Package 'ljr'

May 1, 2016

Version 1.4-0

Date 2016-4-30

Title Logistic Joinpoint Regression

Author Michal Czajkowski, Ryan Gill, Greg Rempala
Maintainer Ryan Gill <ryan.gill@louisville.edu></ryan.gill@louisville.edu>
Description Fits and tests logistic joinpoint models.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-05-01 18:55:59
R topics documented:
kcm
ljr0
ljr01
ljr1
ljr11
ljrb
ljrf
ljrjk
ljrk
ljrkk
Index 1

2 ljr0

kcm	Kentucky yearly cancer mortality from 1999-2005.
kcm	Kentucky yearly cancer mortality from 1999-2005.

Description

This table gives the yearly mortality counts due to neoplasms (ICD 10 codes C00-D48) and population sizes for Kentucky from 1999-2005. For more information, see http://wonder.cdc.gov/wonder/help/cmf.html.

Usage

data(kcm)

Format

A 7 by 3 data frame.

Source

Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File 1999-2005. CDC WONDER On-line Database, compiled from Compressed Mortality File 1999-2005 Series 20 No. 2K, 2008. Accessed at http://wonder.cdc.gov/cmf-icd10.html on May 5, 2008.

ljr0 MLE with 0 joinpoints

Description

Determines the maximum likelihood estimate of model coefficients in the logistic joinpoint regression model with no joinpoints.

Usage

```
ljr0(y,n,tm,X,ofst)
```

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of observation times.
Χ	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.

1jr01 3

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

Coef A table of coefficient estimates.

wlik The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

```
ljr01,ljrb,ljrf
```

Examples

```
data(kcm)
attach(kcm)
ljr0(Count,Population,Year+.5)
```

ljr01

Perform test of 0 vs 1 joinpoints.

Description

This function tests the null hypothesis of 0 joinpoints versus the alternative of one joinpoint based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

```
ljr01(y,n,tm,X,ofst,R=1000,alpha=.05)
```

1jr01

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Χ	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.
alpha	significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pval	The estimate of the p-value via simulation.

Coef A table of coefficient estimates.

Joinpoint The estimates of the joinpoint, if it is significant.

wlik The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

```
ljr0,ljr1
```

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljr01(Count,Population,Year+.5,R=20)
```

ljr1 5

ljr1	MLE with 1 joinpoint	

Description

Determines the maximum likelihood estimates of model coefficients in the logistic joinpoint regression model with one joinpoint.

Usage

```
ljr1(y,n,tm,X,ofst,summ=TRUE)
```

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Χ	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
summ	a boolean indicator of whether summary tables should be returned.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

Coef	A table of coefficient estimates.
Joinpoint	The estimate of the joinpoint.
wlik	The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

```
ljr01,ljrb,ljrf
```

6 ljr11

Examples

```
data(kcm)
attach(kcm)
ljr1(Count,Population,Year+.5)
```

ljr11

Test coefficients conditioned on K=1 joinpoint.

Description

This function performs the likelihood ratio tests to find p-values in testing the significance of each of the coefficients as well as the intercept and ordered observation times. The p-values are determined by a Monte Carlo method.

Usage

```
ljr11(y,n,tm,X,ofst,R=1000)
```

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Χ	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
_	1 034 0 1 1 1 1

R number of Monte Carlo simulations.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pvals

The estimates of the p-values via simulation.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

ljrb 7

See Also

ljr1

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljr11(Count,Population,Year+.5,R=20)
```

ljrb

Perform backward joinpoint selection algorithm with upper bound K.

Description

This function performs the backward joinpoint selection algorithm with K maximum possible number of joinpoints based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

```
ljrb(K,y,n,tm,X,ofst,R=1000,alpha=.05)
```

Arguments

K	the pre-specified maximum possible number of joinpoints
у	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
X	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.
alpha	significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pvals	The estimates of the p-values via simulation.
Coef	A table of coefficient estimates.

Joinpoints The estimates of the joinpoint, if it is significant.

wlik The maximum value of the re-weighted log-likelihood.

8 ljrf

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

```
ljrk,ljrf
```

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljrb(1,Count,Population,Year+.5,R=20)
```

ljrf

Perform forward joinpoint selection algorithm with unlimited upper bound.

Description

This function performs the full forward joinpoint selection algorithm based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

```
ljrf(y,n,tm,X,ofst,R=1000,alpha=.05)
```

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Χ	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.
alpha	significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

ljrjk 9

Value

pvals The estimates of the p-values via simulation.

Coef A table of coefficient estimates.

Joinpoints The estimates of the joinpoint, if it is significant.

wlik The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

```
ljrk,ljrb
```

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljrf(Count,Population,Year+.5,R=20)
```

ljrjk

Perform test of j vs k joinpoints.

Description

This function tests the null hypothesis of j joinpoint(s) versus the alternative of k joinpoint(s) based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

```
ljrjk(j,k,y,n,tm,X,ofst,R=1000,alpha=.05)
```

Arguments

j,k	pre-specified number of joinpoints in the null and alternative hpyotheses (the smaller is used for the null).
у	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.

10 ljrk

X a design matrix containing other covariates.

ofst a vector of known offsets for the logit of the response.

R number of Monte Carlo simulations.

alpha significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pval The estimate of the p-value via simulation.

Coef A table of coefficient estimates.

Joinpoint The estimates of the joinpoint, if it is significant.

wlik The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

1jrk

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljrjk(0,1,Count,Population,Year+.5,R=20)
```

ljrk MLE with k joinpoints

Description

Determines the maximum likelihood estimates of model coefficients in the logistic joinpoint regression model with k joinpoints.

ljrk 11

Usage

```
ljrk(k,y,n,tm,X,ofst)
```

Arguments

	k	the pre-specified	number of join	points (with unknow	n locations).
--	---	-------------------	----------------	---------------------	---------------

y the vector of Binomial responses.

n the vector of sizes for the Binomial random variables.

tm the vector of ordered observation times.

X a design matrix containing other covariates.

of st a vector of known offsets for the logit of the response.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

Coef A table of coefficient estimates.

Joinpoints The estimates of the joinpoints.

wlik The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

```
ljrb,ljrf
```

Examples

```
data(kcm)
attach(kcm)
ljrk(1,Count,Population,Year+.5)
```

12 ljrkk

ljrkk Test coefficients conditioned on K=k joinpoint.	ljrkk
---	-------

Description

This function performs the likelihood ratio tests to find p-values in testing the significance of each of the coefficients as well as the intercept and ordered observation times. The p-values are determined by a Monte Carlo method.

Usage

```
ljrkk(k,y,n,tm,X,ofst,R=1000)
```

Arguments

k	the pre-specified number of joinpoints (with unknown locations).
У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Χ	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pvals The estimates of the p-values via simulation.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljrk

ljrkk 13

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljrkk(1,Count,Population,Year+.5,R=20)
```

Index

```
*Topic datasets
    kcm, 2
*Topic nonlinear
    ljr0,2
    ljr01,3
    ljr1,5
     ljr11,<mark>6</mark>
     ljrb,7
     ljrf,8
    ljrjk, 9
    ljrk, 10
    ljrkk, 12
kcm, 2
ljr0, 2, 4
ljr01, 3, 3, 5
ljr1, 4, 5, 7
ljr11,<mark>6</mark>
ljrb, 3, 5, 7, 9, 11
ljrf, 3, 5, 8, 8, 11
ljrjk,9
ljrk, 8-10, 10, 12
ljrkk, 12
```