Package ‘Isbclust’

April 15, 2019
Type Package
Title Least-Squares Bilinear Clustering for Three-Way Data
Version 1.1
Date 2019-04-15
Author Pieter Schoonees [aut, cre], Patrick Groenen [ctb]
Maintainer Pieter Schoonees schoonees@gmail.com
Description Functions for performing least-squares bilinear clustering of three-way data. The method uses the bilinear decomposition (or bi-additive model) to model two-way matrix slices while clustering over the third way. Up to four different types of clusters are included, one for each term of the bilinear decomposition. In this way, matrices are clustered simultaneously on (a subset of) their overall means, row margins, column margins and row-column interactions. The orthogonality of the bilinear model results in separability of the joint clustering problem into four separate ones. Three of these sub-problems are specific k-means problems, while a special algorithm is implemented for the interactions. Plotting methods are provided, including biplots for the low-rank approximations of the interactions.
License GPL (>=2)
Depends R (>= 3.5), stats, ggplot2
Imports plyr, clue, grid, gridExtra, reshape2, Rcpp, mvtnorm, graphics, methods, doParallel, foreach, parallel
LinkingTo Rcpp
LazyData yes
LazyLoad yes
ByteCompile yes
BuildResaveData best
NeedsCompilation yes
RoxygenNote 6.1.1
Encoding UTF-8
Repository CRAN
Date/Publication 2019-04-15 09:32:39 UTC

R topics documented:

lsbclust-package 3
akmeans 3
bicomp 4
carray 4
cfsim 5
cfsim.akmeans 5
cfsim.lsbclust 6
cfsim.T3Clusf 6
ClustMeans 7
cl_class_ids.int.lsbclust 8
cmat 9
dcars 9
fitted.akmeans 10
fitted.lsbclust 11
fitted.T3Clusf 11
genproc 12
indarr 12
int.lsbclust 13
KMeansW 14
LossMat 15
lov 16
lsbclust 17
meanbiplot 19
meanheatmap 19
orc.lsbclust 20
plot.bicomp 21
plot.col.kmeans 21
plot.int.lsbclust 22
plot.lsbclust 24
plot.ovl.kmeans 25
plot.row.kmeans 26
plot.step.lsbclust 26
plot.T3Clusf 27
print.lsbclust 28
rlsbclust 28
rorth 30
simsv 30
sim_lsbclust 31
step.lsbclust 32
summary.int.lsbclust 34
summary.lsbclust 34
supermarkets 35
T3Clusf 35
Index 37

Description

Funtions for least squares latent class matrix factorizations.

Author(s)

Pieter C. Schoonees [aut, cre], Patrick J.F. Groenen [aut]

References

Van Rosmalen, J., Van Herk, H., \& Groenen, P. J. F. (2010). Identifying response styles: A latentclass bilinear multinomial logit model. Journal of Marketing Research, 47(1), 157-172.

```
akmeans K-Means Over One Way of An Three-Way Array
```


Description

Vectorize matrix slices over a specific way of an three-way array, and conduct kmeans on it.

Usage

akmeans(data, centers, margin $=3 \mathrm{~L}$, ndim $=$ NULL, \ldots)

Arguments

data	Three-way data array
centers	Passed to kmeans
margin	Integer indicating which way to cluster over
ndim	The rank of the low dimensional approximation of the matrix slices to construct before clustering (using svd)
\ldots	Additional arguments passed to kmeans

Examples

```
set.seed(1)
res <- akmeans(data = carray(dcars), margin = 3L, centers = 5, nstart = 10)
```


bicomp Bilinear Decomposition of a Matrix

Description

Decomposes a matrix into an overall mean matrix, row margins matrix, column margins matrix and an interaction matrix, depending on delta.

Usage

bicomp(x, delta $=c(1,1,1,1)$, which $=0 L: 4 L)$

Arguments

$x \quad$ A matrix to be decomposed.
delta A vector of length four with $0 / 1$ entries which controls the type of decomposition made.
which A vector giving the elements to return, with $0=$ original data, $1=$ overall means, 2 = row means, $3=$ column means and $4=$ interactions.

Value

An object of class bicomp, possible also inheriting from class data.frame, which is either a named list with the required components, or a single matrix if a single component is requested. An additional attribute return_type gives information on the type of matrices returned.

```
carray Double-Centre a Three-way Array
```


Description

Double-centre the matrix slices of a three-way array.

Usage

carray (array, margin $=3 \mathrm{~L}$, rows $=$ TRUE, columns $=$ TRUE)

Arguments

array

A three-way array
margin
rows
columns

The way of the array over which the centring must be done
Logical indicating whether to centre the rows of the matrix slices
Logical indicating whether to centre the columns of the matrix slices

```
    cfsim Compare Simulation Results
```


Description

Generic function to compare simulation results in lsbclust.

Usage

cfsim(fitted, actual, method = c("diag", "cRand"))

Arguments

fitted An object of class lsbclust containing the fitted results.
actual An object of class lsbclust_sim containing the simulated data.
method The type of statistics to calculate, passed to cl_agreement

See Also

cfsim.lsbclust, cfsim.T3Clusf

```
cfsim.akmeans Compare LSBCLUST Simulation Results
```


Description

This function compares cluster membership and parameter estimates for the results of akmeans on simulated data, constructed using rlsbclust, to the true underlying values.

Usage

\#\# S3 method for class 'akmeans'
cfsim(fitted, actual, method = c("diag", "cRand"))

Arguments

fitted An object of class akmeans containing the fitted results.
actual An object of class lsbclust_sim containing the simulated data.
method The method for calculating cluster agreement across random starts, passed on to cl_agreement. None is calculated when set to NULL.

Examples

```
## Simulate LSBCLUST data, fit akmeans on double-centered data, and compare
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
dat[[1]]$data <- carray(dat[[1]]$data)
res <- akmeans(data = dat[[1]]$data, centers = 5, margin = 3, ndim = 2)
cfsim(res, dat[[1]])
```

```
cfsim.lsbclust Compare LSBCLUST Simulation Results
```


Description

This function compares cluster membership and parameter estimates for the results of lsbclust on simulated data to the true underlying values.

Usage

\#\# S3 method for class 'lsbclust'
cfsim(fitted, actual, method = c("diag", "cRand"))

Arguments

fitted An object of class lsbclust containing the fitted results.
actual An object of class lsbclust_sim containing the simulated data.
method The type of statistics to calculate, passed to cl_agreement

Examples

```
## Simulate LSBCLUST data, fit LSBCLUST, and compare
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
res <- lsbclust(data = dat[[1]]$data, nclust = c(5, 4, 6, 5))
cfsim(res, dat[[1]])
```

cfsim.T3Clusf

Compare LSBCLUST Simulation Results

Description

This function compares cluster membership and parameter estimates for the results of T3Clusf on simulated data, using rlsbclust, to the true underlying values.

Usage

```
## S3 method for class 'T3Clusf'
cfsim(fitted, actual, method = c("diag", "cRand"))
```


Arguments

fitted An object of class lsbclust containing the fitted results.
actual An object of class lsbclust_sim containing the simulated data.
method The method for calculating cluster agreement across random starts, passed on to cl_agreement. None is calculated when set to NULL.

Examples

```
## Simulate LSBCLUST data, fit T3Clusf on double-centered data, and compare
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
dat[[1]]$data <- carray(dat[[1]]$data)
res <- T3Clusf(X = dat[[1]]$data, Q = 2, G = 5)
cfsim(res, dat[[1]])
```

ClustMeans C++ Function for Cluster Means

Description

This function calculates the cluster means in vectorized form based on the current value of the clustering vector.

Usage

ClustMeans(nclust, start, data)

Arguments

nclust	The number of clusters.
start	The current clustering vector.
data	The concatenated data, with $\mathrm{J} * \mathrm{~K}$ rows and N columns

Value

A numeric matrix with nclust rows and $\mathrm{J} * \mathrm{~K}$ columns.

```
cl_class_ids.int.lsbclust
S3 export
```


Description

These export into the framework set out in package clue.

Usage

```
## S3 method for class 'int.lsbclust'
cl_class_ids(x)
## S3 method for class 'int.lsbclust'
is.cl_partition(x)
## S3 method for class 'int.lsbclust'
is.cl_hard_partition(x)
## S3 method for class 'lsbclust_sim_part'
cl_class_ids(x)
## S3 method for class 'lsbclust_sim_part'
is.cl_partition(x)
## S3 method for class 'lsbclust_sim_part'
is.cl_hard_partition(x)
## S3 method for class 'T3Clusf'
cl_class_ids(x)
## S3 method for class 'T3Clusf'
is.cl_partition(x)
## S3 method for class 'T3Clusf'
is.cl_hard_partition(x)
## S3 method for class 'akmeans'
cl_class_ids(x)
## S3 method for class 'akmeans'
is.cl_partition(x)
## S3 method for class 'akmeans'
is.cl_hard_partition(x)
```


Arguments

X
An object of class int.lsclust
cmat Centring Matrix

Description

A utility function for calculating centring matrices.

```
Usage
    cmat(k)
```


Arguments

$\mathrm{k} \quad$ An integer determining the dimensions of the centring matrix.

```
dcars Dutch Cars Data
```


Description

This data set relates to 187 Dutch households rating 10 automobile manufacturers according to 8 variables (original Dutch terms in parentheses): price (prijsniveau), design (vormgeving), safety (veiligheid), operating cost (gebruikskosten),) sportiness (sportiviteit), size (modelgrootte), reliability (betrouwbaarheid) and feautures (uitrusting). A rating scale from 1 to 10 was used.

Usage

dcars

Format

A three-way array with cars in the first dimension, variables in the second and consumers in the third dimension.

The items and labels for the endpoints of the scales are (original Dutch labels in parentheses):
Affordability A rating from $1=$ Expensive (duur) to $10=$ Cheap (goedkoop)
Attractiveness A rating from $1=$ Ugly (lelijk) to $10=$ Beautiful (mooi)
Safety A rating from $1=\operatorname{Bad}$ (slecht) to $10=$ Good (goed)
OperatingCost A rating from $1=$ Low (laag) to $10=$ High (hoog)
Sportiness A rating from $1=$ Slow (langzaam) to $10=$ Fast (snel)
Size A rating from $1=$ Large (groot) to $10=$ Small (klein)
Reliability A rating from $1=\mathrm{Bad}$ (slecht) to $10=$ Good (goed)
Features A rating from $1=$ Simple (eenvoudig) to $10=$ Luxurious (luxe)

Details

The original sample consisted of 188 households. However, one of these households (code 87845) was discarded because it appears that they used a rating scale from 0 to 10 instead of from 1 to 10. Note that all rating scales has been reversed so that higher scores are better for most items. The exceptions are OperatingCost and Size, where larger values mean higher costs and smaller cars respectively.

Source

Tammo Bijmolt, Michel van de Velden

Examples

```
data("dcars")
set.seed(5448)
m <- lsbclust(data = dcars, delta = c(1, 1, 1, 1), nclust = c(5, 3, 6, 8), nstart = 5,
    nstart.kmeans = 10, parallel = FALSE, fixed = "columns")
```


Description

An S3 method for fitted for class "akmeans".

Usage

\#\# S3 method for class 'akmeans'
fitted(object, ...)

Arguments

object An object of class "akmeans"
... Unimplemented

Value

An array approximating the original data

See Also

akmeans

Description

An S3 method for fitted for class "lsbclust".

Usage

```
## S3 method for class 'lsbclust'
    fitted(object, ...)
```


Arguments

object An object of class "lsbclust"
... Unimplemented

Value

An array approximating the original data

See Also

lsbclust

fitted.T3Clusf

Extract Fitted Values for T3Clusf

Description

An S3 method for fitted for class "T3Clusf".

Usage

\#\# S3 method for class 'T3Clusf'
fitted(object, ...)

Arguments

object An object of class "T3Clusf"
\ldots Unimplemented

Value

An array approximating the original data

See Also

T3Clusf
genproc Generalized Procrustes Rotation

Description

This function finds K orthogonal rotation matrices so that the rotated versions of the input configurations match each other optimally in the least-squares sense. The algorithm depends on the starting values for the rotation matrices. At present identity matrices are used as starting values. Only rotations / reflections are considered - no scaling or translation factors are included.

Usage

genproc(configs, maxit $=50 \mathrm{~L}$, reltol $=1 \mathrm{e}-06$, random $=$ FALSE)

Arguments

configs A list of original configuration matrices
maxit The maximum number of iterations allowed
reltol The relative error tolerance for determining numeric convergence.
random Logical indicating whether or not to use random starts (only applicable when the dimensionality is two).

References

Gower, J. C., \& Dijksterhuis, G. B. (2004). Procrustes problems (Vol. 3). Oxford: Oxford University Press.
indarr Create Array of Indicator Matrices

Description

This function takes a matrix or data. frame and the number of rating categories maxcat and produces a three-way array of m by maxcat indicator matrices, one for each of the n rows. The input x must be a matrix or data. frame of dimensions n by m which contains the ratings on a scale of 1 to maxcat for m items. Note that missing values (NA's) will not appear in the columns.

Usage

indarr (x, maxcat, na.add = TRUE)

Arguments

x	a matrix of data.frame
maxcat	an integer indicating the maximum of the rating scale (which is assumed to start with 1)
na. add	logical indicating whether to add a designated category for missings or not. De- faults to TRUE.

Value

A list of rating by item indicator matrices.

Author(s)

Pieter C. Schoonees

Examples

```
data("lov")
arr <- indarr(lov[1:10, 1:9], maxcat = 9)
str(arr)
```

int.lsbclust
Interaction Clustering in Least Squares Bilinear Clustering

Description

This function implements the interaction clustering part of the Least Squares Bilinear Clustering method of Schoonees, Groenen and Van de Velden (2014).

Usage

```
int.lsbclust(data, margin = 3L, delta, nclust, ndim = 2,
    fixed = c("none", "rows", "columns"), nstart = 50, starts = NULL,
    alpha = 0.5, parallel = FALSE, mc.cores = detectCores() - 1,
    maxit = 100, verbose = 1, method = "diag", minsize = 3L,
    return_data = FALSE)
```


Arguments

data A three-way array representing the data.
margin An integer giving the single subscript of data over which the clustering will be applied.
delta A four-element binary vector (logical or numeric) indicating which sum-to-zero constraints must be enforced.
nclust An integer giving the desired number of clusters. If it is a vector, the algorithm will be run for each element.

ndim	The required rank for the approximation of the interactions (a scalar).
fixed	One of "none", "rows" or "columns" indicating whether to fix neither sets of coordinates, or whether to fix the row or column coordinates across clusters respectively. If a vector is supplied, only the first element will be used.
nstart	The number of random starts to use.
starts	A list containing starting configurations for the cluster membership vector. If not supplied, random initializations will be generated. Numeric value in [0, 1] which determines how the singular values are distributed between rows and columns. alpha
parallel	Logical indicating whether to parallelize over different starts or not.
mc.cores	The number of cores to use in case parallel = TRUE, passed to makeCluster. The maximum number of iterations allowed.
maxit	Integer controlling the amount of information printed: $0=$ no information, $1=$
verbose	Information on random starts and progress, and $2=$ information is printed after each iteration for the interaction clustering.
method	The method for calculating cluster agreement across random starts, passed on to cl_agreement. None is calculated when set to NULL.
minsize	Integer giving the minimum size of cluster to uphold when reinitializing empty clusters.
return_data	Logical indicating whether to include the data in the return value or not

Value

An object of class int.lsb

Examples

```
data("supermarkets")
out <- int.lsbclust(data = supermarkets, margin = 3, delta = c(1,1,0,0), nclust = 4, ndim = 2,
    fixed = "rows", nstart = 1, alpha = 0)
```


Description

This function does a weighted K-means clustering.

Usage

ComputeMeans(cm, data, weight, nclust)
AssignCluster(data, weight, M, nclust)
KMeansW(nclust, start, data, weight, eps $=1 \mathrm{e}-08$, IterMax $=100 \mathrm{~L}$)

Arguments

cm	Numeric vector of class indicators.
data	The concatenated data, with N rows and M columns. Currently, the columns are clustered.
weight	The vector of length nrows (data) with weights with nonnegative elements.
nclust	The number of clusters.
M	Matrix of cluster means.
start	The current cluster membership vector.
eps	Numerical absolute convergence criteria for the K-means.
IterMax	Integer giving the maximum number of iterations allowed for the K-means.

Value

A list with the folowing values.
centers the nclust by M matrix centers of cluster means.
cluster vector of length N with cluster memberships.
loss vector of length IterMax with the first entries containing the loss.
iterations the number of iterations used (corresponding to the number of nonzero entries in loss)

Examples

```
set.seed(1)
clustmem <- sample.int(n = 10, size = 100, replace = TRUE)
mat <- rbind(matrix(rnorm(30*4, mean = 3), nrow = 30),
    matrix(rnorm(30*4, mean = -2), nrow = 30),
    matrix(rnorm(40*4, mean = 0), nrow = 40))
wt <- runif(100)
testMeans <- lsbclust:::ComputeMeans(cm = clustmem, data = mat, weight = wt, nclust = 3)
testK <- lsbclust:::KMeansW(start = clustmem, data = mat, weight = wt, nclust = 3)
```

LossMat C++ Function for Interaction Loss Function

Description

This function calculates the loss function for the interaction clustering for all data slices and clusters means. The inputs are numeric matrices.

Arguments

x
y

The data matrix, with the N slices strung out as vectors in the columns.
The matrix of cluster means, with each mean represented by a row.

Value
A numeric matrix with nclust rows and N columns.
lov
List-of-values Data Set

Description

This is the list-of-values data set used in Van Rosmalen, Van Herk \& Groenen (2010). Column names and factor labels differ slightly from that paper. Missing values are encoded as NA as usual. The first nine columns are items answered on a nine-point rating scale, with rating 1 representing 'very important' and category 9 'not important at all'. The respondents were asked how important each of these items are as a guiding principle in their lives.

Usage

data("lov")

Format

A data frame with 4514 observations on the following 12 variables.
Belonging a numeric vector; 'a sense of belonging'
Excitement a numeric vector
Relationships a numeric vector; 'warm relationships with others'
Self-fulfilment a numeric vector
Respected a numeric vector; 'being well-respected'
Enjoyment a numeric vector; 'fun and enjoyment'
Security a numeric vector
Self-respect a numeric vector
Accomplishment a numeric vector; 'a sense of accomplishment'
Country a factor with levels Britain, France, Germany, Italy and Spain
Education a factor with levels Low and High
Age a factor with levels -25, 25-39, 40-54 and 55+

Source

Joost van Rosmalen

References

Van Rosmalen, J., Van Herk, H., \& Groenen, P. J. (2010). Identifying response styles: A latent-class bilinear multinomial logit model. Journal of Marketing Research, 47(1), 157-172.

Examples

```
data("lov")
## Construct array
lovarr <- indarr(lov[, 1:9], maxcat = 9)
## Run analysis
set.seed(13841)
fit <- lsbclust(data = lovarr, margin = 3, delta = c(0, 1, 0, 0), nclust = c(NA, 11, NA, 5),
    fixed = "rows", nstart = 1, iter.max = 50, nstart.kmeans = 10)
```

lsbclust Least-squares Bilinear Clustering of Three-way Data

Description

This function clusters along one way of a three-way array (as specified by margin) while decomposing along the other two dimensions. Four types of clusterings are allowed based on the respective two-way slices of the array: on the overall means, row margins, column margins and the interactions between rows and columns. Which clusterings can be fit is determined by the vector delta, with four binary elements. All orthogonal models are fitted. The nonorthogonal case delta $=(1,1,0,0)$ returns an error. See the reference for further details.

Usage

```
lsbclust(data, margin = 3L, delta = c(1L, 1L, 1L, 1L), nclust,
    ndim = 2L, fixed = c("none", "rows", "columns"), nstart = 20L,
    starts = NULL, nstart.kmeans = 500L, alpha = 0.5,
    parallel = FALSE, maxit = 100L, verbose = 1, method = "diag",
    type = NULL, sep.nclust = TRUE, ...)
```


Arguments

data A three-way array representing the data.
margin An integer giving the single subscript of data over which the clustering will be applied.
delta A four-element binary vector (logical or numeric) indicating which sum-to-zero constraints must be enforced.
nclust A vector of length four giving the number of clusters for the overall mean, the row margins, the column margins and the interactions (in that order) respectively. Alternatively, a vector of length one, in which case all components will have the same number of clusters.
ndim The required rank for the approximation of the interactions (a scalar).
fixed One of "none", "rows" or "columns" indicating whether to fix neither sets of coordinates, or whether to fix the row or column coordinates across clusters respectively. If a vector is supplied, only the first element will be used (passed to int.lsbclust).

nstart	The number of random starts to use for the interaction clustering.
starts	A list containing starting configurations for the cluster membership vector. If not supplied, random initializations will be generated (passed to int.lsbclust).
nstart.kmeans	The number of random starts to use in kmeans.
alpha	Numeric value in $[0,1]$ which determines how the singular values are distributed between rows and columns (passed to int.lsbclust).
parallel	Logical indicating whether to parallel over different starts or not (passed to int.lsbclust).
maxit	The maximum number of iterations allowed in the interaction clustering.
verbose	Integer controlling the amount of information printed: $0=$ no information, $1=$ Information on random starts and progress, and $2=$ information is printed after each iteration for the interaction clustering.
method	The method for calculating cluster agreement across random starts, passed on to cl_agreement (passed to int.lsbclust).
type	One of "rows", "columns" or "overall" (or a unique abbreviation of one of these) indicating whether clustering should be done on row margins, column margins or the overall means of the two-way slices respectively. If more than one opion are supplied, the algorithm is run for all (unique) options supplied (passed to orc.lsbclust). This is an optional argument.
sep.nclust	Logical indicating how nclust should be used across different type's. If sep.nclust is TRUE, nclust is recycled so that each type can have a different number of clusters. If sep. nclust is FALSE, the same vector nclust is used for all type's. Additional arguments passed to kmeans.

Value

Returns an object of S3 class lsbclust which has slots:

overall	Object of class ovl.kmeans for the overall means clustering
rows	Object of class row.kmeans for the row means clustering
columns	Object of class col.kmeans for the column means clustering
interactions	Object of class int.lsbclust for the interaction clustering
call	The function call used to create the object
delta	The value of delta in the fit
df	Breakdown of the degrees-of-freedom across the different subproblems
loss	Breakdown of the loss across subproblems
time	Time taken in seconds to calculate the solution
cluster	Matrix of cluster membership per observation for all cluster types

References

Schoonees, P.C., Groenen, P.J.F., Van de Velden, M. Least-squares Bilinear Clustering of Three-way Data. Econometric Institute Report, EI2014-23.

See Also

int.lsbclust, orc.lsbclust
meanbiplot Biplots of

Description

Construct simple two-dimensional biplots given matrices representing the rows and columns of a two-dimensional matrix using ggplot2.

Usage

meanbiplot(rows, cols)

Arguments

rows
A list of matrices representing the rows
cols
A list of matrices representing the columns

Examples

```
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
meanbiplot(dat[[1]]$interactions$C, dat[[1]]$interactions$D)
```

meanheatmap Plot Heatmap of A Matrix

Description

Construct a heatmap of a matrix using ggplot2.

Usage

meanheatmap (x)

Arguments

$x \quad$ Matrix or list of matrices to be plotted

Examples

```
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(6, 6), nclust = c(5, 4, 6, 5))
meanheatmap(Map(tcrossprod, dat[[1]]$interactions$C, dat[[1]]$interactions$D))
```


Description

This function conducts k-means on the overall mean, the row margins or column margins of a set of N matrices. These matrices are two-way slices of a three-dimensional array.

Usage

```
orc.lsbclust(data, margin = 3L, delta, nclust, sep.nclust = TRUE,
    type = NULL, verbose = 1, ...)
```


Arguments

$\left.\begin{array}{ll}\text { data } & \text { A three-way array representing the data. } \\ \text { margin } & \begin{array}{l}\text { An integer giving the single subscript of data over which the clustering will be } \\ \text { applied. }\end{array} \\ \text { delta } & \begin{array}{l}\text { A four-element binary vector (logical or numeric) indicating which sum-to-zero } \\ \text { constraints must be enforced. }\end{array} \\ \text { nclust } & \begin{array}{l}\text { An integer giving the desired number of clusters. In case type specifies more } \\ \text { than one method, nclust can be a vector containing the number of clusters to } \\ \text { be determined for each type of cluster, and in the correct order as determined by } \\ \text { type (after matching the arguments). If type is of length greater than one and } \\ \text { nclust is of length one, the behaviour is governed by sep.nclust. }\end{array} \\ \text { sep.nclust } & \begin{array}{l}\text { Logical indicating how nclust should be used across different type's. If sep.nclust } \\ \text { is TRUE, nclust is recycled so that each type can have a different number of } \\ \text { clusters. If sep. nclust is FALSE, the same vector nclust is used for all type's. }\end{array} \\ \text { type } & \begin{array}{l}\text { One of "overall", "rows" or "columns" (or a unique abbreviation of one of } \\ \text { these) indicating whether clustering should be done on row margins, column }\end{array} \\ \text { margins or the overall means of the two-way slices respectively. If more than } \\ \text { one opion are supplied, the algorithm is run for all (unique) options supplied. }\end{array}\right\}$

Value

A list containing a subset of the classes row.kmeans, col.kmeans and ovl.kmeans which are specific versions of class kmeans. In case type is a vector, a list is returned containing the results for each of the (unique) elements of type, with the same classes as before. See kmeans for an overview of the structure of these objects.

See Also

kmeans

```
plot.bicomp Plot a bicomp Object
```


Description

Plot method for an object of class bicomp (see bicomp).

Usage

```
## S3 method for class 'bicomp'
plot(x, which = 0L:4L, arrange = TRUE,
    col = c("red4", "beige", "blue4"), strip.legend = TRUE,
    add.titles = FALSE, ...)
```


Arguments

$x \quad$ An object of class bicomp.
which A numeric vector indicating which matrices to plot, with $0=$ original data, $1=$ overall means, $2=$ row means, $3=$ column means and $4=$ interactions.
arrange Logical indicating whether the arrange the plots side-by-side via grid. arrange or not.
col A character vector of length three giving the parameters low, mid and high for scale_fill_gradient2.
strip.legend Logical indicating whether to strip the legend off the plot or not.
add.titles Logical indicating whether to add titles to the plots or not.
... Additional arguments to theme.
plot.col.kmeans Plot method for class 'col.kmeans'

Description

Simple plot method for object of class 'col.kmeans' as output by orc.lsbclust.

Usage

\#\# S3 method for class 'col.kmeans'
plot (x, which $=1 \mathrm{~L}, \ldots$)

Arguments

x
An object of class col.kmeans
which
... additional arguments passed to theme.

Author(s)

Pieter C. Schoonees

Examples

```
data("dcars")
m<- orc.lsbclust(data = dcars, margin = 3, delta = c(1,1,1,1), nclust = 5, type = "columns")
plot(m)
```

plot.int.lsbclust

Plot Method for Class 'int.lsbclust'

Description

Two-dimensional plot method for object of class 'int.lsbclust' as output by int. lsbclust.

Usage

```
## S3 method for class 'int.lsbclust'
plot(x, which = seq_len(nclust),
    plot.type = c("biplots", "means", "estimates"), segments = NULL,
    biplot.axes = TRUE, nmarkers = 5, alpha = NULL,
    check.alpha = TRUE, fix.alpha = FALSE, probs = 0,
    arrange = FALSE, fix.limits = TRUE, limit.exp = 1.05,
    lambda.scale = TRUE, procrustes.rotation = x$fixed == "none",
    fix.lambda = FALSE, labs.grey = TRUE, label.0 = FALSE,
    tick.length = 0.0075 * diff(lims), axis.col = "grey60",
    label.size = 3, axis.size = 0.25, axis.title.size = 4,
    draw.axis = NULL, points.col = list(rows = "red", columns = "blue2"),
    offset.tick.labels = 3.5, offset.axis.title = list(rows = 0.015 *
    max(nchar(rnms)), columns = 0.015 * max(nchar(cnms))),
    axis.arrow = grid::arrow(angle = 20, length = grid::unit(0.0175,
    "npc")), ...)
```


Arguments

segments A logical vector with two elements, indicating whether the rows and columns

X
which

```
    plot.type
```

biplot.axes
biplot.ax

An object of class int.lsbclust.
A vector indicating which item segments to plot.
Character string giving the type of plots to produce: either "biplots" for the biplots approximating the cluster means, "means" for level plots of the cluster means themselves or "estimates" for level plots of the low-rank approximations of the cluster means (as represented in the biplots). should be plotted as line segments or not.
A logical indicating whether to plot calibrated biplot axes for the line segments indicated in segments or not.
$\left.\begin{array}{ll}\text { nmarkers } & \begin{array}{l}\text { Either a single integer giving the number of desired markers per biplot axis for } \\ \text { all axes, or a named list. This is passed as the argument } n \text { to pretty. See } \\ \text { Details for information on the list option. }\end{array} \\ \text { Numeric value in [0, 1] which determines how the singular values are distributed } \\ \text { netween rows and columns. It will trigger a recomputation of the updates if it } \\ \text { does not correspond to the value used when fitting the model. Do not confuse } \\ \text { this with the term "alpha" used in the context of colour transparency. }\end{array}\right\}$

The vectors can be character vectors containing the names of the axes to be drawn, numeric vectors containing indices indicating which axes to draw, or logical vectors indicating which biplot axes to draw. In case of the default value NULL, the elements of segments are used for the "rows" and "columns" entries.
points.col A named list containing the colours to use for plotting the sets of points. The elements "rows" and "columns" contain vectors giving the colours for the points. Single element vectors are recycled across the different points, otherwise the vectors must be of the appropriate length.
offset.tick.labels
A numeric value giving the offset factor of the biplot axis marker labels from their respective tick marks. Higher (lower) values lead to labels being further from (nearer to) their respective tick marks.
offset.axis.title
A names list of (up to) two numeric values giving the fixed length offset of the biplot axis title label from the end of the axis segment. The two elements must have names "rows" and code"columns".
axis.arrow An arrow object to be used for the endpoints of biplot axis segment lines. This is passed to geom_segment.
... Additional arguments passed to theme.

Details

In case nmarkers is a list, it can have up to two elements. These are required to be named "rows" and/or "columns", otherwise an error will be thrown. The elements of the list contains either single numeric values each or numeric vectors of the appropriate lengths indicating the n argument passed to pretty.
In some cases, the row and/or column fit values can contain non-finite values. If that occurs, colour transparency cannot and will not be used for that particular element (and this can vary between clusters). This relates to the alpha parameter in the plotting routines.

```
plot.lsbclust Plot method for class 'lsbclust'
```


Description

This plot method simply plots each of the components in the list of class lsbclust.

```
Usage
\#\# S3 method for class 'lsbclust'
plot(x, type = c("overall", "rows", "columns",
"interactions"), biplot.axes = TRUE, ...)
```


Arguments

x
type
biplot.axes A logical indicating whether to plot calibrated biplot axes for the line segments indicated in segments or not.
... additional arguments passed to the plot methods of the respective components, typically to theme. Use e.g. plot(x\$interactions) for more control over the respective plots.

Author(s)

Pieter C. Schoonees

See Also

```
plot.int.lsbclust, plot.ovl.kmeans, plot.row.kmeans, plot.col.kmeans
```


Examples

```
data("dcars")
```

$\mathrm{m}<-$ lsbclust (data $=$ dcars, margin $=3$, delta $=c(1,1,1,1)$, nclust $=5$, nstart $=1$)
plot(m)

```
plot.ovl.kmeans Plot method for class'ovl.kmeans'
```


Description

Simple plot method for object of class 'ovl.kmeans' as output by orc. lsbclust.

Usage

\#\# S3 method for class 'ovl.kmeans'
plot(x, which $=1 \mathrm{~L}, \ldots$)

Arguments

x
which ...

An object of class ovl.kmeans
Which type of plot to produce. Currently only which $=1$ is implemented. additional arguments passed to theme.

Author(s)

Pieter C. Schoonees

Examples

```
data("dcars")
m<- orc.lsbclust(data = dcars, margin = 3, delta = c(1,1,1,1), nclust = 5, type = "overall")
plot(m)
```

plot.row.kmeans Plot method for class 'row.kmeans'

Description

Simple plot method for object of class 'row.kmeans' as output by orc. lsbclust.

Usage

\#\# S3 method for class 'row.kmeans'
plot(x, which = 1L, ...)

Arguments

$x \quad$ An object of class row.kmeans
which Which type of plot to produce (only 3 types are implemented).
... additional arguments passed to theme.

Author(s)

Pieter C. Schoonees

Examples

```
data("dcars")
```

$\mathrm{m}<-$ orc.lsbclust(data $=$ dcars, margin $=3$, delta $=c(1,1,1,1)$, nclust $=5$, type = "rows")
plot(m)
plot.step.lsbclust Plot method for class 'step.lsbclust'

Description

Plot 'step.lsbclust' objects.

Usage

\#\# S3 method for class 'step.lsbclust'
plot (x, which = 1L:5L, col.all = NULL, arrange $=$ FALSE, chull $=$ FALSE, \ldots)

Arguments

X
which Which type of plot to produce.
col.all A character vector of length one indicating which of "overall", "rows", "columns" or "interactions" should be mapped to colour in the plot for all possible models. Care needs to be taken that the stated component is included in the fit.
arrange Logical indicating whether the arrange the plots side-by-side via grid. arrange or not.
chull Logical indicating whether to plot the estimated convex hull or not. additional arguments passed to theme.

Author(s)

Pieter C. Schoonees
plot.T3Clusf Plot Method for Class 'T3Clusf'

Description

Two-dimensional plot method for object of class 'T3Clusf' as output by T3Clusf.

Usage

```
## S3 method for class 'T3Clusf'
```

plot(x, which = seq_len(nclust), arrange $=$ FALSE,
...)

Arguments

x
which
arrange

An object of class T3Clusf.
An integer vector indicating which item segments to plot.
\qquad
Logical indicating whether to arrange the plots on a single page or not Additional arguments to theme

Description

Print a 'lsbclust' object.

Usage

\#\# S3 method for class 'lsbclust'
print(x, ...)

Arguments

x
An object of class 'lsbclust'
... Unimplemented.

Description

Simulate three-way arrays adhering to the LSBCLUST framework (see lsbclust).

Usage

rlsbclust(ndata $=50 \mathrm{~L}$, nobs, size, nclust, clustsize $=$ NULL, delta $=\operatorname{rep}(1 \mathrm{~L}, 4 \mathrm{~L}), \operatorname{ndim}=2 \mathrm{~L}$, alpha $=0.5$, fixed $=\mathrm{c}($ "none", "rows", "columns"), err_sd = 1, svmins = 1, svmax = 6)

Arguments

ndata Integer giving the number of data sets to generate with the same underlying parameters.
nobs Integer giving the number of observations to sample.
size Vector with two elements giving the number of rows and columns respectively of each simulated observation.
nclust A vector of length four giving the number of clusters for the overall mean, the row margins, the column margins and the interactions (in that order) respectively. Alternatively, a vector of length one, in which case all components will have the same number of clusters.

clustsize	A list of length four, with each element containing a vector of the same length as the corresponding entry in nclust, indicating the number of elements to con- tribute to each sample. Naturally, each of these vectors must sum to nobs, or an error will result. Positional matching are used, in the order "overall", "rows", "columns" and "interactions". If NULL, all clusters will be of equal size.
delta	A four-element binary vector (logical or numeric) indicating which sum-to-zero constraints must be enforced.
ndim	The required rank for the approximation of the interactions (a scalar).
alpha	Numeric value in [0, 1] which determines how the singular values are distributed between rows and columns (passed to int. lsbclust).
fixed	One of "none", "rows" or "columns" indicating whether to fix neither sets of coordinates, or whether to fix the row or column coordinates across clusters respectively. If a vector is supplied, only the first element will be used (passed to int. lsbclust).
err_sd	The standard deviation of the error distribution, as passed to rnorm
svmins	Vector of minimum values for the singular values (as passed to simsv). Option- ally, if all minima are equal, a single numeric value which will be expanded to the correct length.
svmax	The maximum possible singular value (as passed to simsv)

Examples

```
## Nothing fixed, balanced classes
set.seed(1)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5))
res <- lsbclust(data = dat[[1]]$data, nclust = c(5, 4, 6, 5))
cfsim(res, dat[[1]])
## Rows fixed, balanced classes
set.seed(2)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5),
            fixed = "rows")
res <- lsbclust(data = dat[[1]]$data, nclust = c(5, 4, 6, 5), fixed = "rows")
cfsim(res, dat[[1]])
## Rows fixed, unbalanced classes
set.seed(3)
dat <- rlsbclust(ndata = 1, nobs = 100, size = c(10, 8), nclust = c(5, 4, 6, 5),
            fixed = "columns",
        clustsize = list(NULL, NULL, c(40, 25, 15, 10, 5, 5), c(40, 25, 15, 10, 10)))
res <- lsbclust(data = dat[[1]]$data, nclust = c(5, 4, 6, 5), fixed = "columns")
cfsim(res, dat[[1]])
```


Description

Uniformly sample an orthornormal matrix from the collection of all possible orthonormal matrices of a certain size. The QR decomposition is used on a matrix containing Gaussian random numbers. The QR decomposition might not be the most efficient algorithm under some circumstances.

Usage

rorth (nrow, ncol, sd = 1)

Arguments

nrow Integer giving the number of rows required.
ncol Integer giving the number of columns required.
sd The standard deviation passed to rnorm

References

Stewart, G. W. (1980). The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM Journal on Numerical Analysis, 17(3), 403-409.

Examples

```
set.seed(1)
```

$\operatorname{rorth}(5,2)$

simsv

 Randomly Generate Positive Singular Values
Description

Generate random singular values for a specified number of clusters for use in simulations. A mixture distribution is used with truncation to ensure that the singular values differ between clusters, are ordered, and are nonnegative.

Usage

simsv(nclust, ndim $=2, \operatorname{mins}=1, \max =5)$

Arguments

nclust Integer giving the number of clusters for which to sample singular values.
ndim Integer; the number of singular values required.
mins \quad Numeric vector of length ndim giving the minimum values for the respective singular values.
$\max \quad$ Numeric value giving the maximum possible value for the mean of the clusterspecific singular value distribution, relative to the mins

sim_lsbclust
 Simulate and Analyze LSBCLUST

Description

Perform a single simulation run for the LSBCLUST model. Multiple data sets are generated for a single set of underlying parameters,

Usage

```
sim_lsbclust(ndata, nobs, size, nclust, clustsize = NULL,
    delta = rep(1L, 4L), ndim = 2L, alpha = 0.5, fixed = c("none",
    "rows", "columns"), err_sd = 1, svmins = 0.5, svmax = 5,
    seed = NULL, parallel = FALSE, parallel_data = TRUE, verbose = 0,
    nstart_T3 = 20L, nstart_ak = 20L, mc.cores = detectCores() - 1,
    include_fits = FALSE, include_data = FALSE, nstart, nstart.kmeans)
```


Arguments

ndata Integer giving the number of data sets to generate with the same underlying parameters.
nobs Integer giving the number of observations to sample.
size \quad Vector with two elements giving the number of rows and columns respectively of each simulated observation.
nclust A vector of length four giving the number of clusters for the overall mean, the row margins, the column margins and the interactions (in that order) respectively. Alternatively, a vector of length one, in which case all components will have the same number of clusters.
clustsize A list of length four, with each element containing a vector of the same length as the corresponding entry in nclust, indicating the number of elements to contribute to each sample. Naturally, each of these vectors must sum to nobs, or an error will result. Positional matching are used, in the order "overall", "rows", "columns" and "interactions". If NULL, all clusters will be of equal size.
delta A four-element binary vector (logical or numeric) indicating which sum-to-zero constraints must be enforced.
ndim The required rank for the approximation of the interactions (a scalar).

alpha	Numeric value in $[0,1]$ which determines how the singular values are distributed between rows and columns (passed to int.lsbclust).
fixed	One of "none", "rows" or "columns" indicating whether to fix neither sets of coordinates, or whether to fix the row or column coordinates across clusters respectively. If a vector is supplied, only the first element will be used (passed to int.lsbclust).
err_sd	The standard deviation of the error distribution, as passed to rnorm
svmins	Vector of minimum values for the singular values (as passed to simsv). Optionally, if all minima are equal, a single numeric value which will be expanded to the correct length.
svmax	The maximum possible singular value (as passed to simsv)
seed	An optional seed to be set for the random number generator
parallel	Logical indicating whether to parallelize over random starts. Note that parallel_data has precedence over this
parallel_data	Logical indicating whether to parallelize over the data sets. If FALSE, parallelization is done over random starts (depending on parallel).
verbose	Integer giving the number of iterations after which the loss values is printed.
nstart_T3	The number of random starts to use for T3Clusf
nstart_ak	The number of random starts to use for akmeans
mc.cores	The number of cores to use, passed to makeCluster
include_fits	Logical indicating whether to include the model fits, or or only the fit statistics
include_data	Logical indicating whether to include the simulated data fitted on, or only the results
nstart	From lsbclust
nstart.kmeans	From lsbclust

Examples

```
set.seed(1)
res <- sim_lsbclust(ndata = 5, nobs = 100, size = c(10, 8), nclust = rep(5, 4),
    verbose = 0, nstart_T3 = 2, nstart_ak = 1, parallel_data = FALSE,
    nstart = 2, nstart.kmeans = 5 )
```

step.lsbclust
Model Search for lsbclust

Description

Fit lsbclust models for different numbers of clusters and/or different values of delta. The resulting output can be inspected through its plot method to facilitate model selection. Each component of the model is fitted separately.

Usage

```
step.lsbclust(data, margin = 3L, delta = c(1, 1, 1, 1), nclust,
    ndim = 2, fixed = c("none", "rows", "columns"), nstart = 20,
    starts = NULL, nstart.kmeans = 500, alpha = 0.5,
    parallel = FALSE, maxit = 100, verbose = -1, type = NULL, ...)
```


Arguments

data	A three-way array representing the data.
margin	An integer giving the single subscript of data over which the clustering will be applied.
delta	A four-element binary vector (logical or numeric) indicating which sum-to-zero constraints must be enforced.
nclust	Either a vector giving the number of clusters which will be applied to each element of the model, that is to (a subset of) the overall mean, row margins, column margins and interactions. If it is a list, arguments are matched by the names "overall", "rows" "columns" and "interactions". If the list does not have names, the components are extracted in the aforementioned order.
ndim	The required rank for the approximation of the interactions (a scalar).
fixed	One of "none", "rows" or "columns" indicating whether to fix neither sets of coordinates, or whether to fix the row or column coordinates across clusters respectively. If a vector is supplied, only the first element will be used (passed to int.lsbclust).
nstart	The number of random starts to use for the interaction clustering.
starts	A list containing starting configurations for the cluster membership vector. If not supplied, random initializations will be generated (passed to int.lsbclust).
nstart.kmeans	The number of random starts to use in kmeans.
alpha	Numeric value in $[0,1]$ which determines how the singular values are distributed between rows and columns (passed to int.lsbclust).
parallel	Logical indicating whether to parallelize over different starts or not (passed to int.lsbclust).
maxit	The maximum number of iterations allowed in the interaction clustering.
verbose	The number of iterations after which information on progress is provided (passed to int.lsbclust).
type	One of "rows", "columns" or "overall" (or a unique abbreviation of one of these) indicating whether clustering should be done on row margins, column margins or the overall means of the two-way slices respectively. If more than one opion are supplied, the algorithm is run for all (unique) options supplied (passed to orc.lsbclust). This is an optional argument.
	Additional arguments passed to kmeans.

Examples

```
m <- step.lsbclust(data = dcars, margin = 3, delta = c(1, 0, 1, 0), nclust = 4:5,
    ndim = 2, fixed = "columns", nstart = 1, nstart.kmeans = 100,
    parallel = FALSE)
## For a list of all deltas
delta <- expand.grid(replicate(4, c(0,1), simplify = FALSE))
delta <- with(delta, delta[!(Var1 == 0 & Var3 == 1), ])
delta <- with(delta, delta[!(Var2 == 0 & Var4 == 1),])
delta <- delta[-4,]
delta <- as.list(as.data.frame(t(delta)))
m2 <- step.lsbclust(data = dcars, margin = 3, delta = delta, nclust = 4:5,
    ndim = 2, fixed = "columns", nstart = 1, nstart.kmeans = 100,
    parallel = FALSE)
```

summary.int.lsbclust Summary Method for Class "int.lsbclust"

Description

Some goodness-of-fit diagnostics are provided for all three margins.

Usage

\#\# S3 method for class 'int.lsbclust'
summary (object, digits = $3, \ldots$)

Arguments

object An object of class 'int.lsbclust'.
digits The number of digits in the printed output.
. . Unimplemented.
summary.lsbclust Summary Method for Class "lsbclust"

Description

Summarize a lsbclust object.

Usage

\#\# S3 method for class 'lsbclust'
summary (object, digits $=3, \ldots$)
supermarkets

Arguments

object An object of class 'lsbclust'.
digits The number of digits in the printed output.
... Unimplemented.
supermarkets Dutch Supermarkets Data Set

Description

This data set relates to 220 consumers rating 10 Dutch supermarket chains according to 8 variables. A rating scale from 1 to 10 was used.

Usage

supermarkets

Format

A three-way array with supermarkets in the first dimension, variables in the second and consumers in the third dimension.

Source

Michel van de Velden

Examples

```
data("supermarkets")
fit <- lsbclust(data = supermarkets, nclust = 6, fixed = "rows", nstart = 2)
```

T3Clusf T3Clusf: Tucker3 Fuzzy Cluster Analysis

Description

This is an implementation of the T3Clusf algorithm of Rocci \& Vichi (2005).

Usage

T3Clusf $(X, Q, R=Q, G=2$, margin = 3L, alpha = 1, eps = 1e-08, maxit $=100 \mathrm{~L}$, verbose $=1$, nstart $=1 \mathrm{~L}$, parallel $=$ TRUE, mc .cores $=$ detectCores ()$-1 \mathrm{~L}$, minsize $=3 \mathrm{~L}$)

Arguments

X
Q
$\mathrm{R} \quad$ Integer giving the number of dimensions required for mode C (occasions). This is the second mode of the array, excluding the mode clustered over (see margin).

G
margin
alpha Numeric value giving the fuzziness parameter.
eps Small numeric value giving the empirical convergence threshold.
maxit Integer giving the maximum number of iterations allowed.
verbose Integer giving the number of iterations after which the loss values are printed.
nstart Integer giving the number of random starts required.
parallel Logical indicating whether to parallelize over random starts if nstart >1.
mc.cores Argument passed to makeCluster.
minsize Integer giving the minimum size of cluster to uphold when reinitializing empty clusters.

References

Rocci, R., \& Vichi, M. (2005). Three-mode component analysis with crisp or fuzzy partition of units. Psychometrika, 70(4), 715-736.

Examples

```
data("dcars")
set.seed(13)
res <- T3Clusf(X = carray(dcars), Q = 3, R = 2, G = 3, alpha = 1)
```


Index

*Topic hplot

plot.col.kmeans, 21
plot.int.lsbclust, 22
plot.lsbclust, 24
plot.ovl.kmeans, 25
plot.row.kmeans, 26
plot.step.lsbclust, 26
plot.T3Clusf, 27
*Topic package
lsbclust-package, 3
akmeans, 3, 5, 10, 32
arrow, 24
AssignCluster (KMeansW), 14
bicomp, 4, 21
carray, 4
cfsim, 5
cfsim.akmeans, 5
cfsim.lsbclust, 5, 6
cfsim.T3Clusf, 5, 6
cl_agreement, 5-7, 14, 18
cl_class_ids.akmeans
(cl_class_ids.int.lsbclust), 8
cl_class_ids.int.lsbclust, 8
cl_class_ids.lsbclust_sim_part
(cl_class_ids.int.lsbclust), 8
cl_class_ids.T3Clusf
(cl_class_ids.int.lsbclust), 8
ClustMeans, 7
cmat, 9
col.kmeans (orc.lsbclust), 20
ComputeMeans (KMeansW), 14
dcars, 9
fitted, 10, 11
fitted.akmeans, 10
fitted.lsbclust, 11
fitted.T3Clusf, 11
genproc, 12
geom_segment, 24
grid. arrange, 21, 23, 27
indarr, 12
int.lsbclust, 13, 17-19, 22, 29, 32, 33
is.cl_hard_partition.akmeans
(cl_class_ids.int.lsbclust), 8
is.cl_hard_partition.int.lsbclust (cl_class_ids.int.lsbclust), 8
is.cl_hard_partition.lsbclust_sim_part (cl_class_ids.int.lsbclust), 8
is.cl_hard_partition.T3Clusf (cl_class_ids.int.lsbclust), 8
is.cl_partition.akmeans
(cl_class_ids.int.lsbclust), 8
is.cl_partition.int.lsbclust (cl_class_ids.int.lsbclust), 8
is.cl_partition.lsbclust_sim_part (cl_class_ids.int.lsbclust), 8
is.cl_partition.T3Clusf (cl_class_ids.int.lsbclust), 8
kmeans, 3, 18, 20, 33
KMeansW, 14
LossMat, 15
lov, 16
lsbclust, 6, 11, 17, 28, 32
lsbclust-package, 3
makeCluster, $14,32,36$
meanbiplot, 19
meanheatmap, 19
orc.lsbclust, $18,19,20,21,25,26,33$
ovl.kmeans (orc.lsbclust), 20
plot.bicomp, 21
plot.col.kmeans, 21, 25
plot.int.lsbclust, 22, 25
plot.lsbclust, 24
plot.ovl.kmeans, 25, 25
plot.row.kmeans, 25, 26
plot.step.lsbclust, 26
plot.T3Clusf, 27
pretty, 23, 24
print.lsbclust, 28
quantile, 23
rlsbclust, 5, 6, 28
rnorm, 29, 30, 32
rorth, 30
row.kmeans (orc.lsbclust), 20
scale_fill_gradient2, 21
sim_lsbclust, 31
simsv, 29, 30, 32
step.lsbclust, 32
summary.int.lsbclust, 34
summary.lsbclust, 34
supermarkets, 35
svd, 3
T3Clusf, 6, 12, 27, 32, 35
theme, 21, 24-27
unit, 23

