
Package ‘maboost’
February 20, 2015

Version 1.0-0

Date 2014-11-01

Title Binary and Multiclass Boosting Algorithms

Author Tofigh Naghibi

Depends R(>= 2.10),rpart,C50

Description
Performs binary and multiclass boosting in maximum-margin, sparse, smooth and normal settings
as described in ``A Boosting Framework on Grounds of Online Learn-
ing'' by T. Naghibi and B. Pfister, (2014).
For further information regarding the algorithms, please refer to http://arxiv.org/abs/1409.7202

Maintainer Tofigh Naghibi <tofigh@gmail.com>

License GPL (>= 2)

Repository CRAN

Date/Publication 2014-11-25 17:03:41

Collate 'maboost-package.r' 'maboost.R' 'maboost.default.R'
'maboost.formula.R' 'maboost.machine.bin.R'
'maboost.machine.multi.R' 'predict.maboost.R' 'print.maboost.R'
'projsplx.R' 'projsplx_k.R' 'summary.maboost.R'
'update.maboost.R' 'varplot.maboost.R'

NeedsCompilation no

R topics documented:
maboost . 2
predict.maboost . 5
print.maboost . 7
summary.maboost . 7
update.maboost . 8
varplot.maboost . 9

Index 10

1

2 maboost

maboost Binary and Multiclass Boosting Algorithms

Description

‘maboost’ is used to fit a variety of stochastic boosting models for binary and multiclass responses
as described in A Boosting Framework on Grounds of Online Learning by T. Naghibi and B. Pfister,
(2014).

Usage

maboost(x,...)
Default S3 method:
maboost(x, y,test.x=NULL,test.y=NULL,breg=c("entrop","l2")
,type=c("normal","maxmargin","smooth","sparse"),C50tree=FALSE,iter=100, nu=1
,bag.frac=0.5,random.feature=TRUE,random.cost=TRUE,smoothfactor=1
,sparsefactor=FALSE,verbose=FALSE,...,na.action=na.rpart)

S3 method for class 'formula'
maboost(formula, data, ..., subset, na.action=na.rpart)

Arguments

x matrix of descriptors.

y vector of responses (class labels).

formula a symbolic description of the model to be fit.

data dataframe containing variables and a column corresponding to class labels.

test.x testing matrix of discriptors (optional)

test.y vector of testing responses (optional)

breg breg="l2" (default) selects quadratic Bregman divergence and breg="entrop"
uses KL-divergence which results in a adaboost-like algorithm (with a different
choice of eta).

type determine the type of the algorithm to be used. Default is running the algorithm
in the normal mode. type="maxmargin": it guarantees that the margin of the
final hypothesis converges to max-margin (at each round t, it divides eta by
t^.5). type="sparse": It uses SparseBoost and only works with breg="l2".
It generates sparse weight vectors by projecting the weight vectors onto R+.
It can be used for multiclass but it is kind of meaningless since the multiclass
setting uses a weight matrix instead of weight vector and increasing the sparsity
of this matrix does not result in the sparsity of the weight vector (which is the
sum over col. of the weight matrix). type="smooth": flag to start smooth
boosting. Only works for breg="l2" and for binary classification. Note that for
type="smooth", smoothfactor parameter should also be set, accordingly

maboost 3

C50tree flag to use C5.0 as the weak classifier. It is only recommended for multiclass
setting where rpart maybe too weak to satisfy boostability condition. If it is used,
don’t forget to set the CF and minCases parameters in C50Control properly

iter number of boosting iterations to perform. Default = 100.

nu shrinkage parameter for boosting, default taken as 1. It is multiplied in eta and
controls its largeness. Note that in the case of using sparseboost, nu can also be
increased to enhance sparsity, at the expense of increasing the risk of divergence

bag.frac sampling fraction for samples taken out-of-bag. This allows one to use random
permutation which improves performance.

random.feature flag to grow a random forest type trees. If TRUE, at each round a small set of
features (num_feat^.5) are selected to grow a tree. It generally speeds up the
convergence specially for large data sets and improves the performance.

random.cost flag to assign random costs to selected features. By assigning random costs
(look at cost in rpart.control) to the selected features (if random.forest=TRUE)
it tries to decorrelates the trees and usually in combination with random.feature
it improves the generalization error.

smoothfactor an integer between 1 to N (number of examples in data) and have to be set if
smooth is TRUE. If smoothfactor=K then examples weights are <=1/K and the
final error is <K/N

sparsefactor When it is true, an explicit l1 norm regularization term is used in the projection
step of the algorithm (see [1]) to enhance the sparsity. Default is FALSE to guar-
antee the convergence of the Sparseboost algorithm. Note that, this parameter
can also be set to a numeric value which is directly multiplied in the l1-norm
regularization factor (see def. of alpha in [1]).

verbose flag to output more details about internal parameters, error, num_zero, sum of
weights, eta (classifeir coefficient) and max of weights, at each round of boost-
ing. Default is FALSE

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function that indicates how to process ‘NA’ values. Default=na.rpart for rpart
and na.pass for C5.0.

... arguments passed to rpart.control and C50Control. For stumps, use maxdepth=1,cp=-1,minsplit=0,xval=0.
maxdepth controls the depth of trees, and cp controls the complexity of trees.
For C5.0 use CF,minCases control the complexity and size of the tree. The
smaller the CF is, the less complex the tree and the larger the minCases, the
smaller the size of the C5.0 tree

Details

This function directly follows the algorithms listed in “Boosting on Grounds of Online Learning”.

When using usage ‘maboost(y~.)’: data must be in a data frame. Response can have factor or nu-
meric values (preferably factor form). missing values can be present in the descriptor data, whenever
na.action is set to any option other than na.pass.

4 maboost

After the model is fit, ‘maboost’ prints a summary of the function call, the method used for boosting,
the number of iterations, the final confusion matrix (observed classification vs predicted classifica-
tion; labels for classes are same as in response), the error for the training set, and testing, training ,
and kappa estimates of the appropriate number of iterations.

A summary of this information can also be obtained with the command ‘print(x)’.

Corresponding functions (Use help with summary.maboost, predict.maboost, . . . varplot.maboost
for additional information on these commands):

summary : function to print a summary of the original function call, method used for boosting,
number of iterations, final confusion matrix, accuracy, and kappa statistic (a measure of agreement
between the observed classification and predicted classification). ‘summary’ can be used for train-
ing, testing, or validation data.

predict : function to predict the response for any data set (train, test, or validation)

varplot.maboost : plot of variables ordered by the variable importance measure (based on improve-
ment).

update : add more trees to the maboost object.

Value

model The following items are the different components created by the algorithms:
trees: ensemble of rpart or C5.0 trees used to fit the model alpha: the weights of
the trees used in the final aggregate model F : F[[1]] corresponds to the training
sum, F[[2]]], . . . corresponds to testing sums. errs : matrix of errs, training,
kappa, testing 1, kappa 1, . . . lw : last weights calculated, used by update routine
num_zero: a vector of length iter containing the number of zeros in the weight
vector at each round.

fit The predicted classification for each observation in the original level of the re-
sponse.

call The function call.

nu shrinkage parameter

breg The type of maboost performed: ‘"l2"’, ‘"entrop"’.

confusion The confusion matrix (True value vs. Predicted value) for the training data.

iter The number of boosting iterations that were performed.

actual The original response vector.

Warnings

(a) Choose type="normal" or "maxmargin" for multiclass classification. SmoothBoost do not work
in multiclass setting and SparseBoost does not make sense to be used for multiclass classification
(where we have to deal with a weight matrix rather than a weight vector).

(b) cost variable in rpart.control is the only variable in rpart.control that CANNOT be set through
maboost. It is reserved for random.cost.

predict.maboost 5

Author(s)

Tofigh Naghibi, ETH Zurich

Special thanks to Dr. Mark Culp and his colleagues who developed the ’ada’ package. A big part
of this package has been built upon their code. In particular, summary, print and varplot.maboost
functions are imported from ’ada’ package with almost no changes. For further info about ’ada’
which implements different variations of Anyboost, look at [2]

References

[1] Naghibi, T., Pfister, B. (2014). A Boosting Framework on Grounds of Online Learning. NIPS.

[2] Culp, M., Johnson, K., Michailidis, G. (2006). maboost: an R Package for Stochastic Boosting
Journal of Statistical Software, 16.

See Also

print.maboost,summary.maboost,predict.maboost ,update.maboost,varplot.maboost

Examples

fit maboost model
data(iris)
##drop setosa
iris[iris$Species!="setosa",]->iris
##set up testing and training data (60% for training)
n<-dim(iris)[1]
trind<-sample(1:n,floor(.6*n),FALSE)
teind<-setdiff(1:n,trind)
iris[,5]<- as.factor((levels(iris[,5])[2:3])[as.numeric(iris[,5])-1])
##fit a tree with maxdepth=6 (a variable pass to rpart.control).
gdis<-maboost(Species~.,data=iris[trind,],iter=50,nu=2

,breg="l2", type="sparse",bag.frac=1,random.feature=FALSE
,random.cost=FALSE, C50tree=FALSE, maxdepth=6,verbose=TRUE)

##to see the average zeros in the weighting vectors over the 40 rounds of boosting
print(mean(gdis$model$num_zero))
##prediction
pred.gdis= predict(gdis,iris,type="class");
##variable selection
varplot.maboost(gdis)

predict.maboost Predict a data set using maboost

Description

predict classifies a new set of observations from a previously built classifier. This function will
provide either a vector of new classes, class probability estimates, or both.

6 predict.maboost

Usage

S3 method for class 'maboost'
predict(object, newdata = NULL, type = c("class", "prob", "both","F"),n.iter=NULL,...)

Arguments

object object generated by maboost.

newdata new data set to predict. This data set must be of type ‘data.frame’. Default
= NULL. When default = NULL, predict produces predictions for the original
training set.

type choice for preditions. type=“class” returns the default class labels. type=“prob”
returns the probability class estimates. type=“both” returns both the default class
labels and probability class estimates. type=“F” returns the ensamble average.
This is mainly usefull for the multiclass case.

n.iter number of iterations to consider for the prediction. By default this is iter from
the maboost call (n.iter< iter)

... other arguments not used by this function.

Details

This function was modeled after predict.rpart and predict.rpart and predict.C5.0.

Value

fit a vector of fitted responses. Fit will be returned if type=“class”.

prob a matrix of class probability estimates. The first column corresponds to the
first label in the ‘levels’ of the response. The second column corresponds to
the second label in the ‘levels’ of the response. Probs are returned whenever
type=“prob”.

both returns both the vector of fitted responses and class probability estimates. The
first element returns the fitted responses and will be labeled as ‘class’. The
second element returns the class probability estimates and will be labeled as
‘prob’.

F this can be used in the multiclass case.

Note

This function is invoked by the summary S3 generics invoked with an maboost object. If an error
occurs in one of the above commands then try using this command directly to track possible errors.
Also, the newdata data set must be of type ‘data.frame’ when invoking summary.

See Also

summary.maboost,print.maboost, update.maboost

print.maboost 7

print.maboost Model Information for Ada

Description

print lists the model information and final confusion matrix for submitted data.

Usage

S3 method for class 'maboost'
print(x, ...)

Arguments

x object generated by the function maboost.

... other arguments not used by this function.

Details

print produces a summary of the original function call, method used for boosting, number of
iterations, final confusion matrix, error from data used to build the model, and estimates of M.

Note: any object of class maboost invokes print, when printed to the screen.

Value

No value returned.

See Also

summary.maboost,predict.maboost,

summary.maboost Summary of model fit for arbitrary data (test, validation, or training)

Description

summary lists the model information for fitted model and final confusion matrix.

Usage

S3 method for class 'maboost'
summary(object, n.iter=NULL, ...)

8 update.maboost

Arguments

object object generated by ’maboost’.
n.iter specific iteration to obtain the training and testing information at.
... other arguments not used by this function.

Details

summary produces a summary of the original function call, method used for boosting for a specific
iteration, accuracy, and kappa statistic (a measure of agreement between the observed classification
and predicted classification) for the training data.

In addition, if any other data set (i.e. test or validation) has been incorporated to the maboost object,
summary produces analogous information.

See Also

maboost,predict.maboost

update.maboost Add more trees to an maboost object

Description

maboost.update updates the maboost object to have additional trees given a new number of itera-
tions.

Usage

S3 method for class 'maboost'
update(object, x, y, test.x, test.y = NULL, n.iter, ...)

Arguments

object object generated by the function maboost.
x x training data
y training response
test.x x testing data (optional)
test.y the true labeling for this testing data (optional)
n.iter new number of iterations, must be provided and n.iter>iter
... other arguments not used by this function.

Value

updated maboost object.

See Also

maboost,summary.maboost,predict.maboost,

varplot.maboost 9

varplot.maboost Variable selection with maboost

Description

varplot.maboost ranks the variable according to their importance.

Usage

varplot.maboost(x,plot.it=TRUE, type=c("none","scores"),max.var.show=30,...)

Arguments

x object generated by the function maboost.

plot.it flag to plot a figure

type default="none", if scores is selected the scores of variables are returned.

max.var.show default="30", set it to larger value if you have more than 30 variables.

... other arguments not used by this function.

Details

varplot.maboost This command provides a sense of variable importance. The more frequently
a variable is selected for boosting, the more likely the variable contains useful information for
classification. for rpart, the standard criteria explained in (Hastie et al,2001, pg332) is used while
for C5.0. the function C5imp is used to calculate the variables importance for each C5.0 model and
these scores are averaged over all trees.

Value

scores are returned.

See Also

summary.maboost,predict.maboost,

Index

∗Topic classes
maboost, 2

∗Topic methods
maboost, 2
predict.maboost, 5
print.maboost, 7
summary.maboost, 7
update.maboost, 8
varplot.maboost, 9

∗Topic models
maboost, 2

maboost, 2, 8

predict.maboost, 5, 5, 7–9
print.maboost, 5, 6, 7

summary.maboost, 5–7, 7, 8, 9

update.maboost, 5, 6, 8

varplot.maboost, 5, 9

10

	maboost
	predict.maboost
	print.maboost
	summary.maboost
	update.maboost
	varplot.maboost
	Index

