
Package ‘lazy’
April 6, 2022

Version 1.2-17

Date 2022-04-05

Title Lazy Learning for Local Regression

Author Mauro Birattari <mauro.birattari@ulb.be> and Gianluca Bontempi

<gianluca.bontempi@ulb.be>

Maintainer Theo Verhelst <theo.verhelst@ulb.be>

Description By combining constant, linear, and quadratic local models,
lazy estimates the value of an unknown multivariate function on
the basis of a set of possibly noisy samples of the function
itself. This implementation of lazy learning automatically
adjusts the bandwidth on a query-by-query basis through a
leave-one-out cross-validation.

License GPL (>= 2)

Repository CRAN

NeedsCompilation yes

Date/Publication 2022-04-06 10:12:30 UTC

RoxygenNote 6.0.1

R topics documented:

lazy . 2
lazy.control . 3
predict.lazy . 5

Index 9

1

2 lazy

lazy Lazy learning for local regression

Description

By combining constant, linear, and quadratic local models, lazy estimates the value of an unknown
multivariate function on the basis of a set of possibly noisy samples of the function itself. This
implementation of lazy learning automatically adjusts the bandwidth on a query-by-query basis
through a leave-one-out cross-validation.

Usage

lazy(formula, data=NULL, weights, subset, na.action,
control=lazy.control(...), ...)

Arguments

formula A formula specifying the response and some numeric predictors.

data An optional data frame within which to look first for the response, predictors,
and weights (the latter will be ignored).

weights Optional weights for each case (ignored).

subset An optional specification of a subset of the data to be used.

na.action The action to be taken with missing values in the response or predictors. The
default is to stop.

control Control parameters: see lazy.control.

... Control parameters can also be supplied directly.

Details

For one or more query points, lazy estimates the value of an unknown multivariate function on
the basis of a set of possibly noisy samples of the function itself. Each sample is an input/output
pair where the input is a vector and the output is a number. For each query point, the estimation of
the function is obtained by combining different local models. Local models considered for combi-
nation by lazy are polynomials of zeroth, first, and second degree that fit a set of samples in the
neighborhood of the query point. The neighbors are selected according to either the Manhattan or
the Euclidean distance. It is possible to assign weights to the different directions of the input do-
main for modifying their importance in the computation of the distance. The number of neighbors
used for identifying local models is automatically adjusted on a query-by-query basis through a
leave-one-out validations of models, each fitting a different numbers of neighbors. The local mod-
els are identified using the recursive least-squares algorithm, and the leave-one-out cross-validation
is obtained through the PRESS statistic.

As the name lazy suggests, this function does not do anything. . . apart from checking the options
and properly packing the data. All the actual computation is done when a prediction is request for
a specific query point, or for a set of query points: see predict.lazy.

lazy.control 3

Value

An object of class lazy.

Author(s)

Mauro Birattari and Gianluca Bontempi

References

D.W. Aha (1997) Editorial. Artificial Intelligence Review, 11(1–5), pp. 1–6. Special Issue on Lazy
Learning.

C.G. Atkeson, A.W. Moore, and S. Schaal (1997) Locally Weighted Learning. Artificial Intelligence
Review, 11(1–5), pp. 11–73. Special Issue on Lazy Learning.

W.S. Cleveland, S.J. Devlin, and S.J. Grosse (1988) Regression by Local Fitting: Methods, Prospec-
tives and Computational Algorithms. Journal of Econometrics, 37, pp. 87–114.

M. Birattari, G. Bontempi, and H. Bersini (1999) Lazy learning meets the recursive least squares
algorithm. Advances in Neural Information Processing Systems 11, pp. 375–381. MIT Press.

G. Bontempi, M. Birattari, and H. Bersini (1999) Lazy learning for modeling and control design.
International Journal of Control, 72(7/8), pp. 643–658.

G. Bontempi, M. Birattari, and H. Bersini (1999) Local learning for iterated time-series prediction.
International Conference on Machine Learning, pp. 32–38. Morgan Kaufmann.

See Also

lazy.control, predict.lazy

Examples

library("lazy")
data(cars)
cars.lazy <- lazy(dist ~ speed, cars)
predict(cars.lazy, data.frame(speed = seq(5, 30, 1)))

lazy.control Set parameters for lazy learning

Description

Set control parameters for a lazy learning object.

Usage

lazy.control(conIdPar=NULL, linIdPar=1, quaIdPar=NULL,
distance=c("manhattan","euclidean"), metric=NULL,

cmbPar=1, lambda=1e+06)

4 lazy.control

Arguments

conIdPar Parameter controlling the number of neighbors to be used for identifying and
validating constant models. conIdPar can assume different forms:

conIdPar=c(idm0,idM0,valM0): In this case, idm0:idM0 is the range in which
the best number of neighbors is searched when identifying the local poly-
nomial models of degree 0 and where valM0 is the maximum number of
neighbors used for their validation. This means that the constant models
identified with k neighbors, are validated on the first v neighbors, where
v=min(k,valM0). If valM0=0, valM0 is set to idMO: see next case for de-
tails.

conIdPar=c(idm0,idM0): Here idm0 and idM0 have the same role as in previ-
ous case, and valM0 is by default set to idM0: each model is validated on
all the neighbors used in identification.

conIdPar=p: Here idmO and idMO are obtained according to the following for-
mulas: idm0=3 and idMX=5*p. Recommended choice: p=1. As far as the
quantity valM0 is concerned, it gets the default value as in previous case.

conIdPar=NULL: No constant model is considered.

linIdPar Parameter controlling the number of neighbors to be used for identifying and
validating linear models. linIdPar can assume different forms:

linIdPar=c(idm1,idM1,valM1): In this case, idm1:idM1 is the range in which
the best number of neighbors is searched when identifying the local poly-
nomial models of degree 1 and where valM1 is the maximum number of
neighbors used for their validation. This means that the linear models
identified with k neighbors, are validated on the first v neighbors, where
v=min(k,valM1). If valM1=0, valM1 is set to idM1: see next case for de-
tails.

linIdPar=c(idm1,idM1): Here idm1 and idM1 have the same role as in previ-
ous case, and valM1 is by default set to idM1: each model is validated on
all the neighbors used in identification.

linIdPar=p: Here idmO and idMO are obtained according to the following for-
mulas: idm1=3*noPar and idM1=5*p*noPar, where noPar=nx+1 is the
number of parameter of the polynomial model of degree 1, and nx is the
dimensionality of the input space. Recommended choice: p=1. As far as
the quantity valM1 is concerned, it gets the default value as in previous case.

linIdPar=NULL: No linear model is considered.

quaIdPar Parameter controlling the number of neighbors to be used for identifying and
validating quadratic models. quaIdPar can assume different forms:

quaIdPar=c(idm2,idM2,valM2): In this case, idm2:idM2 is the range in which
the best number of neighbors is searched when identifying the local poly-
nomial models of degree 2 and where valM2 is the maximum number of
neighbors used for their validation. This means that the quadratic models
identified with k neighbors, are validated on the first v neighbors, where
v=min(k,valM2). If valM2=0, valM2 is set to idM2: see next case for de-
tails.

predict.lazy 5

quaIdPar=c(idm2,idM2): Here idm2 and idM2 have the same role as in previ-
ous case, and valM2 is by default set to idM2: each model is validated on
all the neighbors used in identification.

quaIdPar=p: Here idmO and idMO are obtained according to the following for-
mulas: idm2=3*noPar and idM2=5*p*noPar, where in this case the number
of parameters is noPar=(nx+1)*(nx+2)/2, and nx is the dimensionality of
the input space. Recommended choice: p=1. As far as the quantity valM2
is concerned, it gets the default value as in previous case.

quaIdPar=NULL: No quadratic model is considered.

distance The distance metric: can be manhattan or euclidean.

metric Vector of n elements. Weights used to evaluate the distance between query point
and neighbors.

cmbPar Parameter controlling the local combination of models. cmbPar can assume
different forms:

cmbPar=c(cmb0,cmb1,cmb2): In this case, cmbX is the number of polynomial
models of degree X that will be included in the local combination. Each lo-
cal model will be therfore a combination of the best cmb0 models of degree
0, the best cmb1 models of degree 1, and the best cmb2 models of degree 2
identified as specified by idPar.

cmbPar=cmb: Here cmb is the number of models that will be combined, disre-
garding any constraint on the degree of the models that will be considered.
Each local model will be therfore a combination of the best cmb models,
identified as specified by id_par.

lambda Initialization of the diagonal elements of the local variance/covariance matrix
for Ridge Regression.

Value

The output of lazy.control is a list containing the following components: conIdPar, linIdPar,
quaIdPar, distance, metric, cmbPar, lambda.

Author(s)

Mauro Birattari and Gianluca Bontempi

See Also

lazy, predict.lazy

predict.lazy Predict method for lazy learning

Description

Obtains predictions from a lazy learning object

6 predict.lazy

Usage

S3 method for class 'lazy'
predict(object, newdata=NULL,

t.out=FALSE, k.out=FALSE,
S.out=FALSE, T.out=FALSE, I.out=FALSE, ...)

Arguments

object Object of class inheriting from lazy.

newdata Data frame (or matrix, vector, etc. . .) defining of the query points for which a
prediction is to be produced.

t.out Logical switch indicating if the function should return the parameters of the
local models used to perform each estimation.

k.out Logical switch indicating if the function should return the number of neighbors
used to perform each estimation.

S.out Logical switch indicating if the function should return the estimated variance of
the prediction suggested by all the models identified for each query point.

T.out Logical switch indicating if the function should return the parameters of all the
models identified for each query point.

I.out Logical switch indicating if the function should return the index i of all the
samples (X[i,],Y[i]) used to perform each estimation.

... Arguments passed to or from other methods.

Value

The output of the method is a list containing the following components:

h Vector of q elements, where q is the number of rows in newdata, i.e. the number
of query points. The element in position i is the estimate of the value of the
unknown function in the query point newdata[i,]. The component h is always
returned.

t Matrix of z*q elements, where z=z2 i.e., number of parameters of a quadratic
model if at least one model of degree 2 was identified (see quaIdPar in lazy.control),
otherwise z=z1 i.e., number of parameters of a linear model if at least one model
of degree 1 was identified (see linIdPar in lazy.control), or z=1 if only mod-
els of degree 0 where considered. In the general case, the elements of the vector
t[,j]=c(a0,a1,...,an,a11,a12,...,a22,a23,...,a33,a34,...,ann) are
the parameters of the local model used for estimating the function in the jth
query point: the cross-terms terms a11,a12,...,ann wil be missing if no quadratic
model is identified and the terms a1,...,an, will be missing if no linear model
is identified. If, according to cmbPar (see lazy.control), estimations are to be
performed by a combination of models, the elements of t[,j] are a weighted
average of the parameters of the selected models where the weight of each model
is the inverse of the a leave-one-out estimate of the variances of the model itself.
REMARK: a translation of the axes is considered which centers all the local
models in the respective query point.

predict.lazy 7

k Vector of q elements. Selected number of neighbors for each query point. If,
according to cmbPar (see lazy.control), a local combination of models is con-
sidered, k[j] is the largest value among the number of neighbors used by the
selected models for estimating the value in the jth query point.

S List of up to 3 components: Each component is a matrix containing an esti-
mate, obtained through a leave-one-out cross-valication, of the variance of local
models.
con Matrix of idM0*q elements, where idM0 is the maximum number of neigh-

bors used to fit local polynomial models of degree 0 (see lazy.control):
Estimated variance of all the constant models identified for each query
point. If no constant model is identified (see conIdPar and cmbPar in
lazy.control) S$con is not returned.

lin Matrix of idM1*q elements, where idM1 is the maximum number of neigh-
bors used to fit local polynomial models of degree 1 (see lazy.control):
Estimated variance of all the linear models identified for each query point.
If no linear model is identified (see linIdPar and cmbPar in lazy.control)
S$lin is not returned.

qua Matrix of idM2*q elements, where idM1 is the maximum number of neigh-
bors used to fit local polynomial models of degree 1 (see lazy.control):
Estimated variance of all the quadratic models identified for each query
point. If no quadratic model is identified (see quaIdPar and cmbPar in
lazy.control) S$qua is not returned.

The component S is returned only if S.out=TRUE in the function call.
T List of up to 3 components:

con Array of z0*idM0*q elements, where z0=1 is the number of parameters of a
model of degree 0. The element T$con[1,i,j]=a0 is the single parameter
of the local model identified on i neighbors of the qth query point.

lin Array of z1*idM1*q elements where, if n is the dimensionality of the input
space, z1=n+1 is the number of parameter of a model of degree 1. The
vector T$lin[,i,j]=c(a0,a1,...,an) is the vector of parameters of the
local model identified on i neighbors of the qth query point. In particular,
a0 is the constant term, a1 is the parameter associated with the first input
variable and so on.

qua Array of z2*idM2*q elements where, if n is the dimensionality of the input
space, z2=(n+1)*(n+2)/2 is the number of parameter of a model of degree
2. The vector T$qua[,i,j]=c(a0,a1,...,an,a11,a12,...,a22,a23,...,a33,a34,...,ann)
is the vector of parameters of the local quadratic model identified on i
neighbors of the qth query point. In particular, a0,...,a1 are the con-
stant and liner parameters as in T$lin, while a11,a12,...,ann are the
quadratic ones: a11 is associated with the quadratic term x1^2, a12 with
the cross-term x1*x2, and so on.

REMARK: a translation of the axes is considered which centers all the lo-
cal models in the respective query point. The component T is returned only
if T.out=TRUE in the function call.

I Matrix of idM*q elements, where idM is the largest of idM0, idM1, and idM2.
Contains the index of the neighbors of each query point in newdata. In particu-
lar, I[i,j] is the ith nearest neighbor of the qth query point.

8 predict.lazy

Author(s)

Mauro Birattari and Gianluca Bontempi

See Also

lazy, lazy.control

Examples

library("lazy")
data(cars)
cars.lazy <- lazy(dist ~ speed, cars)
predict(cars.lazy, data.frame(speed = seq(5, 30, 1)))

Index

∗ regression
lazy, 2
lazy.control, 3
predict.lazy, 5

lazy, 2, 5, 8
lazy.control, 2, 3, 3, 6–8

predict.lazy, 2, 3, 5, 5
print.lazy (lazy), 2
print.summary.lazy (lazy), 2

summary.lazy (lazy), 2

9

	lazy
	lazy.control
	predict.lazy
	Index

