
The lifecontingencies Package: Performing Financial

and Actuarial Mathematics Calculations in R

Giorgio Alfredo Spedicato

StatisticalAdvisor

Abstract

It is possible to model life contingency insurances with the lifecontingencies R pack-
age, which is capable of performing financial and actuarial mathematics calculations. Its
functions permit one to determine both the expected value and the stochastic distribu-
tion of insured benefits. Therefore, life insurance coverage can be priced and portfolios
risk-based capital requirements can be assessed. This paper briefly summarizes the theory
regarding life contingencies that is based on financial mathematics and demographic con-
cepts. Then, with the aid of applied examples, it shows how the lifecontingencies package
can be a useful tool for executing routine, deterministic, or stochastic calculations for
life-contingencies actuarial mathematics.

Keywords: life tables, financial mathematics, actuarial mathematics, life insurance.

1. Introduction

This vignette is based on the package’s paper published in JSS, Spedicato (2013). Apart
of keeping track of package’s updates, a major difference with respect to JSS publication is
that parallel features are turned off to cope with CRAN packages’ submission policies. As
of March 2014, the lifecontingencies package (Spedicato 2013) appears as the first R pack-
age that deals with life contingent actuarial mathematics. The R statistical programming
environment (Team 2012) has become the primary reference software for academics. Even
in a business context, R is now considered a valid alternative to affirmed proprietary pack-
ages for statistics and data analysis, namely SAS (SAS Institute Inc. 2011), MATLAB (The
MathWorks, Inc. 2011) and SPSS (IBM Corp 2012). Some packages for actuarial applica-
tions have already been developed within R. However, most of them mainly focus on non-life
insurance. In fact, non-life insurance modeling involves more data analysis and applied sta-
tistical modeling than that of life insurance. Functions allowing one to fit loss distributions
and perform credibility analysis are provided within the package actuar (Christophe Dutang,
Vincent Goulet, and Mathieu Pigeon 2008). This package represents the computational side
of the classical actuarial textbook on loss distribution (Klugman, Panjer, Willmot, and Ven-
ter 2009). The package ChainLadder (Gesmann and Zhang 2011) provides functions that are
capable of estimating loss reserves for non-life insurance. Generalized linear models (GLMs),
widely used in non-life insurance rate-making, can be fit by functions bundled within base R

distributions. The generalized additive models for location, shape and scale (GAMLSS) and
tweedie regression, which are both more advanced predictive models used by actuaries, are
handled by specifically developed packages such as gamlss (Rigby and Stasinopoulos 2005;

2 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

Stasinopoulos and Rigby 2007) and cplm (Zhang 2011).

Life insurance actuarial work deals mainly with demographic and financial data. The CRAN
task view “Empirical Finance” (Eddelbuettel 2013a) lists several packages tailored specifically
for financial analysis. Packages YieldCurve (Guirreri 2010) and termstrc (Ferstl and Hayden
2010) are capable of financial modeling for interest rates. Among the few packages that
handle demographic data, demography (Rob J Hyndman, Heather Booth, Leonie Tickle, and
John Maindonald 2011) and LifeTables (Riffe 2011) can be used to manage demographic
projections and life tables.

On the other hand, many commercial software packages tailored specifically for the actu-
arial analysis of life insurance are already available. MoSes (Towers Watson 2011) and
Prophet (SunGard 2012) are currently the leading actuarial software packages for life in-
surance modeling. The lifecontingencies package aims to represent the computational R

companion of the theoretical concepts exposed in textbooks like the classical Bowers, Jones,
Gerber, Nesbitt, and Hickman (1997) and Dickson, Hardy, and Waters (2009) for actuar-
ial mathematics and Broverman (2008) for financial mathematics. Package lifecontingencies

is available from the Comprehensive R Archive Network at http://CRAN.R-project.org/

package=lifecontingencies. The examples used throughout this paper have been taken
from Chris Ruckman and Joe Francis (2006) and Finan (2014), both freely available financial
and actuarial mathematics textbooks. The paper is structured as follows: Section 2 out-
lines the statistical and financial mathematical theory regarding life contingencies, Section 3
overviews the structure of the lifecontingencies package, Section 4 gives a wide choice of ap-
plied lifecontingencies examples, and finally, Section 5 discusses the packages current and
future development as well as its known limitations.

2. Statistical and financial foundations of life contingencies

The actuarial pricing and reserving of life contingent insurances involves the calculation of
statistics regarding occurrences and amounts of future cash flows. For example, the insurance
pure premium (also known as benefit premium) can be regarded as the expected value of
the prospective benefits cash flow distribution, valued at time zero for a given interest rate
structure. The probabilities of the prospective benefits cash flow are based on the occurrence
of the policyholder’s life events (life contingencies). In addition, the theory of interest is
used to find the present value of these amounts that will occur in the future. Therefore, life
insurance actuarial mathematics is based on concepts derived from demography and theory
of interest.

A life table (also called a mortality table or actuarial table) is a table that shows how mortality
affects subjects of a cohort across different ages. For each age x, it reports the number of
lx individuals living at the beginning of age x. It is a sequence of l0, l1, . . . , lω, where lω,
the terminal age, represents the latest age that a subject of the cohort can survive until.
Life tables are typically distinguished according to gender, year of birth and nationality,
with different categories being used depending on the type of life contingency (i.e., assurance
or annuity). As another example, businesses may have different customers with different
underlying mortalities, so they will be in need of different life tables.

From a statistical point of view, a life table allows one to deduce the probability distribution
of the future lifetime for a policyholder aged x. In particular, a life table also permits one to

http://CRAN.R-project.org/package=lifecontingencies
http://CRAN.R-project.org/package=lifecontingencies

Giorgio Alfredo Spedicato 3

derive two key probability distributions: T̃x, the complete future lifetime for a policyholder
aged x, and its curtate form, K̃x, the number of future years completed before death. There-
fore, many demographic statistics can be derived from a life table, of which a non-exhaustive
list follows:

• tpx = lx+t

lx
, the probability that a policyholder alive at age x will reach age x + t.

• tqx, the complementary probability of tpx.

• tdx, the number of deaths between age x and x + t.

• tLx =
∫ t

0 lx+ydy, the expected number of years lived by the cohort between ages x and
x + t.

• tmx = tdx

tLx
, the central mortality rate between ages x and x + t.

• ex, the curtate expectation of life for a subject aged x, ex = E[K̃x] =
∞
∑

k=1
kpx.

The Keyfitz textbook (Keyfitz and Caswell 2005) provides an exhaustive coverage of life
table theory and practice. Life tables are usually published by institutions that have access
to large amounts of reliable historical data, like social security bureaus. It is common practice
for actuaries to start from these life tables and adapt them to the insurer’s portfolio actual
experience.

Classical financial mathematics deals with monetary amounts that can be available at different
times. The present value of a series of cash flows, expressed by Equation 1, is probably the
most important concept. The present value (PV) can be considered as the value – in current
money – of a series of financial cash flows, CFt, that are available at different periods of time.

PV =
∑

t∈T

CFt(1 + it)
−t (1)

The interest rate, i, represents the measure of the price of money available in future times.
Like the interest rate, the time value of money can be expressed by the discount rate d = i

1+i
.

This paper will use the i symbol to express effective compound interest, with money invested
once per period. In the case where money is invested more frequently, say m times per
period, each fractional period is named the interest conversion period. During each interest

conversion period, the real interest rate i(m)

m
is earned, where the i(m) expression defines the

convertible (also known as “nominal”) rate of interest payable m times per period.

Equation 2 combines the various notations for interest and discount rates, both on an effective
and convertible basis, to express what an amount of $1 invested now will grow to at time t.

A (t) = (1 + i)t = (1 − d)−t = v−t =

1 +
im

m

tm

=

1 −
dm

m

−tm

(2)

All financial mathematics functions (like annuities, an , or accumulated values, sn) can be
rewritten as particular expressions of Equation 1, as shown in classical actuarial mathematics
textbooks.

Actuaries use the probabilities inherent in life tables to price life contingent insurances. In
fact, life contingencies are stochastic variables themselves. A life contingent insurance can be

4 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

represented by a sequence of one or more payments whose occurrence, timing, and consequent
present value are not certain. In fact, their eventual occurrence and timing depend on events
in the life of the policyholder; for this reason, they are named “life contingencies”. Since
the actuary focuses on the present value of such uncertain payments, future payments of life
contingent insurances need to be discounted using interest rates that may also be considered
stochastic. The lifecontingencies package provides functions that model most of the standard
life contingent random variables, Z̃, and in particular their expected value, the actuarial
present value (APV). Of all the statistics used by actuaries, the APV is certainly the most
important. In fact, it represents the average cost of the benefits guaranteed to the policyholder
by the insurer. In a non-life insurance context, it would be named pure premium. The
policyholder pays out the gross premium, G, which is a sum of benefit premiums, loading
for expense, profits and taxes. Life contingencies can be either continuous or discrete, as the
cited actuarial mathematics textbooks explain. Directly, the lifecontingencies package can
only model discrete life contingencies with a non-stochastic interest rate. Nevertheless, most
continuous time life contingent insurances can be easily derived from their discrete form under
broad assumptions that can be found in the cited textbooks.

A few examples of life contingent insurances follow:

1. An n-year term life insurance provides a payment, if the insured dies within n years
from issue. If the payment is performed at the end of the year of death, Z̃ can be
written as

Z̃ =

{

vK+1, K̃x = 0, 1, . . . , n − 1,

0, K̃x ≥ n.

Its APV expression is A1
x:n .

2. A life annuity consists of a sequence of benefits paid out as long as the insured life
survives. In particular, a temporary life annuity due pays a benefit at the beginning of
each period as long as the annuitant aged x survives, for up to a total of n years, or n
payments. Z̃ can be written as

Z̃ =

{

ä
K+1♣, K̃x < n,

ä n♣, K̃x ≥ n.

Its APV expression is äx:n .

3. An n-year pure endowment insurance grants a benefit payable at the end of n years if
the insured survives at least n years from issue. Z̃ can be written as

Z̃ =

{

0, K̃x < n,

vn, K̃x ≥ n.

Its APV expression is A 1
x:n (or nEx).

4. An n-year endowment insurance will pay a benefit at the year of death or at the end of
the n-th year, whichever occurs earlier. Z̃ can be written as

Z̃ =

{

vK+1, K̃x = 0, 1, . . . , n − 1,

vn, K̃x ≥ n.

Its APV expression is Ax:n .

Giorgio Alfredo Spedicato 5

Interested readers could see the cited references for formulas regarding other life contingent
insurances like (DA)1

x:n , the decreasing term life insurance, or (IA)1
x:n , the increasing term

life insurance. There are also common variations of payments that form arrangements like
deferment or fractional payments. Similarly, it is possible to define insurances and annuities
depending on the survival status of two or more lives. For example, Axy and axy represent,
respectively, the APV symbols for the two lives joint-live insurance and the two lives last-
survivor annuity immediate.

The lifecontingencies package provides functions that allow an actuary to perform classical
financial and actuarial mathematics calculations. In addition to standard deterministic mod-
eling, a peculiar feature of lifecontingencies is that it allows one to generate variates from
the stochastic distribution of the present value of future benefits, Z̃, for most life contingent
insurances. This feature allows for a deeper assessment of the insurance liabilities variability.

3. The structure of the package

The package lifecontingencies contains classes and methods that handle life tables and actu-
arial tables in a convenient manner.

The package is loaded within the R command line interace as follows:

R> library("lifecontingencies")

Two main S4 classes have been defined within the lifecontingencies package: the ‘lifetable’
class and the ‘actuarialtable’ class. The ‘lifetable’ class is defined as follows:

R> showClass("lifetable")

Class "lifetable" [package "lifecontingencies"]

Slots:

Name: x lx name

Class: numeric numeric character

Known Subclasses: "actuarialtable"

Class ‘actuarialtable’ inherits from the ‘lifetable’ class; it is different from the ‘lifetable’
class because it has one more slot accounting for the interest rate.

R> showClass("actuarialtable")

Class "actuarialtable" [package "lifecontingencies"]

Slots:

Name: interest x lx name

6 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

Class: numeric numeric numeric character

Extends: "lifetable"

The following methods have been defined for the ‘lifetable’ and ‘actuarialtable’ classes.

R> showMethods(classes=c("actuarialtable","lifetable"))

Function "%&%":

<not an S4 generic function>

Function ".DollarNames":

<not an S4 generic function>

Function "AIC":

<not an S4 generic function>

Function "BIC":

<not an S4 generic function>

Function "BunchKaufman":

<not an S4 generic function>

Function "Cholesky":

<not an S4 generic function>

Function "Schur":

<not an S4 generic function>

Function "absorbingStates":

<not an S4 generic function>

Function "absorptionProbabilities":

<not an S4 generic function>

Function "all.equal":

<not an S4 generic function>

Function "as.array":

<not an S4 generic function>

Function "as.matrix":

<not an S4 generic function>

Function "band":

<not an S4 generic function>

Giorgio Alfredo Spedicato 7

Function "canonicForm":

<not an S4 generic function>

Function "chol":

<not an S4 generic function>

Function "chol2inv":

<not an S4 generic function>

Function "coef":

<not an S4 generic function>

Function: coerce (package methods)

from="actuarialtable", to="data.frame"

from="actuarialtable", to="numeric"

from="data.frame", to="lifetable"

from="lifetable", to="data.frame"

from="lifetable", to="markovchainList"

from="lifetable", to="numeric"

Function "colMeans":

<not an S4 generic function>

Function "colSums":

<not an S4 generic function>

Function "communicatingClasses":

<not an S4 generic function>

Function "complete":

<not an S4 generic function>

Function "conditionalDistribution":

<not an S4 generic function>

Function "confint":

<not an S4 generic function>

Function "cov2cor":

<not an S4 generic function>

Function "crossprod":

<not an S4 generic function>

Function "determinant":

<not an S4 generic function>

8 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

Function "diag":

<not an S4 generic function>

Function "diag<-":

<not an S4 generic function>

Function "diff":

<not an S4 generic function>

Function "drop":

<not an S4 generic function>

Function "expand":

<not an S4 generic function>

Function "expm":

<not an S4 generic function>

Function "facmul":

<not an S4 generic function>

Function "fliplr":

<not an S4 generic function>

Function "flipud":

<not an S4 generic function>

Function "forceSymmetric":

<not an S4 generic function>

Function "formals<-":

<not an S4 generic function>

Function "format":

<not an S4 generic function>

Function "functions":

<not an S4 generic function>

Function: getOmega (package lifecontingencies)

object="actuarialtable"

object="lifetable"

Function: head (package utils)

x="lifetable"

Function "hittingProbabilities":

Giorgio Alfredo Spedicato 9

<not an S4 generic function>

Function "image":

<not an S4 generic function>

Function: initialize (package methods)

.Object="actuarialtable"

.Object="lifetable"

Function "is.accessible":

<not an S4 generic function>

Function "is.irreducible":

<not an S4 generic function>

Function "is.regular":

<not an S4 generic function>

Function "isDiagonal":

<not an S4 generic function>

Function "isSymmetric":

<not an S4 generic function>

Function "isTriangular":

<not an S4 generic function>

Function "logLik":

<not an S4 generic function>

Function "lu":

<not an S4 generic function>

Function "mean":

<not an S4 generic function>

Function "meanAbsorptionTime":

<not an S4 generic function>

Function "meanFirstPassageTime":

<not an S4 generic function>

Function "meanNumVisits":

<not an S4 generic function>

Function "meanRecurrenceTime":

<not an S4 generic function>

10 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

Function "name":

<not an S4 generic function>

Function "name<-":

<not an S4 generic function>

Function "nnzero":

<not an S4 generic function>

Function "nobs":

<not an S4 generic function>

Function "norm":

<not an S4 generic function>

Function "pack":

<not an S4 generic function>

Function "padarray":

<not an S4 generic function>

Function: plot (package base)

x="lifetable", y="ANY"

Function "predict":

<not an S4 generic function>

Function: print (package base)

x="actuarialtable"

x="lifetable"

Function "profile":

<not an S4 generic function>

Function "prompt":

<not an S4 generic function>

Function "qr":

<not an S4 generic function>

Function "qr.Q":

<not an S4 generic function>

Function "qr.R":

<not an S4 generic function>

Giorgio Alfredo Spedicato 11

Function "qr.coef":

<not an S4 generic function>

Function "qr.fitted":

<not an S4 generic function>

Function "qr.qty":

<not an S4 generic function>

Function "qr.qy":

<not an S4 generic function>

Function "qr.resid":

<not an S4 generic function>

Function "rcond":

<not an S4 generic function>

Function "recurrentClasses":

<not an S4 generic function>

Function "recurrentStates":

<not an S4 generic function>

Function "rowMeans":

<not an S4 generic function>

Function "rowSums":

<not an S4 generic function>

Function: show (package methods)

object="actuarialtable"

object="lifetable"

Function "size":

<not an S4 generic function>

Function "skewpart":

<not an S4 generic function>

Function "solve":

<not an S4 generic function>

Function "sort":

<not an S4 generic function>

Function "states":

12 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

<not an S4 generic function>

Function "steadyStates":

<not an S4 generic function>

Function: summary (package base)

object="actuarialtable"

object="lifetable"

Function "symmpart":

<not an S4 generic function>

Function "t":

<not an S4 generic function>

Function: tail (package utils)

x="lifetable"

Function "tcrossprod":

<not an S4 generic function>

Function "toeplitz":

<not an S4 generic function>

Function "transientClasses":

<not an S4 generic function>

Function "transientStates":

<not an S4 generic function>

Function "transitionProbability":

<not an S4 generic function>

Function "tril":

<not an S4 generic function>

Function "triu":

<not an S4 generic function>

Function "unname":

<not an S4 generic function>

Function "unpack":

<not an S4 generic function>

Function "update":

<not an S4 generic function>

Giorgio Alfredo Spedicato 13

Parameter Significance

x the policyholder’s age
n the coverage duration or payment duration
i interest rate (could be varying)
k the frequency of payments

Table 1: lifecontingencies functions parameters naming conventions.

Function "updown":

<not an S4 generic function>

Function "vcov":

<not an S4 generic function>

Function "which":

<not an S4 generic function>

Function "writeMM":

<not an S4 generic function>

Function "zapsmall":

<not an S4 generic function>

The computation of financial, demographic and actuarial quantities is based on dedicated
functions that use objects of classes ‘lifetable’ and ‘actuarialtable’ when required. Ta-
ble 1 shows the naming convention for common input parameters used within the package.
The sections that follow briefly present such functions with the aid of examples.

Finally, the lifecontingencies package depends on the methods package, which defines its
classes, and the parallel package, which is used to speed up computations. As detailed in
Section 5, implementation of C or C++ code snippets is expected to shorten computational
times in the future versions of the package.

4. Code and examples

This section is structured as follows: Section 4.1 shows classical financial mathematics ex-
amples, Section 4.2 deals with life tables and actuarial table management, Section 4.3 shows
classical actuarial mathematics examples, and Section 4.4 presents functions in the lifecon-

tingencies package that perform simulation analysis.

4.1. Classical financial mathematics example

The lifecontingencies package provides functions that perform classical financial mathematics
calculations listed in Table 2.

Some of these implement closed form formulas and their inverses; this is also shown in fi-
nancial mathematics textbooks. A broader discussion, however, shall be dedicated to the

14 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

presentValue function. In fact, the presentValue function is internally called by most
other financial and actuarial functions within the lifecontingencies package. This function
calculates present values or APVs by computing Equation 3.

PV =
n
∑

i=1

ci · vti · pi (3)

The terms in Equation 3 are the cash flows vector, ci, the corresponding discount factors
vector, vti , and the occurrence probabilities vector, pi, respectively. Many lifecontingencies

package functions, like axn or annuity, work by first defining the pattern vectors of cash
flows, interest rate and probabilities (in case of actuarial functions), which are then passed as
arguments to the presentValue function.

Examples that follow show how to handle interest and discount rates with different com-
pounding frequencies, how to perform present value, annuity, and future value analysis, and
how to deal with loan amortization and bond pricing.

Interest rate functions

Interest rates represent the time-value of money. Different types of rates can be found in
literature. As a remark, Equation 4 displays the relationship between the effective interest
rate, the convertible interest rate, the discount factor, the force of interest, the effective
discount rate and the convertible discount rate.

(1 + i)t =

1 +
i(m)

m

t

= v−t = exp (δt) = (1 − d)−t =

1 −
d(m)

m

−t

(4)

The functions interest2Discount, discount2Interest, convertible2Effective,
effective2Convertible, interest2Intensity, intensity2Interest have all been based
on Equation 4; their inverse formulas are implied therein. Throughout the paper, an effective
interest rate is used unless otherwise stated.

As examples, functions interest2Discount and discount2Interest represent a convenient
way to switch from interest to discount rates and vice versa.

Function Purpose

presentValue present value of a series of cash flows
annuity present value of an annuity-certain, an

accumulatedValue future value of a series of cash flows, sn

increasingAnnuity present value of an increasing annuity – certain, IAn

decreasingAnnuity present value of a decreasing annuity – certain, DAn

convertible2Effective conversion from convertible to effective interest (discount) rates
effective2Convertible convertible2Effective inverse
intensity2Interest conversion from force of interest to the interest rate
interest2Intensity intensity2Interest inverse
duration dollar / Macaulay duration of a series of cash flows
convexity convexity of a series of cash flows

Table 2: lifecontingencies functions for financial mathematics.

Giorgio Alfredo Spedicato 15

R> interest2Discount(0.03)

[1] 0.02912621

R> discount2Interest(interest2Discount(0.03))

[1] 0.03

The function convertible2Effective allows one to find the effective interest rate implied in
a consumer - credit loan that offers a 10% convertible (nominal) interest rate with quarterly
compounding.

R> convertible2Effective(i=0.10,k=4)

[1] 0.1038129

Analysis of present value and internal rate of return

Performing a project appraisal means evaluating the net present value (NPV) of all projected
cash flows. The code below shows an example of NPV analysis.

R> capitals <- c(-1000,200,500,700)

R> times <- c(0,1,2,5)

R> presentValue(cashFlows=capitals, timeIds=times, interestRates=0.03)

[1] 269.2989

When interest rates vary and cash flows are uncertain, the probabilities parameter can be
properly set as the following code shows:

R> presentValue(cashFlows=capitals, timeIds=times,

+ interestRates=c(0.04, 0.02, 0.03, 0.05),

+ probabilities=c(1,1,1,0.5))

[1] -58.38946

The internal rate of return (IRR) is defined as the interest rate that makes the NPV zero. It
is an alternative NPV that allows financial investment projects to be ranked by the timing
and amount of their cash flows. The following example displays how the lifecontingencies

package can use base R functions to calculate the IRR.

R> getIrr <- function(p) (presentValue(cashFlows=capitals, timeIds=times,

+ interestRates=p) - 0)^2

R> nlm(f=getIrr, p=0.1)$estimate

[1] 0.1105091

16 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

Annuities and future values

An annuity (certain) is a sequence of payments with a specified amount that is present valued.
If it is valued at the end of the term of payment is is called future value (or accumulated value).
The code below shows examples of annuity, a n♣, and accumulated value, s n♣, evaluations.
The PV of an annuity immediate $100 payable at the end of each year for the next 5 years
at an interest rate of 3% is:

R> 100 * annuity(i=0.03, n=5)

[1] 457.9707

while the corresponding future value is:

R> 100 * accumulatedValue(i=0.03, n=5)

[1] 530.9136

Annuities and future values payable k-thly (where fractional payments of 1
k

are received for
each k-th of a period) can be evaluated properly by setting the functions’ parameters as
follows:

R> ann1 <- annuity(i=0.03, n=5, k=1, type="immediate")

R> ann2 <- annuity(i=0.03, n=5, k=12, type="immediate")

R> c(ann1,ann2)

[1] 4.579707 4.642342

increasingAnnuity and decreasingAnnuity functions handle increasing and decreasing an-
nuities, whose symbols are IAx, DAx respectively. Assuming a ten-year term and a 3%
interest rate, examples of increasing and decreasing annuities follow.

R> incrAnn <- increasingAnnuity(i=0.03, n=10, type="due")

R> decrAnn <- decreasingAnnuity(i=0.03, n=10, type="immediate")

R> c(incrAnn, decrAnn)

[1] 46.18416 48.99324

The last example within this section displays the calculation of the present value of a ge-
ometrically increasing annuity. As known by classical financial and actuarial mathematic,
geometric annuities are priced using a synthetic discount rate j = i − g being g the geometric
growth rate and i the interest rate used to discount future payments. So, if payment amounts
increase by 3%, the interest rate is 4%, and its term is 10 years, the implied present value is:

R> annuity(i=((1+0.04)/(1+0.03)-1), n=10)

[1] 9.48612

Giorgio Alfredo Spedicato 17

Loan amortization

As this section exemplifies, lifecontingencies financial mathematics functions allow one to
define the repayment schedule of any loan arrangement. Let C denote the loaned capital
(principal). Assuming an interest rate i, the amount due to the lender at each installment
is R = C

a n|
. Therefore, the R amount repays It = Ct−1 ∗ i as interest, while Ct = R − It

is the amount of the loan still outstanding after installment t has been paid. The periodic
installment of loan repayment , R, is calculated as follows:

R> capital <- 100000

R> interest <- 0.05

R> payments_per_year <- 2

R> rate_per_period <- (1+interest)^(1/payments_per_year)-1

R> years <- 30

R> R <- 1/payments_per_year *

+ capital/annuity(i=interest, n=years,

+ k=payments_per_year)

R> R

[1] 3212.9

Then the balance due at end of the period (EoP) is calculated as follows:

R> balanceDue <- numeric(years * payments_per_year)

R> balanceDue[1] <- capital * (1+rate_per_period) - R

R> for(i in 2:length(balanceDue)) balanceDue[i]<-

+ balanceDue[i-1] * (1+rate_per_period) - R

Figure 1 shows the EoP balance due for a 30 year loan, assuming a 5% interest rate on a
principal of $ 100,000.

Bond pricing

Bond pricing represents another application of present value. A standard bond with face value
C and term length T consists of equal coupons c paid at regular intervals. The final payment
at time T is CT + c. Equation 5 expresses the present value of a bond with n remaining
coupons.

B = c ∗ a n♣ + C ∗ vT (5)

Perpetuities are financial contracts that offer an indefinite sequence of payments either at the
end (perpetuity-immediate) or at the beginning of each period (perpetuity-due).

The following examples show how elementary functions in the lifecontingencies package can
be combined to price bonds and perpetuities.

R> bond<-function(faceValue, couponRate, couponsPerYear, yield,maturity)

+ {

18 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

0 10 20 30 40 50 60

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Loan amortization

year

E
oP

 b
al

an
ce

 d
ue

Figure 1: Loan amortization: EoP balance due.

Giorgio Alfredo Spedicato 19

+ out <- numeric(1)

+ numberOfCF <- maturity * couponsPerYear

+ CFs <- numeric(numberOfCF)

+ payments <- couponRate * faceValue / couponsPerYear

+ cf <- payments * rep(1,numberOfCF)

+ cf[numberOfCF] <- faceValue + payments

+ times <- seq.int(from=1/couponsPerYear, to=maturity,

+ by=maturity/numberOfCF)

+ out <- presentValue(cashFlows=cf, interestRates=yield,

+ timeIds=times)

+ return(out)

+ }

R> perpetuity<-function(yield, immediate=TRUE)

+ {

+ out <- numeric(1)

+ out <- 1 / yield

+ out <- ifelse(immediate==TRUE, out, out*(1+yield))

+ return(out)

+ }

R>

As displayed below, the bond and perpetuity functions defined above can be used to price
any bond, given face value, coupon rate, and term.

R> bndEx1 <-bond(1000, 0.06, 2, 0.05, 3)

R> bndEx2 <-bond(1000, 0.06, 2, 0.06, 3)

R> ppTy1 <-perpetuity(0.1)

R> c(bndEx1, bndEx2, ppTy1)

[1] 1029.250 1002.371 10.000

Duration and ALM

As defined within the package, duration and convexity formulas are reported in Equation 6
and Equation 7 respectively. Their typical application lies within porfolios’ asset - liability
management (ALM). The interested reader can find details in Chris Ruckman and Joe Fran-
cis (2006) and Broverman (2008) textbooks. However, the following example shows how the
Macaulay duration (ex1), modified duration (ex2), and convexity (ex3) of any series of cash
flows can be calculated by lifecontingencies package functions.

D =
T
∑

t

t ∗ CFt

1 + i
m

−t∗m

P
(6)

C =
T
∑

t

t ∗

t +
1

m

∗ CFt

1 +
y

m

−m∗t−2

(7)

20 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

R> cashFlows <- c(100,100,100,600,500,700)

R> timeVector <- seq(1:6)

R> interestRate <- 0.03

R> dur1 <-duration(cashFlows = cashFlows, timeIds = timeVector,

+ i = interestRate, k = 1, macaulay = TRUE)

R> dur2 <-duration(cashFlows = cashFlows, timeIds = timeVector,

+ i = interestRate, k = 1, macaulay = FALSE)

R> cvx1 <-convexity(cashFlows = cashFlows, timeIds = timeVector,

+ i = interestRate, k = 1)

R> c(dur1, dur2, cvx1)

[1] 4.563124 4.430218 25.746469

This example works out a small ALM problem. Suppose an insurance company has sold a
guaranteed term certificate (GTC) with face value $ 10,000 that will mature in 7 years at an
interest rate of 5% . Its final value would be:

R> GTCFin<- 10000 * (1 + 0.05)^7

R> GTCFin

[1] 14071

Imagine the company can hedge its liability with two available investment instruments:

1. A five year bond with face value of 100 and 3% coupons paid annually.

2. A perpetuity-immediate. As a remark, the formulas for the PV, duration and convexity
of a perpetuity immediate are PVpp = 1

y
, Dpp = 1+y

y
, Cpp = 2

y2 respectively, if the yield
rate is y.

Assume the issuing company wants to hedge its liability with an investment portfolio that
will not be affected adverserly by changes in the investment yield. In order to solve the ALM
problem, the composition of assets within the portfolio shall be chosen accordingly. Moreover,
assume that the current market yield rate is 4%. The following lines of code figure out some
parameters that are used within the example.

R> yieldT0 <- 0.04

R> durLiab <- 7

R> pvLiab <- presentValue(cashFlows = GTCFin,timeIds = 7,

+ interestRates = yieldT0)

R> convLiab <- convexity(cashFlows=GTCFin, timeIds = 7,

+ i=yieldT0)

R> pvBond <- bond(100,0.03,1,yieldT0,5)

R> durBond <- duration(cashFlows=c(3,3,3,3,103),

+ timeIds=seq(1,5), i = yieldT0)

R> convBond <- convexity(cashFlows=c(3,3,3,3,103),

+ timeIds=seq(1,5), i = yieldT0)

Giorgio Alfredo Spedicato 21

R> pvPpty <- perpetuity(yieldT0)

R> durPpty <- (1+yieldT0)/yieldT0

R> covnPpty <- 2/(yieldT0^2)

Then the ALM problem can be set up as a three step problem, as the Chris Ruckman and
Joe Francis (2006) texbook remarks:

1. Setting the initial present value of cash inflows (assets) to be equal to the present value
of cash outflows (liabilities).

2. Setting the interest rate sensitivity (i.e., the duration) of assets to be equal to the
interest rate sensitivity of liabilities. This is done by solving the system of equations
shown in Equation 8. The parameters wi and Di stand for asset hedging weights and
duration values respectively.

{

wbndDbnd + wpptDppt = DGTC

wbnd + wppt = 1
(8)

3. Setting the convexity of assets to be greater than the convexity of liabilities. In other
words, this means verifying that asset decline (growth) will be slower (faster) than
liability decline in case of a change in the interest rate.

The following lines of code calculate the asset weights vector by linear algebra functions
bundled in R base.

R> a <- matrix(c(durBond, durPpty,1,1), nrow=2,

+ byrow=TRUE)

R> b <- as.vector(c(7,1))

R> weights <-solve(a,b)

R> weights

[1] 0.8924163 0.1075837

Vector weights displays the portfolio composition in terms of bonds and perpetuities, respec-
tively. Therefore, the number of bonds and perpetuities that can be purchased is determined
by:

R> bondNum <- weights[1] * pvLiab / pvBond

R> pptyNum <- weights[2] * pvLiab / pvPpty

R> bondNum

[1] 99.87041

R> pptyNum

[1] 46.01486

22 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

It can be verified that the convexity of assets is greater than the convexity of liabilities.

R> convAsset <- weights[1] * convBond + weights[2] * covnPpty

R> convAsset>convLiab

[1] TRUE

The portfolio is immunized from yield rate variations because the present value of assets will
be greater than the present value of the liabilities if the interest rate suddently drops to 3%
just after hedging the asset purchase. The same occurs in case of an upward shift in the
interest rate toward 5%.

R> yieldT1low <- 0.03

R> immunizationTestLow <- (bondNum * bond(100,0.03,1,yieldT1low,5) +

+ pptyNum * perpetuity(yieldT1low)>

+ GTCFin / (1+yieldT1low)^7)

R> yieldT1high <- 0.05

R> immunizationTestHigh <- (bondNum * bond(100,0.03,1,yieldT1high,5) +

+ pptyNum * perpetuity(yieldT1high)>

+ GTCFin/(1+yieldT1high)^7)

R> immunizationTestLow

[1] TRUE

R> immunizationTestHigh

[1] TRUE

It is worthwhile to remember that asset allocation within the portfolio should be rebalanced
with some frequency, since the portfolio’s duration and convexity will change as time goes on.

4.2. Analysis of life tables and actuarial tables

lifetable and actuarialtable classes are designed to handle demographic and actuarial
mathematics calculations. An actuarialtable class inherits from lifetable class; it adds
one more slot for the rate of interest. Both classes have been designed using the S4 R classes
framework.
Table 3 lists the functions that have been developed for performing demographic analysis
within lifecontingencies package. This section briefly exemplifies these functions.

Creating lifetable and actuarialtable objects

Life table objects can be created by using either raw R commands or existing data.frame

objects. However, three components are needed to build a lifetable class object:

1. The years sequence, which is an integer sequence 0, 1, . . . , ω. It shall start from zero
and end at ω, the terminal age (the age x for which px = 0).

Giorgio Alfredo Spedicato 23

Function Purpose

dxt deaths between age x and x + t, tdx.
pxt survival probability between age x and x + t, tpx.
pxyzt survival probability for two (or more) lives, tpxy.
qxt death probability between age x and x + t, tqx.
qxyzt death probability for two (or more) lives, tqxy.
Txt number of person-years lived after exact age x, tTx.
mxt central death rate, tmx.
qx2mx convert death probabilities into mortality rate.
mx2qx convert mortality rate into death probabilities.
exn expected lifetime between age x and age x + n, nex.
rLife sample from the time until death distribution underlying a life table.
rLifexyz sample from the time until death distribution underlying two or more lives.
exyz n-year curtate lifetime of the joint-life status.
probs2lifetable life table lx from raw one - year survival / death probabilities.

Table 3: lifecontingencies functions for demographic analysis.

2. The lx vector, which is the number of subjects living at the beginning of age x; in other
words, the number of subjects at risk of dying between year x and x + 1.

3. The name of the life table.

There are three main approaches for creating a lifetable object:

1. Directly from the x and lx vector.

2. By importing x and lx from an existing data.frame object.

3. From using raw survival probabilities.

Creating a lifetable object directly can be done as shown by the code below:

R> x_example <- seq(from=0,to=9, by=1)

R> lx_example <- c(1000,950,850,700,680,600,550,400,200,50)

R> exampleLt <- new("lifetable", x=x_example, lx=lx_example,

+ name="example lifetable")

print and show methods tabulate the x, lx, tpx and ex values for a given life table.

R> print(exampleLt)

Life table example lifetable

x lx px ex

1 0 1000 0.9500000 4.980000

2 1 950 0.8947368 4.242105

3 2 850 0.8235294 3.741176

24 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

4 3 700 0.9714286 3.542857

5 4 680 0.8823529 2.647059

6 5 600 0.9166667 2.000000

7 6 550 0.7272727 1.181818

8 7 400 0.5000000 0.625000

9 8 200 0.2500000 0.250000

head and tail methods for data.frame S3 classes have also been implemented on lifetable

classes.

R> head(exampleLt)

x lx

1 0 1000

2 1 950

3 2 850

4 3 700

5 4 680

6 5 600

Still, the easiest way to create a lifetable object is to start from a suitable existing
data.frame. This will probably be the most practical approach for practicing actuaries.
Some life or mortality rate tables have been bundled within the lifecontingencies package, as
Table 4 displays.

Data set Description

AF92Lt UK AF92 life table.
AM92Lt UK AF92 life table.
de_angelis_di_falco List containing ten data frames showing projected mortality rates for healty and disabled
demoChina China mortality rates from SOA website.
demoIta Various Italian life tables including RG48 and IPS55 projected tables.
demoJapan Japan mortality rates from SOA website.
demoUsa US Social Security life tables.
demoFrance 1990 and 2002 French life tables.
demoCanada UP94 (standard, 2015, 2020) mortality rates for males and females.
soa08 SOA illustrative life table.
soa08Act SOA illustrative actuarial table at 6%.

Table 4: Life tables and other data objects bundled within lifecontingencies.

The following example shows how US Social Security life tables are loaded from the existing
demoUsa data set bundled in the lifecontingencies package.

R> data("demoUsa")

R> data("demoIta")

R> usaMale07 <- demoUsa[,c("age", "USSS2007M")]

R> usaMale00 <- demoUsa[,c("age", "USSS2000M")]

Giorgio Alfredo Spedicato 25

R> names(usaMale07) <- c("x","lx")

R> names(usaMale00) <- c("x","lx")

R> usaMale07Lt <-as(usaMale07,"lifetable")

R> usaMale07Lt@name <- "USA MALES 2007"

R> usaMale00Lt <-as(usaMale00,"lifetable")

R> usaMale00Lt@name <- "USA MALES 2000"

The same operation can be performed on IPS55 tables bundled in the demoIta data set. The
purpose of the following example is to stress the importance of using a clean lx series as
an input for the coerce method. A "clean" lx series is a decreasing series without zeroes or
missing values.

R> lxIPS55M <- with(demoIta, IPS55M)

R> pos2Remove <- which(lxIPS55M %in% c(0,NA))

R> lxIPS55M <-lxIPS55M[-pos2Remove]

R> xIPS55M <-seq(0,length(lxIPS55M)-1,1)

R> ips55M <- new("lifetable",x=xIPS55M, lx=lxIPS55M,

+ name="IPS 55 Males")

R> lxIPS55F <- with(demoIta, IPS55F)

R> pos2Remove <- which(lxIPS55F %in% c(0,NA))

R> lxIPS55F <- lxIPS55F[-pos2Remove]

R> xIPS55F <- seq(0,length(lxIPS55F)-1,1)

R> ips55F <- new("lifetable",x=xIPS55F, lx=lxIPS55F,

+ name="IPS 55 Females")

The final method of creating a lifetable object uses one year survival or death probabil-
ities, combining the probs2lifetable function with as.data.frame coerce methods. Two
potential benefits arise from using this function. The first benefit lies in the use of mortality
projection method results. The Lee - Carter method (Lee and Carter 1992) allows one to vary
mortality table by cohort of birth. Thus, demographic quantities, like the expected lifetime,
e0,can be projected as functions of the year of birth.
A second advantage lies in the creation of "cut-down" mortality tables. This latter application
is exemplified in the code that follows, where a itaM2002reduced life table is obtained; the
one - year mortality rates of Italian males aged between 20 and 60 are cut down to 20% of
their original value.

R> data("demoIta")

R> itaM2002 <- demoIta[,c("X","SIM92")]

R> names(itaM2002) <- c("x","lx")

R> itaM2002Lt <- as(itaM2002,"lifetable")

R> itaM2002Lt@name <- "IT 2002 Males"

R> itaM2002 <- as(itaM2002Lt,"data.frame")

R> itaM2002$qx <- 1-itaM2002$px

R> for(i in 20:60) itaM2002$qx[itaM2002$x==i] = 0.2 * itaM2002$qx[itaM2002$x==i]

R> itaM2002reduced <- probs2lifetable(probs=itaM2002[,"qx"], radix=100000,

+ type="qx",name="IT 2002 Males reduced")

26 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

An actuarialtable can be easily created from an existing lifetable object.

R> exampleAct <- new("actuarialtable",x=exampleLt@x, lx=exampleLt@lx,

+ interest=0.03, name="example actuarialtable")

When applied to either actuarialtable or lifetable classes, Method getOmega returns the
terminal age, ω.

R> getOmega(exampleAct)

[1] 9

Method print behaves differently for lifetable and actuarialtable objects. In fact, when
the print method is applied on a lifetable object, it tabulates both the one year survival
probability and the complete expected remaining life until death. Conversely, when the print

method is applied on a lifetable object, classical commutation functions (Dx, Nx, Cx, Mx,
Rx), discussed later, are printed out.

R> print(exampleLt)

Life table example lifetable

x lx px ex

1 0 1000 0.9500000 4.980000

2 1 950 0.8947368 4.242105

3 2 850 0.8235294 3.741176

4 3 700 0.9714286 3.542857

5 4 680 0.8823529 2.647059

6 5 600 0.9166667 2.000000

7 6 550 0.7272727 1.181818

8 7 400 0.5000000 0.625000

9 8 200 0.2500000 0.250000

R> print(exampleAct)

Actuarial table example actuarialtable interest rate 3 %

x lx Dx Nx Cx Mx Rx

1 0 1000 1000.00000 5467.92787 48.54369 840.7400 4839.7548

2 1 950 922.33010 4467.92787 94.25959 792.1963 3999.0148

3 2 850 801.20652 3545.59778 137.27125 697.9367 3206.8185

4 3 700 640.59916 2744.39125 17.76974 560.6654 2508.8819

5 4 680 604.17119 2103.79209 69.00870 542.8957 1948.2164

6 5 600 517.56527 1499.62090 41.87421 473.8870 1405.3207

7 6 550 460.61634 982.05563 121.96373 432.0128 931.4337

8 7 400 325.23660 521.43929 157.88185 310.0491 499.4210

9 8 200 157.88185 196.20268 114.96251 152.1672 189.3719

10 9 50 38.32084 38.32084 37.20470 37.2047 37.2047

Giorgio Alfredo Spedicato 27

It is possible to convert the actuarialtable object into a data.frame object, as shown
below.

R> exampleActDf <- as(exampleAct, "data.frame")

A recent lifecontingencies package enhancement allows to export a life table as non - homo-
geneous discrete Markov chain by means of markovchainList S4 class object as defined in
markovchain (Spedicato, Giorgio Alfredo 2015) R package.

R> data(soa08)

R> require(markovchain)

R> soa08Mc<-as(soa08,"markovchainList")

Finally, a plot method can be applied to eitherlifetable or actuarialtable objects. The
underlying survival function (which is the plot of x vs lx) is displayed in both cases. Figure 2
shows the plot methods applied on a Society of Actuaries (SOA) actuarial table at 6%
interest, which comes bundled within the lifecontingencies package as soa08Act object.

28 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

0 20 40 60 80 100 120 140

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

life table SOA Illustrative Life Table

x values

po
pu

la
tio

n
at

 r
is

k

Figure 2: Underlying survival function of SOA illustrative life table.

Giorgio Alfredo Spedicato 29

Basic demographic analysis

Basic demography calculations can be performed on valid lifetable or actuariatable ob-
jects. The functions discussed in this section calculate proper ratios or sums on lx or dx values
using functions that access to the lifetable object slots. This is all done in accordance with
the demographic formula definitions.

The code below shows how 1p20, 2q30 and e̊50:20 are calculated respectively on the IPS55 male
population table

R> demoEx1<-pxt(ips55M,20,1)

R> demoEx2<-qxt(ips55M,30,2)

R> demoEx3<-exn(ips55M, 50,20,"complete")

R> c(demoEx1,demoEx2,demoEx3)

[1] 0.999595096 0.001332031 19.472765230

Getting mortality rates and moving to death probabilities is also possible

R> mx20t1 <- mxt(ips55M,20,1)

R> qx20t1 <- mx2qx(mx20t1)

R> c(mx20t1,qx20t1)

[1] 0.0004049862 0.0004049042

The package allows one to calculate fractional survival probabilities through the use of linear
interpolation, constant force of mortality and hyperbolic Balducci’s assumptions as shown by
the code below.

R> data("soa08Act")

R> pxtLin <- pxt(soa08Act,80,0.5,"linear")

R> pxtCnst <- pxt(soa08Act,80,0.5,"constant force")

R> pxtHyph <- pxt(soa08Act,80,0.5,"hyperbolic")

R> c(pxtLin,pxtCnst,pxtHyph)

[1] 0.9598496 0.9590095 0.9581701

Calculations for survival probabilities on two (or more) lives can also be performed. As a
remark, two different life statuses are defined within the analysis of multiple lives survival:
"joint" survival status and "last" survival status. The "joint" survival status exists while all
the members of the pool are alive, while the "last" survival status exists until the last member
of the pool dies. All calculations assume that the multiple lives are independent. Equation 9
expresses the remaining future lifetime on a couple xy under the joint and last survival status
respectively.

30 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

T̃xy = min (Tx, Ty)

T̃x̄y = max (Tx, Ty)
(9)

The following code shows how the joint survival probability, last survival probability, and
expected joint lifetime can be evaluated using functions in lifecontingencies.

R> tablesList <- list(ips55M, ips55F)

R> jsp <- pxyzt(tablesList, x=c(65,63), t=2)

R> lsp <- pxyzt(tablesList, x=c(65,63), t=2, status="last")

R> jelt <- exyzt(tablesList, x=c(65,63), status="joint")

R> c(jsp,lsp,jelt)

[1] 0.9813187 0.9999275 19.1982972

4.3. Classical actuarial mathematics examples

Function Purpose APV symbol

Axn one life insurance A1
x:n .

AExn the n-year endowment A 1
x:n .

Axyzn two lives life insurances Ā 1
xy:n .

axn one life annuity äx.
axyzn two lives annuities äxy.
Exn pure endowment nEx.
Iaxn increasing annuity Iax.
IAxn increasing life insurance (IA)1

x:n .
DAxn decreasing life insurance (DA)1

x:n .

rLifeContingencies generates variates from the Z̃ distribution.
rLifeContingenciesXyz multiple lives version of rLifeContingencies.

Table 5: lifecontingencies functions for actuarial mathematics.

Table 5 lists examples of functions contained in lifecontingencies that allow the user to perform
classical actuarial mathematics calculations. In the selection of examples that follow, the SOA
illustrative life table with an interest rate of 6% will be used unless otherwise stated

Life insurance examples

The evaluation of the APV has traditionally followed one of three approaches: the use of
commutation tables, the current payment technique, or the expected value method.
Commutation tables extend the life table by tabulating special functions of age and rate of
interest, as Anderson (1999) further considers. Ratios of commutation table functions allow
an actuary to evaluate APV for standard insurances. However, commutation table usage has
become less prominent in the computer era. In fact, these tables are not flexible enough and
their usage is computationally inefficient. Therefore, the lifecontingencies package does not
use the commutation table approach to evaluate APVs.

Giorgio Alfredo Spedicato 31

The current payment technique calculates the APV of a life contingency insurance, Z̄, as the
scalar product of three vectors: Z̄ = ⟨⟨c̄ • v̄⟩ • p̄⟩; this uses the vector of all possible uncertain
cash flows, c̄, the vector of discount factors, v̄, and the vector of cash flow probabilities, p̄.
The lifecontingencies package implements the current payment technique by using actuarial
functions listed in Table 5 to evaluate APVs. Finally, the expected value approach models Z̄

as the scalar product of two vectors: Z̄ =
〈

p̄k • x̄
〉

. p̄k is Pr
[

K̃ = k
]

, the probability that

the future curtate lifetime will be exactly k years, where x̄ is the present value of benefits
due under the policy term if K̃ = k. rLifeContingencies and rLifeContingenciesXyz

implement the expected value approach to generate Z̃ variates.

Consider an n year annuity due. Its APV, äx:n , using the commutation table approach is
reported in Equation 10, while Equation 11 reports the same APV using the current payment
technique. Finally, Equation 12 calculates the APV using the expected value approach.

APV =
Nx − Nx+n

Dx

(10)

APV =

min(ω−x,n)
∑

k=0

kpx ∗ vk (11)

APV =
ω−x
∑

k=0

Pr
[

K̃x = k
]

∗ ä
min(k,n)♣ (12)

In order to understand how lifepackage implements the current payment technique in its
actuarial function, it is worthwhile to look closer at the core of the axn function. This
function takes the following parameters as inputs: n, the term of the annuity; k the fractional
payment frequency; x the annuitant age; m, the deferring period. Then, it defines:

1. The vector of possible payments, c̄, by

payments = rep(1/k, n * k)

2. The vector timing of payments, by

times=m + seq(from=0, to=(n-1/k), by=1/k)

3. The vector of payment probability, p̄, by

for(i in 1:length(times)) probs[i] = pxt(

actuarialtable, x,times[i])

4. Finally, the three vectors are passed as input parameters to the presentValue function
as the following code shows:

presentValue(cashFlows=payments, timeIds=times,

interestRates = interest,

probabilities=probs)

32 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

In the examples that follow, the SOA illustrative actuarial table is used in the calculation of
premiums and reserves of life contingencies.

The first example values a 40-year insurance on a policyholder aged 25, with benefits payable
at the end of the month of death. Equation 13 would determine the benefit premium using
the commutation table approach.

U =
M25 − M65

D65

i

i(12)
(13)

The following lines of code compute the benefit premium using UComm, the commutation
technique, and UCpt, the current payment technique.

R> data(soa08Act)

R> UComm <- Axn(actuarialtable=soa08Act, x=25, n=65-25, k=12)

R> UCpt <- ((soa08ActDf$Mx[26]-soa08ActDf$Mx[66])/soa08ActDf$Dx[26]) *

+ 0.06/real2Nominal(i=0.06,k=12)

R> c(UComm, UCpt)

[1] 0.0492762 0.0492762

If, while the policyholder is alive, the premium is paid in ten equal installments at the begin-
ning of each year instead of a lump sum, then the yearly premium, P , would be determined
as follows:

R> P <- UCpt/axn(actuarialtable=soa08Act,x=25,n=10)

R> P

[1] 0.006351046

The lifecontingencies package allows one to evaluate APVs of endowment insurances; this
can be calculated for increasing and decreasing life insurances as well. The lines of code
that follow will prove the actuarial equivalence expressed by Equation 14 in a computational
context.

(n + 1) ∗ A1
x:n = (DA)1

x:n + (IA)1
x:n (14)

R> (10 + 1) * Axn(actuarialtable=soa08Act, x=25, n=10)

[1] 0.1194392

R> DAxn(actuarialtable = soa08Act, x=25, n=10) +

+ IAxn(actuarialtable = soa08Act, x=25, n=10)

[1] 0.1194392

Giorgio Alfredo Spedicato 33

Life annuity examples

Life contingent annuities form sequences of payments whose occurrence and duration depend
the policyholder’s future lifetime. The few examples that follow demonstrate how the lifecon-

tingencies package can directly compute the APV for typical life contingencies using either
bundled functions or classical commutation tables.

Equation 15 expresses the full premium of a ten-year deferred annuity-due for a policyholder
aged 75 by means of commutation functions.

U = 10♣ä75 =
N85

D75
(15)

R> UCpt <- axn(actuarialtable=soa08Act, x=75, m=10)

R> UComm <- with(soa08ActDf,Nx[86]/Dx[76])

R> c(UCpt,UComm)

[1] 1.146484 1.146484

If the premium were paid by means of five annual payments as long as the insured were alive,
Equation 15 would be rewritten as Equation 16.

5P (10♣ä75) =
10♣ä75

ä75:5

=
N85
D75

N75−N80
D75

(16)

R> P=axn(actuarialtable=soa08Act, x=75, m=10) /

+ axn(actuarialtable=soa08Act, x=75, n=5)

R> P

[1] 0.2854727

R> PComm <- with(soa08ActDf,(Nx[86]/Dx[76]) /

+ ((Nx[76]-Nx[81])/Dx[76]))

R> PComm

[1] 0.2854727

If amounts of 1
m

were paid at the beginning of each month, the APV of the annuty would be

U = 10♣ä
(12)
75 .

R> U <- axn(actuarialtable=soa08Act, x=75, m=10, k=12)

R> P <- axn(actuarialtable=soa08Act, x=75, m=10, k=12) /

+ axn(actuarialtable=soa08Act, x=75, n=5)

R> c(U,P)

[1] 1.0325687 0.2571079

34 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

Benefit reserves examples

The (prospective) benefit reserve consists in the difference between the APV of obligated
future benefit payments due by the insurer and the APV of the projected inflows due by the
policyholder. It represents the outstanding net insurer’s obligation arising from the under-
written insurance policy. An example will clarify this concept.
The code below evaluates the benefit reserve for a 25 year old 40 - year life insurance of
$ 100,000, with benefits payable at the end of the year of death, assuming a level benefit
premium payable at the beginning of each year. The benefit premium and reserve equations
for this life contingent insurance are displayed by Equation 17.

P ä25:40 = 100000A 1
25:40

tV
1

25+t:n−t
= 100000A 1

25+t:40−t
− P ä25+t:40−t

(17)

R> P=100000 * Axn(soa08Act,x=25,n=40)/axn(soa08Act,x=25,n=40)

R> reserveFun = function(t) return(100000*Axn(soa08Act,x=25+t,n=40-t)-P*

+ axn(soa08Act,x=25+t,n=40-t))

R> for(t in 0:40) {if(t%%5==0) cat("At time ",t,

+ " benefit reserve is ",

+ reserveFun(t),"\n")}

At time 0 benefit reserve is 0

At time 5 benefit reserve is 1109.887

At time 10 benefit reserve is 2401.368

At time 15 benefit reserve is 3825.877

At time 20 benefit reserve is 5256.254

At time 25 benefit reserve is 6421.799

At time 30 benefit reserve is 6789.186

At time 35 benefit reserve is 5328.03

At time 40 benefit reserve is 0

Another reserve calculation example shows the benefit reserve for a deferred annuity-due on
a policyholder aged 25 when the annuity is deferred until age 65. The code below shows the
reserve calculation while Figure 3 plots the outstanding reserve at the end of each contract
year.

R> yearlyRate <- 12000

R> irate <- 0.02

R> APV <- yearlyRate*axn(soa08Act, x=25, i=irate,m=65-25,k=12)

R> levelPremium <- APV/axn(soa08Act, x=25,n=65-25,k=12)

R> annuityReserve<-function(t) {

+ out<-NULL

+ if(t<65-25) out <- yearlyRate*axn(soa08Act, x=25+t,

+ i=irate, m=65-(25+t),k=12)-levelPremium*axn(soa08Act,

+ x=25+t, n=65-(25+t),k=12) else {

+ out <- yearlyRate*axn(soa08Act, x=25+t, i=irate,k=12)

+ }

Giorgio Alfredo Spedicato 35

0 20 40 60 80 100

0
50

00
0

10
00

00
15

00
00

Deferred annuity benefit reserve

years

am
ou

nt

Figure 3: Benefit reserve profile for the exemplified annuity contract

+ return(out)

+ }

R> years <- seq(from=0, to=getOmega(soa08Act)-25-1,by=1)

R> annuityRes <- numeric(length(years))

R> for(i in years) annuityRes[i+1] <- annuityReserve(i)

R> dataAnnuityRes <- data.frame(years=years, reserve=annuityRes)

36 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

Expense considerations

The premium paid by the policyholder usually contains an allowance for expenses and profit
loading. Expenses cover policy servicing and the producers’ commissions. The insurers’
profit load is explicitly taken into account in the benefit premium as a flat amount, or,
sometimes, as a percentage of the final premium. In other cases implicit profit loading is
generated by using demographic and financial assumptions more prudentially than would be
necessary. The equivalence principle can be extended to both the gross premium, G, and the
expense augmented reserve, tV

E , when expense allowances are taken into account by using
Equation 18.

G = APV (Benefits) + APV (Expenses)

tV
E = APV (Benefits) + APV (Expenses) − APV (Gross Premium)

(18)

The following example shows how an expense loaded premium G is calculated for a $ 100,000
whole life insurance on a 35 year old policyholder. 10% of premium expense per year, 25
policy expenses per year, and annual maintenance expense of 2.5 per 1,000 units of capital
are assumed.

The equation to be solved is G ∗ ä35 = 100000 ∗ A35 + (2.5 ∗ 100000/1000 + 25 + 0.1G) ∗ ä35.

R> G <- (100000*Axn(soa08Act, x=35) + (2.5*100000/1000 + 25)*

+ axn(soa08Act,x=35))/((1-.1)*axn(soa08Act,x=35))

R> G

[1] 1234.712

Insurances and annuities on two lives

The package provides functions designed to evaluate life insurances and annuities on two lives.
The following example checks the actuarial mathematics identity on joint and last survival
status annuities expressed by Equation 19.

axy = ax + ay − axy (19)

R> twoLifeTables <- list(maleTable=soa08Act, femaleTable=soa08Act)

R> axn(soa08Act, x=65,m=1)+axn(soa08Act, x=70,m=1)-

+ axyzn(tablesList=twoLifeTables, x=c(65,y=70),status="joint",m=1)

[1] 10.35704

R> axyzn(tablesList=twoLifeTables, x=c(65,y=70), status="last",m=1)

[1] 10.35704

Finally, reversionary annuities (annuities payable to life y upon death of x) APVs, ax♣y =
ay − axy, can also be computed by combining lifecontingencies functions as the code below
shows.

Giorgio Alfredo Spedicato 37

R> axn(actuarialtable = soa08Act, x=60,m=1)-

+ axyzn(tablesList = twoLifeTables,

+ x=c(65,60),status="joint",m=1)

[1] 2.695232

4.4. Stochastic analysis

This last section illustrates some stochastic analysis that can be performed by the lifecon-

tingencies package, in both demographic (Section 4.4.1) and life insurance contexts (Sec-
tion 4.4.2).

Demographic examples

The age-until-death, both in the continuous, T̃x, or curtate form, K̃x, is a stochastic variable
whose distribution is intrinsic in the deaths within a life table. Therefore, a dedicated function,
rLife, has been designed within the lifecontingencies package to draw a sample from either
K̃x or T̃x. Drawing from Kx is quite simple: the distribution of the curtate future lifetime

is defined as Pr
[

K̃x = t
]

= dx+t

ω−x
∑

j=0

lx+j

, and it is passed as a prob parameter to base R sample

function. For example, the code below shows how the rLife function can be used to draw
a sample of size five from the curtate future lifetime of a policyholder aged 45 as implied by
the SOA life table.

R> rLife(n = 5, object = soa08Act, x = 45, type = "Kx")

[1] 40 18 29 12 51

rLifexyz represents the multiple lives extension of the rLife function. It returns a matrix of
sampled expected future lifetimes of J policyholders given a list of J lifetables. The simulation
approach is useful in evaluating demographic quantities when the analytical approach is not
feasible. One example could be the expected years of widowhood, which Equation 20 defines.
T̃x and T̃y in Equation 20 stand for complete future lifetimes for the husband and the wife
respectively.

E
[

W̃y

]

= max

0, T̃y − T̃x

(20)

The following code shows how this function could be used to evaluate the expected years of
widowhood for the wife of a couple. The example makes use of the Italian projected life tables
ips55M and ips55F, whose derivation was shown in Section 4.2.

R> futureLifetimes <- as.data.frame(rLifexyz(n=numSim,

+ tablesList=list(husband=ips55M,wife=ips55F),

+ x=c(68,65), type="Tx"))

R> names(futureLifetimes) <- c("husband","wife")

38 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

Distribution of widowance yars

Widowance years

D
en

si
ty

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 4: Years of widowance distribution, where the red line represents the expected value.

R> temp <- futureLifetimes$wife - futureLifetimes$husband

R> futureLifetimes$widowance <- sapply(temp, max,0)

R> mean(futureLifetimes$widowance)

[1] 7.43

Giorgio Alfredo Spedicato 39

Finally, Figure 4 shows the distribution of widowance years as determined in the previous
example.

Actuarial mathematics examples

The present value of the future benefits cash flows distribution, Z̃, is a random variable. It
is a function of both the interest rate and the indicator variables which are determined by
the life status of the insured. Both of these quantities can be deemed stochastic. However,
interest rates are considered deterministic within the framework of the current version of
lifecontingencies package.
The generation of n-size variates from Z̃ is performed by the following algorithm:

1. Define a function, PV that returns the present value of the life contingent insurance
benefits, given the age at death of the policyholder, as T0, PV (T0). Within the lifecon-

tingencies package, present value functions have been defined for the most important
life contingencies. Such functions are not visibly exported in the package namespace.

2. Sample n variates from T0.

3. Use T0 variates as inputs for PV (T0) to get variates from Z̃.

The code below shows the internal function .faxn, which returns the present value of a life
contingent insurance. .faxn is internally called by the rLifeContingencies function, as
discussed below. T, y, n, i, m, k represent the age at death, the attained age, the term of
the annuity, the interest rate, the deferring period, and the fractional payment frequency
respectively.

.faxn<-function(T,y,n, i, m, k=1)

{

out <- numeric(1)

K <- T-y

if(K<m) {

out <- 0

} else {

times <- seq(from=m, to=min(m+n-1/k,K),by=1/k)

out <- presentValue(cashFlows=rep(1/k, length(times)),

timeIds=times, interestRates=i)

}

return(out)

}

Life contingency insurance functions return the APV, E
[

Z̃
]

, as a default value. The func-

tions in Table 5 compute APVs by using the current payment technique. Another possible
approach for evalutating APVs, even if computationally inefficient, could be to draw a sample
from the underlying Z̃ distribution and compute its sample mean.

Every function in Table 5 returns a sample of size one if the type parameter default value,
"EV" (expected value), is overridden by the string "ST" (stochastic).

40 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

However, when samples of greater size are required, the most straightforward approach is
the rLifeContingencies function. The code below shows how to generate Z̃ variates from
either term life insurances, increasing term insurances, temporary annuities, or endowment
insurances respectively. For each example, the lack of bias is verified by comparing the mean
of the sample with the theoretical APV using a classical t - test. All examples refer to an
individual aged 20 with a 40 year insurance. Figure 5 shows the resulting Z̃ distributions.

R> APVAxn <- Axn(soa08Act,x=25,n=40,type="EV")

R> APVAxn

[1] 0.04797088

R> sampleAxn <- rLifeContingencies(n=numSim, lifecontingency="Axn",

+ object=soa08Act,x=25,t=40,parallel=FALSE)

R> tt1 <-t.test(x=sampleAxn,mu=APVAxn)$p.value

R> APVIAxn <- IAxn(soa08Act,x=25,n=40,type="EV")

R> APVIAxn

[1] 1.045507

R> sampleIAxn <- rLifeContingencies(n=numSim, lifecontingency="IAxn",

+ object=soa08Act,x=25,t=40,parallel=FALSE)

R> tt2 <-t.test(x=sampleIAxn,mu=APVIAxn)$p.value

R> APVaxn <- axn(soa08Act,x=25,n=40,type="EV")

R> APVaxn

[1] 15.46631

R> sampleaxn <- rLifeContingencies(n=numSim, lifecontingency="axn",

+ object=soa08Act,x=25,t=40,parallel=FALSE)

R> tt3 <- t.test(x=sampleaxn,mu=APVaxn)$p.value

R> APVAExn <- AExn(soa08Act,x=25,n=40,type="EV")

R> APVAExn

[1] 0.1245487

R> sampleAExn <- rLifeContingencies(n=numSim, lifecontingency="AExn",

+ object=soa08Act,x=25,t=40,parallel=FALSE)

R> tt4 <-t.test(x=sampleAExn,mu=APVAExn)$p.value

R> c(tt1, tt2,tt3, tt4)

[1] 0.1157566 0.6123668 0.8523421 0.7995087

The same analysis can be performed on life contingencies insurance on two (or more lives) as
listings exemplify below.

Giorgio Alfredo Spedicato 41

Term Insurance

Actuarial present value

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80

Increasing Life Insurance

Actuarial present value

D
en

si
ty

0 1 2 3 4 5 6

0
2

4
6

8

Temporary Annuity Due

Actuarial present value

D
en

si
ty

5 10 15

0.
0

0.
5

1.
0

1.
5

Endowment Insurance

Actuarial present value

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6

0
20

40
60

Figure 5: Life insurance stochastic variables distributions. Red vertical line represents APV.

42 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

R> tablesList=list(soa08Act,soa08Act);x=c(60,60);m=0;status="last";t=30;k=1

R> APVAxyz<-Axyzn(tablesList=tablesList,x=x,n=t,status=status,type="EV")

R> samplesAxyz<-rLifeContingenciesXyz(n=numSim,lifecontingency = "Axyz",

+ tablesList = tablesList,x=x,t=t,m=m,k=k,status=status,

+ parallel=FALSE)

R> tt5<-t.test(x=samplesAxyz, mu=APVAxyz)$p.value

R> APVaxyz<-axyzn(tablesList=tablesList,x=x,n=t,m=m,k=k,status=status,type="EV")

R> samplesaxyz<-rLifeContingenciesXyz(n=numSim,lifecontingency = "axyz",

+ tablesList = tablesList,x=x,t=t,m=m,k=k,status=status,

+ parallel=FALSE)

R> tt6<-t.test(x=samplesaxyz, mu=APVaxyz)$p.value

R> c(tt5,tt6)

[1] 0.3111299 0.4808113

All contingency functions have been provided an argument power, whose default value is set to
one, that becomes useful when moments higher than one (the expected) of the life contingency
random variable are needed. For example a direct computation of term insurance variance
can be performed as follows.

R> var(sampleAxn)

[1] 0.008209687

R> Axn(soa08Act, x=25,n=40, power=2)-Axn(soa08Act, x=25,n=40, power=1)^2

[1] 0.01468876

The example that follows verifies that the variance an endowment insurance, calculated by
the rule of moments, matches with the variance of the simulated distribution.

The full distribution of a life contingent insurance variable Z̃, can be used to compute pre-
miums using the percentile premium principle. Under this approach, the premium is set to
ensure that the insurer will suffer financial loss with a sufficiently low probability (made ex-
plicit by the percentile).
An example will clarify the concept. For a 40 - year insurance on a single policyholder aged 25,
the actuarial present value of benefits, i.e., the expected value of discounted future benefits,
would be

R> APV <- Axn(actuarialtable = soa08Act, x=25, n=40)

R> APV

[1] 0.04797088

while the benefit premium at the 90th percentile, that is, the premium that would make the
insurer incurr an underwriting loss with 10% probability, would be

Giorgio Alfredo Spedicato 43

R> samples <- rLifeContingencies(n=numSim, lifecontingency = "Axn",

+ object= soa08Act, x=25,t=40,parallel=FALSE)

R> pct90Pr <- as.numeric(quantile(samples,.90))

R> pct90Pr

[1] 0.1234772

Finally, if N = 1000 similar policyholders were insured, the Law of Large Numbers would
lead to a strong reduction in the premium charged on each policyholder, as computed below.

R> pct90Pr2 <- qnorm(p=0.90,mean=APV, sd=sd(samples)/sqrt(1000))

R> pct90Pr2

[1] 0.05307155

The final example in this paper shows how the stochastic functions bundled in the lifecontin-

gencies package can be used to make an actuarial appraisal of embedded benefits.
Suppose a corporation grants its 100 employees life insurance benefits equal to their annual
salary and payable at the month of death. Moreover, suppose that:

1. The expected value and the standard deviation of the salary are $ 50,000 and $ 15,000
respectively and the salaries follow a log-normal distribution.

2. The distribution of the employees’ age is uniform on [25,65]. Assume 65 is the retirement
age.

3. The SOA illustrative table represents an unbiased description of the population mor-
tality.

4. Assume no lapse to hold.

5. The policy length is annual.

We evaluated the best estimate, or the fair value of the insured benefits according to both
IFRS accounting standards and risk margin measure. In this example, the risk margin mea-
sure, which is the difference between the 75th percentile and the best estimate, will be used.
IFRS standards (Post, Grandl, Schmidl, and Dorfman 2007) define the fair value of an insur-
ance liability as the sum of its best estimate and its risk margin.

In the initial part of the example, we set up the parameter of the model and configured the
parallel computation facility available with the package parallel. The code parallelization has
been adapted from examples found in the (McCallum and Weston 2011) textbook.

R> nsim <- 50

R> employees <- 100

R> salaryDistribution <- rlnorm(n=employees,m=10.77668944,s=0.086177696)

R> ageDistribution <- round(runif(n=employees,min=25, max=65))

R> policyLength <- sapply(65-ageDistribution, min, 1)

44 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

R> getEmployeeBenefit<-function(index,type="EV") {

+ out <- numeric(1)

+ out <- salaryDistribution[index]*Axn(actuarialtable=soa08Act,

+ x=ageDistribution[index],n=policyLength[index],

+ i=0.02,m=0,k=1, type=type)

+ return(out)

+ }

R> require(parallel)

R> cl <- makeCluster(1)

R> worker.init <- function(packages) {

+ for (p in packages) {

+ library(p, character.only=TRUE)

+ }

+ invisible(NULL)

+ }

R> clusterCall(cl,

+ worker.init, c('lifecontingencies'))

[[1]]

NULL

R> clusterExport(cl, varlist=c("employees","getEmployeeBenefit",

+ "salaryDistribution","policyLength",

+ "ageDistribution","soa08Act"))

Then we perform best estimate and risk margin calculations.

R> employeeBenefits <- numeric(employees)

R> employeeBenefits <- parSapply(cl, 1:employees,getEmployeeBenefit, type="EV")

R> employeeBenefit <- sum(employeeBenefits)

R> benefitDistribution<-numeric(nsim)

R> yearlyBenefitSimulate<-function(i)

+ {

+ out <- numeric(1)

+ expenseSimulation <- numeric(employees)

+ expenseSimulation <- sapply(1:employees, getEmployeeBenefit, type="ST")

+ out <- sum(expenseSimulation)

+ return(out)

+ }

R> benefitDistribution <- parSapply(cl, 1:nsim,yearlyBenefitSimulate)

R> stopCluster(cl)

R> riskMargin <- as.numeric(quantile(benefitDistribution,.75)-employeeBenefit)

R> totalBookedCost <- employeeBenefit+riskMargin

R> employeeBenefit

[1] 22754.53

Giorgio Alfredo Spedicato 45

R> riskMargin

[1] 23941.24

R> totalBookedCost

[1] 46695.77

4.5. Multiple Decrement Models within lifecontingencies Package

Until now no R package provides a good tool to manage multiple decrement tables, even if
Deshmukh (2012) provides an R based focus on multiple decrement tables with applications
in R. The topic is deeply related to multistate analysis of life histories on which Willekens
(2014) provide a very good introduction. The lifecontingencies package’s mdt class that has
been specifically engineered to manage multiple decrements models with R. Applied examples
will follows.

Following notation in Finan (2014), we provide definitions of the key quantities that allow

to understand the main concepts regarding Multiple Decrement (MD) theory. Be l
(τ)
x =

∑

j=1...m

l
(j)
x survivors to age x that will, at future ages, be fully depleted by m causes of decre-

ment. d
(j)
x = l

(j)
x − l

(j)
x+1 represents the expected number of lives exiting from the population

between ages x and x + 1 due to decrement j. Therefore it follows that nd
(j)
x =

∑

t=0...n−1
d

(j)
x+t.

The probability that a life x will leave the group within one year as a result of decrement j

is nq
(j)
x = nd

(j)
x

l
(τ)
x

. It follows that q
(τ)
x =

m
∑

j=1
q

(j)
x and that tq

(τ)
x = 1−tp

(τ)
x =

∑

j
tq

(τ)
x .

The mdt class

Examples in this paper are worked on slides provided in Valdez (2011).

We create a mdt class object. We can use the first example found on (?, p. 4).

R> valdezDf<-data.frame(

+ x=c(50:54),

+ lx=c(4832555,4821937,4810206,4797185,4782737),

+ heart=c(5168, 5363, 5618, 5929, 6277),

+ accidents=c(1157, 1206, 1443, 1679,2152),

+ other=c(4293,5162,5960,6840,7631)

+)

R> valdezMdt<-new("mdt",name="ValdezExample",table=valdezDf)

Added fictional decrement below last x and completed x and lx until zero....

Completed the table at top, all decrements on first cause

The mdt class is an S4 class object (Chambers 2008) comprised by a character slot name and
a data.frame slot table that is composed by following columns:

46 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

1. x: the age, from 0 to ω.

2. lx: the subject living (at risk) at the beginning of age.

3. one or more colums for different causes of decrements.

Values within table item represents absolute number of subjects at risk at the beginning of
age x and dying for cause j during period x - x + 1.

Within the various methods defined within the mdt class, setValidity performs consistency
checks to properly create the mdt object. In particular, it verifies whether:

1. x and lx exist and that they are consistent. x should start from 0 and flows by incre-
ments of one. The first lx value should be equal to the sum of all decrements and that
lx = lx−1 − (dx−1,1 + dx−1,2 + . . . + dx−1,k) for any x.

2. If the decrements (or x and lx) have been provided only for partial ages, the table is
completed below (from 0 to lx−1) assuming a decrement rate of 0.01 for the first cause
of death.

3. if the decrements at last provided age, ω, do not sum to lω, the table is incremented by
one row such as lxω+1 = lxω − (dω,1 + dω,2 + . . . + dω,j).

As shown, when the table is sanitized the operations performed are reported on logs.

An internal function, .tableSanitizer tries to fix the limitations on the input table in order
it to meet the class definition requirements.

Table can be viewed thanks to a print and show method (output omitted for simplicity).
Similarly, it is possible to export a mdt to a data.frame or to a markovchainList object
(from markovchain package).

R> print(valdezMdt)

R> valdezDf<-as(valdezMdt,"data.frame")

R> require(markovchain)

R> valdezMarkovChainList<-as(valdezMdt,"markovchainList")

Two specific methods have been defined for mdt class objects: getOmega, that returns the
maximum attainable age (similar to the one of lifetable class), and getDecrements, that
returns the decrements (by means of the names within table slot different from x and lx).

R> getOmega(valdezMdt)

[1] 55

R> getDecrements(valdezMdt)

[1] "heart" "accidents" "other"

Giorgio Alfredo Spedicato 47

A summary method is available as well.

R> summary(valdezMdt)

This is Multiple Decrements Table: ValdezExample

Omega age is: 55

Stored decrements are: heart accidents other

Decrement probabilities calculation

The lifecontingencies package makes easy to compute d
(j)
x , nd

(j)
x as well as nd

(τ)
x quantities

thanks to dxt function.

R> dxt(valdezMdt,x=51,decrement="other")

[1] 5162

R> dxt(valdezMdt,x=51,t=2, decrement="other")

[1] 11122

R> dxt(valdezMdt,x=51)

[1] 11731

Probabilities could be computed as well.

R> dxt(valdezMdt,x=51,t=2, decrement="other")

[1] 11122

R> pxt(valdezMdt,x=50,t=3)

[1] 0.9926809

R> qxt(valdezMdt,x=53,t=2,decrement=1)

[1] 0.002544409

It is possible to generate random traiectories of a life subject to multiple cause of decrements
as the following code shows.

R> rmdt(n = 2,object = valdezMdt,x = 50,t = 2)

48 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

1 2

50 "alive" "alive"

51 "alive" "alive"

52 "alive" "alive"

Associated Single Decrement Table calculation

For each force of decrement µj (x + t) the Associated Single Decrement Table (ASDT) is a
decrement models that assumes survivoship depends only from j. Within ASDT the equations
shown in Equation 21 are true :

tp
′(j)
x = exp

∫ b
a µj (x + s) ds

tq
′(j)
x = 1 − tp

′(j)
x

tp
(τ)
x =

∏m
j=1 tp

′(j)
x

(21)

Assuming uniform distribution of decrements (UDD), that is tq
(j)
x = t ∗ q

(j)
x , t ∈ [0, 1], then

Equation 22 is valid:

p′(j)
x =

1 − t ∗ q(τ)
x

q
(j)
x

q
(τ)
x = 1 − q′(j)

x (22)

This has been implemented in the qxt.prime.fromMdt function:

R> qxt.prime.fromMdt(object = valdezMdt,x=53, decrement="accidents")

[1] 0.0003504636

If UDD holds also for each associated single decrement Equation 24 is also valid:

tq
(j)
x = tq

′(j)
x ∗

∫ t

0

∏

i̸=j

1 − s ∗ q′(t)
x

ds (23)

The Equation ?? is a particular case (m = 2 and t = 1) case of the Equation 24

q(2)
x = q′(2)

x

1 − 0.5 ∗ q′(1)
x

(24)

The qxt.fromQxprime helps in computing the Equation 24. In particular, the following
example replicates (Finan 2014, Example 67.2):

R> qxt.fromQxprime(qx.prime = 0.01,other.qx.prime = c(0.03,0.06))

[1] 0.009556

Giorgio Alfredo Spedicato 49

Actuarial Applications

The package now offers limited capabilities to fit multiple decrement insurances, e.g. (A1
x:n)(1)

The example in (Finan 2014, p. 674), cites: A 3-year term issued to (16) pays 20,000 at the
end of year of death if death results from an accident. The mdt table is below created.

R> myTable<-data.frame(x=c(16,17,18),

+ lx=c(20000,17600,14520),

+ da=c(1300,1870,2380),

+ doc=c(1100,1210,1331)

+)

R> myMdt<-new("mdt",table=myTable,name="Sample")

Added fictional decrement below last x and completed x and lx until zero....

Completed the table at top, all decrements on first cause

The value of (A 1
16:3

)(a) is below calculated

R> Axn.mdt(object=myMdt,x=16,i=.1,decrement="da")

[1] 0.1363636

Another example has been inspired by data found in De Angelis, Paolo and Di Falco, L.
(2016). We use life tables from the quoted book and the following functions (still based on
single decrement tables) to compute the APV of (costant or variable) annuity with multiple
decrement. The first type of annuity pays benefits are payable while the annuitant is in
current state and cease upon transition to another state.

R> axnmdt.firsttype<-function (object, x, n, i , payment="advance", delta=0) {

+ #delta is the annuity indexing

+ out <- numeric(1)

+ if (!(class(object) %in% c("lifetable", "actuarialtable", "mdt")))

+ stop("Error! Only lifetable, actuarialtable or mdt classes are accepted")

+ if (missing(object))

+ stop("Error! Need a Multiple decrement table")

+ if (missing(x))

+ stop("Error! Need age!")

+ if (x > getOmega(object)) {

+ stop("Age greater than Omega")

+ }

+ if(class(object)=="mdt"){

+ if (x < min(object@table$x)) {

+ stop("Age lower than minimum age")

+ }}

+ if(class(object)=="actuarialtable"){

+ if (x < min(object@x)) {

50 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

+ stop("Age lower than minimum age")

+ }}

+ if(!(missing(i))){

+ interest <- i

+ }else{

+ if(class(object)=="actuarialtable"){

+ interest=object@interest

+ }else{

+ stop("Needed Interest Rate ")

+ }

+ }

+ if (missing(n))

+ n <- (getOmega(object) - x)

+ if (n == 0) {

+ stop("Contract duration equal to zero")

+ }

+ probs = numeric(n)

+ times = seq(from = 0, to = n-1, by = 1)

+ if (payment == "arrears") times = times + 1

+ for (j in 1:length(times)) probs[j] = pxt(object, x, times[j])

+ out <- sum(apply(cbind(probs,((1 + interest)/(1+delta))^-times),1,prod))

+ return(out)

+ }

Data and examples are taken from De Angelis, Paolo and Di Falco, L. (2016)

R> data("de_angelis_di_falco")

R> HealthyMaleTable2013 <- de_angelis_di_falco$HealthyMaleTable2013

R> DAT<-new("actuarialtable", x=de_angelis_di_falco$DisabledMaleLifeTable$age, lx=de_angelis_di_falco$DisabledMaleLifeTable$

+ name="DisabledTable",i=0.03)

R> axnmdt.firsttype(DAT,x=65,n=10,i=0.03,payment="arrears",delta=0.02)

[1] 3.73169

R> axnmdt.firsttype(DAT,65,10,payment="arrears",delta=0.02)

[1] 3.73169

R> axnmdt.firsttype(DAT,65,10,payment="arrears",i=0.03,delta=0.02)

[1] 3.73169

R> #Last case equal to axn

R> axnmdt.firsttype(DAT,65,10,payment="arrears",delta=0)

[1] 3.461472

Giorgio Alfredo Spedicato 51

R> axn(DAT,65,10,payment="arrears")

[1] 3.461472

5. Discussion

5.1. Advantages, limitations, and future perspectives

The lifecontingencies package allows actuaries to perform demographic, financial and actuarial
mathematics calculations within R; in particular, life contingent insurance contracts can be
priced and reserved. In addition, a peculiar feature of lifecontingencies is its ability to generate
variates from the future life time and the underlying stochastic distributions of life contingent
insurances.

One of the most significant limitations of the most recent package release is that few functions
are available to model multiple decrements tables. In addition, continuous-time life contingent
models are currently not handled explicitly.

We expect to remove such limitations in the future. In addition, we expect to provide coerce
methods for packages that specialize in demographic analysis, like demography and LifeTa-

bles. Furthermore, we wish to allow easier sharing of analyses with interest rate modeling
packages like termstrc.

Finally, code optimization and improvement is carried out continuously. The extension of
parallel computation features, memory usage profiling, and the use of C or C++ code frag-
ments in select parts of the code have begun (for Rcpp package, Eddelbuettel (2013b) usage)
or being planned for the near future.

5.2. Accuracy

The accuracy of the calculations has been verified by checking numerical examples reported
in Bowers et al. (1997) and in the lecture notes of "Actuarial Mathematics" taken by the
author years ago at The Catholic University of Milan (Mazzoleni 2000). Such test have been
implemented with unit root testing in the package testthat, Wickham (2011). The numerical
results are identical to those reported in the cited references for most functions, with the
exception of fractional payment annuities; for these, the answer is only reported up to the
fifth decimal. The reason for such inaccuracy is that the package calculates the APV using
the direct sum of fractional survival probabilities, while the results reported in the cited
references are obtained by closed formulas.

Finally, it is worth noting that the package and functions herein are provided as is without
any guarantee regarding the accuracy of calculations. The author disclaims any liability
arising from potential losses due to direct or indirect use of this package. Users are invited
to notice the author any potential bug from the github package site https://github.com/

spedygiorgio/lifecontingencies.

Acknowledgments

https://github.com/spedygiorgio/lifecontingencies
https://github.com/spedygiorgio/lifecontingencies

52 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

The author wishes to thank all those whose suggestions contributed to the package’s en-
hancements. In particular, he would like to thank Christophe Dutang, Tim Riffle, Reinhold
Kainhofer and Kevin J. Owens for their suggestions on code and vignettes. A special thank
also to Anton Sylchenko for the copy-editing. Also, many thanks go out to the anonymous
Journal of Statistical Software referees that helped improve the quality of the package and
underlying vignettes.

References

Anderson J (1999). Commutation Functions. Education and Examination Committee of the
Society of Actuaries.

Bowers NL, Jones DA, Gerber HU, Nesbitt CJ, Hickman JC (1997). Actuarial Mathematics,

2nd Edition. Society of Actuaries. ISBN 9780938959106.

Broverman S (2008). Mathematics of Investment and Credit. ACTEX Academic Series.
ACTEX Publications. ISBN 9781566986571.

Chambers J (2008). Software for Data Analysis: Programming with R. Statistics and com-
puting. Springer-Verlag. ISBN 9780387759357.

Chris Ruckman, Joe Francis (2006). Financial Mathematics: A Practical Guide for Actuaries

and Other Business Professionals. Warren Centre for Actuarial Studies and Research, 2nd
edition edition.

Christophe Dutang, Vincent Goulet, Mathieu Pigeon (2008). “actuar: An R Package for Ac-
tuarial Science.” Journal of Statistical Software, 25(7), 38. URL http://www.jstatsoft.

org/v25/i07.

De Angelis, Paolo, Di Falco, L (2016). Assicurazioni sulla salute: caratteristiche, modelli

attuariali e basi tecniche. Il Mulino. Il Mulino. ISBN 9788815260840. URL https://

books.google.it/books?id=D56bjgEACAAJ.

Deshmukh S (2012). Multiple Decrement Models in Insurance: An Introduction Using R.
SpringerLink : Bücher. Springer. ISBN 9788132206590.

Dickson D, Hardy M, Waters H (2009). Actuarial Mathematics for Life Contingent Risks. In-
ternational Series on Actuarial Science. Cambridge University Press. ISBN 9780521118255.

Eddelbuettel D (2013a). “CRAN Task View: Empirical Finance.” Version 2013-09-27, URL
http://http://CRAN.R-project.org/view=Finance.

Eddelbuettel D (2013b). Seamless R and C++ Integration with Rcpp. Springer, New York.
ISBN 978-1-4614-6867-7.

Ferstl R, Hayden J (2010). “Zero-Coupon Yield Curve Estimation with the Package termstrc.”
Journal of Statistical Software, 36(1), 1–34. URL http://www.jstatsoft.org/v36/i01/.

Finan MA (2014). “A Reading of the Theory of Life Contingency Models: A Preparation
for Exam MLC.” http://faculty.atu.edu/mfinan/actuarieshall/MLCbook2.pdf. Ac-
cessed: 01/01/2015.

http://www.jstatsoft.org/v25/i07
http://www.jstatsoft.org/v25/i07
https://books.google.it/books?id=D56bjgEACAAJ
https://books.google.it/books?id=D56bjgEACAAJ
http://http://CRAN.R-project.org/view=Finance
http://www.jstatsoft.org/v36/i01/
http://faculty.atu.edu/mfinan/actuarieshall/MLCbook2.pdf

Giorgio Alfredo Spedicato 53

Gesmann M, Zhang Y (2011). ChainLadder: Mack, Bootstrap, Munich and Multivariate-

chain-ladder Methods. R package version 0.1.4-3.4.

Guirreri S (2010). Simulating the Term Structure of Interest Rates with Arbitrary Marginals.
Ph.D. thesis, University of Palermo - Department of Statistics and Mathematics ”S.
Vianelli”, Palermo. URL http://www.guirreri.host22.com.

IBM Corp (2012). SPSS, Release 21.0 Advanced Statistical Procedures Companion. IBM
Corp., Armonk, NY.

Keyfitz N, Caswell H (2005). Applied Mathematical Demography. Statistics for biology and
health. Springer-Verlag. ISBN 9780387225371.

Klugman S, Panjer H, Willmot G, Venter G (2009). Loss Models: From Data to Decisions.
3rd edition. Wiley New York.

Lee R, Carter L (1992). “Modeling and Forecasting U.S. Mortality.” Journal of the American

Statistical Association, 87(419), 659–675. doi:10.2307/2290201.

Mazzoleni P (2000). Appunti di Matematica Attuariale. EDUCatt Università Cattolica. ISBN
9788883110825.

McCallum Q, Weston S (2011). Parallel R. O’Reilly Media. ISBN 9781449309923.

Post T, Grandl H, Schmidl L, Dorfman MS (2007). “Implications of IFRS for the European
Insurance Industry Insights from Capital Market Theory.” Risk Management and Insur-

ance Review, 10(2), 247–265. ISSN 1540-6296. doi:10.1111/j.1540-6296.2007.00117.x.
URL http://dx.doi.org/10.1111/j.1540-6296.2007.00117.x.

Riffe T (2011). LifeTable: LifeTable, a Package with a Small Set of Useful Lifetable Functions.

R package version 1.0.1, URL http://sites.google.com/site/timriffepersonal/

r-code/lifeable.

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale and
Shape.” Applied Statistics, 54, 507–554.

Rob J Hyndman, Heather Booth, Leonie Tickle, John Maindonald (2011). demography:

Forecasting Mortality, Fertility, Migration and Population Data. R package version 1.09-1,
URL http://CRAN.R-project.org/package=demography.

SAS Institute Inc (2011). The SAS System, Version 9.3. SAS Institute Inc., Cary, NC. URL
http://www.sas.com/.

Spedicato GA (2013). “The lifecontingencies Package: Performing Financial and Actuarial
Mathematics Calculations in R.” Journal of Statistical Software, 55(10), 1–36. URL http:

//www.jstatsoft.org/v55/i10/.

Spedicato, Giorgio Alfredo (2015). markovchain: discrete time Markov chains made easy. R
package version 0.3.

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale and
Shape (GAMLSS) in R.” Journal of Statistical Software, 23(7), 1–46. URL http://www.

jstatsoft.org/v23/i07/.

http://www.guirreri.host22.com
https://doi.org/10.2307/2290201
https://doi.org/10.1111/j.1540-6296.2007.00117.x
http://dx.doi.org/10.1111/j.1540-6296.2007.00117.x
http://sites.google.com/site/timriffepersonal/r-code/lifeable
http://sites.google.com/site/timriffepersonal/r-code/lifeable
http://CRAN.R-project.org/package=demography
http://www.sas.com/
http://www.jstatsoft.org/v55/i10/
http://www.jstatsoft.org/v55/i10/
http://www.jstatsoft.org/v23/i07/
http://www.jstatsoft.org/v23/i07/

54 lifecontingencies: Financial and Actuarial Mathematics Calculations in R

SunGard (2012). iWorks Prophet. SunGard. URL http://www.prophet-web.com/.

Team RDC (2012). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

The MathWorks, Inc (2011). MATLAB – The Language of Technical Computing, Ver-

sion R2011b. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.

com/products/matlab/.

Towers Watson (2011). MoSes: Risk and Financial Modelling Software for Life Insurers.
Towers Watson. URL http://www.towerswatson.com/en/Services/Tools/moSes/.

Valdez E (2011). “Multiple Decrement Models: Math 3631 Actuarial Mathematics II.” http:

//www.math.uconn.edu/~valdez/math3631s11/M3631Weeks7to8-S2011-annot.pdf. Ac-
cessed: 25/04/2014.

Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3, 5–10. URL
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf.

Willekens F (2014). Multistate Analysis of Life Histories with R. Use R! Springer Inter-
national Publishing. ISBN 9783319083834. URL https://books.google.it/books?id=

Cd2CBAAAQBAJ.

Zhang W (2011). cplm: Monte Carlo EM Algorithms and Bayesian Methods for Fitting

Tweedie Compound Poisson Linear Models. R package version 0.2-1, URL http://CRAN.

R-project.org/package=cplm.

Affiliation:

Giorgio Alfredo Spedicato
Ph.D ACAS C.STAT
Via Firenze 11 20037 Italy
E-mail: spedygiorgio@gmail.com

URL: https://github.com/spedygiorgio/lifecontingencies

http://www.prophet-web.com/
http://www.R-project.org/
http://www.R-project.org/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.towerswatson.com/en/Services/Tools/moSes/
http://www.math.uconn.edu/~valdez/math3631s11/M3631Weeks7to8-S2011-annot.pdf
http://www.math.uconn.edu/~valdez/math3631s11/M3631Weeks7to8-S2011-annot.pdf
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://books.google.it/books?id=Cd2CBAAAQBAJ
https://books.google.it/books?id=Cd2CBAAAQBAJ
http://CRAN.R-project.org/package=cplm
http://CRAN.R-project.org/package=cplm
mailto:spedygiorgio@gmail.com
https://github.com/spedygiorgio/lifecontingencies

	Introduction
	Statistical and financial foundations of life contingencies
	The structure of the package
	Code and examples
	Classical financial mathematics example
	Interest rate functions
	Analysis of present value and internal rate of return
	Annuities and future values
	Loan amortization
	Bond pricing
	Duration and ALM

	Analysis of life tables and actuarial tables
	Creating lifetable and actuarialtable objects
	Basic demographic analysis

	Classical actuarial mathematics examples
	Life insurance examples
	Life annuity examples
	Benefit reserves examples
	Expense considerations
	Insurances and annuities on two lives

	Stochastic analysis
	Demographic examples
	Actuarial mathematics examples

	Multiple Decrement Models within lifecontingencies Package
	The mdt class
	Decrement probabilities calculation
	Associated Single Decrement Table calculation
	Actuarial Applications

	Discussion
	Advantages, limitations, and future perspectives
	Accuracy

