## Package 'Isei'

September 17, 2020

## Title Solving Least Squares or Quadratic Programming Problems under Equality/Inequality Constraints

Version 1.3-0
Date 2020-09-07
Description It contains functions that solve least squares linearregression problems under linear equality/inequalityconstraints. Functions for solving quadratic programmingproblems are also available, which transform such problemsinto least squares ones first. It is developed based on the'Fortran' program of Lawson and Hanson (1974, 1995), which ispublic domain and available at[http://www.netlib.org/lawson-hanson/](http://www.netlib.org/lawson-hanson/).
Encoding UTF-8
License GPL (>= 2)
URL https://www.stat.auckland.ac.nz/~yongwang/
RoxygenNote 7.1.1
NeedsCompilation yes
Author Yong Wang [aut, cre],
Charles L. Lawson [aut],
Richard J. Hanson [aut]
Maintainer Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)
Repository CRAN
Date/Publication 2020-09-17 08:20:03 UTC
$R$ topics documented:
hfti ..... 2
indx ..... 3
lsei ..... 4
matMaxs ..... 6
nnls ..... 7
Index ..... 11

## Description

Solves the least squares problem using Householder forward triangulation with column interchanges.
It is an R interface to the HFTI function that is described in Lawson and Hanson (1974, 1995). Its
Fortran implementation is public domain and is available at $h t t p: / / w w w . n e t l i b . o r g / l a w s o n-h a n s o n /$.

## Usage

hfti(a, b, tol $=1 \mathrm{e}-07$ )

## Arguments

a
b Response vector or matrix.
tol Tolerance for determining the pseudorank.

## Details

Given matrix a and vector b , hfti solves the least squares problem:

$$
\text { minimize }\|a x-b\| .
$$

## Value

b first krank elements contains the solution
krank psuedo-rank
rnorm Euclidean norm of the residual vector.

## Author(s)

Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Lawson and Hanson (1974, 1995). Solving least squares problems. Englewood Cliffs, N.J., PrenticeHall.

## See Also

lsei, nnls.

## Examples

```
a = matrix(rnorm(10*4), nrow=10)
b = a %*% c(0,1,-1,1) + rnorm(10)
hfti(a, b)
```

indx Index-finding in a Sorted Vector

## Description

For each of given values, indx finds the index of the value in a vector sorted in ascending order that the given value is barely greater than or equal to.

## Usage

indx (x, v)

## Arguments

$x \quad$ vector of numeric values, the indices of which are to be found.
$\checkmark \quad$ vector of numeric values sorted in ascending order.

## Details

For each $\mathrm{x}[\mathrm{i}]$, the function returns integer j such that

$$
v_{j} \leq x_{i}<v_{j+1}
$$

where $v_{0}=-\infty$ and $v_{n+1}=\infty$.

## Value

Returns a vector of integers, that are indices of $x$-values in vector $v$.

## Author(s)

Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## Examples

```
indx(0:6, c(1:5,5))
indx(sort(rnorm(5)),-2:2)
```


## Description

These functions can be used for solving least squares or quadratic programming problems under general equality and/or inequality constraints.

## Usage

lsei(a, b, c=NULL, d=NULL, e=NULL, f=NULL, lower=-Inf, upper=Inf)
lsi(a, b, e=NULL, f=NULL, lower=-Inf, upper=Inf)
ldp(e, f)
$\mathrm{qp}(\mathrm{q}, \mathrm{p}, \mathrm{c}=\mathrm{NULL}, \mathrm{d}=\mathrm{NULL}, \mathrm{e}=\mathrm{NULL}, \mathrm{f}=\mathrm{NULL}$, lower=-Inf, upper=Inf, tol=1e-15)

## Arguments

a
b Response vector.
c Matrix of numeric coefficients on the left-hand sides of equality constraints. If it is NULL, c and d are ignored.
d Vector of numeric values on the right-hand sides of equality constraints.
e Matrix of numeric coefficients on the left-hand sides of inequality constraints. If it is NULL, e and $f$ are ignored.
$f \quad$ Vector of numeric values on the right-hand sides of inequality constraints.
lower, upper Bounds on the solutions, as a way to specify such simple inequality constraints.
q
$\mathrm{p} \quad$ Vector of numeric values for the linear term of a quadratic programming problem.
tol Tolerance, for calculating pseudo-rank in qp.

## Details

The lsei function solves a least squares problem under both equality and inequality constraints. It is an implementation of the LSEI algorithm described in Lawson and Hanson $(1974,1995)$.
The lsi function solves a least squares problem under inequality constraints. It is an implementation of the LSI algorithm described in Lawson and Hanson (1974, 1995).
The ldp function solves a least distance programming problem under inequality constraints. It is an R wrapper of the LDP function which is in Fortran, as described in Lawson and Hanson (1974, 1995).

The qp function solves a quadratic programming problem, by transforming the problem into a least squares one under the same equality and inequality constraints, which is then solved by function lsei.
The NNLS and LDP Fortran implementations used internally is downloaded from http://www. netlib.org/lawson-hanson/.

Given matrices $a, c$ and $e$, and vectors $b, d$ and $f$, function lsei solves the least squares problem under both equality and inequality constraints:

$$
\begin{gathered}
\operatorname{minimize}\|a x-b\| \\
\text { subject to } c x=d, e x \geq f
\end{gathered}
$$

Function lsi solves the least squares problem under inequality constraints:

$$
\begin{aligned}
& \operatorname{minimize}\|a x-b\| \\
& \text { subject to } e x \geq f
\end{aligned}
$$

Function ldp solves the least distance programming problem under inequality constraints:

$$
\begin{gathered}
\operatorname{minimize}\|x\| \\
\text { subject to } e x \geq f
\end{gathered}
$$

Function qp solves the quadratic programming problem:

$$
\begin{aligned}
& \operatorname{minimize} \frac{1}{2} x^{T} q x+p^{T} x \\
& \text { subject to } c x=d, e x \geq f
\end{aligned}
$$

## Value

A vector of the solution values

## Author(s)

Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Lawson and Hanson (1974, 1995). Solving least squares problems. Englewood Cliffs, N.J., PrenticeHall.

## See Also

nnls,hfti.

## Examples

```
beta = c(rnorm(2), 1)
beta[beta<0] = 0
beta = beta / sum(beta)
a = matrix(rnorm(18), ncol=3)
b = a %*% beta + rnorm(3,sd=.1)
c = t(rep(1, 3))
d = 1
e = diag(1,3)
f = rep(0,3)
lsei(a, b) # under no constraint
lsei(a, b, c, d) # under eq. constraints
lsei(a, b, e=e, f=f) # under ineq. constraints
lsei(a, b, c, d, e, f) # under eq. and ineq. constraints
lsei(a, b, rep(1,3), 1, lower=0) # same solution
q = crossprod(a)
p = -drop(crossprod(b, a))
qp(q, p, rep(1,3), 1, lower=0) # same solution
## Example from Lawson and Hanson (1974), p. }14
a = cbind(c(.4302,.6246), c(.3516,.3384))
b = c(.6593, .9666)
c = c(.4087, .1593)
d = . }137
lsei(a, b, c, d) # Solution: -1.177499 3.884770
## Example from Lawson and Hanson (1974), p. }17
a = cbind(c(.25,.5,.5,.8),rep(1,4))
b = c(.5,.6,.7,1.2)
e = cbind(c(1,0,-1),c(0,1,-1))
f = c(0,0,-1)
lsi(a, b, e, f) # Solution: 0.6213152 0.3786848
## Example from Lawson and Hanson (1974), p.171:
e = cbind(c(-.207,-.392,.599), c(2.558, -1.351, -1.206))
f = c(-1.3,-.084,.384)
ldp(e, f) # Solution: 0.1268538-0.2554018
```

matMaxs Row or Column Maximum Values of a Matrix

## Description

Finds either row or column maximum values of a matrix.

## Usage

matMaxs(x, dim = 1 )

## Arguments

x
numeric matrix.
dim
$=1$, for row maximum values; $=2$, for column maximum values .

## Details

Matrix x may contain Inf or -Inf, but not NA or NaN.

## Value

Returns a numeric vector with row or column maximum values.
The function is very much the same as using apply ( $x, 1$, max ) or apply ( $x, 2$, max ), but faster.

## Author(s)

Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## Examples

```
x = cbind(c(1:4,Inf), 5:1)
matMaxs(x)
matMaxs(x, 2)
```

```
nnls
```

Least Squares and Quadratic Programming under Nonnegativity Constraints

## Description

These functions are particularly useful for solving least squares or quadratic programming problems when some or all of the solution values are subject to nonnegativity constraint. One may further restrict the NN -restricted coefficients to have a fixed positive sum.

## Usage

nnls(a, b)
pnnls(a, b, k=0, sum=NULL)
pnnqp( $q, p, k=0$, sum=NULL, tol=1e-20)

## Arguments

a
b
k
sum
q
p
tol

Design matrix.
Response vector.
Integer, meaning that the first k coefficients are not NN -restricted.
$=$ NULL, if NN-restricted coefficients are not further restricted to have a fixed sum;
$=$ a positive value, if NN-restricted coefficients are further restricted to have a fixed positive sum.

Positive semidefinite matrix of numeric values for the quadratic term of a quadratic programming problem.
p Vector of numeric values for the linear term of a quadratic programming problem.

Tolerance used for calculating pseudo-rank of $q$.

## Details

Function nnls solves the least squares problem under nonnegativity (NN) constraints. It is an R interface to the NNLS function that is described in Lawson and Hanson (1974, 1995). Its Fortran implementation is public domain and available at http://www.netlib.org/lawson-hanson/ (with slight modifications by Yong Wang for compatibility with the lastest Fortran compiler.)

Given matrix $a$ and vector $b, n n l s$ solves the nonnegativity least squares problem:

$$
\begin{gathered}
\operatorname{minimize}\|a x-b\| \\
\text { subject to } x \geq 0
\end{gathered}
$$

Function pnnls also solves the above nonnegativity least squares problem when $\mathrm{k}=0$, but it may also leave the first $k$ coefficients unrestricted. The output value of $k$ can be smaller than the input one, if a has linearly dependent columns. If sum is a positive value, pnnls solves the problem by further restricting that the NN -restricted coefficients must sum to the given value.

Function pnnqp solves the quadratic programming problem

$$
\operatorname{minimize} \frac{1}{2} x^{T} q x+p^{T} x
$$

when only some or all coefficients are restricted by nonnegativity. The quadratic programming problem is solved by transforming the problem into a least squares one under the same constraints, which is then solved by function pnnls. Arguments $k$ and sum have the same meanings as for pnnls.

Functions nnls, pnnls and pnnqp are able to return any zero-valued solution as 0 exactly. This differs from functions lsei and qp, which may produce very small values for exactly 0 s , thanks to numerical errors.

## Value

X
$r$
b
index Indices of the columns of $r$; those unrestricted and in the positive set are first given, and then those in the zero set.
rnorm Euclidean norm of the residual vector.
mode
$k \quad$ Number of the first few coefficients that are truly not NN-restricted.

## Author(s)

Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Lawson and Hanson (1974, 1995). Solving Least Squares Problems. Englewood Cliffs, N.J., Prentice-Hall.
Dax (1990). The smallest point of a polytope. Journal of Optimization Theory and Applications, 64, pp. 429-432.
Wang (2010). Fisher scoring: An interpolation family and its Monte Carlo implementations. Computational Statistics and Data Analysis, 54, pp. 1744-1755.

## See Also

lsei, hfti.

## Examples

```
a = matrix(rnorm(40), nrow=10)
b = drop(a %*% c(0,1,-1,1)) + rnorm(10)
nnls(a, b)$x # constraint x >= 0
pnnls(a, b, k=0)$x # same as nnls(a, b)
pnnls(a, b, k=2)$x # first two coeffs are not NN-constrained
pnnls(a, b, k=2, sum=1)$x # NN-constrained coeffs must sum to 1
pnnls(a, b, k=2, sum=2)$x # NN-constrained coeffs must sum to 2
q = crossprod(a)
p = -drop(crossprod(b, a))
pnnqp(q, p, k=2, sum=2)$x # same solution
pnnls(a, b, sum=1)$x # zeros found exactly
```

```
pnnqp(q, p, sum=1)$x # zeros found exactly
```

lsei(a, b, rep(1,4), 1, lower=0) \# zeros not so exact

## Index

```
* algebra
        hfti,2
        indx, 3
        lsei,4
        matMaxs,6
        nnls,7
* array
        hfti, 2
        indx, }
        lsei,4
        matMaxs,6
        nnls, }
hfti, 2, 5, }
indx, 3
ldp(lsei),4
lsei, 2, 4,9
lsi (lsei), 4
matMaxs,6
nnls, 2, 5, 7
pnnls(nnls), 7
pnnqp (nnls), 7
qp (lsei), 4
```

