1 LMVAR: a linear model with heteroscedasticity

This vignette describes in more detail the mathematical aspects of the model with which the lmvar package is concerned. A short description can be found in the vignette 'Intro' of this package. The model has been discussed by various authors $[1,2,3]$.

Assume that a stochastic vector $Y \in \mathbb{R}^{n}$ has a multivariate normal distribution as

$$
\begin{equation*}
Y \sim \mathcal{N}_{n}\left(\mu^{\star}, \Sigma^{\star}\right) \tag{1}
\end{equation*}
$$

in which $\mu^{\star} \in \mathbb{R}^{n}$ is the expected value and $\Sigma^{\star} \in \mathbb{R}^{n, n}$ a diagonal covariance matrix

$$
\Sigma_{i j}^{\star}= \begin{cases}0 & i \neq j \tag{2}\\ \left(\sigma_{i}^{\star}\right)^{2} & i=j\end{cases}
$$

Assume that the vector of expectation values μ^{\star} is linearly dependent on the values of the covariates in a model matrix X_{μ} :

$$
\begin{equation*}
\mu^{\star}=X_{\mu} \beta_{\mu}^{\star} \tag{3}
\end{equation*}
$$

with $X_{\mu} \in \mathbb{R}^{n, k_{\mu}}$ and $\beta_{\mu}^{\star} \in \mathbb{R}^{k_{\mu}}$.
Similarly, assume that the vector $\sigma^{\star}=\left(\sigma_{1}^{\star}, \ldots, \sigma_{n}^{\star}\right)$ depends on the covariates in a model matrix X_{σ} as

$$
\begin{equation*}
\log \sigma^{\star}=X_{\sigma} \beta_{\sigma}^{\star} \tag{4}
\end{equation*}
$$

where $\log \sigma^{\star}=\left(\log \sigma_{1}^{\star}, \ldots, \log \sigma_{n}^{\star}\right), X_{\sigma} \in \mathbb{R}^{n, k_{\sigma}}$ and $\beta_{\sigma}^{\star} \in \mathbb{R}^{k_{\sigma}}$. The logarithm is taken to be the 'natural logarithm', i.e., with base e.

We assume $n \geq k_{\mu}+k_{\sigma}$ to avoid having an overdetermined system when we calculate estimators for β_{μ}^{\star} and β_{σ}^{\star}, as explained in the next section.

If we take X_{σ} a $n \times 1$ matrix in which each element is equal to 1 , we have the standard linear model.

The parameter vector β_{μ}^{\star} is defined uniquely only if X_{μ} is full-rank. If not, the space $\mathbb{R}^{k_{\mu}}$ can be split into subspaces such that there is a uniquely defined β_{μ}^{\star} in each subspace. The way lmvar treats this is as follows. If the user-supplied X_{μ} is not full-rank, lmvar removes just enough columns from the matrix to make it full-rank. This amounts to selecting β_{μ}^{\star} from the subspace in which all vector elements corresponding to the removed columns, are set to zero.

In the same way, if the user-supplied X_{σ} is not full-rank, just enough columns are removed to make it so. This defines a subspace in which β_{σ}^{\star} is defined uniquely.

In what follows we assume that X_{μ} and X_{σ} are the matrices after the columns have been removed, i.e., they are full-rank matrices. The vector elements that are set to zero, drop out of β_{μ}^{\star} and β_{σ}^{\star} and the dimensions k_{μ} and k_{σ} are reduced accordingly. These reduced dimensions are returned by the function dfree in the lmvar package.

2 Maximum-likelihood equations

A vector element Y_{i} is distributed as

$$
\begin{equation*}
Y_{i} \sim \frac{1}{\sqrt{2 \pi} \sigma_{i}^{\star}} \exp \left(-\frac{1}{2}\left(\frac{Y_{i}-\mu_{i}^{\star}}{\sigma_{i}^{\star}}\right)^{2}\right) \tag{5}
\end{equation*}
$$

The logarithm of the likelihood \mathcal{L} is defined as

$$
\begin{equation*}
\log \mathcal{L}\left(\beta_{\mu}, \beta_{\sigma}\right)=-\frac{n}{2} \log (2 \pi)-\sum_{k=1}^{n}\left(\log \sigma_{k}+\frac{\left(y_{k}-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right) \tag{6}
\end{equation*}
$$

for all vectors $\beta_{\mu} \in \mathbb{R}^{k_{\mu}}$ and $\beta_{\sigma} \in \mathbb{R}^{k_{\sigma}}$ and μ and σ defined as

$$
\begin{align*}
\mu & =X_{\mu} \beta_{\mu} \tag{7}\\
\log \sigma & =X_{\sigma} \beta_{\sigma}
\end{align*}
$$

We are looking for $\hat{\beta_{\mu}} \in \mathbb{R}^{k_{\mu}}$ and $\hat{\beta_{\sigma}} \in \mathbb{R}^{k_{\sigma}}$ that maximize the log-likelihood:

$$
\begin{equation*}
\left(\hat{\beta}_{\mu}, \hat{\beta}_{\sigma}\right)=\underset{\left(\beta_{\mu}, \beta_{\sigma}\right) \in \mathbb{R}^{k_{\mu}} \times \mathbb{R}^{k_{\sigma}}}{\operatorname{argmax}} \log \mathcal{L}\left(\beta_{\mu}, \beta_{\sigma}\right) . \tag{8}
\end{equation*}
$$

These maximum likelihood estimators are taken to be the estimators of β_{μ}^{\star} and β_{σ}^{\star}. We assume that $\hat{\beta}_{\mu}$ and $\hat{\beta}_{\sigma}$ thus defined, exist and are unique. See section 4 however for a situation in which the maximum log-likelihood is undefined.

Given $\hat{\beta}_{\sigma}$, this is true for $\hat{\beta}_{\mu}$. Namely, given any $\beta_{\sigma}, \log \mathcal{L}$ is maximized by the β_{μ} which is the solution of

$$
\begin{equation*}
\nabla_{\beta_{\mu}} \log \mathcal{L}=0 \tag{9}
\end{equation*}
$$

where $\nabla_{\beta_{\mu}}$ stands for the gradient $\left(\frac{\partial}{\partial \beta_{\mu, 1}}, \ldots, \frac{\partial}{\partial \beta_{\mu, n}}\right)$.
This solution is

$$
\begin{equation*}
\beta_{\mu}=\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T} \Sigma^{-1} y \tag{10}
\end{equation*}
$$

with $\Sigma \in \mathbb{R}^{n, n}$ defined as in (2) but with β_{σ} arbitrary:

$$
\Sigma_{i j}= \begin{cases}0 & i \neq j \tag{11}\\ \sigma_{i}^{2} & i=j\end{cases}
$$

Because of our assumption that X_{μ} is full rank, the inverse of the matrix $X_{\mu}^{T} \Sigma^{-1} X_{\mu}$ can be taken.

It is easy to see that the solution (10) represents a maximum in the loglikelihood. The matrix $H_{\mu \mu}$ of second-order derivatives

$$
\begin{equation*}
\left(H_{\mu \mu}\right)_{i j}=\frac{\partial^{2} \log L}{\partial \beta_{\mu i} \partial \beta_{\mu j}} \tag{12}
\end{equation*}
$$

is given by

$$
\begin{equation*}
H_{\mu \mu}=-X_{\mu}^{T} \Sigma^{-1} X_{\mu} \tag{13}
\end{equation*}
$$

which is negative-definite for any β_{σ}.
Our maximization search can now be carried out in a smaller space:

$$
\begin{equation*}
\hat{\beta_{\sigma}}=\underset{\beta_{\sigma} \in \mathbb{R}^{k_{\sigma}}}{\operatorname{argmax}} \log \mathcal{L}_{P}\left(\beta_{\sigma}\right) \tag{14}
\end{equation*}
$$

where \mathcal{L}_{P} is the so-called profile-likelihood

$$
\begin{equation*}
\mathcal{L}_{P}\left(\beta_{\sigma}\right)=\mathcal{L}\left(\beta_{\mu}\left(\beta_{\sigma}\right), \beta_{\sigma}\right) \tag{15}
\end{equation*}
$$

with β_{μ} depending on β_{σ} as in (10).
To find $\hat{\beta}_{\sigma}$ from (14), we must solve

$$
\begin{equation*}
\left(\nabla_{\beta_{\mu}} \log \mathcal{L}\right)\left(\nabla_{\beta_{\sigma}} \beta_{\mu}\right)+\nabla_{\beta_{\sigma}} \log \mathcal{L}=0 \tag{16}
\end{equation*}
$$

evaluated at $\beta_{\mu}=\beta_{\mu}\left(\beta_{\sigma}\right)$, and $\left(\nabla_{\beta_{\sigma}} \beta_{\mu}\right)$ the matrix

$$
\begin{equation*}
\left(\nabla_{\beta_{\sigma}} \beta_{\mu}\right)_{i j}=\frac{\partial \beta_{\mu i}}{\partial \beta_{\sigma j}} \tag{17}
\end{equation*}
$$

However, because of (9), the first term in (16) vanishes and we are left to solve

$$
\begin{equation*}
\nabla_{\beta_{\sigma}} \log \mathcal{L}=0 \tag{18}
\end{equation*}
$$

The derivatives that are the elements of this gradient are given by

$$
\begin{align*}
\frac{\partial \log \mathcal{L}}{\partial \beta_{\sigma i}} & =\sum_{k=1}^{n}\left(-\left(X_{\sigma}\right)_{k i}+\frac{\left(y_{k}-\mu_{k}\right)^{2}}{\sigma_{k}^{2}}\left(X_{\sigma}\right)_{k i}\right) \\
& =\sum_{k=1}^{n}\left(\frac{\left(y_{k}-\mu_{k}\right)^{2}}{\sigma_{k}^{2}}-1\right)\left(X_{\sigma}\right)_{k i} \tag{19}
\end{align*}
$$

The entire gradient can be written as a matrix-product as

$$
\begin{equation*}
\nabla_{\beta_{\sigma}} \log \mathcal{L}=X_{\sigma}^{T} \lambda_{\sigma} \tag{20}
\end{equation*}
$$

with λ_{σ} a vector of length n whose elements $\lambda_{\sigma i}$ are

$$
\begin{equation*}
\lambda_{\sigma i}=\left(\frac{y_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}-1 \tag{21}
\end{equation*}
$$

The maximum-likelihood equations (18) take the form

$$
\begin{equation*}
X_{\sigma}^{T} \lambda_{\sigma}=0 \tag{22}
\end{equation*}
$$

The estimate μ of the expectation value that appears in λ_{σ} depends on β_{σ} as

$$
\begin{align*}
\mu & =X_{\mu} \beta_{\mu} \\
& =X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T} \Sigma^{-1} y \tag{23}
\end{align*}
$$

2.1 Profile-likelihood Hessian

Numerical procedures to solve the maximum-likelihood equations $X_{\sigma}^{T} \lambda_{\sigma}=0$ involve the calculation of the Hessian H_{P} of the profile log-likelihood. H_{P} is the matrix of second-order derivatives of $\log \mathcal{L}_{P}$:

$$
\begin{equation*}
\left(H_{P}\right)_{i j}=\frac{\partial^{2} \log \mathcal{L}_{P}}{\partial \beta_{\sigma j} \partial \beta_{\sigma i}} \tag{24}
\end{equation*}
$$

Differentiation of (19) gives for the second-order derivatives

$$
\begin{equation*}
\left(H_{P}\right)_{i j}=-2 \sum_{k=1}^{n}\left(X_{\sigma}^{T}\right)_{i k} \frac{y_{k}-\mu_{k}}{\sigma_{k}^{2}}\left\{\frac{\partial \mu_{k}}{\partial \beta_{\sigma j}}+\left(y_{k}-\mu_{k}\right)\left(X_{\sigma}\right)_{k j}\right\} \tag{25}
\end{equation*}
$$

with $\partial \mu_{k} /\left(\partial \beta_{\sigma j}\right)$ the element at row k and column j of the matrix $\left(\nabla_{\beta_{\sigma}} \mu\right)$. Given that $\mu=X_{\mu} \beta_{\mu}$ and β_{μ} is given by (10), the j-th column vector of the matrix is

$$
\begin{align*}
\frac{\partial \mu}{\partial \beta_{\sigma j}} & =X_{\mu} \frac{\partial \beta_{\mu}}{\partial \beta_{\sigma j}} \\
& =X_{\mu}\left\{\frac{\partial\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1}}{\partial \beta_{\sigma j}} X_{\mu}^{T} \Sigma^{-1}+\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T} \frac{\partial \Sigma^{-1}}{\partial \beta_{\sigma j}}\right\} y \\
& =X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1}\left\{-X_{\mu}^{T} \frac{\partial \Sigma^{-1}}{\partial \beta_{\sigma j}} X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T} \Sigma^{-1}+X_{\mu}^{T} \frac{\partial \Sigma^{-1}}{\partial \beta_{\sigma j}}\right\} y \\
& =X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T} \frac{\partial \Sigma^{-1}}{\partial \beta_{\sigma j}}\left\{-X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T} \Sigma^{-1}+I\right\} y \\
& =X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T} \frac{\partial \Sigma^{-1}}{\partial \beta_{\sigma j}}(y-\mu) \tag{26}
\end{align*}
$$

The matrix $\partial \Sigma^{-1} /\left(\partial \beta_{\sigma j}\right)$ takes the form

$$
\begin{align*}
\frac{\partial \Sigma^{-1}}{\partial \beta_{\sigma j}} & =\sum_{i=1}^{n} \frac{\partial \Sigma^{-1}}{\partial \sigma_{i}} \frac{\partial \sigma_{i}}{\partial \beta_{\sigma j}} \tag{27}\\
& =-2\left(\begin{array}{ccc}
\left(X_{\sigma}\right)_{1 j} & & 0 \\
& \ddots & \\
0 & & \left(X_{\sigma}\right)_{n j}
\end{array}\right) \Sigma^{-1}
\end{align*}
$$

The j-th column vector of the matrix is

$$
\frac{\partial \mu}{\partial \beta_{\sigma j}}=-2 X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T}\left(\begin{array}{c}
\frac{y_{1}-\mu_{1}}{\sigma_{1}^{2}}\left(X_{\sigma}\right)_{1 j} \tag{28}\\
\vdots \\
\frac{y_{n}-\mu_{n}}{\sigma_{n}^{2}}\left(X_{\sigma}\right)_{n j}
\end{array}\right)
$$

and the element $\left(\nabla_{\beta_{\sigma}} \mu\right)_{k j}$ of the matrix $\left(\nabla_{\beta_{\sigma}} \mu\right)$ is given by

$$
\begin{equation*}
\frac{\partial \mu_{k}}{\partial \beta_{\sigma j}}=-2 \sum_{l=1}^{n}\left(X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T}\right)_{k l} \frac{y_{l}-\mu_{l}}{\sigma_{l}^{2}}\left(X_{\sigma}\right)_{l j} \tag{29}
\end{equation*}
$$

If we substitute this result in (25), we obtain for the element at row i and column j of the Hessian:

$$
\begin{align*}
& \left(H_{P}\right)_{i j}= \\
& 4 \sum_{k, l=1}^{n}\left(X_{\sigma}^{T}\right)_{i k} \frac{y_{k}-\mu_{k}}{\sigma_{k}^{2}}\left(X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T}\right)_{k l} \frac{y_{l}-\mu_{l}}{\sigma_{l}^{2}}\left(X_{\sigma}\right)_{l j}+ \\
& \quad-2 \sum_{k=1}^{n}\left(X_{\sigma}^{T}\right)_{i k}\left(\frac{y_{k}-\mu_{k}}{\sigma_{k}}\right)^{2}\left(X_{\sigma}\right)_{k j} . \tag{30}
\end{align*}
$$

We can write the Hessian as a matrix-product as

$$
\begin{equation*}
H_{P}=X_{\sigma}^{T} \Lambda_{1} X_{\mu}\left(X_{\mu}^{T} \Sigma^{-1} X_{\mu}\right)^{-1} X_{\mu}^{T} \Lambda_{1} X_{\sigma}+X_{\sigma}^{T} \Lambda_{2} X_{\sigma} \tag{31}
\end{equation*}
$$

with two $n \times n$ diagonal matrices

$$
\left(\Lambda_{1}\right)_{i j}=\left\{\begin{array}{ll}
0 & i \neq j \tag{32}\\
2 \frac{y_{i}-\mu_{i}}{\sigma_{i}^{2}} & i=j
\end{array} \quad\left(\Lambda_{2}\right)_{i j}= \begin{cases}0 & i \neq j \\
-2\left(\frac{y_{i}-\mu_{i}}{\sigma_{i}}\right)^{2} & i=j\end{cases}\right.
$$

3 Distributions for estimators

Asymptotic theory of maximum-likelihood estimators tells that the vector of the combined estimators ($\hat{\beta}_{\mu}, \hat{\beta}_{\sigma}$) as defined in (8), is distributed approximately as

$$
\begin{equation*}
\left(\hat{\beta}_{\mu}, \hat{\beta}_{\sigma}\right) \sim \mathcal{N}_{k_{\mu}+k_{\sigma}}\left(\left(\beta_{\mu}^{\star}, \beta_{\sigma}^{\star}\right), \Sigma_{\beta \beta}\right) \quad \text { for } n \text { large. } \tag{33}
\end{equation*}
$$

This distribution is valid in the limit of a large number of observations n.
The covariance matrix $\Sigma_{\beta \beta}$ is given in terms of the inverse Fisher information matrix I_{n} :

$$
\begin{equation*}
\Sigma_{\beta \beta}=\frac{1}{n} I_{n}^{-1} \tag{34}
\end{equation*}
$$

The Fisher information matrix is given in terms of the expected value of the Hessian at $\beta_{\mu}=\beta_{\mu}^{\star}$ and $\beta_{\sigma}=\beta_{\sigma}^{\star}$:

$$
\begin{equation*}
I_{n}=-\frac{1}{n} E\left[H^{\star}\right] \tag{35}
\end{equation*}
$$

The Hessian H is the Hessian of the full log-likelihood, in contrast to the profilelikelihood Hessian:

$$
H^{\star}=\left(\begin{array}{cc}
H_{\mu \mu}^{\star} & H_{\mu \sigma}^{\star} \tag{36}\\
H_{\mu \sigma}^{\star} & H_{\sigma \sigma}^{\star}
\end{array}\right)
$$

with the three block-matrices defined as

$$
\begin{equation*}
\left(H_{\mu \mu}^{\star}\right)_{i j}=\frac{\partial^{2} \log L}{\partial \beta_{\mu i} \partial \beta_{\mu j}},\left(H_{\mu \sigma}^{\star}\right)_{i j}=\frac{\partial^{2} \log L}{\partial \beta_{\mu i} \partial \beta_{\sigma j}},\left(H_{\sigma \sigma}^{\star}\right)_{i j}=\frac{\partial^{2} \log L}{\partial \beta_{\sigma i} \partial \beta_{\sigma j}} \tag{37}
\end{equation*}
$$

evaluated at $\beta_{\mu}=\beta_{\mu}^{\star}$ and $\beta_{\sigma}=\beta_{\sigma}^{\star}$.
We have already calculated $H_{\mu \mu}$ in (13). The other block matrices are given by

$$
\begin{aligned}
& \left(H_{\mu \sigma}^{\star}\right)_{i j}=-2 \sum_{k=1}^{n} \frac{y_{k}-\mu_{k}^{\star}}{\sigma_{k}^{\star 2}}\left(X_{\mu}\right)_{k i}\left(X_{\sigma}\right)_{k j} \\
& \left(H_{\sigma \sigma}^{\star}\right)_{i j}=-2 \sum_{k=1}^{n}\left(\frac{y_{k}-\mu_{k}^{\star}}{\sigma_{k}^{\star}}\right)^{2}\left(X_{\sigma}\right)_{k i}\left(X_{\sigma}\right)_{k j} .
\end{aligned}
$$

In matrix notation:

$$
\begin{equation*}
H_{\mu \mu}^{\star}=-X_{\mu}^{T} \Sigma^{\star-1} X_{\mu}, \quad H_{\mu \sigma}^{\star}=-X_{\mu}^{T} \Lambda_{1}^{\star} X_{\sigma}, \quad H_{\sigma \sigma}^{\star}=X_{\sigma}^{T} \Lambda_{2}^{\star} X_{\sigma} \tag{38}
\end{equation*}
$$

with Λ_{1}^{\star} equal to Λ_{1} with $\mu=\mu^{\star}$ and $\sigma=\sigma^{\star}$, and likewise for Λ_{2}^{\star}.
When we take expected values and keep in mind that

$$
\begin{aligned}
E\left[Y-\mu^{\star}\right] & =0 \\
E\left[\left(Y_{i}-\mu_{i}^{\star}\right)\left(Y_{j}-\mu_{j}^{\star}\right)\right] & =\left\{\begin{array}{ll}
0 & i \neq j \\
\sigma_{i}^{\star 2} & i=j
\end{array},\right.
\end{aligned}
$$

we arrive at

$$
\begin{equation*}
E\left[H_{\mu \mu}^{\star}\right]=-X_{\mu}^{T} \Sigma^{\star-1} X_{\mu}, E\left[H_{\mu \sigma}^{\star}\right]=0, E\left[H_{\sigma \sigma}^{\star}\right]=-2 X_{\sigma}^{T} X_{\sigma} \tag{39}
\end{equation*}
$$

This brings the expected value of the Hessian in the form

$$
E\left[H^{\star}\right]=-\left(\begin{array}{cc}
X_{\mu}^{T} \Sigma^{\star-1} X_{\mu} & 0 \tag{40}\\
0 & 2 X_{\sigma}^{T} X_{\sigma}
\end{array}\right) .
$$

The function fisher in the lmvar package calculates the Fisher information matrix. It estimates $E\left[H^{\star}\right]$ by replacing the true but unknown σ^{\star} by its maximumlikelihood estimator $\hat{\sigma}$ in Σ^{\star}.

The expectation value (40) brings the covariance matrix $\Sigma_{\beta \beta}$ in the form

$$
\Sigma_{\beta \beta}=\left(\begin{array}{cc}
\left(X_{\mu}^{T} \Sigma^{\star-1} X_{\mu}\right)^{-1} & 0 \tag{41}\\
0 & \frac{1}{2}\left(X_{\sigma}^{T} X_{\sigma}\right)^{-1}
\end{array}\right)
$$

This implies that $\hat{\beta}_{\mu}$ and $\hat{\beta}_{\sigma}$ are independent stochastic variables distributed as

$$
\begin{align*}
& \hat{\beta}_{\mu} \sim \mathcal{N}_{k_{\mu}}\left(\beta_{\mu}^{\star},\left(X_{\mu}^{T} \Sigma^{\star-1} X_{\mu}\right)^{-1}\right) \quad \text { for } n \text { large. } \tag{42}\\
& \hat{\beta}_{\sigma} \sim \mathcal{N}_{k_{\sigma}}\left(\beta_{\sigma}^{\star}, \frac{1}{2}\left(X_{\sigma}^{T} X_{\sigma}\right)^{-1}\right)
\end{align*}
$$

We obtain for the asymptotic distribution of the maximum-likelihood estimators of μ^{\star} and σ^{\star}

$$
\begin{align*}
\hat{\mu} & \sim \mathcal{N}_{n}\left(\mu^{\star}, X_{\mu}\left(X_{\mu}^{T} \Sigma^{\star-1} X_{\mu}\right)^{-1} X_{\mu}^{T}\right) \tag{43}\\
\log \hat{\sigma} & \sim \mathcal{N}_{n}\left(\log \sigma^{\star}, \frac{1}{2} X_{\sigma}\left(X_{\sigma}^{T} X_{\sigma}\right)^{-1} X_{\sigma}^{T}\right)
\end{align*}
$$

The expectation value and the variance for an element $\hat{\sigma}_{i}$ of $\hat{\sigma}$ are

$$
\begin{align*}
E\left[\hat{\sigma}_{i}\right] & =\sigma_{i}^{\star} \exp \left(\frac{\left(X_{\sigma}\left(X_{\sigma}^{T} X_{\sigma}\right)^{-1} X_{\sigma}^{T}\right)_{i i}}{4}\right) \\
\operatorname{var}\left(\hat{\sigma}_{i}\right) & =\left(E\left[\hat{\sigma}_{i}\right]\right)^{2}\left(\exp \left(\frac{\left(X_{\sigma}\left(X_{\sigma}^{T} X_{\sigma}\right)^{-1} X_{\sigma}^{T}\right)_{i i}}{2}\right)-1\right) \tag{44}
\end{align*}
$$

The function fitted.lmvar (with the option log $=$ FALSE) returns $\hat{\mu}$ and $\hat{\sigma}$.

4 A case in which the maximum log-likelihood is not defined

It happens in practice that the maximum log-likelihood can not be determined. The routine which calculates it runs into numerical instabilities and exits with warning messages.

If that happens, the following might be the case. Suppose the full set of n observations can be split in two subsets S_{1}, with n_{1} observations, and S_{2}, with n_{2} observations, such that $n=n_{1}+n_{2}$. For simplicity and without loss of generality, we assume that the first n_{1} observations form the set S_{1} and the remaining observations the set S_{2}. Correspondingly, we split the response vector y in a vector $y_{1} \in \mathbb{R}^{n_{1}}$ and a vector $y_{2} \in \mathbb{R}^{n_{2}}$, the model matrix X_{μ} in $X_{\mu 1} \in \mathbb{R}^{n_{1} k_{\mu}}$ and $X_{\mu 2} \in \mathbb{R}^{n_{2} k_{\mu}}$, and likewise for the model matrix X_{σ} :

$$
\begin{equation*}
y=\binom{y_{1}}{y_{2}}, \quad X_{\mu}=\binom{X_{\mu 1}}{X_{\mu 2}}, \quad X_{\sigma}=\binom{X_{\sigma 1}}{X_{\sigma 2}} . \tag{45}
\end{equation*}
$$

The split is made such that:

- y_{1} is an element of the range of $X_{\mu 1}$, i.e., there exists a vector β_{1} such that $X_{\mu 1} \beta_{1}=y_{1}$, and
- $\operatorname{ker}\left(X_{\sigma 2}\right) \neq \emptyset$.

Because X_{σ} is full rank there exists a $\beta_{2} \in \operatorname{ker}\left(X_{\sigma 2}\right)$ such that $X_{\sigma 1} \beta_{2} \neq 0$. Moreover, if $v=X_{\sigma 1} \beta_{2}$ we can choose β_{2} such that $\sum_{k=1}^{n_{1}} v_{k}>0$.

Now consider the \log-likelihood $\log \mathcal{L}\left(\beta_{\mu}, \beta_{\sigma}\right)$ with $\beta_{\mu}=\beta_{1}$ and $\beta_{\sigma}=-L \beta_{2}$ with $L>0$:

$$
\begin{equation*}
\log \mathcal{L}\left(\beta_{1},-L \beta_{2}\right)=-\frac{n}{2} \log (2 \pi)+L \sum_{k=1}^{n_{1}} v_{k}-\frac{1}{2} \sum_{k=n_{1}+1}^{n}\left(y_{k}-\mu_{k}\right)^{2} \tag{46}
\end{equation*}
$$

which shows

$$
\begin{equation*}
\log \mathcal{L}\left(\beta_{1},-L \beta_{2}\right) \rightarrow \infty \quad \text { as } L \rightarrow \infty \tag{47}
\end{equation*}
$$

The option remove_df_sigma $=$ TRUE of the function lmvar tries to recognize this situation. It identifies the set of observations S_{1} as the observations for which the standard deviation becomes very small. It then removes columns from X_{σ} to make $X_{\sigma 2}$ full-rank.

References

[1] Murray Aitkin. Modelling Variance Heterogeneity in Normal Regression Using GLIM. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36(3):332-339, 1987.
[2] A. C. Harvey. Estimating Regression Models with Multiplicative Heteroscedasticity. Econometrica, 44(3):461-465, 1976.
[3] A. P. Verbyla. Modelling Variance Heterogeneity: Residual Maximum Likelihood and Diagnostics. Journal of the Royal Statistical Society. Series B (Methodological), 55(2):493-508, 1993.

