
Package ‘memo’
January 4, 2018

Type Package

Title In-Memory Caching for Repeated Computations

Version 1.0.1

Date 2018-1-03

Author Peter Meilstrup <peter.meilstrup@gmail.com>

Maintainer Peter Meilstrup <peter.meilstrup@gmail.com>

Description A simple in-memory, LRU cache that can be wrapped
around any function to memoize it. The cache can be keyed on a hash of the
input data (using 'digest') or on pointer equivalence.

License MIT + file LICENSE

Imports digest

Suggests testthat (>= 0.2), knitr, rmarkdown

Collate 'lru.R' 'cache.R' 'getPointer.R' 'memo-description.r'

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-01-04 04:23:01 UTC

R topics documented:

cache_stats . 2
lru_cache . 2
memo . 3
strategies . 3

Index 5

1

2 lru_cache

cache_stats Report cache statistics.

Description

Report cache statistics.

Usage

cache_stats(fn)

Arguments

fn A memoized function that was created by memo.

Value

A list with labels "size", "used", "hits", "misses", "expired" counting the number of slots in the
cache, the number of slots currently used, the number of times a previous result was recalled, a new
result was recorded, and a result was dropped.

lru_cache Construct a cache with least-recently-used policy.

Description

Construct a cache with least-recently-used policy.

Usage

lru_cache(size = 10000)

Arguments

size The maximum number of results to keep.

Value

A function f(key, value) which takes a string in the first parameter and a lazily evaluated value in
the second. ‘f‘ will use the string key to retrieve a value from the cache, or return the matching
item from the cache, or force the second argument and return that, remembering the result on future
calls.

When the number of entries in the cache exceeds size, the least recently accessed entries are
removed.

memo 3

memo Memoize a function.

Description

Memoize a function.

This package implements a cache that can be used to avoid repeated computations of functions. The
cache lookup is based on object identity (i.e. pointer equivalence) which is suited for functions like
accessors or other functions that are called repeatedly on the same object. Description of memo
goes here.

Usage

memo(fn, cache = lru_cache(5000), key = hybrid_key, ...)

Arguments

fn A function to wrap. It should be a pure function (i.e. it should not cause side
effects, and should not depend on any variables that may change.) It should
not be a nonstandard-evaluating function. All arguments will be forced by the
wrapper.

cache A cache to use. Defaults to a new instance of lru_cache. Caches may be shared
between memoized functions.

key A hashing strategy. "digest_key". Other values include "pointer_key" and
"hybrid_key".

... Further arguments passed on to key.

Author(s)

Peter Meilstrup

strategies Strategies for caching items.

Description

The function memo accepts an argument ‘key‘ which specifies the keying strategy.

digest_key computes a key by hashing the contents of the object using the digest package. No
attempt is made to avoid MD5 hash collisions.

The pointer_key strategy uses object identity, that is, pointer equivalence. This can be faster
because hte entire object need not be hashed. However, this strategy is only useful when the function
is called repeatedly on the same object rather than merely identical objects. Also be aware that the
cache will hold on to the values of the arguments, to prevent them being garbage collected.

The hybrid_key strategy first tries to key on object identity and then falls back on computing the
md5 digest. This may use two cache slots per result.

4 strategies

Usage

digest_key(fn, cache, digest = digest::digest)

pointer_key(fn, cache)

hybrid_key(fn, cache, digest = digest::digest)

Arguments

fn A function whose results should be cached.

cache A cache object.

digest A digest function to use.

Value

A memoized function.

Index

cache_stats, 2

digest_key, 3
digest_key (strategies), 3

hybrid_key (strategies), 3

lru_cache, 2, 3

memo, 2, 3, 3
memo-package (memo), 3

pointer_key (strategies), 3

strategies, 3

5

	cache_stats
	lru_cache
	memo
	strategies
	Index

