optimization where the objective was known (and in particular was linear), but where the
constraints required (potentially expensive) simulation. Searching for an optimal valid setting
of the inputs to the blackbox function could be substantially complicated by a difficult-to-
map constraint satisfaction boundary. The package includes a demo [see demo("ALfhat")]
showcasing a variation on one of the examples from Gramacy et al. (2014). The problem
therein involves modeling an objective and two constraints with GP predictors, together with
an EI calculation on an AL predictive composite. The demo shows how the new, statistical,
AL method outperforms the non-statistical analog.
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A. Default regularization (priors) and initial values

In the bulk of this document, and in the core package routines (e.g., laGP, and aGP) the
treatment and default generation of initial values, regularization (priors), and bounding boxes,
is largely hidden from the user. Some exceptions include places where it is desirable to have
each instance of a repeated call, e.g., in a Monte Carlo experiment, share identical inferential
conditions across subtly varying (randomly generated) data sets. In those cases, darg and
garg generate values that control and limit the behaviors of the estimating algorithms for
the lengthscale (θ/d) and nugget (η/g), respectively. Although the package allows inference
to proceed without regularization (true MLEs), and arbitrary starting values to be provided,
generating sensible ones automatically is a key component in guaranteeing stable behavior
out-of-the-box. In settings where potentially thousands of such calculations occur in parallel
and without opportunity for individual scrutiny or intervention, such as via aGP [Section 2.2],
sensible defaults are essential.

The two methods darg and garg, which are invoked by aGP and laGP unless overrides are
provided, leverage crude input summary statistics. For example, darg calculates squared
distances between elements of the design matrix X to determine appropriate regularization.
A bounding box for d is derived from the min and max distances, and a diffuse Gamma prior
prescribed with shape = 3/2 and scale set so that the maximum squared distance lies at the
position of the 95% quantile. Together these define the regularization of MLE estimates for
d, or equivalently depict (a search for) the maximum a posteriori (MAP) value. We prefer the
term MLE as the purpose of the prior is to guard against pathologies, rather than to interject
information. The starting d-value is chosen the 10% quantile of the calculated distances.

The garg function makes similar calculations on the sum of squared residuals in y from
mean(y), an exception being that by default the minimum nugget value is taken to be
sqrt(.Machine$double.eps). When invoked by a higher level routine such as aGP or laGP,
the output values of darg and garg can be overridden via the d and g arguments by specifying
list elements of the same names as the output values they are overriding. The outputs can
also be fed to other, lower level routines such as mleGP.

B. Custom compilation

Here we provide hints for enabling the parallelization hooks, via OpenMP for multi-core
machines and CUDA for graphics cards. The package also includes some wrapper functions,
like aGP.parallel, which allow a large predictive set to be divvied up amongst multiple
nodes in a cluster established via the parallel or snow (Tierney, Rossini, Li, and Sevcikova
2013) packages.

B.1. With OpenMP for SMP parallelization
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Several routines in the laGP package include support for parallelization on multi-core ma-
chines. The most important one is aGP, allowing large prediction problems to be divvied
up and distributed across multiple threads to be run in parallel. The speedups are roughly
linear as long as the numbers of threads is less than or equal to the number of cores. This is
controlled through the omp.threads argument.

If R is compiled with OpenMP support enabled—which at the time of writing is standard
in most builds—then no special action is needed in order to extend that functionality to
laGP. It will just work. One way to check if this is the case on your machine is to provide an
omp.threads argument, say to aGP, that is bigger than one. If OpenMP support is not enabled
then you will get a warning. If you are working within a well-managed supercomputing facility,
with a custom R compilation, it is likely that R has been properly compiled with OpenMP

support. If not, perhaps it is worth requesting that it be re-compiled as there are many
benefits to doing so, beyond those that extend to the laGP package. For example, many
linear algebra intensive packages, of which laGP is one, benefit from linking to MKL libraries
from Intel, in addition to OpenMP. Note, however, that some customized libraries (e.g.,
OpenBLAS) are not compatible with OpenMP because they are not (at the time of writing)
thread safe.

At the time of writing, some incompatibilities between multi-threaded BLAS (e.g., Intel MKL)
and OpenMP (e.g., non-Intel, like with GCC) are still in the process of being resolved. In
some builds and instantiations laGP can create nested OpenMP threads of different types
(Intel for linear algebra, and GCC for parallel local design). Problematic behavior has been
observed when using aGPsep with GCC OpenMP and MKL multi-threaded linear algebra.
Generally speaking, since laGP uses threads to divvy up local design tasks, a threaded linear
algebra subroutine library is not recommended in combination with these routines.

In the case where you are using a standard R binary, it is still possible to compile laGP from
source with OpenMP features assuming your compiler (e.g., GCC) supports them. This is a
worthwhile step if you are working on a multi-core machine, which is rapidly becoming the
standard setup. For those with experience compiling R packages from source, the procedure
is straightforward and does not require installing a bespoke version of R. Obtain the package
source (e.g., from CRAN) and, before compiling, open up the package and make two small
edits to laGP/src/Makevars. These instructions assume a GCC compiler. For other compilers,
please consult documentation for appropriate flags.

1. Replace $(SHLIB_OPENMP_CFLAGS) in the PKG_CFLAGS line with -fopenmp.

2. Replace $(SHLIB_OPENMP_CFLAGS) in the PKG_LIBS line with -lgomp

The laGP/src/Makevars file contains commented out lines which implement these changes.
Once made, simply install the package as usual, either doing “R CMD INSTALL” on the
modified directory, or after re-tarring it up. Note that for Apple machines as of Xcode v5, with
OSX Mavericks, the Clang compiler provided by Apple does not include OpenMP support.
We suggest downloading GCC v9 or later, for example from http://hpc.sourceforge.net,
and following the instructions therein.

If hyperthreading is enabled, then a good default for omp.threads is two-times the number of
cores. Choosing an omp.threads value which is greater than the max allowed by the OpenMP

configuration on your machine leads to a notice being printed indicating that the max-value
will be used instead.

http://hpc.sourceforge.net
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B.2. With NVIDIA CUDA GPU support

The package supports graphics card acceleration of a key subroutine: searching for the next
local design sight xj+1 over a potentially vast number of candidates XN \Xn(x)—Step 2(b)
in Figure 7. Custom complication is required to enable this feature, the details of which
are described here, and also requires a properly configured Nvidia Graphics card, drivers,
and compilation programs (e.g., the Nvidia CUDA compiler nvcc). Compiling and linking to
CUDA libraries can be highly architecture and operating system specific, therefore the very
basic instructions here may not work widely. They have been tested on a variety of Unix-alikes
including Intel-based Ubuntu Linux and OSX systems.

First compile the alc_gpu.cu file into an object using the Nvidia CUDA complier. E.g., after
untarring the package change into laGP/src and do

% nvcc -arch=sm_20 -c -Xcompiler -fPIC alc_gpu.cu -o alc_gpu.o

Alternatively, you can use/edit the “alc_gpu.o:” definition in the Makefile provided.

Then, make the following changes to laGP/src/Makevars, possibly augmenting changes made
above to accommodate OpenMP support. OpenMP (i.e., using multiple CPU threads) brings
out the best in our GPU implementation.

1. Add -D_GPU to the PKG_FLAGS

2. Add alc_gpu.o -L /software/cuda-5.0-el6-x86_64/lib64 -lcudart to PKG_LIBS.
Please replace “/software/cuda-5.0-el6-x86_64/lib64” with the path to the CUDA
libs on your machine. CUDA 4.x has also been tested.

The laGP/src/Makvars file contains commented out lines which implement these changes.
Once made, simply install the package as usual. Alternatively, use make allgpu via the
definitions in the Makefile to compile a standalone shared object.

The four functions in the package with GPU support are alcGP, laGP, aGP, and aGP.parallel.
The first two have a simple switch which allows a single search (Step 2(b)) to be off-loaded
to a single GPU. Both also support off-loading the same calculations to multiple cores in a
CPU, via OpenMP if enabled. The latter aGP variations control the GPU interface via two
arguments: num.gpus and gpu.threads. The former specifies how many GPUs you wish
to use, and indicating more than you actually have will trip an error. The latter, which
defaults to gpu.threads = num.gpus, specifies how many CPU threads should be used to
queue GPU jobs. Having gpu.threads < num.gpus is an inefficient use of resources, whereas
gpu.threads > num.gpus, up to 2*num.gpus will give modest speedups. Having multiple
threads queue onto the same GPU reduces the amount of time the GPU is idle. OpenMP

support must be included in the package to have more than one GPU thread.

By default, omp.threads is set to zero when num.gpus > 1 since divvying the work amongst
GPU and CPU threads can present load balancing challenges. However, if you get the load
balancing right you can observe substantial speedups. Gramacy et al. (2014) saw up to 50%
speedups, and recommend a scheme for allocating omp.threads=10 with a setting of nn.gpu

that allocates about 90% of the work to GPUs (nn.gpu = floor(0.9*nrow(XX))) and 10% to
the ten OpenMP threads. As with omp.threads, gpu.threads maxes out at the maximum
number of threads indicated by your OpenMP configuration. Moreover, omp.threads +
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gpu.threads must not exceed that value. When that happens both are first thresholded
independently, then omp.threads may be further reduced to stay within the limit.
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