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Abstract

The lme4 package provides R functions to fit and analyze several
different types of mixed-effects models, including linear mixed models,
generalized linear mixed models and nonlinear mixed models. In this
vignette we describe the formulation of these models and the compu-
tational approach used to evaluate or approximate the log-likelihood
of a model/data/parameter value combination.

1 Introduction

The lme4 package provides R functions to fit and analyze linear mixed models,
generalized linear mixed models and nonlinear mixed models. These models
are called mixed-effects models or, more simply, mixed models because they
incorporate both fixed-effects parameters, which apply to an entire popula-
tion or to certain well-defined and repeatable subsets of a population, and
random effects, which apply to the particular experimental units or obser-
vational units in the study. Such models are also called multilevel models
because the random effects represent levels of variation in addition to the
per-observation noise term that is incorporated in common statistical mod-
els such as linear regression models, generalized linear models and nonlinear
regression models.

We begin by describing common properties of these mixed models and the
general computational approach used in the lme4 package. The estimates of
the parameters in a mixed model are determined as the values that optimize
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an objective function — either the likelihood of the parameters given the
observed data, for maximum likelihood (ML) estimates, or a related objective
function called the REML criterion. Because this objective function must
be evaluated at many different values of the model parameters during the
optimization process, we focus on the evaluation of the objective function
and a critical computation in this evaluation — determining the solution to
a penalized, weighted least squares (PWLS) problem.

The dimension of the solution of the PWLS problem can be very large,
perhaps in the millions. Furthermore, such problems must be solved repeat-
edly during the optimization process to determine parameter estimates. The
whole approach would be infeasible were it not for the fact that the matrices
determining the PWLS problem are sparse and we can use sparse matrix
storage formats and sparse matrix computations (Davis, 2006). In particu-
lar, the whole computational approach hinges on the extraordinarily efficient
methods for determining the Cholesky decomposition of sparse, symmetric,
positive-definite matrices embodied in the CHOLMOD library of C functions
(Davis, 2005).

In the next section we describe the general form of the mixed models
that can be represented in the lme4 package and the computational approach
embodied in the package. In the following section we describe a particular
form of mixed model, called a linear mixed model, and the computational
details for those models. In the fourth section we describe computational
methods for generalized linear mixed models, nonlinear mixed models and
generalized nonlinear mixed models.

2 Formulation of mixed models

A mixed-effects model incorporates two vector-valued random variables: the
n-dimensional response vector, Y , and the q-dimensional random effects vec-
tor, B. We observe the value, y, of Y . We do not observe the value of
B.

The random variable Y may be continuous or discrete. That is, the
observed data, y, may be on a continuous scale or they may be on a discrete
scale, such as binary responses or responses representing a count. In our
formulation, the random variable B is always continous.

We specify a mixed model by describing the unconditional distribution
of B and the conditional distribution (Y |B = b).
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2.1 The unconditional distribution of B

In our formulation, the unconditional distribution ofB is always a q-dimensional
multivariate Gaussian (or “normal”) distribution with mean 0 and with a pa-
rameterized covariance matrix,

B ∼ N
(
0, σ2Λ(θ)Λ′(θ)

)
. (1)

The scalar, σ, in (1), is called the common scale parameter. As we will
see later, not all types of mixed models incorporate this parameter. We will
include σ2 in the general form of the unconditional distribution of B with
the understanding that, in some models, σ ≡ 1.

The q × q matrix Λ(θ), which is a left factor of the covariance matrix
(when σ = 1) or the relative covariance matrix (when σ 6= 1), depends on
an m-dimensional parameter θ. Typically m ≪ q; in the examples we show
below it is always the case that m < 5, even when q is in the thousands.
The fact that m is very small is important because, as we shall see, deter-
mining the parameter estimates in a mixed model can be expressed as an
optimization problem with respect to θ only.

The parameter θ may be, and typically is, subject to constraints. For
ease of computation, we require that the constraints be expressed as “box”
constraints of the form θiL ≤ θi ≤ θiU , i = 1, . . . ,m for constants θiL and
θiU , i = 1, . . . ,m. We shall write the set of such constraints as θL ≤ θ ≤ θR.
The matrix Λ(θ) is required to be non-singular (i.e. invertible) when θ is
not on the boundary.

2.2 The conditional distribution, (Y |B = b)

The conditional distribution, (Y |B = b), must satisfy:

1. The conditional mean, µY|B(b) = E[Y |B = b], depends on b only
through the value of the linear predictor, Zb + Xβ, where β is the
p-dimensional fixed-effects parameter vector and the model matrices,
Z and X, are fixed matrices of the appropriate dimension. That is,
the two model matrices must have the same number of rows and must
have q and p columns, respectively. The number of rows in Z and X

is a multiple of n, the dimension of y.

2. The scalar distributions, (Yi|B = b), i = 1, . . . , n, all have the same
form and are completely determined by the conditional mean, µY|B(b)
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and, at most, one additional parameter, σ, which is the common scale
parameter.

3. The scalar distributions, (Yi|B = b), i = 1, . . . , n, are independent.
That is, the components of Y are conditionally independent given B.

An important special case of the conditional distribution is the multivari-
ate Gaussian distribution of the form

(Y |B = b) ∼ N (Zb+Xβ, σ2In) (2)

where In denotes the identity matrix of size n. In this case the conditional
mean, µY|B(b), is exactly the linear predictor, Zb + Xβ, a situation we
will later describe as being an “identity link” between the conditional mean
and the linear predictor. Models with conditional distribution (2) are called
linear mixed models.

2.3 A change of variable to “spherical” random effects

Because the conditional distribution (Y |B = b) depends on b only through
the linear predictor, it is easy to express the model in terms of a linear trans-
formation of B. We define the linear transformation from a q-dimensional
“spherical” Gaussian random variable, U , to B as

B = Λ(θ)U , U ∼ N (0, σ2Iq). (3)

(The term “spherical” refers to the fact that contours of constant probability
density for U are spheres centered at the mean — in this case, 0.)

When θ is not on the boundary this is an invertible transformation. When
θ is on the boundary the transformation can fail to be invertible. However, we
will only need to be able to express B in terms of U and that transformation
is well-defined, even when θ is on the boundary.

The linear predictor, as a function of u, is

γ(u) = ZΛ(θ)u+Xβ. (4)

When we wish to emphasize the role of the model parameters, θ and β, in
the formulation of γ, we will write the linear predictor as γ(u,θ,β).
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2.4 The conditional density (U |Y = y)

Because we observe y and do not observe b or u, the conditional distribution
of interest, for the purposes of statistical inference, is (U |Y = y) (or, equiv-
alently, (B|Y = y)). This conditional distribution is always a continuous
distribution with conditional probability density fU |Y(u|y).

We can evaluate fU |Y(u|y) , up to a constant, as the product of the uncon-
ditional density, fU(u), and the conditional density (or the probability mass
function, whichever is appropriate), fY|U(y|u). We write this unnormalized
conditional density as

h(u|y,θ,β, σ) = fY|U(y|u,θ,β, σ)fU(u|σ). (5)

We say that h is the “unnormalized” conditional density because all we
know is that the conditional density is proportional to h(u|y,θ,β, σ). To
obtain the conditional density we must normalize h by dividing by the value
of the integral

L(θ,β, σ|y) =

∫

Rq

h(u|y,θ,β, σ) du. (6)

We write the value of the integral (6) as L(θ,β, σ|y) because it is exactly
the likelihood of the parameters θ, β and σ, given the observed data y. The
maximum likelihood (ML) estimates of these parameters are the values that
maximize L.

2.5 Determining the ML estimates

The general problem of maximizing L(θ,β, σ|y) with respect to θ, β and
σ can be formidable because each evaluation of this function involves a po-
tentially high-dimensional integral and because the dimension of β can be
large. However, this general optimization problem can be split into manage-
able subproblems. Given a value of θ we can determine the conditional mode,
ũ(θ), of u and the conditional estimate, β̃(θ) simultaneously using penalized,
iteratively re-weighted least squares (PIRLS). The conditional mode and the
conditional estimate are defined as[

ũ(θ)

β̃(θ)

]
= argmax

u,β
h(u|y,θ,β, σ). (7)

(It may look as if we have missed the dependence on σ on the left-hand side
but it turns out that the scale parameter does not affect the location of the
optimal values of quantities in the linear predictor.)
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As is common in such optimization problems, we re-express the condi-
tional density on the deviance scale, which is negative twice the logarithm of
the density, where the optimization becomes

[
ũ(θ)

β̃(θ)

]
= argmin

u,β
−2 log (h(u|y,θ,β, σ)) . (8)

It is this optimization problem that can be solved quite efficiently using
PIRLS. In fact, for linear mixed models, which are described in the next
section, ũ(θ) and β̃(θ) can be directly evaluated.

The second-order Taylor series expansion of −2 log h at ũ(θ) and β̃(θ)
provides the Laplace approximation to the profiled deviance. Optimizing
this function with respect to θ provides the ML estimates of θ, from which
the ML estimates of β and σ (if used) are derived.

3 Methods for linear mixed models

As indicated in the introduction, a critical step in our methods for determin-
ing the maximum likelihood estimates of the parameters in a mixed model
is solving a penalized, weighted least squares (PWLS) problem. We will
motivate the general form of the PWLS problem by first considering com-
putational methods for linear mixed models that result in a penalized least
squares (PLS) problem.

Recall from ➜2.2 that, in a linear mixed model, both the conditional
distribution, (Y |U = u), and the unconditional distribution, U , are spherical
Gaussian distributions and that the conditional mean, µY|U(u), is the linear
predictor, γ(u). Because all the distributions determining the model are
continuous distributions, we consider their densities. On the deviance scale
these are

−2 log(fU(u)) = q log(2πσ2) +
‖u‖2

σ2

−2 log(fY|U(y|u)) = n log(2πσ2) +
‖y −ZΛ(θ)u−Xβ‖2

σ2

−2 log(h(u|y,θ,β, σ)) = (n+ q) log(2πσ2) +
‖y − γ(u,θ,β)‖2 + ‖u‖2

σ2

= (n+ q) log(2πσ2) +
d(u|y,θ,β)

σ2

(9)
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In (9) the discrepancy function,

d(u|y,θ,β) = ‖y − γ(u,θ,β)‖2 + ‖u‖2 (10)

has the form of a penalized residual sum of squares in that the first term,
‖y − γ(u,θ,β)‖2 is the residual sum of squares for y, u, θ and β and the
second term, ‖u‖2, is a penalty on the size of u. Notice that the discrepancy
does not depend on the common scale parameter, σ.

3.1 The canonical form of the discrepancy

Using a so-called “pseudo data” representation, we can write the discrepancy
as a residual sum of squares for a regression model that is linear in both u

and β

d(u|y,θ,β) =

∥∥∥∥
[
y

0

]
−

[
ZΛ(θ) X

Iq 0

] [
u

β

]∥∥∥∥
2

. (11)

The term “pseudo data” reflects the fact that we have added q “pseudo obser-
vations” to the observed response, y, and to the linear predictor, γ(u,θ,β) =
ZΛ(θ)u+Xβ, in such a way that their contribution to the overall residual
sum of squares is exactly the penalty term in the discrepancy.

In the form (11) we can see that the discrepancy is a quadratic form in
both u and β. Furthermore, because we require that X has full column
rank, the discrepancy is a positive-definite quadratic form in u and β that
is minimized at ũ(θ) and β̃(θ) satisfying

[
Λ′(θ)Z ′ZΛ(θ) + Iq Λ′(θ)Z ′X

X ′ZΛ(θ) X ′X

] [
ũ(θ)

β̃(θ)

]
=

[
Λ′(θ)Z ′y

X ′y

]
(12)

An effective way of determining the solution to a sparse, symmetric, pos-
itive definite system of equations such as (12) is the sparse Cholesky de-
composition (Davis, 2006). If A is a sparse, symmetric positive definite
matrix then the sparse Cholesky factor with fill-reducing permutation P is
the lower-triangular matrix L such that

LL′ = PAP ′. (13)

(Technically, the factor L is only determined up to changes in the sign of
the diagonal elements. By convention we require the diagonal elements to be
positive.)
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The fill-reducing permutation represented by the permutation matrix P ,
which is determined from the pattern of nonzeros in A but does not depend
on particular values of those nonzeros, can have a profound impact on the
number of nonzeros in L and hence on the speed with which L can be
calculated from A.

In most applications of linear mixed models the matrix ZΛ(θ) is sparse
while X is dense or close to it so the permutation matrix P can be restricted
to the form

P =

[
PZ 0

0 PX

]
(14)

without loss of efficiency. In fact, in most cases we can set PX = Ip without
loss of efficiency.

Let us assume that the permutation matrix is required to be of the form
(14) so that we can write the Cholesky factorization for the positive definite
system (12) as

[
LZ 0

LXZ LX

] [
LZ 0

LXZ LX

]′
=

[
PZ 0

0 PX

] [
Λ′(θ)Z ′ZΛ(θ) + Iq Λ′(θ)Z ′X

X ′ZΛ(θ) X ′X

] [
PZ 0

0 PX

]′
. (15)

The discrepancy can now be written in the canonical form

d(u|y,θ,β) = d̃(y,θ) +

∥∥∥∥
[
L′

Z L′
XZ

0 L′
X

] [
PZ(u− ũ)

PX(β − β̃)

]∥∥∥∥
2

(16)

where
d̃(y,θ) = d(ũ(θ)|y,θ, β̃(θ)) (17)

is the minimum discrepancy, given θ.

3.2 The profiled likelihood for linear mixed models

Substituting (16) into (9) provides the unnormalized conditional density
h(u|y,θ,β, σ) on the deviance scale as

− 2 log(h(u|y,θ,β, σ))

= (n+ q) log(2πσ2) +

d̃(y,θ) +

∥∥∥∥
[
L′

Z L′
XZ

0 L′
X

] [
PZ(u− ũ)

PX(β − β̃)

]∥∥∥∥
2

σ2
. (18)
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As shown in Appendix B, the integral of a quadratic form on the deviance
scale, such as (18), is easily evaluated, providing the log-likelihood, ℓ(θ,β, σ|y),
as

− 2ℓ(θ,β, σ|y)

= −2 log (L(θ,β, σ|y))

= n log(2πσ2) + log(|LZ |
2) +

d̃(y,θ) +
∥∥∥L′

XPX(β − β̃)
∥∥∥
2

σ2
, (19)

from which we can see that the conditional estimate of β, given θ, is β̃(θ)
and the conditional estimate of σ, given θ, is

σ̃2(θ) =
d̃(θ|y)

n
. (20)

Substituting these conditional estimates into (19) produces the profiled like-
lihood, L̃(θ|y), as

−2ℓ̃(θ|y)) = log(|LZ(θ)|
2) + n

(
1 + log

(
2πd̃(y,θ)

n

))
. (21)

The maximum likelihood estimate of θ can then be expressed as

θ̂L = argmin
θ

(
−2ℓ̃(θ|y)

)
. (22)

from which the ML estimates of σ2 and β are evaluated as

σ̂2
L =

d̃(θ̂L,y)

n
(23)

β̂L = β̃(θ̂L). (24)

The important thing to note about optimizing the profiled likelihood,
(21), is that it is a m-dimensional optimization problem and typically m is
very small.

3.3 The REML criterion

In practice the so-called REML estimates of variance components are often
preferred to the maximum likelihood estimates. (“REML” can be consid-
ered to be an acronym for “restricted” or “residual” maximum likelihood,
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although neither term is completely accurate because these estimates do not
maximize a likelihood.) We can motivate the use of the REML criterion by
considering a linear regression model,

Y ∼ N (Xβ, σ2In), (25)

in which we typically estimate σ2 by

σ̂2
R =

‖y −Xβ̂‖2

n− p
(26)

even though the maximum likelihood estimate of σ2 is

σ̂2
L =

‖y −Xβ̂‖2

n
. (27)

The argument for preferring σ̂2
R to σ̂2

L as an estimate of σ2 is that the

numerator in both estimates is the sum of squared residuals at β̂ and, al-
though the residual vector y −Xβ is an n-dimensional vector, the residual
at θ̂ satisfies p linearly independent constraints, X ′(y −Xβ̂) = 0. That is,

the residual at θ̂ is the projection of the observed response vector, y, into an
(n−p)-dimensional linear subspace of the n-dimensional response space. The

estimate σ̂2
R takes into account the fact that σ2 is estimated from residuals

that have only n− p degrees of freedom.

The REML criterion for determining parameter estimates θ̂R and σ̂2
R in

a linear mixed model has the property that these estimates would specialize

to σ̂2
R from (26) for a linear regression model. Although not usually derived

in this way, the REML criterion can be expressed as

cR(θ,σ|y) = −2 log

∫

Rp

L(u|y,θ,β, σ) dβ (28)

on the deviance scale. The REML estimates θ̂R and σ̂2
R minimize cR(θ,σ|y).

The profiled REML criterion, a function of θ only, is

c̃R(θ|y) = log(|LZ(θ)|
2|LX(θ)|2) + (n− p)

(
1 + log

(
2πd̃(θ|y)

n− p

))
(29)

and the REML estimate of θ is

θ̂R = argmin
θ

c̃R(θ,y). (30)
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The REML estimate of σ2 is σ̂2
R = d̃(θ̂R|y)/(n− p).

It is not entirely clear how one would define a “REML estimate” of β
because the REML criterion, cR(θ,σ|y), defined in (28), does not depend on

β. However, it is customary (and not unreasonable) to use β̂R = β̃(θ̂R) as
the REML estimate of β.

Note that the profiled REML criterion can be evaluated from a sparse
Cholesky decomposition like that in (15) but without the requirement that
the permutation can be applied to the columns of ZΛ(θ) separately from
the columns of X. That is, we can use a general fill-reducing permutation
rather than the specific form (14) with separate permutations represented by
PZ and PX . This can be useful in cases where both Z and X are large and
sparse.

3.4 Summary for linear mixed models

A linear mixed model is characterized by the conditional distribution

(Y |U = u) ∼ N (γ(u,θ,β), σ2In) where γ(u,θ,β) = ZΛ(θ)u+Xβ (31)

and the unconditional distribution U ∼ N (0, σ2Iq). The discrepancy func-
tion,

d(u|y,θ,β) = ‖y − γ(u,θ,β)‖2 + ‖u‖2,

is minimized at the conditional mode, ũ(θ), and the conditional estimate,
β̃(θ), which are the solutions to the sparse, positive-definite linear system

[
Λ′(θ)Z ′ZΛ(θ) + Iq Λ′(θ)Z ′X

X ′ZΛ(θ) X ′X

] [
ũ(θ)

β̃(θ)

]
=

[
Λ′(θ)Z ′y

X ′y

]
.

In the process of solving this system we create the sparse left Cholesky factor,
LZ(θ), which is a lower triangular sparse matrix satisfying

LZ(θ)LZ(θ)
′ = PZ (Λ′(θ)Z ′ZΛ(θ) + Iq)P

′
Z

where PZ is a permutation matrix representing a fill-reducing permutation
formed from the pattern of nonzeros in ZΛ(θ) for any θ not on the boundary
of the parameter region. (The values of the nonzeros depend on θ but the
pattern doesn’t.)
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The profiled log-likelihood, ℓ̃(θ|y), is

−2ℓ̃(θ|y) = log(|LZ(θ)|
2) + n

(
1 + log

(
2πd̃(y,θ)

n

))

where d̃(y,θ) = d(ũ(θ)|y, β̃(θ),θ).

4 Generalizing the discrepancy function

Because one of the factors influencing the choice of implementation for lin-
ear mixed models is the extent to which the methods can also be applied to
other mixed models, we describe several other classes of mixed models before
discussing the implementation details for linear mixed models. At the core of
our methods for determining the maximum likelihood estimates (MLEs) of
the parameters in the mixed model are methods for minimizing the discrep-
ancy function with respect to the coefficients u and β in the linear predictor
γ(u,θ,β).

In this section we describe the general form of the discrepancy function
that we will use and a penalized iteratively reweighted least squares (PIRLS)
algorithm for determining the conditional modes ũ(θ) and β̃(θ). We then
describe several types of mixed models and the form of the discrepancy func-
tion for each.

4.1 A weighted residual sum of squares

As shown in ➜3.1, the discrepancy function for a linear mixed model has the
form of a penalized residual sum of squares from a linear model (11). In this
section we generalize that definition to

d(u|y,θ,β) =
∥∥W 1/2(µ)

[
y − µY|U(u,θ,β)

]∥∥2 + ‖0− u‖2. (32)

where W is an n×n diagonal matrix, called the weights matrix, with positive
diagonal elements and W 1/2 is the diagonal matrix with the square roots of
the weights on the diagonal. The ith weight is inversely proportional to
the conditional variances of (Y|U = u) and may depend on the conditional
mean, µY|U .
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We allow the conditional mean to be a nonlinear function of the linear
predictor, but with certain restrictions. We require that the mapping from
u to µY|U=u be expressed as

u → γ → η → µ (33)

where γ = ZΛ(θ)u +Xβ is an ns-dimensional vector (s > 0) while η and
µ are n-dimensional vectors.

The map η → µ has the property that µi depends only on ηi, i = 1, . . . , n.
The map γ → η has a similar property in that, if we write γ as an n × s
matrix Γ such that

γ = vecΓ (34)

(i.e. concatenating the columns of Γ produces γ) then ηi depends only on
the ith row of Γ, i = 1, . . . , n. Thus the Jacobian matrix dµ

dη′
is an n × n

diagonal matrix and the Jacobian matrix dη
dγ′

is the horizontal concatenation
of s diagonal n× n matrices.

For historical reasons, the function that maps ηi to µi is called the inverse
link function and is written µ = g−1(η). The link function, naturally, is
η = g(µ). When applied component-wise to vectors µ or η we write these as
η = g(µ) and µ = g−1(η).

Recall that the conditional distribution, (Yi|U = u), is required to be
independent of (Yj|U = u) for i, j = 1, . . . , n, i 6= j and that all the com-
ponent conditional distributions must be of the same form and differ only
according to the value of the conditional mean.

Depending on the family of the conditional distributions, the allowable
values of the µi may be in a restricted range. For example, if the conditional
distributions are Bernoulli then 0 ≤ µi ≤ 1, i = 1, . . . , n. If the conditional
distributions are Poisson then 0 ≤ µi, i = 1, . . . , n. A characteristic of the
link function, g, is that it must map the restricted range to an unrestricted
range. That is, a link function for the Bernoulli distribution must map [0, 1]
to [−∞,∞] and must be invertible within the range.

The mapping from γ to η is defined by a function m : Rs → R, called
the nonlinear model function, such that ηi = m(γi), i = 1, . . . , n where γi is
the ith row of Γ. The vector-valued function is η = m(γ).

Determining the conditional modes, ũ(y|θ), and β̃(y|θ), that jointly min-
imize the discrepancy,

[
ũ(y|θ)

β̃(y|θ)

]
= argmin

u,β

[
(y − µ)′W (y − µ) + ‖u‖2

]
(35)
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becomes a weighted, nonlinear least squares problem except that the weights,
W , can depend on µ and, hence, on u and β.

In describing an algorithm for linear mixed models we called β̃(θ) the
conditional estimate. That name reflects that fact that this is the maximum
likelihood estimate of β for that particular value of θ. Once we have deter-

mined the MLE, (̂θ)L of θ, we have a “plug-in” estimator, β̂L = β̃(θ) for
β.

This property does not carry over exactly to other forms of mixed models.
The values ũ(θ) and β̃(θ) are conditional modes in the sense that they are
the coefficients in γ that jointly maximize the unscaled conditional density
h(u|y,θ,β, σ). Here we are using the adjective “conditional” more in the
sense of conditioning on Y = y than in the sense of conditioning on θ,
although these values are determined for a fixed value of θ.

4.2 The PIRLS algorithm for ũ and β̃

The penalized, iteratively reweighted, least squares (PIRLS) algorithm to
determine ũ(θ) and β̃(θ) is a form of the Fisher scoring algorithm. We fix
the weights matrix, W , and use penalized, weighted, nonlinear least squares
to minimize the penalized, weighted residual sum of squares conditional on
these weights. Then we update the weights to those determined by the
current value of µ and iterate.

To describe this algorithm in more detail we will use parenthesized super-
scripts to denote the iteration number. Thus u(0) and β(0) are the initial val-
ues of these parameters, while u(i) and β(i) are the values at the ith iteration.
Similarly γ(i) = ZΛ(θ)u(i) +Xβ(i), η(i) = m(γ(i)) and µ(i) = g−1(η(i)).

We use a penalized version of the Gauss-Newton algorithm (Bates and
Watts, 1988, ch. 2) for which we define the weighted Jacobian matrices

U (i) = W 1/2 dµ

du′

∣∣∣∣
u=u(i),β=β(i)

= W 1/2 dµ

dη′

∣∣∣∣
η(i)

dη

dγ ′

∣∣∣∣
γ(i)

ZΛ(θ) (36)

V (i) = W 1/2 dµ

dβ′

∣∣∣∣
u=u(i),β=β(i)

= W 1/2 dµ

dη′

∣∣∣∣
η(i)

dη

dγ ′

∣∣∣∣
γ(i)

X (37)

of dimension n×q and n×p, respectively. The increments at the ith iteration,
δ
(i)
u and δ

(i)
β , are the solutions to

[
U (i)′U (i) + Iq U (i)′V (i)

V (i)′U (i) V (i)′V (i)

] [
δ
(i)
u

δ
(i)
β

]
=

[
U (i)′W 1/2(y − µ(i))− u(i)

V (i)′W 1/2(y − µ(i))

]
(38)
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providing the updated parameter values

[
u(i+1)

β(i+1)

]
=

[
u(i)

β(i)

]
+ λ

[
δ
(i)
u

δ
(i)
β

]
(39)

where λ > 0 is a step factor chosen to ensure that

(y−µ(i+1))′W (y−µ(i+1))+‖u(i+1)‖2 < (y−µ(i))′W (y−µ(i))+‖u(i)‖2. (40)

In the process of solving for the increments we form the sparse, lower
triangular, Cholesky factor, L(i), satisfying

L(i)L(i)′ = PZ

(
U (i)′U (i) + In

)
P ′

Z . (41)

After each successful iteration, determining new values of the coefficients,
u(i+1) and β(i+1), that reduce the penalized, weighted residual sum of squares,
we update the weights matrix to W (µ(i+1)) and the weighted Jacobians,
U (i+1) and V (i+1), then iterate. Convergence is determined according to the
orthogonality convergence criterion (Bates and Watts, 1988, ch. 2), suitably
adjusted for the weights matrix and the penalty.

4.3 Weighted linear mixed models

One of the simplest generalizations of linear mixed models is a weighted
linear mixed model where s = 1, the link function, g, and the nonlinear
model function, m, are both the identity, the weights matrix, W , is constant
and the conditional distribution family is Gaussian. That is, the conditional
distribution can be written

(Y |U = u) ∼ N (γ(u,θ,β), σ2W−1) (42)

with discrepancy function

d(u|y,θ,β) =
∥∥W 1/2(y −ZΛ(θ)u−Xβ)

∥∥2 + ‖u‖2. (43)

The conditional mode, ũ(θ), and the conditional estimate, β̃(θ), are the
solutions to
[
Λ′(θ)Z ′WZΛ(θ) + Iq Λ′(θ)Z ′WX

X ′WZΛ(θ) X ′WX

] [
ũ(θ)

β̃(θ)

]
=

[
Λ′(θ)Z ′Wy

X ′Wy

]
, (44)
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which can be solved directly, and the Cholesky factor, LZ(θ), satisfies

LZ(θ)LZ(θ)
′ = PZ (Λ′(θ)Z ′WZΛ(θ) + Iq)P

′
Z . (45)

The profiled log-likelihood, ℓ̃(θ|y), is

−2ℓ̃(θ|y) = log

(
|LZ(θ)|

2

|W |

)
+ n

(
1 + log

(
2πd̃(y,θ)

n

))
. (46)

If the matrix W is fixed then we can ignore the term |W | in (46) when

determining the MLE, θ̂L. However, in some models, we use a parameterized
weight matrix, W (φ), and wish to determine the MLEs, φ̂L and θ̂L simul-
taneously. In these cases we must include the term involving |W (φ)| when
evaluating the profiled log-likelihood.

Note that we must define the parameterization of W (φ) such that σ2 and
φ are not a redundant parameterization of σ2W (φ). For example, we could
require that the first diagonal element of W be unity.

4.4 Nonlinear mixed models

In an unweighted, nonlinear mixed model the conditional distribution is
Gaussian, the link, g, is the identity and the weights matrix, W = In.
That is,

(Y |U = u) ∼ N (m(γ), σ2In) (47)

with discrepancy function

d(u|y,θ,β) = ‖y − µ‖2 + ‖u‖2. (48)

For a given value of θ we determine the conditional modes, ũ(θ) and β̃(θ),
as the solution to the penalized nonlinear least squares problem

[
ũ(θ)

β̃(θ)

]
= argmin

u,θ
d(u|y,θ,β) (49)

and we write the minimum discrepancy, given y and θ, as

d̃(y,θ) = d(ũ(θ)|y,θ, β̃(θ)). (50)
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Let L̃Z(θ) and L̃X(θ) be the Cholesky factors at θ, β̃(θ) and ũ(θ). Then
the Laplace approximation to the log-likelihood is

−2ℓP (θ,β, σ|y) ≈ n log(2πσ2) + log(|L̃Z |
2) +

d̃(y,θ) +
∥∥∥L̃′

X(β − β̃)
∥∥∥
2

σ2
,

(51)
producing the approximate profiled log-likelihood, ℓ̃P (θ|y),

−2ℓ̃P (θ|y) ≈ log(|L̃Z |
2) + n

(
1 + log(2πd̃(y,θ)/n)

)
. (52)

4.4.1 Nonlinear mixed model summary

In a nonlinear mixed model we determine the parameter estimate, θ̂P , from
the Laplace approximation to the log-likelihood as

θ̂P = argmax
θ

ℓ̃P (θ|y) = argmin
θ

log(|L̃Z |
2) + n

(
1 + log(2πd̃(y,θ)/n)

)
.

(53)
Each evaluation of ℓ̃P (θ|y) requires a solving the penalized nonlinear least
squares problem (49) simultaneously with respect to both sets of coefficients,
u and β, in the linear predictor, γ.

For a weighted nonlinear mixed model with fixed weights, W , we replace
the unweighted discrepancy function d(u|y,θ,β) with the weighted discrep-
ancy function,

5 Details of the implementation

5.1 Implementation details for linear mixed models

The crucial step in implementing algorithms for determining ML or REML
estimates of the parameters in a linear mixed model is evaluating the fac-
torization (15) for any θ satisfying θL ≤ θ ≤ θU . We will assume that Z is
sparse as is ZΛ(θ).

When X is not sparse we will use the factorization (15) setting PX = Ip
and storing LXZ and LX as dense matrices. The permutation matrix PZ

is determined from the pattern of non-zeros in ZΛ(θ) which is does not
depend on θ, as long as θ is not on the boundary. In fact, in most cases the
pattern of non-zeros in ZΛ(θ) is the same as the pattern of non-zeros in Z.
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For many models, in particular models with scalar random effects (described
later), the matrix Λ(θ) is diagonal.

Given a value of θ we determine the Cholesky factor LZ satisfying

LZL
′
Z = PZ(Λ

′(θ)Z ′ZΛ(θ) + Iq)P
′
Z . (54)

The CHOLMOD package allows forLZ to be calculated directly fromΛ′(θ)Z ′

or from Λ′(θ)Z ′ZΛ(θ). The choice in implementation is whether to store Z ′

and update it to Λ′(θ)Z ′ or to store Z ′Z and use it to form Λ′(θ)Z ′ZΛ(θ)
at each evaluation.

In the lme4 package we store Z ′ and use it to form Λ′(θ)Z ′ from which
LZ is evaluated. There are two reasons for this choice. First, the calculations
for the more general forms of mixed models cannot be reduced to calculations
involving Z ′Z and by expressing these calculations in terms of Λ(θ)′Z ′ for
linear mixed models we can reuse the code for the more general models. Sec-
ond, the calculation of Λ(θ)′ (Z ′Z)Λ(θ) from Z ′Z is complicated compared
to the calculation of Λ(θ)′Z ′ from Z ′.

This choice is disadvantageous when n ≫ q because Z ′ is much larger
than Z ′Z, even when they are stored as sparse matrices. Evaluation of LZ

directly from Z ′ requires more storage and more calculation that evaluating
LZ from Z ′Z.

Next we evaluate L′
XZ as the solution to

LZL
′
XZ = PZΛ

′(θ)Z ′X. (55)

Again we have the choice of calculating and storing Z ′X or storing X and
using it to reevaluate Z ′X. In the lme4 package we store X, because the
calculations for the more general models cannot be expressed in terms of
Z ′X.

Finally LX is evaluated as the (dense) solution to

LXL′
X = X ′X −LXZL

′
XZ . (56)

from which β̃ can be determined as the solution to dense system

LXL′
Xβ̃ = X ′y (57)

and ũ as the solution to the sparse system

LZL
′
Z ũ = Λ′Z ′y (58)
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For many models, in particular models with scalar random effects, which
are described later, the matrix Λ(θ) is diagonal. For such a model, if both
Z and X are sparse and we plan to use the REML criterion then we create
and store

A =

[
Z ′Z Z ′X

X ′Z X ′X

]
and c =

[
Z ′y

X ′y

]
(59)

and determine a fill-reducing permutation, P , for A. Given a value of θ we
create the factorization

L(θ)L(θ)′ = P

([
Λ(θ) 0

0 Ip

]
A

[
Λ(θ) 0

0 Ip

]
+

[
Iq 0

0 0

])
P ′ (60)

solve for ũ(θ) and β̃(θ) in

LL′P

[
ũ(θ)

β̃(θ)

]
= P

[
Λ(θ) 0

0 Ip

]
c (61)

then evaluate d̃(y|θ) and the profiled REML criterion as

d̃R(θ|y) = log(|L(θ)|2) + (n− p)

(
1 + log

(
2πd̃(y|θ)

n− p

))
. (62)
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A Notation

A.1 Random variables in the model

B Random-effects vector of dimension q, B ∼ N (0, σ2Λ(θ)Λ(θ)′).
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U “Spherical” random-effects vector of dimension q, U ∼ N (0, σ2Iq), B =
Λ(θ)U .

Y Response vector of dimension n.

A.2 Parameters of the model

β Fixed-effects parameters (dimension p).

θ Parameters determining the left factor, Λ(θ) of the relative covariance
matrix of B (dimension m).

σ the common scale parameter - not used in some generalized linear mixed
models and generalized nonlinear mixed models.

A.3 Dimensions

m dimension of the parameter θ.

n dimension of the response vector, y, and the random variable, Y .

p dimension of the fixed-effects parameter, β.

q dimension of the random effects, B or U .

s dimension of the parameter vector, φ, in the nonlinear model function.

A.4 Matrices

L Left Cholesky factor of a positive-definite symmetric matrix. LZ is q× q;
LX is p× p.

P Fill-reducing permutation for the random effects model matrix. (Size
q × q.)

Λ Left factor of the relative covariance matrix of the random effects. (Size
q × q.)

X Model matrix for the fixed-effects parameters, β. (Size (ns)× p.)

Z Model matrix for the random effects. (Size (ns)× q.)
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B Integrating a quadratic deviance expres-

sion

In (6) we defined the likelihood of the parameters given the observed data as

L(θ,β, σ|y) =

∫

Rq

h(u|y,θ,β, σ) du.

which is often alarmingly described as “an intractable integral”. In point
of fact, this integral can be evaluated exactly in the case of a linear mixed
model and can be approximated quite accurately for other forms of mixed
models.
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