
Package ‘loo’
March 24, 2022

Type Package

Title Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian
Models

Version 2.5.1

Date 2022-03-23

Maintainer Jonah Gabry <jsg2201@columbia.edu>

URL https://mc-stan.org/loo/, https://discourse.mc-stan.org

BugReports https://github.com/stan-dev/loo/issues

Description Efficient approximate leave-one-out cross-validation (LOO)
for Bayesian models fit using Markov chain Monte Carlo, as
described in Vehtari, Gelman, and Gabry (2017)
<doi:10.1007/s11222-016-9696-4>.
The approximation uses Pareto smoothed importance sampling (PSIS),
a new procedure for regularizing importance weights.
As a byproduct of the calculations, we also obtain approximate
standard errors for estimated predictive errors and for the comparison
of predictive errors between models. The package also provides methods
for using stacking and other model weighting techniques to average
Bayesian predictive distributions.

License GPL (>= 3)

LazyData TRUE

Depends R (>= 3.1.2)

Imports checkmate, matrixStats (>= 0.52), parallel, stats

Suggests bayesplot (>= 1.7.0), brms (>= 2.10.0), ggplot2, graphics,
knitr, rmarkdown, rstan, rstanarm (>= 2.19.0), rstantools,
spdep, testthat (>= 2.1.0)

VignetteBuilder knitr

Encoding UTF-8

SystemRequirements pandoc (>= 1.12.3), pandoc-citeproc

RoxygenNote 7.1.2

1

https://mc-stan.org/loo/
https://discourse.mc-stan.org
https://github.com/stan-dev/loo/issues
https://doi.org/10.1007/s11222-016-9696-4

2 R topics documented:

NeedsCompilation no

Author Aki Vehtari [aut],
Jonah Gabry [cre, aut],
Mans Magnusson [aut],
Yuling Yao [aut],
Paul-Christian Bürkner [aut],
Topi Paananen [aut],
Andrew Gelman [aut],
Ben Goodrich [ctb],
Juho Piironen [ctb],
Bruno Nicenboim [ctb]

Repository CRAN

Date/Publication 2022-03-24 10:30:02 UTC

R topics documented:
loo-package . 3
ap_psis . 4
compare . 5
elpd . 7
example_loglik_array . 8
extract_log_lik . 8
E_loo . 9
gpdfit . 11
kfold-generic . 12
kfold-helpers . 13
loo . 14
loo-datasets . 20
loo-glossary . 21
loo_approximate_posterior . 23
loo_compare . 25
loo_model_weights . 27
loo_moment_match . 31
loo_moment_match_split . 34
loo_subsample . 36
nobs.psis_loo_ss . 39
obs_idx . 39
pareto-k-diagnostic . 40
print.loo . 43
psis . 44
psislw . 46
relative_eff . 47
sis . 49
tis . 52
update.psis_loo_ss . 54
waic . 56
weights.importance_sampling . 58

loo-package 3

Index 60

loo-package Efficient LOO-CV and WAIC for Bayesian models

Description

Stan Development Team

This package implements the methods described in Vehtari, Gelman, and Gabry (2017), Vehtari,
Simpson, Gelman, Yao, and Gabry (2019), and Yao et al. (2018). To get started see the loo package
vignettes, the loo() function for efficient approximate leave-one-out cross-validation (LOO-CV),
the psis() function for the Pareto smoothed importance sampling (PSIS) algorithm, or loo_model_weights()
for an implementation of Bayesian stacking of predictive distributions from multiple models.

Details

Leave-one-out cross-validation (LOO-CV) and the widely applicable information criterion (WAIC)
are methods for estimating pointwise out-of-sample prediction accuracy from a fitted Bayesian
model using the log-likelihood evaluated at the posterior simulations of the parameter values. LOO-
CV and WAIC have various advantages over simpler estimates of predictive error such as AIC and
DIC but are less used in practice because they involve additional computational steps. This package
implements the fast and stable computations for approximate LOO-CV laid out in Vehtari, Gelman,
and Gabry (2017). From existing posterior simulation draws, we compute LOO-CV using Pareto
smoothed importance sampling (PSIS; Vehtari, Simpson, Gelman, Yao, and Gabry, 2019), a new
procedure for stabilizing and diagnosing importance weights. As a byproduct of our calculations,
we also obtain approximate standard errors for estimated predictive errors and for comparing of
predictive errors between two models.

We recommend PSIS-LOO-CV instead of WAIC, because PSIS provides useful diagnostics and
effective sample size and Monte Carlo standard error estimates.

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian
predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17-BA1091. (online).

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2019). Leave-One-Out Cross-
Validation for Large Data. In International Conference on Machine Learning

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2020). Leave-One-Out Cross-
Validation for Model Comparison in Large Data. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS)

Epifani, I., MacEachern, S. N., and Peruggia, M. (2008). Case-deletion importance sampling esti-
mators: Central limit theorems and related results. Electronic Journal of Statistics 2, 774-806.

https://mc-stan.org/loo/articles/index.html
https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646
https://projecteuclid.org/euclid.ba/1516093227

4 ap_psis

Gelfand, A. E. (1996). Model determination using sampling-based methods. In Markov Chain
Monte Carlo in Practice, ed. W. R. Gilks, S. Richardson, D. J. Spiegelhalter, 145-162. London:
Chapman and Hall.

Gelfand, A. E., Dey, D. K., and Chang, H. (1992). Model determination using predictive dis-
tributions with implementation via sampling-based methods. In Bayesian Statistics 4, ed. J. M.
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, 147-167. Oxford University Press.

Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24, 997-1016.

Ionides, E. L. (2008). Truncated importance sampling. Journal of Computational and Graphical
Statistics 17, 295-311.

Koopman, S. J., Shephard, N., and Creal, D. (2009). Testing the assumptions behind importance
sampling. Journal of Econometrics 149, 2-11.

Peruggia, M. (1997). On the variability of case-deletion importance sampling weights in the
Bayesian linear model. Journal of the American Statistical Association 92, 199-207.

Stan Development Team (2017). The Stan C++ Library, Version 2.17.0. https://mc-stan.org.

Stan Development Team (2018). RStan: the R interface to Stan, Version 2.17.3. https://mc-stan.
org.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely application
information criterion in singular learning theory. Journal of Machine Learning Research 11, 3571-
3594.

Zhang, J., and Stephens, M. A. (2009). A new and efficient estimation method for the generalized
Pareto distribution. Technometrics 51, 316-325.

ap_psis Pareto smoothed importance sampling (PSIS) using approximate pos-
teriors

Description

Pareto smoothed importance sampling (PSIS) using approximate posteriors

Usage

ap_psis(log_ratios, log_p, log_g, ...)

S3 method for class 'array'
ap_psis(log_ratios, log_p, log_g, ..., cores = getOption("mc.cores", 1))

S3 method for class 'matrix'
ap_psis(log_ratios, log_p, log_g, ..., cores = getOption("mc.cores", 1))

Default S3 method:
ap_psis(log_ratios, log_p, log_g, ...)

https://mc-stan.org
https://mc-stan.org
https://mc-stan.org

compare 5

Arguments

log_ratios The log-likelihood ratios (ie -log_liks)

log_p The log-posterior (target) evaluated at S samples from the proposal distribution
(g). A vector of length S.

log_g The log-density (proposal) evaluated at S samples from the proposal distribution
(g). A vector of length S.

... Currently not in use.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

• default: A vector of length S (posterior sample size).

compare Model comparison (deprecated, old version)

Description

This function is deprecated. Please use the new loo_compare() function instead.

Usage

compare(..., x = list())

Arguments

... At least two objects returned by loo() (or waic()).

x A list of at least two objects returned by loo() (or waic()). This argument can
be used as an alternative to specifying the objects in

https://github.com/stan-dev/loo/issues/94

6 compare

Details

When comparing two fitted models, we can estimate the difference in their expected predictive
accuracy by the difference in elpd_loo or elpd_waic (or multiplied by -2, if desired, to be on the
deviance scale).

When that difference, elpd_diff, is positive then the expected predictive accuracy for the second
model is higher. A negative elpd_diff favors the first model.

When using compare() with more than two models, the values in the elpd_diff and se_diff
columns of the returned matrix are computed by making pairwise comparisons between each model
and the model with the best ELPD (i.e., the model in the first row). Although the elpd_diff
column is equal to the difference in elpd_loo, do not expect the se_diff column to be equal to the
the difference in se_elpd_loo.

To compute the standard error of the difference in ELPD we use a paired estimate to take advantage
of the fact that the same set of N data points was used to fit both models. These calculations should
be most useful when N is large, because then non-normality of the distribution is not such an issue
when estimating the uncertainty in these sums. These standard errors, for all their flaws, should give
a better sense of uncertainty than what is obtained using the current standard approach of comparing
differences of deviances to a Chi-squared distribution, a practice derived for Gaussian linear models
or asymptotically, and which only applies to nested models in any case.

Value

A vector or matrix with class 'compare.loo' that has its own print method. If exactly two objects
are provided in ... or x, then the difference in expected predictive accuracy and the standard error
of the difference are returned. If more than two objects are provided then a matrix of summary
information is returned (see Details).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

Examples

Not run:
loo1 <- loo(log_lik1)
loo2 <- loo(log_lik2)
print(compare(loo1, loo2), digits = 3)
print(compare(x = list(loo1, loo2)))

waic1 <- waic(log_lik1)
waic2 <- waic(log_lik2)
compare(waic1, waic2)

End(Not run)

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646

elpd 7

elpd Generic (expected) log-predictive density

Description

The elpd() methods for arrays and matrices can compute the expected log pointwise predictive
density for a new dataset or the log pointwise predictive density of the observed data (an overesti-
mate of the elpd).

Usage

elpd(x, ...)

S3 method for class 'array'
elpd(x, ...)

S3 method for class 'matrix'
elpd(x, ...)

Arguments

x A log-likelihood array or matrix. The Methods (by class) section, below, has
detailed descriptions of how to specify the inputs for each method.

... Currently ignored.

Details

The elpd() function is an S3 generic and methods are provided for 3-D pointwise log-likelihood
arrays and matrices.

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

See Also

The vignette Holdout validation and K-fold cross-validation of Stan programs with the loo package
for demonstrations of using the elpd() methods.

Examples

Calculate the lpd of the observed data
LLarr <- example_loglik_array()
elpd(LLarr)

8 extract_log_lik

example_loglik_array Objects to use in examples and tests

Description

Example pointwise log-likelihood objects to use in demonstrations and tests. See the Value and
Examples sections below.

Usage

example_loglik_array()

example_loglik_matrix()

Value

example_loglik_array() returns a 500 (draws) x 2 (chains) x 32 (observations) pointwise log-
likelihood array.

example_loglik_matrix() returns the same pointwise log-likelihood values as example_loglik_array()
but reshaped into a 1000 (draws*chains) x 32 (observations) matrix.

Examples

LLarr <- example_loglik_array()
(dim_arr <- dim(LLarr))
LLmat <- example_loglik_matrix()
(dim_mat <- dim(LLmat))

all.equal(dim_mat[1], dim_arr[1] * dim_arr[2])
all.equal(dim_mat[2], dim_arr[3])

all.equal(LLarr[, 1,], LLmat[1:500,])
all.equal(LLarr[, 2,], LLmat[501:1000,])

extract_log_lik Extract pointwise log-likelihood from a Stan model

Description

Convenience function for extracting the pointwise log-likelihood matrix or array from a stanfit
object from the rstan package. Note: recent versions of rstan now include a loo() method for
stanfit objects that handles this internally.

Usage

extract_log_lik(stanfit, parameter_name = "log_lik", merge_chains = TRUE)

E_loo 9

Arguments

stanfit A stanfit object (rstan package).

parameter_name A character string naming the parameter (or generated quantity) in the Stan
model corresponding to the log-likelihood.

merge_chains If TRUE (the default), all Markov chains are merged together (i.e., stacked) and a
matrix is returned. If FALSE they are kept separate and an array is returned.

Details

Stan does not automatically compute and store the log-likelihood. It is up to the user to incorporate
it into the Stan program if it is to be extracted after fitting the model. In a Stan model, the pointwise
log likelihood can be coded as a vector in the transformed parameters block (and then summed up
in the model block) or it can be coded entirely in the generated quantities block. We recommend
using the generated quantities block so that the computations are carried out only once per iteration
rather than once per HMC leapfrog step.

For example, the following is the generated quantities block for computing and saving the log-
likelihood for a linear regression model with N data points, outcome y, predictor matrix X, coeffi-
cients beta, and standard deviation sigma:
vector[N] log_lik;

for (n in 1:N) log_lik[n] = normal_lpdf(y[n] | X[n,] * beta,sigma);

Value

If merge_chains=TRUE, an S by N matrix of (post-warmup) extracted draws, where S is the size
of the posterior sample and N is the number of data points. If merge_chains=FALSE, an I by C by
N array, where I × C = S.

References

Stan Development Team (2017). The Stan C++ Library, Version 2.16.0. https://mc-stan.org/

Stan Development Team (2017). RStan: the R interface to Stan, Version 2.16.1. https://mc-stan.
org/

E_loo Compute weighted expectations

Description

The E_loo() function computes weighted expectations (means, variances, quantiles) using the im-
portance weights obtained from the PSIS smoothing procedure. The expectations estimated by the
E_loo() function assume that the PSIS approximation is working well. A small Pareto k estimate
is necessary, but not sufficient, for E_loo() to give reliable estimates. Additional diagnostic
checks for gauging the reliability of the estimates are in development and will be added in a future
release.

https://mc-stan.org/
https://mc-stan.org/
https://mc-stan.org/

10 E_loo

Usage

E_loo(x, psis_object, ...)

Default S3 method:
E_loo(
x,
psis_object,
...,
type = c("mean", "variance", "quantile"),
probs = NULL,
log_ratios = NULL

)

S3 method for class 'matrix'
E_loo(
x,
psis_object,
...,
type = c("mean", "variance", "quantile"),
probs = NULL,
log_ratios = NULL

)

Arguments

x A numeric vector or matrix.

psis_object An object returned by psis().

... Arguments passed to individual methods.

type The type of expectation to compute. The options are "mean", "variance", and
"quantile".

probs For computing quantiles, a vector of probabilities.

log_ratios Optionally, a vector or matrix (the same dimensions as x) of raw (not smoothed)
log ratios. If working with log-likelihood values, the log ratios are the negative
of those values. If log_ratios is specified we are able to compute Pareto k
diagnostics specific to E_loo().

Value

A named list with the following components:

value The result of the computation.
For the matrix method, value is a vector with ncol(x) elements, with one exception: when
type="quantile" and multiple values are specified in probs the value component of the
returned object is a length(probs) by ncol(x) matrix.
For the default/vector method the value component is scalar, with one exception: when type
is "quantile" and multiple values are specified in probs the value component is a vector
with length(probs) elements.

gpdfit 11

pareto_k Function-specific diagnostic.
If log_ratios is not specified when calling E_loo(), pareto_k will be NULL. Otherwise, for
the matrix method it will be a vector of length ncol(x) containing estimates of the shape
parameter k of the generalized Pareto distribution. For the default/vector method, the estimate
is a scalar.

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Use rstanarm package to quickly fit a model and get both a log-likelihood
matrix and draws from the posterior predictive distribution
library("rstanarm")

data from help("lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
d <- data.frame(

weight = c(ctl, trt),
group = gl(2, 10, 20, labels = c("Ctl","Trt"))

)
fit <- stan_glm(weight ~ group, data = d, refresh = 0)
yrep <- posterior_predict(fit)
dim(yrep)

log_ratios <- -1 * log_lik(fit)
dim(log_ratios)

r_eff <- relative_eff(exp(-log_ratios), chain_id = rep(1:4, each = 1000))
psis_object <- psis(log_ratios, r_eff = r_eff, cores = 2)

E_loo(yrep, psis_object, type = "mean")
E_loo(yrep, psis_object, type = "var")
E_loo(yrep, psis_object, type = "quantile", probs = 0.5) # median
E_loo(yrep, psis_object, type = "quantile", probs = c(0.1, 0.9))

To get Pareto k diagnostic with E_loo we also need to provide the negative
log-likelihood values using the log_ratios argument.
E_loo(yrep, psis_object, type = "mean", log_ratios = log_ratios)
}

gpdfit Estimate parameters of the Generalized Pareto distribution

Description

Given a sample x, Estimate the parameters k and σ of the generalized Pareto distribution (GPD),
assuming the location parameter is 0. By default the fit uses a prior for k, which will stabilize esti-

12 kfold-generic

mates for very small sample sizes (and low effective sample sizes in the case of MCMC samples).
The weakly informative prior is a Gaussian prior centered at 0.5.

Usage

gpdfit(x, wip = TRUE, min_grid_pts = 30, sort_x = TRUE)

Arguments

x A numeric vector. The sample from which to estimate the parameters.

wip Logical indicating whether to adjust k based on a weakly informative Gaussian
prior centered on 0.5. Defaults to TRUE.

min_grid_pts The minimum number of grid points used in the fitting algorithm. The actual
number used is min_grid_pts + floor(sqrt(length(x))).

sort_x If TRUE (the default), the first step in the fitting algorithm is to sort the elements
of x. If x is already sorted in ascending order then sort_x can be set to FALSE
to skip the initial sorting step.

Details

Here the parameter k is the negative of k in Zhang & Stephens (2009).

Value

A named list with components k and sigma.

References

Zhang, J., and Stephens, M. A. (2009). A new and efficient estimation method for the generalized
Pareto distribution. Technometrics 51, 316-325.

See Also

psis(), pareto-k-diagnostic

kfold-generic Generic function for K-fold cross-validation for developers

Description

For developers of Bayesian modeling packages, loo includes a generic function kfold() so that
methods may be defined for K-fold CV without name conflicts between packages. See, for example,
the kfold() methods in the rstanarm and brms packages.

The Value section below describes the objects that kfold() methods should return in order to be
compatible with loo_compare() and the loo package print methods.

kfold-helpers 13

Usage

kfold(x, ...)

is.kfold(x)

Arguments

x A fitted model object.

... Arguments to pass to specific methods.

Value

For developers defining a kfold() method for a class "foo", the kfold.foo() function should
return a list with class c("kfold","loo") with at least the following named elements:

• "estimates": A 1x2 matrix containing the ELPD estimate and its standard error. The matrix
must have row name "elpd_kfold" and column names "Estimate" and "SE".

• "pointwise": A Nx1 matrix with column name "elpd_kfold" containing the pointwise con-
tributions for each data point.

It is important for the object to have at least these classes and components so that it is compatible
with other functions like loo_compare() and print() methods.

kfold-helpers Helper functions for K-fold cross-validation

Description

These functions can be used to generate indexes for use with K-fold cross-validation. See the
Details section for explanations.

Usage

kfold_split_random(K = 10, N = NULL)

kfold_split_stratified(K = 10, x = NULL)

kfold_split_grouped(K = 10, x = NULL)

Arguments

K The number of folds to use.

N The number of observations in the data.

x A discrete variable of length N with at least K levels (unique values). Will be
coerced to a factor.

14 loo

Details

kfold_split_random() splits the data into K groups of equal size (or roughly equal size).

For a categorical variable x kfold_split_stratified() splits the observations into K groups en-
suring that relative category frequencies are approximately preserved.

For a grouping variable x, kfold_split_grouped() places all observations in x from the same
group/level together in the same fold. The selection of which groups/levels go into which fold
(relevant when when there are more groups than folds) is randomized.

Value

An integer vector of length N where each element is an index in 1:K.

Examples

ids <- kfold_split_random(K = 5, N = 20)
print(ids)
table(ids)

x <- sample(c(0, 1), size = 200, replace = TRUE, prob = c(0.05, 0.95))
table(x)
ids <- kfold_split_stratified(K = 5, x = x)
print(ids)
table(ids, x)

grp <- gl(n = 50, k = 15, labels = state.name)
length(grp)
head(table(grp))

ids_10 <- kfold_split_grouped(K = 10, x = grp)
(tab_10 <- table(grp, ids_10))
colSums(tab_10)

ids_9 <- kfold_split_grouped(K = 9, x = grp)
(tab_9 <- table(grp, ids_9))
colSums(tab_9)

loo Efficient approximate leave-one-out cross-validation (LOO)

Description

The loo() methods for arrays, matrices, and functions compute PSIS-LOO CV, efficient approxi-
mate leave-one-out (LOO) cross-validation for Bayesian models using Pareto smoothed importance
sampling (PSIS). This is an implementation of the methods described in Vehtari, Gelman, and Gabry
(2017) and Vehtari, Simpson, Gelman, Yao, and Gabry (2019).

The loo_i() function enables testing log-likelihood functions for use with the loo.function()
method.

loo 15

Usage

loo(x, ...)

S3 method for class 'array'
loo(
x,
...,
r_eff = NULL,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")

)

S3 method for class 'matrix'
loo(
x,
...,
r_eff = NULL,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")

)

S3 method for class '`function`'
loo(
x,
...,
data = NULL,
draws = NULL,
r_eff = NULL,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")

)

loo_i(
i,
llfun,
...,
data = NULL,
draws = NULL,
r_eff = NULL,
is_method = "psis"

)

is.loo(x)

is.psis_loo(x)

16 loo

Arguments

x A log-likelihood array, matrix, or function. The Methods (by class) section,
below, has detailed descriptions of how to specify the inputs for each method.

r_eff Vector of relative effective sample size estimates for the likelihood (exp(log_lik))
of each observation. This is related to the relative efficiency of estimating the
normalizing term in self-normalizing importance sampling when using poste-
rior draws obtained with MCMC. If MCMC draws are used and r_eff is not
provided then the reported PSIS effective sample sizes and Monte Carlo er-
ror estimates will be over-optimistic. If the posterior draws are independent
then r_eff=1 and can be omitted. The warning message thrown when r_eff is
not specified can be disabled by setting r_eff to NA. See the relative_eff()
helper functions for computing r_eff.

save_psis Should the "psis" object created internally by loo() be saved in the returned
object? The loo() function calls psis() internally but by default discards the
(potentially large) "psis" object after using it to compute the LOO-CV sum-
maries. Setting save_psis=TRUE will add a psis_object component to the list
returned by loo. Currently this is only needed if you plan to use the E_loo()
function to compute weighted expectations after running loo.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

is_method The importance sampling method to use. The following methods are imple-
mented:

• "psis": Pareto-Smoothed Importance Sampling (PSIS). Default method.
• "tis": Truncated Importance Sampling (TIS) with truncation at sqrt(S),

where S is the number of posterior draws.
• "sis": Standard Importance Sampling (SIS).

data, draws, ...

For the loo.function() method and the loo_i() function, these are the data,
posterior draws, and other arguments to pass to the log-likelihood function. See
the Methods (by class) section below for details on how to specify these argu-
ments.

i For loo_i(), an integer in 1:N.

llfun For loo_i(), the same as x for the loo.function() method. A log-likelihood
function as described in the Methods (by class) section.

Details

The loo() function is an S3 generic and methods are provided for 3-D pointwise log-likelihood
arrays, pointwise log-likelihood matrices, and log-likelihood functions. The array and matrix meth-

https://github.com/stan-dev/loo/issues/94

loo 17

ods are the most convenient, but for models fit to very large datasets the loo.function() method
is more memory efficient and may be preferable.

Value

The loo() methods return a named list with class c("psis_loo","loo") and components:

estimates A matrix with two columns (Estimate, SE) and three rows (elpd_loo, p_loo, looic).
This contains point estimates and standard errors of the expected log pointwise predictive
density (elpd_loo), the effective number of parameters (p_loo) and the LOO information
criterion looic (which is just -2 * elpd_loo, i.e., converted to deviance scale).

pointwise A matrix with five columns (and number of rows equal to the number of observations)
containing the pointwise contributions of the measures (elpd_loo, mcse_elpd_loo, p_loo,
looic, influence_pareto_k). in addition to the three measures in estimates, we also report
pointwise values of the Monte Carlo standard error of elpd_loo (mcse_elpd_loo), and statis-
tics describing the influence of each observation on the posterior distribution (influence_pareto_k).
These are the estimates of the shape parameter k of the generalized Pareto fit to the importance
ratios for each leave-one-out distribution (see the pareto-k-diagnostic page for details).

diagnostics A named list containing two vectors:

• pareto_k: Importance sampling reliability diagnostics. By default, these are equal to the
influence_pareto_k in pointwise. Some algorithms can improve importance sam-
pling reliability and modify these diagnostics. See the pareto-k-diagnostic page for de-
tails.

• n_eff: PSIS effective sample size estimates.

psis_object This component will be NULL unless the save_psis argument is set to TRUE when
calling loo(). In that case psis_object will be the object of class "psis" that is created
when the loo() function calls psis() internally to do the PSIS procedure.

The loo_i() function returns a named list with components pointwise and diagnostics. These
components have the same structure as the pointwise and diagnostics components of the object
returned by loo() except they contain results for only a single observation.

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

• function: A function f() that takes arguments data_i and draws and returns a vector con-
taining the log-likelihood for a single observation i evaluated at each posterior draw. The
function should be written such that, for each observation i in 1:N, evaluating

f(data_i = data[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.
If using the function method then the arguments data and draws must also be specified in the
call to loo():

18 loo

– data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

– draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

– The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

Defining loo() methods in a package

Package developers can define loo() methods for fitted models objects. See the example loo.stanfit()
method in the Examples section below for an example of defining a method that calls loo.array().
The loo.stanreg() method in the rstanarm package is an example of defining a method that calls
loo.function().

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

See Also

• The loo package vignettes for demonstrations.

• The FAQ page on the loo website for answers to frequently asked questions.

• psis() for the underlying Pareto Smoothed Importance Sampling (PSIS) procedure used in
the LOO-CV approximation.

• pareto-k-diagnostic for convenience functions for looking at diagnostics.

• loo_compare() for model comparison.

Examples

Array and matrix methods (using example objects included with loo package)
Array method
LLarr <- example_loglik_array()
rel_n_eff <- relative_eff(exp(LLarr))
loo(LLarr, r_eff = rel_n_eff, cores = 2)

Matrix method
LLmat <- example_loglik_matrix()
rel_n_eff <- relative_eff(exp(LLmat), chain_id = rep(1:2, each = 500))
loo(LLmat, r_eff = rel_n_eff, cores = 2)

Using log-likelihood function instead of array or matrix

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646
https://mc-stan.org/loo/articles/index.html
https://mc-stan.org/loo/articles/online-only/faq.html

loo 19

set.seed(124)

Simulate data and draw from posterior
N <- 50; K <- 10; S <- 100; a0 <- 3; b0 <- 2
p <- rbeta(1, a0, b0)
y <- rbinom(N, size = K, prob = p)
a <- a0 + sum(y); b <- b0 + N * K - sum(y)
fake_posterior <- as.matrix(rbeta(S, a, b))
dim(fake_posterior) # S x 1
fake_data <- data.frame(y,K)
dim(fake_data) # N x 2

llfun <- function(data_i, draws) {
each time called internally within loo the arguments will be equal to:
data_i: ith row of fake_data (fake_data[i,, drop=FALSE])
draws: entire fake_posterior matrix
dbinom(data_i$y, size = data_i$K, prob = draws, log = TRUE)

}

Use the loo_i function to check that llfun works on a single observation
before running on all obs. For example, using the 3rd obs in the data:
loo_3 <- loo_i(i = 3, llfun = llfun, data = fake_data, draws = fake_posterior, r_eff = NA)
print(loo_3$pointwise[, "elpd_loo"])

Use loo.function method (setting r_eff=NA since this posterior not obtained via MCMC)
loo_with_fn <- loo(llfun, draws = fake_posterior, data = fake_data, r_eff = NA)

If we look at the elpd_loo contribution from the 3rd obs it should be the
same as what we got above with the loo_i function and i=3:
print(loo_with_fn$pointwise[3, "elpd_loo"])
print(loo_3$pointwise[, "elpd_loo"])

Check that the loo.matrix method gives same answer as loo.function method
log_lik_matrix <- sapply(1:N, function(i) {

llfun(data_i = fake_data[i,, drop=FALSE], draws = fake_posterior)
})
loo_with_mat <- loo(log_lik_matrix, r_eff = NA)
all.equal(loo_with_mat$estimates, loo_with_fn$estimates) # should be TRUE!

Not run:
For package developers: defining loo methods

An example of a possible loo method for 'stanfit' objects (rstan package).
A similar method is included in the rstan package.
In order for users to be able to call loo(stanfit) instead of
loo.stanfit(stanfit) the NAMESPACE needs to be handled appropriately
(roxygen2 and devtools packages are good for that).
#
loo.stanfit <-
function(x,

pars = "log_lik",
...,

20 loo-datasets

save_psis = FALSE,
cores = getOption("mc.cores", 1)) {

stopifnot(length(pars) == 1L)
LLarray <- loo::extract_log_lik(stanfit = x,

parameter_name = pars,
merge_chains = FALSE)

r_eff <- loo::relative_eff(x = exp(LLarray), cores = cores)
loo::loo.array(LLarray,

r_eff = r_eff,
cores = cores,
save_psis = save_psis)

}

End(Not run)

loo-datasets Datasets for loo examples and vignettes

Description

Small datasets for use in loo examples and vignettes. The Kline and milk datasets are also included
in the rethinking package (McElreath, 2016a), but we include them here as rethinking is not on
CRAN.

Details

Currently the data sets included are:

• Kline: Small dataset from Kline and Boyd (2010) on tool complexity and demography in
Oceanic islands societies. This data is discussed in detail in McElreath (2016a,2016b). (Link
to variable descriptions)

• milk: Small dataset from Hinde and Milligan (2011) on primate milk composition.This data
is discussed in detail in McElreath (2016a,2016b). (Link to variable descriptions)

References

Hinde and Milligan. 2011. Evolutionary Anthropology 20:9-23.

Kline, M.A. and R. Boyd. 2010. Proc R Soc B 277:2559-2564.

McElreath, R. (2016a). rethinking: Statistical Rethinking book package. R package version 1.59.

McElreath, R. (2016b). Statistical rethinking: A Bayesian course with examples in R and Stan.
Chapman & Hall/CRC.

Examples

str(Kline)
str(milk)

https://www.rdocumentation.org/packages/rethinking/versions/1.59/topics/Kline
https://www.rdocumentation.org/packages/rethinking/versions/1.59/topics/Kline
https://www.rdocumentation.org/packages/rethinking/versions/1.59/topics/milk

loo-glossary 21

loo-glossary LOO package glossary

Description

The pages provides definitions to key terms. Also see the FAQ page on the loo website for answers
to frequently asked questions.

Note: VGG2017 refers to Vehtari, Gelman, and Gabry (2017). See References, below.

ELPD and elpd_loo

The ELPD is the theoretical expected log pointwise predictive density for a new dataset (Eq 1 in
VGG2017), which can be estimated, e.g., using cross-validation. elpd_loo is the Bayesian LOO
estimate of the expected log pointwise predictive density (Eq 4 in VGG2017) and is a sum of N
individual pointwise log predictive densities. Probability densities can be smaller or larger than 1,
and thus log predictive densities can be negative or positive. For simplicity the ELPD acronym is
used also for expected log pointwise predictive probabilities for discrete models. Probabilities are
always equal or less than 1, and thus log predictive probabilities are 0 or negative.

Standard error of elpd_loo

As elpd_loo is defined as the sum of N independent components (Eq 4 in VGG2017), we can
compute the standard error by using the standard deviation of the N components and multiplying by
sqrt(N) (Eq 23 in VGG2017). This standard error is a coarse description of our uncertainty about
the predictive performance for unknown future data. When N is small or there is severe model
misspecification, the current SE estimate is overoptimistic and the actual SE can even be twice as
large. Even for moderate N, when the SE estimate is an accurate estimate for the scale, it ignores the
skewness. When making model comparisons, the SE of the component-wise (pairwise) differences
should be used instead (see the se_diff section below and Eq 24 in VGG2017).

Monte Carlo SE of elpd_loo

The Monte Carlo standard error is the estimate for the computational accuracy of MCMC and im-
portance sampling used to compute elpd_loo. Usually this is negligible compared to the standard
describing the uncertainty due to finite number of observations (Eq 23 in VGG2017).

p_loo (effective number of parameters)

p_loo is the difference between elpd_loo and the non-cross-validated log posterior predictive den-
sity. It describes how much more difficult it is to predict future data than the observed data. Asymp-
totically under certain regularity conditions, p_loo can be interpreted as the effective number of
parameters. In well behaving cases p_loo < N and p_loo < p, where p is the total number of pa-
rameters in the model. p_loo > N or p_loo > p indicates that the model has very weak predictive
capability and may indicate a severe model misspecification. See below for more on interpreting
p_loo when there are warnings about high Pareto k diagnostic values.

https://mc-stan.org/loo/articles/online-only/faq.html

22 loo-glossary

Pareto k estimates

The Pareto k estimate is a diagnostic for Pareto smoothed importance sampling (PSIS), which is
used to compute components of elpd_loo. In importance-sampling LOO (the full posterior distri-
bution is used as the proposal distribution). The Pareto k diagnostic estimates how far an individual
leave-one-out distribution is from the full distribution. If leaving out an observation changes the
posterior too much then importance sampling is not able to give reliable estimate. If k<0.5, then
the corresponding component of elpd_loo is estimated with high accuracy. If 0.5<k<0.7 the accu-
racy is lower, but still ok. If k>0.7, then importance sampling is not able to provide useful estimate
for that component/observation. Pareto k is also useful as a measure of influence of an observation.
Highly influential observations have high k values. Very high k values often indicate model mis-
specification, outliers or mistakes in data processing. See Section 6 of Gabry et al. (2019) for an
example.

Interpreting p_loo when Pareto k is large: If k > 0.7 then we can also look at the p_loo
estimate for some additional information about the problem:

• If p_loo << p (the total number of parameters in the model), then the model is likely to be
misspecified. Posterior predictive checks (PPCs) are then likely to also detect the problem.
Try using an overdispersed model, or add more structural information (nonlinearity, mixture
model, etc.).

• If p_loo < p and the number of parameters p is relatively large compared to the number of
observations (e.g., p>N/5), it is likely that the model is so flexible or the population prior
so weak that it’s difficult to predict the left out observation (even for the true model). This
happens, for example, in the simulated 8 schools (in VGG2017), random effect models with
a few observations per random effect, and Gaussian processes and spatial models with short
correlation lengths.

• If p_loo > p, then the model is likely to be badly misspecified. If the number of parameters
p<<N, then PPCs are also likely to detect the problem. See the case study at https://
avehtari.github.io/modelselection/roaches.html for an example. If p is relatively
large compared to the number of observations, say p>N/5 (more accurately we should count
number of observations influencing each parameter as in hierarchical models some groups
may have few observations and other groups many), it is possible that PPCs won’t detect the
problem.

elpd_diff

elpd_diff is the difference in elpd_loo for two models. If more than two models are compared,
the difference is computed relative to the model with highest elpd_loo.

se_diff

The standard error of component-wise differences of elpd_loo (Eq 24 in VGG2017) between two
models. This SE is smaller than the SE for individual models due to correlation (i.e., if some
observations are easier and some more difficult to predict for all models).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

https://avehtari.github.io/modelselection/roaches.html
https://avehtari.github.io/modelselection/roaches.html
https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544

loo_approximate_posterior 23

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378 (journal version,
preprint arXiv:1709.01449, code on GitHub)

loo_approximate_posterior

Efficient approximate leave-one-out cross-validation (LOO) for poste-
rior approximations

Description

Efficient approximate leave-one-out cross-validation (LOO) for posterior approximations

Usage

loo_approximate_posterior(x, log_p, log_g, ...)

S3 method for class 'array'
loo_approximate_posterior(
x,
log_p,
log_g,
...,
save_psis = FALSE,
cores = getOption("mc.cores", 1)

)

S3 method for class 'matrix'
loo_approximate_posterior(
x,
log_p,
log_g,
...,
save_psis = FALSE,
cores = getOption("mc.cores", 1)

)

S3 method for class '`function`'
loo_approximate_posterior(
x,
...,
data = NULL,
draws = NULL,
log_p = NULL,
log_g = NULL,

https://arxiv.org/abs/1507.02646
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378
https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper

24 loo_approximate_posterior

save_psis = FALSE,
cores = getOption("mc.cores", 1)

)

Arguments

x A log-likelihood array, matrix, or function. The Methods (by class) section,
below, has detailed descriptions of how to specify the inputs for each method.

log_p The log-posterior (target) evaluated at S samples from the proposal distribution
(g). A vector of length S.

log_g The log-density (proposal) evaluated at S samples from the proposal distribution
(g). A vector of length S.

save_psis Should the "psis" object created internally by loo_approximate_posterior()
be saved in the returned object? See loo() for details.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

data, draws, ...

For the loo_approximate_posterior.function() method, these are the data,
posterior draws, and other arguments to pass to the log-likelihood function. See
the Methods (by class) section below for details on how to specify these argu-
ments.

Details

The loo_approximate_posterior() function is an S3 generic and methods are provided for 3-
D pointwise log-likelihood arrays, pointwise log-likelihood matrices, and log-likelihood functions.
The implementation works for posterior approximations where it is possible to compute the log
density for the posterior approximation.

Value

The loo_approximate_posterior() methods return a named list with class c("psis_loo_ap","psis_loo","loo").
It has the same structure as the objects returned by loo() but with the additional slot:

posterior_approximation A list with two vectors, log_p and log_g of the same length contain-
ing the posterior density and the approximation density for the individual draws.

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

https://github.com/stan-dev/loo/issues/94

loo_compare 25

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

• function: A function f() that takes arguments data_i and draws and returns a vector con-
taining the log-likelihood for a single observation i evaluated at each posterior draw. The
function should be written such that, for each observation i in 1:N, evaluating

f(data_i = data[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.
If using the function method then the arguments data and draws must also be specified in the
call to loo():

– data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

– draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

– The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

References

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2019). Leave-One-Out Cross-
Validation for Large Data. In International Conference on Machine Learning

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2020). Leave-One-Out Cross-
Validation for Model Comparison in Large Data. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS)

See Also

loo(), psis(), loo_compare()

loo_compare Model comparison

Description

Compare fitted models based on ELPD.

By default the print method shows only the most important information. Use print(...,simplify=FALSE)
to print a more detailed summary.

26 loo_compare

Usage

loo_compare(x, ...)

Default S3 method:
loo_compare(x, ...)

S3 method for class 'compare.loo'
print(x, ..., digits = 1, simplify = TRUE)

S3 method for class 'compare.loo_ss'
print(x, ..., digits = 1, simplify = TRUE)

Arguments

x An object of class "loo" or a list of such objects. If a list is used then the list
names will be used as the model names in the output. See Examples.

... Additional objects of class "loo", if not passed in as a single list.

digits For the print method only, the number of digits to use when printing.

simplify For the print method only, should only the essential columns of the summary
matrix be printed? The entire matrix is always returned, but by default only the
most important columns are printed.

Details

When comparing two fitted models, we can estimate the difference in their expected predictive
accuracy by the difference in elpd_loo or elpd_waic (or multiplied by −2, if desired, to be on the
deviance scale).

When using loo_compare(), the returned matrix will have one row per model and several columns
of estimates. The values in the elpd_diff and se_diff columns of the returned matrix are com-
puted by making pairwise comparisons between each model and the model with the largest ELPD
(the model in the first row). For this reason the elpd_diff column will always have the value 0
in the first row (i.e., the difference between the preferred model and itself) and negative values in
subsequent rows for the remaining models.

To compute the standard error of the difference in ELPD — which should not be expected to equal
the difference of the standard errors — we use a paired estimate to take advantage of the fact that
the same set of N data points was used to fit both models. These calculations should be most
useful when N is large, because then non-normality of the distribution is not such an issue when
estimating the uncertainty in these sums. These standard errors, for all their flaws, should give a
better sense of uncertainty than what is obtained using the current standard approach of comparing
differences of deviances to a Chi-squared distribution, a practice derived for Gaussian linear models
or asymptotically, and which only applies to nested models in any case.

Value

A matrix with class "compare.loo" that has its own print method. See the Details section.

loo_model_weights 27

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

See Also

• The FAQ page on the loo website for answers to frequently asked questions.

Examples

very artificial example, just for demonstration!
LL <- example_loglik_array()
loo1 <- loo(LL, r_eff = NA) # should be worst model when compared
loo2 <- loo(LL + 1, r_eff = NA) # should be second best model when compared
loo3 <- loo(LL + 2, r_eff = NA) # should be best model when compared

comp <- loo_compare(loo1, loo2, loo3)
print(comp, digits = 2)

show more details with simplify=FALSE
(will be the same for all models in this artificial example)
print(comp, simplify = FALSE, digits = 3)

can use a list of objects with custom names
will use apple, banana, and cherry, as the names in the output
loo_compare(list("apple" = loo1, "banana" = loo2, "cherry" = loo3))

Not run:
works for waic (and kfold) too
loo_compare(waic(LL), waic(LL - 10))

End(Not run)

loo_model_weights Model averaging/weighting via stacking or pseudo-BMA weighting

Description

Model averaging via stacking of predictive distributions, pseudo-BMA weighting or pseudo-BMA+
weighting with the Bayesian bootstrap. See Yao et al. (2018), Vehtari, Gelman, and Gabry (2017),
and Vehtari, Simpson, Gelman, Yao, and Gabry (2019) for background.

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646
https://mc-stan.org/loo/articles/online-only/faq.html

28 loo_model_weights

Usage

loo_model_weights(x, ...)

Default S3 method:
loo_model_weights(
x,
...,
method = c("stacking", "pseudobma"),
optim_method = "BFGS",
optim_control = list(),
BB = TRUE,
BB_n = 1000,
alpha = 1,
r_eff_list = NULL,
cores = getOption("mc.cores", 1)

)

stacking_weights(lpd_point, optim_method = "BFGS", optim_control = list())

pseudobma_weights(lpd_point, BB = TRUE, BB_n = 1000, alpha = 1)

Arguments

x A list of pointwise log-likelihood matrices or "psis_loo" objects (objects re-
turned by loo()), one for each model. Each matrix/object should have dimen-
sions S by N , where S is the size of the posterior sample (with all chains
merged) andN is the number of data points. If x is a list of log-likelihood matri-
ces then loo() is called internally on each matrix. Currently the loo_model_weights()
function is not implemented to be used with results from K-fold CV, but you can
still obtain weights using K-fold CV results by calling the stacking_weights()
function directly.

... Unused, except for the generic to pass arguments to individual methods.

method Either "stacking" (the default) or "pseudobma", indicating which method to
use for obtaining the weights. "stacking" refers to stacking of predictive distri-
butions and "pseudobma" refers to pseudo-BMA+ weighting (or plain pseudo-
BMA weighting if argument BB is FALSE).

optim_method If method="stacking", a string passed to the method argument of stats::constrOptim()
to specify the optimization algorithm. The default is optim_method="BFGS",
but other options are available (see stats::optim()).

optim_control If method="stacking", a list of control parameters for optimization passed to
the control argument of stats::constrOptim().

BB Logical used when "method"="pseudobma". If TRUE (the default), the Bayesian
bootstrap will be used to adjust the pseudo-BMA weighting, which is called
pseudo-BMA+ weighting. It helps regularize the weight away from 0 and 1, so
as to reduce the variance.

BB_n For pseudo-BMA+ weighting only, the number of samples to use for the Bayesian
bootstrap. The default is BB_n=1000.

loo_model_weights 29

alpha Positive scalar shape parameter in the Dirichlet distribution used for the Bayesian
bootstrap. The default is alpha=1, which corresponds to a uniform distribution
on the simplex space.

r_eff_list Optionally, a list of relative effective sample size estimates for the likelihood
(exp(log_lik)) of each observation in each model. See psis() and relative_eff()
helper function for computing r_eff. If x is a list of "psis_loo" objects then
r_eff_list is ignored.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

lpd_point If calling stacking_weights() or pseudobma_weights() directly, a matrix
of pointwise leave-one-out (or K-fold) log likelihoods evaluated for different
models. It should be a N by K matrix where N is sample size and K is the
number of models. Each column corresponds to one model. These values can
be calculated approximately using loo() or by running exact leave-one-out or
K-fold cross-validation.

Details

loo_model_weights() is a wrapper around the stacking_weights() and pseudobma_weights()
functions that implements stacking, pseudo-BMA, and pseudo-BMA+ weighting for combining
multiple predictive distributions. We can use approximate or exact leave-one-out cross-validation
(LOO-CV) or K-fold CV to estimate the expected log predictive density (ELPD).

The stacking method (method="stacking"), which is the default for loo_model_weights(), com-
bines all models by maximizing the leave-one-out predictive density of the combination distribution.
That is, it finds the optimal linear combining weights for maximizing the leave-one-out log score.

The pseudo-BMA method (method="pseudobma") finds the relative weights proportional to the
ELPD of each model. However, when method="pseudobma", the default is to also use the Bayesian
bootstrap (BB=TRUE), which corresponds to the pseudo-BMA+ method. The Bayesian bootstrap
takes into account the uncertainty of finite data points and regularizes the weights away from the
extremes of 0 and 1.

In general, we recommend stacking for averaging predictive distributions, while pseudo-BMA+ can
serve as a computationally easier alternative.

Value

A numeric vector containing one weight for each model.

https://github.com/stan-dev/loo/issues/94

30 loo_model_weights

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian
predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17-BA1091. (online).

See Also

• The loo package vignettes, particularly Bayesian Stacking and Pseudo-BMA weights using
the loo package.

• loo() for details on leave-one-out ELPD estimation.

• constrOptim() for the choice of optimization methods and control-parameters.

• relative_eff() for computing r_eff.

Examples

Not run:
Demonstrating usage after fitting models with RStan
library(rstan)

generate fake data from N(0,1).
N <- 100
y <- rnorm(N, 0, 1)

Suppose we have three models: N(-1, sigma), N(0.5, sigma) and N(0.6,sigma).
stan_code <- "

data {
int N;
vector[N] y;
real mu_fixed;

}
parameters {

real<lower=0> sigma;
}
model {

sigma ~ exponential(1);
y ~ normal(mu_fixed, sigma);

}
generated quantities {

vector[N] log_lik;
for (n in 1:N) log_lik[n] = normal_lpdf(y[n]| mu_fixed, sigma);

}"

mod <- stan_model(model_code = stan_code)
fit1 <- sampling(mod, data=list(N=N, y=y, mu_fixed=-1))
fit2 <- sampling(mod, data=list(N=N, y=y, mu_fixed=0.5))

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646
https://projecteuclid.org/euclid.ba/1516093227
https://mc-stan.org/loo/articles/
https://mc-stan.org/loo/articles/loo2-weights.html
https://mc-stan.org/loo/articles/loo2-weights.html

loo_moment_match 31

fit3 <- sampling(mod, data=list(N=N, y=y, mu_fixed=0.6))
model_list <- list(fit1, fit2, fit3)
log_lik_list <- lapply(model_list, extract_log_lik)

optional but recommended
r_eff_list <- lapply(model_list, function(x) {

ll_array <- extract_log_lik(x, merge_chains = FALSE)
relative_eff(exp(ll_array))

})

stacking method:
wts1 <- loo_model_weights(

log_lik_list,
method = "stacking",
r_eff_list = r_eff_list,
optim_control = list(reltol=1e-10)

)
print(wts1)

can also pass a list of psis_loo objects to avoid recomputing loo
loo_list <- lapply(1:length(log_lik_list), function(j) {

loo(log_lik_list[[j]], r_eff = r_eff_list[[j]])
})

wts2 <- loo_model_weights(
loo_list,
method = "stacking",
optim_control = list(reltol=1e-10)

)
all.equal(wts1, wts2)

pseudo-BMA+ method:
set.seed(1414)
loo_model_weights(loo_list, method = "pseudobma")

pseudo-BMA method (set BB = FALSE):
loo_model_weights(loo_list, method = "pseudobma", BB = FALSE)

calling stacking_weights or pseudobma_weights directly
lpd1 <- loo(log_lik_list[[1]], r_eff = r_eff_list[[1]])$pointwise[,1]
lpd2 <- loo(log_lik_list[[2]], r_eff = r_eff_list[[2]])$pointwise[,1]
lpd3 <- loo(log_lik_list[[3]], r_eff = r_eff_list[[3]])$pointwise[,1]
stacking_weights(cbind(lpd1, lpd2, lpd3))
pseudobma_weights(cbind(lpd1, lpd2, lpd3))
pseudobma_weights(cbind(lpd1, lpd2, lpd3), BB = FALSE)

End(Not run)

32 loo_moment_match

loo_moment_match Moment matching for efficient approximate leave-one-out cross-
validation (LOO)

Description

Moment matching algorithm for updating a loo object when Pareto k estimates are large.

Usage

loo_moment_match(x, ...)

Default S3 method:
loo_moment_match(

x,
loo,
post_draws,
log_lik_i,
unconstrain_pars,
log_prob_upars,
log_lik_i_upars,
max_iters = 30L,
k_threshold = 0.7,
split = TRUE,
cov = TRUE,
cores = getOption("mc.cores", 1),
...

)

Arguments

x A fitted model object.

... Further arguments passed to the custom functions documented above.

loo A loo object to be modified.

post_draws A function the takes x as the first argument and returns a matrix of posterior
draws of the model parameters.

log_lik_i A function that takes x and i and returns a matrix (one column per chain) or a
vector (all chains stacked) of log-likelihood draws of the ith observation based
on the model x. If the draws are obtained using MCMC, the matrix with MCMC
chains separated is preferred.

unconstrain_pars

A function that takes arguments x, and pars and returns posterior draws on
the unconstrained space based on the posterior draws on the constrained space
passed via pars.

log_prob_upars A function that takes arguments x and upars and returns a matrix of log-posterior
density values of the unconstrained posterior draws passed via upars.

loo_moment_match 33

log_lik_i_upars

A function that takes arguments x, upars, and i and returns a vector of log-
likelihood draws of the ith observation based on the unconstrained posterior
draws passed via upars.

max_iters Maximum number of moment matching iterations. Usually this does not need
to be modified. If the maximum number of iterations is reached, there will be a
warning, and increasing max_iters may improve accuracy.

k_threshold Threshold value for Pareto k values above which the moment matching algo-
rithm is used. The default value is 0.5.

split Logical; Indicate whether to do the split transformation or not at the end of
moment matching for each LOO fold.

cov Logical; Indicate whether to match the covariance matrix of the samples or not.
If FALSE, only the mean and marginal variances are matched.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

Details

The loo_moment_match() function is an S3 generic and we provide a default method that takes as
arguments user-specified functions post_draws, log_lik_i, unconstrain_pars, log_prob_upars,
and log_lik_i_upars. All of these functions should take as an argument in addition to those
specified for each function.

Value

The loo_moment_match() methods return an updated loo object. The structure of the updated loo
object is similar, but the method also stores the original Pareto k diagnostic values in the diagnostics
field.

Methods (by class)

• default: A default method that takes as arguments a user-specified model object x, a loo ob-
ject and user-specified functions post_draws, log_lik_i, unconstrain_pars, log_prob_upars,
and log_lik_i_upars.

References

Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly adaptive importance
sampling. Statistics and Computing, 31, 16. doi:10.1007/s11222-020-09982-2. arXiv preprint
arXiv:1906.08850.

https://github.com/stan-dev/loo/issues/94

34 loo_moment_match_split

See Also

loo(), loo_moment_match_split()

Examples

See the vignette for loo_moment_match()

loo_moment_match_split

Split moment matching for efficient approximate leave-one-out cross-
validation (LOO)

Description

A function that computes the split moment matching importance sampling loo. Takes in the moment
matching total transformation, transforms only half of the draws, and computes a single elpd using
multiple importance sampling.

Usage

loo_moment_match_split(
x,
upars,
cov,
total_shift,
total_scaling,
total_mapping,
i,
log_prob_upars,
log_lik_i_upars,
r_eff_i,
cores,
is_method,
...

)

Arguments

x A fitted model object.

upars A matrix containing the model parameters in unconstrained space where they
can have any real value.

cov Logical; Indicate whether to match the covariance matrix of the samples or not.
If FALSE, only the mean and marginal variances are matched.

total_shift A vector representing the total shift made by the moment matching algorithm.

total_scaling A vector representing the total scaling of marginal variance made by the moment
matching algorithm.

loo_moment_match_split 35

total_mapping A vector representing the total covariance transformation made by the moment
matching algorithm.

i Observation index.

log_prob_upars A function that takes arguments x and upars and returns a matrix of log-posterior
density values of the unconstrained posterior draws passed via upars.

log_lik_i_upars

A function that takes arguments x, upars, and i and returns a vector of log-
likeliood draws of the ith observation based on the unconstrained posterior
draws passed via upars.

r_eff_i MCMC relative effective sample size of the i’th log likelihood draws.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

is_method The importance sampling method to use. The following methods are imple-
mented:

• "psis": Pareto-Smoothed Importance Sampling (PSIS). Default method.
• "tis": Truncated Importance Sampling (TIS) with truncation at sqrt(S),

where S is the number of posterior draws.
• "sis": Standard Importance Sampling (SIS).

... Further arguments passed to the custom functions documented above.

Value

A list containing the updated log-importance weights and log-likelihood values. Also returns the
updated MCMC effective sample size and the integrand-specific log-importance weights.

References

Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly adaptive importance
sampling. Statistics and Computing, 31, 16. doi:10.1007/s11222-020-09982-2. arXiv preprint
arXiv:1906.08850.

See Also

loo(), loo_moment_match()

https://github.com/stan-dev/loo/issues/94

36 loo_subsample

loo_subsample Efficient approximate leave-one-out cross-validation (LOO) using
subsampling

Description

Efficient approximate leave-one-out cross-validation (LOO) using subsampling

Usage

loo_subsample(x, ...)

S3 method for class '`function`'
loo_subsample(
x,
...,
data = NULL,
draws = NULL,
observations = 400,
log_p = NULL,
log_g = NULL,
r_eff = NULL,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
loo_approximation = "plpd",
loo_approximation_draws = NULL,
estimator = "diff_srs",
llgrad = NULL,
llhess = NULL

)

Arguments

x A function. The Methods (by class) section, below, has detailed descriptions of
how to specify the inputs.

data, draws, ...

For loo_subsample.function(), these are the data, posterior draws, and other
arguments to pass to the log-likelihood function. Note that for some loo_approximations,
the draws will be replaced by the posteriors summary statistics to compute loo
approximations. See argument loo_approximation for details.

observations The subsample observations to use. The argument can take four (4) types of
arguments:

• NULL to use all observations. The algorithm then just uses standard loo()
or loo_approximate_posterior().

• A single integer to specify the number of observations to be subsampled.

loo_subsample 37

• A vector of integers to provide the indices used to subset the data. These
observations need to be subsampled with the same scheme as given by the
estimator argument.

• A psis_loo_ss object to use the same observations that were used in a
previous call to loo_subsample().

log_p, log_g Should be supplied only if approximate posterior draws are used. The default
(NULL) indicates draws are from "true" posterior (i.e. using MCMC). If not NULL
then they should be specified as described in loo_approximate_posterior().

r_eff Vector of relative effective sample size estimates for the likelihood (exp(log_lik))
of each observation. This is related to the relative efficiency of estimating the
normalizing term in self-normalizing importance sampling when using poste-
rior draws obtained with MCMC. If MCMC draws are used and r_eff is not
provided then the reported PSIS effective sample sizes and Monte Carlo er-
ror estimates will be over-optimistic. If the posterior draws are independent
then r_eff=1 and can be omitted. The warning message thrown when r_eff is
not specified can be disabled by setting r_eff to NA. See the relative_eff()
helper functions for computing r_eff.

save_psis Should the "psis" object created internally by loo_subsample() be saved in
the returned object? See loo() for details.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

loo_approximation

What type of approximation of the loo_i’s should be used? The default is "plpd"
(the log predictive density using the posterior expectation). There are six differ-
ent methods implemented to approximate loo_i’s (see the references for more
details):

• "plpd": uses the lpd based on point estimates (i.e., p(yi|θ̂)).
• "lpd": uses the lpds (i,e., p(yi|y)).
• "tis": uses truncated importance sampling to approximate PSIS-LOO.
• "waic": uses waic (i.e., p(yi|y)− pwaic).
• "waic_grad_marginal": uses waic approximation using first order delta

method and posterior marginal variances to approximate pwaic (ie. p(yi|θ̂)-
p_waic_grad_marginal). Requires gradient of likelihood function.

• "waic_grad": uses waic approximation using first order delta method and
posterior covariance to approximate pwaic (ie. p(yi|θ̂)-p_waic_grad). Re-
quires gradient of likelihood function.

• "waic_hess": uses waic approximation using second order delta method
and posterior covariance to approximate pwaic (ie. p(yi|θ̂)-p_waic_grad).
Requires gradient and Hessian of likelihood function.

https://github.com/stan-dev/loo/issues/94

38 loo_subsample

As point estimates of θ̂, the posterior expectations of the parameters are used.
loo_approximation_draws

The number of posterior draws used when integrating over the posterior. This is
used if loo_approximation is set to "lpd", "waic", or "tis".

estimator How should elpd_loo, p_loo and looic be estimated? The default is "diff_srs".

• "diff_srs": uses the difference estimator with simple random sampling
(srs). p_loo is estimated using standard srs.

• "hh": uses the Hansen-Hurwitz estimator with sampling proportional to
size, where abs of loo_approximation is used as size.

• "srs": uses simple random sampling and ordinary estimation.

llgrad The gradient of the log-likelihood. This is only used when loo_approximation
is "waic_grad", "waic_grad_marginal", or "waic_hess". The default is
NULL.

llhess The hessian of the log-likelihood. This is only used with loo_approximation
= "waic_hess". The default is NULL.

Details

The loo_subsample() function is an S3 generic and a methods is currently provided for log-
likelihood functions. The implementation works for both MCMC and for posterior approximations
where it is possible to compute the log density for the approximation.

Value

loo_subsample() returns a named list with class c("psis_loo_ss","psis_loo","loo"). This
has the same structure as objects returned by loo() but with the additional slot:

• loo_subsampling: A list with two vectors, log_p and log_g, of the same length containing
the posterior density and the approximation density for the individual draws.

Methods (by class)

• function: A function f() that takes arguments data_i and draws and returns a vector con-
taining the log-likelihood for a single observation i evaluated at each posterior draw. The
function should be written such that, for each observation i in 1:N, evaluating

f(data_i = data[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.
If using the function method then the arguments data and draws must also be specified in the
call to loo():

– data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

– draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

nobs.psis_loo_ss 39

– The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

References

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2019). Leave-One-Out Cross-
Validation for Large Data. In International Conference on Machine Learning

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2020). Leave-One-Out Cross-
Validation for Model Comparison in Large Data. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS)

See Also

loo(), psis(), loo_compare()

nobs.psis_loo_ss The number of observations in a psis_loo_ss object.

Description

The number of observations in a psis_loo_ss object.

Usage

S3 method for class 'psis_loo_ss'
nobs(object, ...)

Arguments

object a psis_loo_ss object.

... Currently unused.

obs_idx Get observation indices used in subsampling

Description

Get observation indices used in subsampling

Usage

obs_idx(x, rep = TRUE)

40 pareto-k-diagnostic

Arguments

x A psis_loo_ss object.

rep If sampling with replacement is used, an observation can have multiple sam-
ples and these are then repeated in the returned object if rep=TRUE (e.g., a vec-
tor c(1,1,2) indicates that observation 1 has been subampled two times). If
rep=FALSE only the unique indices are returned.

Value

An integer vector.

pareto-k-diagnostic Diagnostics for Pareto smoothed importance sampling (PSIS)

Description

Print a diagnostic table summarizing the estimated Pareto shape parameters and PSIS effective
sample sizes, find the indexes of observations for which the estimated Pareto shape parameter k
is larger than some threshold value, or plot observation indexes vs. diagnostic estimates. The
Details section below provides a brief overview of the diagnostics, but we recommend consulting
Vehtari, Gelman, and Gabry (2017) and Vehtari, Simpson, Gelman, Yao, and Gabry (2019) for full
details.

Usage

pareto_k_table(x)

pareto_k_ids(x, threshold = 0.5)

pareto_k_values(x)

pareto_k_influence_values(x)

psis_n_eff_values(x)

mcse_loo(x, threshold = 0.7)

S3 method for class 'psis_loo'
plot(
x,
diagnostic = c("k", "n_eff"),
...,
label_points = FALSE,
main = "PSIS diagnostic plot"

)

pareto-k-diagnostic 41

S3 method for class 'psis'
plot(
x,
diagnostic = c("k", "n_eff"),
...,
label_points = FALSE,
main = "PSIS diagnostic plot"

)

Arguments

x An object created by loo() or psis().

threshold For pareto_k_ids(), threshold is the minimum k value to flag (default is
0.5). For mcse_loo(), if any k estimates are greater than threshold the MCSE
estimate is returned as NA (default is 0.7). See Details for the motivation behind
these defaults.

diagnostic For the plot method, which diagnostic should be plotted? The options are "k"
for Pareto k estimates (the default) or "n_eff" for PSIS effective sample size
estimates.

label_points, ...

For the plot() method, if label_points is TRUE the observation numbers cor-
responding to any values of k greater than 0.5 will be displayed in the plot. Any
arguments specified in ... will be passed to graphics::text() and can be
used to control the appearance of the labels.

main For the plot() method, a title for the plot.

Details

The reliability and approximate convergence rate of the PSIS-based estimates can be assessed using
the estimates for the shape parameter k of the generalized Pareto distribution:

• If k < 0.5 then the distribution of raw importance ratios has finite variance and the central
limit theorem holds. However, as k approaches 0.5 the RMSE of plain importance sampling
(IS) increases significantly while PSIS has lower RMSE.

• If 0.5 ≤ k < 1 then the variance of the raw importance ratios is infinite, but the mean
exists. TIS and PSIS estimates have finite variance by accepting some bias. The convergence
of the estimate is slower with increasing k. If k is between 0.5 and approximately 0.7 then
we observe practically useful convergence rates and Monte Carlo error estimates with PSIS
(the bias of TIS increases faster than the bias of PSIS). If k > 0.7 we observe impractical
convergence rates and unreliable Monte Carlo error estimates.

• If k ≥ 1 then neither the variance nor the mean of the raw importance ratios exists. The
convergence rate is close to zero and bias can be large with practical sample sizes.

What if the estimated tail shape parameter k exceeds 0.5: Importance sampling is likely to
work less well if the marginal posterior p(θs|y) and LOO posterior p(θs|y−i) are very different,
which is more likely to happen with a non-robust model and highly influential observations. If
the estimated tail shape parameter k exceeds 0.5, the user should be warned. (Note: If k is greater
than 0.5 then WAIC is also likely to fail, but WAIC lacks its own diagnostic.) In practice, we

42 pareto-k-diagnostic

have observed good performance for values of k up to 0.7. When using PSIS in the context of
approximate LOO-CV, we recommend one of the following actions when k > 0.7:

• With some additional computations, it is possible to transform the MCMC draws from the
posterior distribution to obtain more reliable importance sampling estimates. This results in
a smaller shape parameter k. See loo_moment_match() for an example of this.

• Sampling directly from p(θs|y−i) for the problematic observations i, or using k-fold cross-
validation will generally be more stable.

• Using a model that is more robust to anomalous observations will generally make approxi-
mate LOO-CV more stable.

Observation influence statistics: The estimated shape parameter k for each observation can be
used as a measure of the observation’s influence on posterior distribution of the model. These can
be obtained with pareto_k_influence_values().

Effective sample size and error estimates: In the case that we obtain the samples from the
proposal distribution via MCMC the loo package also computes estimates for the Monte Carlo
error and the effective sample size for importance sampling, which are more accurate for PSIS
than for IS and TIS (see Vehtari et al (2019) for details). However, the PSIS effective sample size
estimate will be over-optimistic when the estimate of k is greater than 0.7.

Value

pareto_k_table() returns an object of class "pareto_k_table", which is a matrix with columns
"Count", "Proportion", and "Min. n_eff", and has its own print method.

pareto_k_ids() returns an integer vector indicating which observations have Pareto k estimates
above threshold.

pareto_k_values() returns a vector of the estimated Pareto k parameters. These represent the
reliability of sampling.

pareto_k_influence_values() returns a vector of the estimated Pareto k parameters. These
represent influence of the observations on the model posterior distribution.

psis_n_eff_values() returns a vector of the estimated PSIS effective sample sizes.

mcse_loo() returns the Monte Carlo standard error (MCSE) estimate for PSIS-LOO. MCSE will
be NA if any Pareto k values are above threshold.

The plot() method is called for its side effect and does not return anything. If x is the result of a
call to loo() or psis() then plot(x,diagnostic) produces a plot of the estimates of the Pareto
shape parameters (diagnostic = "k") or estimates of the PSIS effective sample sizes (diagnostic
= "n_eff").

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646

print.loo 43

See Also

• psis() for the implementation of the PSIS algorithm.

• The FAQ page on the loo website for answers to frequently asked questions.

print.loo Print methods

Description

Print methods

Usage

S3 method for class 'loo'
print(x, digits = 1, ...)

S3 method for class 'waic'
print(x, digits = 1, ...)

S3 method for class 'psis_loo'
print(x, digits = 1, plot_k = FALSE, ...)

S3 method for class 'importance_sampling_loo'
print(x, digits = 1, plot_k = FALSE, ...)

S3 method for class 'psis_loo_ap'
print(x, digits = 1, plot_k = FALSE, ...)

S3 method for class 'psis'
print(x, digits = 1, plot_k = FALSE, ...)

S3 method for class 'importance_sampling'
print(x, digits = 1, plot_k = FALSE, ...)

Arguments

x An object returned by loo(), psis(), or waic().

digits An integer passed to base::round().

... Arguments passed to plot.psis_loo() if plot_k is TRUE.

plot_k Logical. If TRUE the estimates of the Pareto shape parameter k are plotted. Ig-
nored if x was generated by waic(). To just plot k without printing use the
plot() method for ’loo’ objects.

Value

x, invisibly.

https://mc-stan.org/loo/articles/online-only/faq.html

44 psis

See Also

pareto-k-diagnostic

psis Pareto smoothed importance sampling (PSIS)

Description

Implementation of Pareto smoothed importance sampling (PSIS), a method for stabilizing impor-
tance ratios. The version of PSIS implemented here corresponds to the algorithm presented in Ve-
htari, Simpson, Gelman, Yao, and Gabry (2019). For PSIS diagnostics see the pareto-k-diagnostic
page.

Usage

psis(log_ratios, ...)

S3 method for class 'array'
psis(log_ratios, ..., r_eff = NULL, cores = getOption("mc.cores", 1))

S3 method for class 'matrix'
psis(log_ratios, ..., r_eff = NULL, cores = getOption("mc.cores", 1))

Default S3 method:
psis(log_ratios, ..., r_eff = NULL)

is.psis(x)

is.sis(x)

is.tis(x)

Arguments

log_ratios An array, matrix, or vector of importance ratios on the log scale (for PSIS-LOO
these are negative log-likelihood values). See the Methods (by class) section
below for a detailed description of how to specify the inputs for each method.

... Arguments passed on to the various methods.

r_eff Vector of relative effective sample size estimates containing one element per
observation. The values provided should be the relative effective sample sizes
of 1/exp(log_ratios) (i.e., 1/ratios). This is related to the relative efficiency
of estimating the normalizing term in self-normalizing importance sampling. If
r_eff is not provided then the reported PSIS effective sample sizes and Monte
Carlo error estimates will be over-optimistic. See the relative_eff() helper
function for computing r_eff. If using psis with draws of the log_ratios not
obtained from MCMC then the warning message thrown when not specifying
r_eff can be disabled by setting r_eff to NA.

psis 45

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

x For is.psis(), an object to check.

Value

The psis() methods return an object of class "psis", which is a named list with the following
components:

log_weights Vector or matrix of smoothed (and truncated) but unnormalized log weights. To get
normalized weights use the weights() method provided for objects of class "psis".

diagnostics A named list containing two vectors:

• pareto_k: Estimates of the shape parameter k of the generalized Pareto distribution. See
the pareto-k-diagnostic page for details.

• n_eff: PSIS effective sample size estimates.

Objects of class "psis" also have the following attributes:

norm_const_log Vector of precomputed values of colLogSumExps(log_weights) that are used
internally by the weights method to normalize the log weights.

tail_len Vector of tail lengths used for fitting the generalized Pareto distribution.

r_eff If specified, the user’s r_eff argument.

dims Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

method Method used for importance sampling, here psis.

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

• default: A vector of length S (posterior sample size).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

https://github.com/stan-dev/loo/issues/94
https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646

46 psislw

See Also

• loo() for approximate LOO-CV using PSIS.

• pareto-k-diagnostic for PSIS diagnostics.

• The loo package vignettes for demonstrations.

• The FAQ page on the loo website for answers to frequently asked questions.

Examples

log_ratios <- -1 * example_loglik_array()
r_eff <- relative_eff(exp(-log_ratios))
psis_result <- psis(log_ratios, r_eff = r_eff)
str(psis_result)
plot(psis_result)

extract smoothed weights
lw <- weights(psis_result) # default args are log=TRUE, normalize=TRUE
ulw <- weights(psis_result, normalize=FALSE) # unnormalized log-weights

w <- weights(psis_result, log=FALSE) # normalized weights (not log-weights)
uw <- weights(psis_result, log=FALSE, normalize = FALSE) # unnormalized weights

psislw Pareto smoothed importance sampling (deprecated, old version)

Description

As of version 2.0.0 this function is deprecated. Please use the psis() function for the new PSIS
algorithm.

Usage

psislw(
lw,
wcp = 0.2,
wtrunc = 3/4,
cores = getOption("mc.cores", 1),
llfun = NULL,
llargs = NULL,
...

)

https://mc-stan.org/loo/articles/index.html
https://mc-stan.org/loo/articles/online-only/faq.html

relative_eff 47

Arguments

lw A matrix or vector of log weights. For computing LOO, lw = -log_lik, the
negative of an S (simulations) by N (data points) pointwise log-likelihood ma-
trix.

wcp The proportion of importance weights to use for the generalized Pareto fit. The
100*wcp\ from which to estimate the parameters of the generalized Pareto dis-
tribution.

wtrunc For truncating very large weights to S^wtrunc. Set to zero for no truncation.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER), the old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until it is removed. As of version 2.0.0, the default is
now 1 core if mc.cores is not set, but we recommend using as many (or
close to as many) cores as possible.

llfun, llargs See loo.function().

... Ignored when psislw() is called directly. The ... is only used internally when
psislw() is called by the loo() function.

Value

A named list with components lw_smooth (modified log weights) and pareto_k (estimated gener-
alized Pareto shape parameter(s) k).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

See Also

pareto-k-diagnostic for PSIS diagnostics.

relative_eff Convenience function for computing relative efficiencies

Description

relative_eff() computes the the MCMC effective sample size divided by the total sample size.

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646

48 relative_eff

Usage

relative_eff(x, ...)

Default S3 method:
relative_eff(x, chain_id, ...)

S3 method for class 'matrix'
relative_eff(x, chain_id, ..., cores = getOption("mc.cores", 1))

S3 method for class 'array'
relative_eff(x, ..., cores = getOption("mc.cores", 1))

S3 method for class '`function`'
relative_eff(
x,
chain_id,
...,
cores = getOption("mc.cores", 1),
data = NULL,
draws = NULL

)

S3 method for class 'importance_sampling'
relative_eff(x, ...)

Arguments

x A vector, matrix, 3-D array, or function. See the Methods (by class) section be-
low for details on specifying x, but where "log-likelihood" is mentioned replace
it with one of the following depending on the use case:

• For use with the loo() function, the values in x (or generated by x, if a
function) should be likelihood values (i.e., exp(log_lik)), not on the log
scale.

• For generic use with psis(), the values in x should be the reciprocal of the
importance ratios (i.e., exp(-log_ratios)).

chain_id A vector of length NROW(x) containing MCMC chain indexes for each each row
of x (if a matrix) or each value in x (if a vector). No chain_id is needed if x is
a 3-D array. If there are C chains then valid chain indexes are values in 1:C.

cores The number of cores to use for parallelization.

data, draws, ...

Same as for the loo() function method.

Value

A vector of relative effective sample sizes.

sis 49

Methods (by class)

• default: A vector of length S (posterior sample size).

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

• function: A function f() that takes arguments data_i and draws and returns a vector con-
taining the log-likelihood for a single observation i evaluated at each posterior draw. The
function should be written such that, for each observation i in 1:N, evaluating

f(data_i = data[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.
If using the function method then the arguments data and draws must also be specified in the
call to loo():

– data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

– draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

– The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

• importance_sampling: If x is an object of class "psis", relative_eff() simply returns
the r_eff attribute of x.

Examples

LLarr <- example_loglik_array()
LLmat <- example_loglik_matrix()
dim(LLarr)
dim(LLmat)

rel_n_eff_1 <- relative_eff(exp(LLarr))
rel_n_eff_2 <- relative_eff(exp(LLmat), chain_id = rep(1:2, each = 500))
all.equal(rel_n_eff_1, rel_n_eff_2)

sis Standard importance sampling (SIS)

Description

Implementation of standard importance sampling (SIS).

50 sis

Usage

sis(log_ratios, ...)

S3 method for class 'array'
sis(log_ratios, ..., r_eff = NULL, cores = getOption("mc.cores", 1))

S3 method for class 'matrix'
sis(log_ratios, ..., r_eff = NULL, cores = getOption("mc.cores", 1))

Default S3 method:
sis(log_ratios, ..., r_eff = NULL)

Arguments

log_ratios An array, matrix, or vector of importance ratios on the log scale (for Importance
sampling LOO, these are negative log-likelihood values). See the Methods (by
class) section below for a detailed description of how to specify the inputs for
each method.

... Arguments passed on to the various methods.

r_eff Vector of relative effective sample size estimates containing one element per
observation. The values provided should be the relative effective sample sizes of
1/exp(log_ratios) (i.e., 1/ratios). This is related to the relative efficiency of
estimating the normalizing term in self-normalizing importance sampling. See
the relative_eff() helper function for computing r_eff. If using psis with
draws of the log_ratios not obtained from MCMC then the warning message
thrown when not specifying r_eff can be disabled by setting r_eff to NA.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

Value

The sis() methods return an object of class "sis", which is a named list with the following com-
ponents:

log_weights Vector or matrix of smoothed but unnormalized log weights. To get normalized
weights use the weights() method provided for objects of class sis.

diagnostics A named list containing one vector:

• pareto_k: Not used in sis, all set to 0.
• n_eff: effective sample size estimates.

https://github.com/stan-dev/loo/issues/94

sis 51

Objects of class "sis" also have the following attributes:

norm_const_log Vector of precomputed values of colLogSumExps(log_weights) that are used
internally by the weights method to normalize the log weights.

r_eff If specified, the user’s r_eff argument.

tail_len Not used for sis.

dims Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

method Method used for importance sampling, here sis.

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

• default: A vector of length S (posterior sample size).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

See Also

• psis() for approximate LOO-CV using PSIS.

• loo() for approximate LOO-CV.

• pareto-k-diagnostic for PSIS diagnostics.

Examples

log_ratios <- -1 * example_loglik_array()
r_eff <- relative_eff(exp(-log_ratios))
sis_result <- sis(log_ratios, r_eff = r_eff)
str(sis_result)

extract smoothed weights
lw <- weights(sis_result) # default args are log=TRUE, normalize=TRUE
ulw <- weights(sis_result, normalize=FALSE) # unnormalized log-weights

w <- weights(sis_result, log=FALSE) # normalized weights (not log-weights)
uw <- weights(sis_result, log=FALSE, normalize = FALSE) # unnormalized weights

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646

52 tis

tis Truncated importance sampling (TIS)

Description

Implementation of truncated (self-normalized) importance sampling (TIS), truncated at S^(1/2) as
recommended by Ionides (2008).

Usage

tis(log_ratios, ...)

S3 method for class 'array'
tis(log_ratios, ..., r_eff = NULL, cores = getOption("mc.cores", 1))

S3 method for class 'matrix'
tis(log_ratios, ..., r_eff = NULL, cores = getOption("mc.cores", 1))

Default S3 method:
tis(log_ratios, ..., r_eff = NULL)

Arguments

log_ratios An array, matrix, or vector of importance ratios on the log scale (for Importance
sampling LOO, these are negative log-likelihood values). See the Methods (by
class) section below for a detailed description of how to specify the inputs for
each method.

... Arguments passed on to the various methods.

r_eff Vector of relative effective sample size estimates containing one element per
observation. The values provided should be the relative effective sample sizes of
1/exp(log_ratios) (i.e., 1/ratios). This is related to the relative efficiency of
estimating the normalizing term in self-normalizing importance sampling. See
the relative_eff() helper function for computing r_eff. If using psis with
draws of the log_ratios not obtained from MCMC then the warning message
thrown when not specifying r_eff can be disabled by setting r_eff to NA.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

https://github.com/stan-dev/loo/issues/94

tis 53

Value

The tis() methods return an object of class "tis", which is a named list with the following com-
ponents:

log_weights Vector or matrix of smoothed (and truncated) but unnormalized log weights. To get
normalized weights use the weights() method provided for objects of class tis.

diagnostics A named list containing one vector:

• pareto_k: Not used in tis, all set to 0.
• n_eff: Effective sample size estimates.

Objects of class "tis" also have the following attributes:

norm_const_log Vector of precomputed values of colLogSumExps(log_weights) that are used
internally by the weights()method to normalize the log weights.

r_eff If specified, the user’s r_eff argument.

tail_len Not used for tis.

dims Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

method Method used for importance sampling, here tis.

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

• default: A vector of length S (posterior sample size).

References

Ionides, Edward L. (2008). Truncated importance sampling. Journal of Computational and Graph-
ical Statistics 17(2): 295–311.

See Also

• psis() for approximate LOO-CV using PSIS.

• loo() for approximate LOO-CV.

• pareto-k-diagnostic for PSIS diagnostics.

Examples

log_ratios <- -1 * example_loglik_array()
r_eff <- relative_eff(exp(-log_ratios))
tis_result <- tis(log_ratios, r_eff = r_eff)
str(tis_result)

extract smoothed weights
lw <- weights(tis_result) # default args are log=TRUE, normalize=TRUE

54 update.psis_loo_ss

ulw <- weights(tis_result, normalize=FALSE) # unnormalized log-weights

w <- weights(tis_result, log=FALSE) # normalized weights (not log-weights)
uw <- weights(tis_result, log=FALSE, normalize = FALSE) # unnormalized weights

update.psis_loo_ss Update psis_loo_ss objects

Description

Update psis_loo_ss objects

Usage

S3 method for class 'psis_loo_ss'
update(
object,
...,
data = NULL,
draws = NULL,
observations = NULL,
r_eff = NULL,
cores = getOption("mc.cores", 1),
loo_approximation = NULL,
loo_approximation_draws = NULL,
llgrad = NULL,
llhess = NULL

)

Arguments

object A psis_loo_ss object to update.

... Currently not used.

data For loo_subsample.function(), these are the data, posterior draws, and other
arguments to pass to the log-likelihood function. Note that for some loo_approximations,
the draws will be replaced by the posteriors summary statistics to compute loo
approximations. See argument loo_approximation for details.

draws For loo_subsample.function(), these are the data, posterior draws, and other
arguments to pass to the log-likelihood function. Note that for some loo_approximations,
the draws will be replaced by the posteriors summary statistics to compute loo
approximations. See argument loo_approximation for details.

observations The subsample observations to use. The argument can take four (4) types of
arguments:

• NULL to use all observations. The algorithm then just uses standard loo()
or loo_approximate_posterior().

update.psis_loo_ss 55

• A single integer to specify the number of observations to be subsampled.
• A vector of integers to provide the indices used to subset the data. These

observations need to be subsampled with the same scheme as given by the
estimator argument.

• A psis_loo_ss object to use the same observations that were used in a
previous call to loo_subsample().

r_eff Vector of relative effective sample size estimates for the likelihood (exp(log_lik))
of each observation. This is related to the relative efficiency of estimating the
normalizing term in self-normalizing importance sampling when using poste-
rior draws obtained with MCMC. If MCMC draws are used and r_eff is not
provided then the reported PSIS effective sample sizes and Monte Carlo er-
ror estimates will be over-optimistic. If the posterior draws are independent
then r_eff=1 and can be omitted. The warning message thrown when r_eff is
not specified can be disabled by setting r_eff to NA. See the relative_eff()
helper functions for computing r_eff.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo.cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc.cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

• Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc.cores interactively or in a script is fine).

loo_approximation

What type of approximation of the loo_i’s should be used? The default is "plpd"
(the log predictive density using the posterior expectation). There are six differ-
ent methods implemented to approximate loo_i’s (see the references for more
details):

• "plpd": uses the lpd based on point estimates (i.e., p(yi|θ̂)).
• "lpd": uses the lpds (i,e., p(yi|y)).
• "tis": uses truncated importance sampling to approximate PSIS-LOO.
• "waic": uses waic (i.e., p(yi|y)− pwaic).
• "waic_grad_marginal": uses waic approximation using first order delta

method and posterior marginal variances to approximate pwaic (ie. p(yi|θ̂)-
p_waic_grad_marginal). Requires gradient of likelihood function.

• "waic_grad": uses waic approximation using first order delta method and
posterior covariance to approximate pwaic (ie. p(yi|θ̂)-p_waic_grad). Re-
quires gradient of likelihood function.

• "waic_hess": uses waic approximation using second order delta method
and posterior covariance to approximate pwaic (ie. p(yi|θ̂)-p_waic_grad).
Requires gradient and Hessian of likelihood function.

As point estimates of θ̂, the posterior expectations of the parameters are used.
loo_approximation_draws

The number of posterior draws used when integrating over the posterior. This is
used if loo_approximation is set to "lpd", "waic", or "tis".

https://github.com/stan-dev/loo/issues/94

56 waic

llgrad The gradient of the log-likelihood. This is only used when loo_approximation
is "waic_grad", "waic_grad_marginal", or "waic_hess". The default is
NULL.

llhess The hessian of the log-likelihood. This is only used with loo_approximation
= "waic_hess". The default is NULL.

Details

If observations is updated then if a vector of indices or a psis_loo_ss object is supplied the
updated object will have exactly the observations indicated by the vector or psis_loo_ss object. If
a single integer is supplied, new observations will be sampled to reach the supplied sample size.

Value

A psis_loo_ss object.

waic Widely applicable information criterion (WAIC)

Description

The waic() methods can be used to compute WAIC from the pointwise log-likelihood. However,
we recommend LOO-CV using PSIS (as implemented by the loo() function) because PSIS pro-
vides useful diagnostics as well as effective sample size and Monte Carlo estimates.

Usage

waic(x, ...)

S3 method for class 'array'
waic(x, ...)

S3 method for class 'matrix'
waic(x, ...)

S3 method for class '`function`'
waic(x, ..., data = NULL, draws = NULL)

is.waic(x)

Arguments

x A log-likelihood array, matrix, or function. The Methods (by class) section,
below, has detailed descriptions of how to specify the inputs for each method.

draws, data, ...

For the function method only. See the Methods (by class) section below for
details on these arguments.

waic 57

Value

A named list (of class c("waic","loo")) with components:

estimates A matrix with two columns ("Estimate", "SE") and three rows ("elpd_waic", "p_waic",
"waic"). This contains point estimates and standard errors of the expected log pointwise pre-
dictive density (elpd_waic), the effective number of parameters (p_waic) and the information
criterion waic (which is just -2 * elpd_waic, i.e., converted to deviance scale).

pointwise A matrix with three columns (and number of rows equal to the number of observations)
containing the pointwise contributions of each of the above measures (elpd_waic, p_waic,
waic).

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the
number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and N is the number of data points.

• function: A function f() that takes arguments data_i and draws and returns a vector con-
taining the log-likelihood for a single observation i evaluated at each posterior draw. The
function should be written such that, for each observation i in 1:N, evaluating

f(data_i = data[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.
If using the function method then the arguments data and draws must also be specified in the
call to loo():

– data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

– draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

– The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely application
information criterion in singular learning theory. Journal of Machine Learning Research 11, 3571-
3594.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2019). Pareto smoothed importance
sampling. preprint arXiv:1507.02646

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://arxiv.org/abs/1507.02646

58 weights.importance_sampling

See Also

• The loo package vignettes and Vehtari, Gelman, and Gabry (2017) and Vehtari, Simpson,
Gelman, Yao, and Gabry (2019) for more details on why we prefer loo() to waic().

• loo_compare() for comparing models on approximate LOO-CV or WAIC.

Examples

Array and matrix methods
LLarr <- example_loglik_array()
dim(LLarr)

LLmat <- example_loglik_matrix()
dim(LLmat)

waic_arr <- waic(LLarr)
waic_mat <- waic(LLmat)
identical(waic_arr, waic_mat)

Not run:
log_lik1 <- extract_log_lik(stanfit1)
log_lik2 <- extract_log_lik(stanfit2)
(waic1 <- waic(log_lik1))
(waic2 <- waic(log_lik2))
print(compare(waic1, waic2), digits = 2)

End(Not run)

weights.importance_sampling

Extract importance sampling weights

Description

Extract importance sampling weights

Usage

S3 method for class 'importance_sampling'
weights(object, ..., log = TRUE, normalize = TRUE)

Arguments

object An object returned by psis(), tis(), or sis().

... Ignored.

log Should the weights be returned on the log scale? Defaults to TRUE.

normalize Should the weights be normalized? Defaults to TRUE.

https://mc-stan.org/loo/articles/

weights.importance_sampling 59

Value

The weights() method returns an object with the same dimensions as the log_weights component
of object. The normalize and log arguments control whether the returned weights are normalized
and whether or not to return them on the log scale.

Examples

See the examples at help("psis")

Index

ap_psis, 4
attributes, 45, 51, 53

base::round(), 43

compare, 5
constrOptim(), 30

E_loo, 9
E_loo(), 16
ELPD, 25, 26
elpd, 7
elpd_diff, 26
elpd_loo, 17, 26
example_loglik_array, 8
example_loglik_matrix

(example_loglik_array), 8
extract_log_lik, 8

factor, 13

gpdfit, 11
graphics::text(), 41

is.kfold (kfold-generic), 12
is.loo (loo), 14
is.psis (psis), 44
is.psis_loo (loo), 14
is.sis (psis), 44
is.tis (psis), 44
is.waic (waic), 56

kfold (kfold-generic), 12
kfold-generic, 12
kfold-helpers, 13
kfold_split_grouped (kfold-helpers), 13
kfold_split_random (kfold-helpers), 13
kfold_split_stratified (kfold-helpers),

13
Kline (loo-datasets), 20

loo, 14
loo(), 3, 5, 24, 25, 28–30, 34, 35, 37–39,

41–43, 46–48, 51, 53, 56
loo-datasets, 20
loo-glossary, 21
loo-package, 3
loo.function(), 47
loo_approximate_posterior, 23
loo_approximate_posterior(), 37
loo_compare, 25
loo_compare(), 5, 12, 13, 18, 25, 39, 58
loo_i (loo), 14
loo_model_weights, 27
loo_model_weights(), 3
loo_moment_match, 31
loo_moment_match(), 35, 42
loo_moment_match_split, 34
loo_moment_match_split(), 34
loo_subsample, 36

mcse_elpd_loo, 17
mcse_loo (pareto-k-diagnostic), 40
milk (loo-datasets), 20

nobs.psis_loo_ss, 39

obs_idx, 39

p_loo, 17
Pareto k, 9, 10
pareto-k-diagnostic, 12, 17, 18, 40, 44–47,

51, 53
pareto_k_ids (pareto-k-diagnostic), 40
pareto_k_influence_values

(pareto-k-diagnostic), 40
pareto_k_table (pareto-k-diagnostic), 40
pareto_k_values (pareto-k-diagnostic),

40
plot(), 43
plot.loo (pareto-k-diagnostic), 40

60

INDEX 61

plot.psis (pareto-k-diagnostic), 40
plot.psis_loo (pareto-k-diagnostic), 40
plot.psis_loo(), 43
print.compare.loo (loo_compare), 25
print.compare.loo_ss (loo_compare), 25
print.importance_sampling (print.loo),

43
print.importance_sampling_loo

(print.loo), 43
print.loo, 43
print.psis (print.loo), 43
print.psis_loo (print.loo), 43
print.psis_loo_ap (print.loo), 43
print.waic (print.loo), 43
pseudobma_weights (loo_model_weights),

27
PSIS, 9, 14
psis, 44
psis(), 3, 10, 12, 16–18, 25, 29, 39, 41–43,

46, 48, 51, 53, 58
psis_n_eff_values

(pareto-k-diagnostic), 40
psislw, 46

relative_eff, 47
relative_eff(), 16, 29, 30, 37, 44, 50, 52, 55

se_diff, 26
sis, 49
sis(), 58
stacking_weights (loo_model_weights), 27
stats::constrOptim(), 28
stats::optim(), 28

tis, 52
tis(), 58

update.psis_loo_ss, 54

waic, 56
waic(), 5, 43
weights(), 45, 50, 53
weights.importance_sampling, 58

	loo-package
	ap_psis
	compare
	elpd
	example_loglik_array
	extract_log_lik
	E_loo
	gpdfit
	kfold-generic
	kfold-helpers
	loo
	loo-datasets
	loo-glossary
	loo_approximate_posterior
	loo_compare
	loo_model_weights
	loo_moment_match
	loo_moment_match_split
	loo_subsample
	nobs.psis_loo_ss
	obs_idx
	pareto-k-diagnostic
	print.loo
	psis
	psislw
	relative_eff
	sis
	tis
	update.psis_loo_ss
	waic
	weights.importance_sampling
	Index

