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Abstract

1 The metaSEM package provides functions to conduct univariate, multivariate, and three-level
meta-analyses using a structural equation modeling (SEM) approach via the OpenMx package in
the R statistical platform. It also implements the two-stage SEM approach to conducting fixed-
and random-effects meta-analytic SEM on correlation or covariance matrices. This paper briefly
outlines the theories and their implementations. It provides a summary of how meta-analyses can
be formulated as structural equation models. The paper closes with a conclusion on several relevant
topics of this SEM-based meta-analysis. Several examples are used to illustrate the procedures in
the supplementary material.

Keywords: meta-analysis, structural equation modeling, meta-analytic structural equation mod-
eling, metaSEM, R

1 Introduction

Meta-analysis is a popular technique for synthesizing research findings in the social, behavioral, educa-
tional, and medical sciences (e.g., Borenstein et al., 2009; Hedges and Olkin, 1985; Schmidt and Hunter,
2015; Whitehead, 2002). There are several standalone programs for conducting meta-analyses, e.g.,
Comprehensive Meta-Analysis (Borenstein et al., 2005). There are also macros or packages to fit some
meta-analytic models in standard statistical packages such as SPSS (Lipsey and Wilson, 2000), and SAS

(Arthur et al., 2001). R (R Development Core Team, 2017) is a popular open source statistical platform
for computations and data analysis. There are also several R packages available for meta-analysis (e.g.,
Schwarzer, 2014; Lumley, 2012; Viechtbauer, 2010).

The metaSEM package (Cheung, 2015b) is another R package for conducting meta-analyses. It for-
mulates univariate, multivariate, and three-level meta-analytic models as structural equation models
(Cheung, 2008, 2013b, 2014b, 2015a) via the OpenMx package (Boker et al., 2011). It also implements
the two-stage structural equation modeling (TSSEM) approach (Cheung and Chan, 2005b, 2009; Che-
ung, 2014a) to fit fixed- and random-effects meta-analytic structural equation modeling (MASEM) on
correlation or covariance matrices. This paper outlines the meta-analytic models implemented in the
metaSEM package (Cheung, 2015a). There are two main objectives of this paper. First, it provides a
succinct summary of how various meta-analytic models can be formulated as structural equation models.
Readers may refer to the references for more details and advantages of formulating meta-analytic models
as structural equation models. Second, it illustrates how to conduct these analyses using the metaSEM

package. Complete R code, output, and remarks are included in the supplementary material. Users may
refer to https://github.com/mikewlcheung/metasem on how to install the metaSEM package.

∗E-mail: mikewlcheung@nus.edu.sg; Website: https://github.com/mikewlcheung/metasem
1This vignette is a modified version of Cheung (2015b), published in Frontiers in Psychology. Please

cite it if you use the metaSEM package in your publications.
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2 Structural equation modeling based meta-analysis

Structural equation modeling is a multivariate technique to fit and test hypothesized models. Let y be
a p × 1 vector of a sample of continuous data from a multivariate normal distribution where p is the
number of observed variables. It is hypothesized that the model for the first and the second moments,
the means and the covariance matrix, are functions of θ, where θ is a vector of parameters that can be
regression coefficients, error variances, factor loadings, and factor variances. The model is:

µ = µ(θ) and

Σ = Σ(θ),
(1)

where µ and Σ are the population mean vector and covariance matrix, respectively. Maximum likelihood
(ML) estimation method is the most common estimation method in SEM. The -2*log-likelihood (−2LL)
for the ith case is,

− 2LLi(θ; yi)ML = pi log(2π) + log |Σi(θ)|+ (yi − µi(θ))
>Σi(θ)

−1(yi − µi(θ)), (2)

where pi is the number of filtered variables with complete data in the ith case, µi(θ) and Σi(θ) are
the model implied mean vector and the model implied covariance matrix for the ith case, respectively.
Since there is a subscript i in Equation 2, the model implied mean vector and covariance matrix may
vary across cases. Thus, it automatically handles incomplete data by selecting the complete data in the
log-likelihood function with the full information maximum likelihood (ML or FIML) estimation method
(Enders, 2010).

To obtain the parameter estimates, we may take the sum of the −2LLi over all cases and minimize
it. Iterative methods are used to obtain the parameter estimates. When it is convergent, the asymptotic
sampling covariance matrix of the parameter estimates may be obtained from the inverse of the Hessian
matrix. The standard errors (SE s) of the parameter estimates are calculated by taking the square root
of the diagonal elements of the asymptotic sampling covariance matrix. The parameter estimates divided
by their SE s follow a z distribution under the null hypothesis. A likelihood ratio (LR) statistic may also
be used to compare nested models. The model fit and the significance of individual parameters can be
tested (e.g., Kline, 2011).

2.1 Univariate fixed-effects model

The following subsections briefly introduce how various meta-analytic models can be formulated as
structural equation models. Let us begin with the meta-analytic model with only one effect size yi in
the ith study (Cheung, 2008). yi can be any effect size, such as the odds ratio, raw mean difference,
standardized mean difference, correlation coefficient, or its Fisher’s z transformed score. When the
sample sizes in the primary studies are reasonably large, yi can be assumed to be normally distributed
with a variance of vi (e.g., see Borenstein et al., 2009, for the formulas of common effect sizes). The
univariate fixed-effects model for the ith study is:

yi = βF + ei, (3)

where βF is the common effect under the fixed-effects model, and Var(ei) = vi is the known sampling
variance. To conduct a univariate fixed-effects meta-analysis in SEM, we may fit the following model
implied moments:

µi(θ) = βF and

Σi(θ) = vi.
(4)

Since vi is known, the only parameter in the model is βF. Figure 1 shows the graphical model of the
fixed-effects meta-analysis.

2.2 Univariate random-effects model

Since the primary studies are conducted by different researchers in different settings, these studies are
unlikely not direct replicates of each other. It is reasonable to expect that the population effect sizes
may not be the same. A random-effects model allows studies to have their own study-specific effect. The
model for the ith study is:

yi = βR + ui + ei, (5)
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Figure 1.Univariate fixed-effects meta-analysis
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Figure 2.Univariate random-effects meta-analysis

where βR is the average population effect under the random-effects model, and Var(ui) = τ2 is the
heterogeneity variance that has to be estimated. To fit the model in SEM, we may consider the following
model implied moments:

µi(θ) = βR and

Σi(θ) = τ2 + vi.
(6)

In the literature of meta-analysis, vi and τ2 + vi are known as the conditional and the unconditional
variances, respectively. Under this model, we have to estimate both βR and τ2. Figure 2 shows the
graphical model of the random-effects meta-analysis. Various estimation methods, such as methods
of moments, ML estimation, and restricted maximum likelihood (REML) estimation may be used to
estimate τ2 (e.g., Borenstein et al., 2009). The default estimation method in the SEM-based meta-
analysis is ML estimation, while the REML estimation method may also be used to minimize the slight
negative bias on the estimated variance component using the ML estimation method (Cheung, 2013a).

Quantifying heterogeneity To test the homogeneity of the population effect sizes, we may compute
the Q statistic (Cochran, 1954),

Q =

k∑
i=1

wi(yi − β̂F)2, (7)

where wi = 1/vi. Under the null hypothesis of the homogeneity of effect sizes, the Q statistic has an
approximate chi-square distribution with (k − 1) degrees of freedom (dfs). The Q statistic may be
significant simply because of a large number of studies. Conversely, a large Q statistic may be non-
significant because of the small number of studies. Therefore, the significance of the Q statistic should
not be used to determine whether a fixed- or a random-effects model is used in the analysis.

One popular index quantifying the degree of heterogeneity of effect sizes is the I2 (Higgins and
Thompson, 2002). The general formula is

I2 =
τ̂2

τ̂2 + ṽ
, (8)

where ṽ is a typical within-study sampling variance. I2 can be interpreted as the proportion of the total
variation of the effect size that is due to the between-study heterogeneity. Higgins and Thompson (2002)
defined the typical within-study sampling variance using the Q statistic:

ṽQ =
(k − 1)

∑k
i=1 1/vi

(
∑k

i=1 1/vi)2 −
∑k

i=1 1/v2i
. (9)

One advantage of using ṽQ as the typical within-study sampling variance is that I2 can be simplified to
I2Q = Q− (k − 1)/Q.
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Two more definitions of ṽ have also been proposed in the literature. Takkouche et al. (1999) suggested
that the harmonic mean of vi can be used as the typical within-study sampling variance,

ṽHM =
k∑k

i=1 1/vi
. (10)

Xiong et al. (2010) also discussed an estimator of I2 that is based on the arithmetic mean:

ṽAM =

k∑
i=1

vi/k. (11)

All of the above definitions are available in the metaSEM package. Users may choose among them by
specifying the argument I2="I2q" based on the Q statistic (the default), I2="I2hm" based on the
harmonic mean, and I2="I2am" based on the arithmetic mean.

2.3 Univariate mixed-effects model

The mixed-effects meta-analysis extends the random-effects meta-analysis by using study characteristics
as predictors. Assuming that xi is an (m + 1) × 1 vector of predictors including a constant of 1 where
m is the number predictors in the ith study, the mixed-effects model is:

yi = x>i β + ui + ei, (12)

where β is a a (m + 1) × 1 vector of regression coefficients including the intercept. To fit the model in
SEM, we may use the following model implied conditional mean and variance:

µi(θ|xi) = x>i β and

Σi(θ|xi) = τ2 + vi.
(13)

Figure 3 shows the graphical model of the mixed-effects meta-analysis with one predictor. A phantom
variable P is introduced to specify the predictor xi. Since xi is specified via definition variables (see
Cheung, 2010), xi is treated as a design matrix rather than as variables.

xi
1

0

2+ vi

0

P

1

yi

Figure 3.Univariate mixed-effects meta-analysis with one predictor

Mathematically, it is clear that the random-effects meta-analysis is a special case of the mixed-effects
meta-analysis by fixing x = 1 as a constant of ones, while the fixed-effects meta-analysis is a special
case of the random-effects meta-analysis by fixing τ2 = 0. It should be noted that the assumptions and
interpretations on the fixed- and random-effects models are different.

Explained variance Besides testing whether the predictors are significant, researchers may want to
quantify the degree of prediction. The percentage of variance explained by the inclusion of predictors,

R2 =
τ̂20 − τ̂21
τ̂20

, (14)

can be calculated by comparing the τ̂20 without a predictor and the τ̂21 with predictors (Raudenbush,
2009). When the calculated R2 is negative, it is usually truncated to zero.
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2.4 Multivariate meta-analysis

When the research questions become more complicated, a single effect size may not be sufficient to
summarize the effect in the primary studies. Multiple effect sizes are required to quantify the effect of
the studies. Let us assume that there are a total of p effect sizes with m predictors in k studies. Since it
is likely that different numbers of effect sizes are reported in the primary studies, we assume that there
are pi effect sizes in the ith study. The model for the multivariate mixed-effects meta-analysis in the ith
study is:

yi = Bixi + Ziui + ei, (15)

where yi is a pi × 1 vector of effect sizes, Bi is a pi × (m+1) matrix of regression coefficients including
the intercepts, xi is a (m+ 1)× 1 matrix of predictors including 1 in the first column, Zi is a pi× p filter
matrix selecting the effect sizes that are present, ui is a p× 1 study-specific random effects, and ei is a
pi × 1 sampling error.

We assume that Var(ei) = Vi is known in the ith study and that Var(ui) = T2 is the variance
component of the between-study heterogeneity that has to be estimated. The model handles missing
effect sizes by selecting the complete effect sizes only in the above equation. Since xi is a design matrix,
missing value is not allowed in xi. When there are missing values in xi, the whole study will be deleted
before the analysis is conducted.

The −2LL of the above model is:

−2LLi(B,T
2; yi)ML =pi ∗ log(2π) + log |ZiT

2Z>i + Vi|+
(yi −Bixi)

>(ZiT
2Z>i + Vi)

−1(yi −Bixi).
(16)

To fit the multivariate mixed-effects meta-analysis in SEM, we use the following model implied conditional
mean vector and covariance matrix (Cheung, 2013b):

µi(θ|xi) = Bixi and

Σi(θ|xi) = ZiT
2Z>i + Vi.

(17)

Figure 4 shows the graphical model of the multivariate mixed-effects meta-analysis with two effect sizes
per study and one predictor. A phantom variable P is introduced to specify the predictor xi.

xi

0

1,1

1,0

2,0

2,1

τ22,1+ v2,1,i

τ22,2+ v2,2,i

τ21,1+ v1,1,i1

y2,i

y1,i

P

Figure 4.Multivariate mixed-effects meta-analysis with two effect sizes per study and one predictor

The multivariate random-effects meta-analysis is a special case of the multivariate mixed-effects meta-
analysis by using Xi = 1 as the design matrix; the random-effects meta-analysis is a special case of the
fixed-effects meta-analysis by fixing T2 = 0. Moreover, the univariate meta-analysis is also a special case
of the multivariate meta-analysis with only one effect size. The I2 and R2 in a univariate meta-analysis
may also be calculated for each effect size in a multivariate meta-analysis.
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Figure 5.Three-level random-effects meta-analysis with two effect sizes per cluster

2.5 Three-level meta-analysis

Effect sizes are assumed to be independent in most meta-analytic models. However, the effect sizes
can be non-independent for various reasons. For example, the effect sizes reported in the same study
may be more similar than the effect sizes reported in other studies. When the degree of dependence is
known, the multivariate meta-analysis introduced in Section 2.4 can be used to model the dependence.
When the degree of dependence is not known, a three-level meta-analytic model may be used to address
the dependence among the effect sizes (e.g., Cheung, 2014b; Konstantopoulos, 2011; Van den Noortgate
et al., 2013). The model is:

yij = x>ijβ + u(2)ij + u(3)j + eij , (18)

where yij is the effect size for the ith effect size in the jth cluster, β is an (m+ 1)×1 vector of regression
coefficients including the intercept, xij is the (m+ 1)× 1 predictors including 1 in the first element for
the ith study at the jth cluster, u(2)ij and u(3)j are the random effects at level 2 and level 3, respectively,
and Var(eij) = vij is the known sampling variance of the effect size.

To fit the three-level meta-analytic model in SEM, we may use the following model implied moments
for the conditional mean and variance:

µij(θ|xij) = x>ijβ and

Σij(θ|xij) = τ2(2) + τ2(3) + vij ,
(19)

where Var(u(2)ij) = τ2(2) and Var(u(3)j) = τ2(3) are the heterogeneity at level 2 and level 3, respectively

(Cheung, 2014b). Figure 5 shows a three-level meta-analysis with two effect sizes per cluster.

Quantifying heterogeneity and explained variance Similar to the I2 defined in a random-effects
meta-analysis, we may define the degree of heterogeneity for a three-level meta-analysis in level 2 and
level 3 as,

I2(2) =
τ̂2(2)

τ̂2(2) + τ̂2(3) + ṽ
and

I2(3) =
τ̂2(3)

τ̂2(2) + τ̂2(3) + ṽ
,

(20)

where ṽ is the typical within-study sampling variance defined in a random-effects meta-analysis. I2(2) and

I2(3) can be interpreted as the proportion of the total variation of the effect size that is due to the level
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2 and level 3, respectively. Since ṽ is sample specific, one limitation of I2(2) and I2(3) is that they are not

estimating any population quantities. Cheung (2014b) introduced two intra-class correlations (ICC s),

ICC(2) =
τ̂2(2)

τ̂2(2) + τ̂2(3)
and

ICC(3) =
τ̂2(3)

τ̂2(2) + τ̂2(3)
.

(21)

Both ICC(2) and ICC(3) are estimating their population counterparts τ2(2)/(τ
2
(2) + τ2(3)) and τ2(3)/(τ

2
(2) +

τ2(3)), respectively. ICC(2) and ICC(3) can be interpreted as the percentage of the population hetero-
geneity due to level 2 and level 3, respectively.

When there are predictors, we may calculate the R2 for level 2 and level 3 in a similar manner to
that defined before,

R2
(2) =

τ̂2(2)0 − τ̂
2
(2)1

τ̂2(2)0
and

R2
(3) =

τ̂2(3)0 − τ̂
2
(3)1

τ̂2(3)0
.

(22)

When the estimates are negative, they are usually truncated to zero.

3 Meta-analytic structural equation modeling

Structural equation modeling is a popular modeling technique in the social and behavioral sciences.
When there are more and more studies addressing similar research questions using similar variables,
there is a need to compare and synthesize these findings. MASEM combines ideas of meta-analysis
and SEM by pooling correlation (or covariance) matrices and testing structural equation models on the
pooled correlation (or covariance) matrix (e.g., Becker, 2009; Cheung and Chan, 2005b; Viswesvaran and
Ones, 1995). There are two stages of conducting the analysis. In the first stage of the analysis, the
correlation (or covariance) matrices are pooled together. In the second stage of the analysis, the pooled
correlation (or covariance) matrix is used to fit structural equation models.

Cheung and Chan (2005b, 2009) proposed a fixed-effects TSSEM. The fixed-effects TSSEM approach
has been extended to the random-effects TSSEM by Cheung (2014a). Regardless of whether a fixed-
or a random-effects model is used, the metaSEM package handles this automatically. In other words,
parameter estimates, SE s, and goodness-of-fit indices in the stage 2 analysis have already taken the
stage 1 model into account.

3.1 Stage 1 analysis

The main objective of the stage 1 analysis is to pool the correlation (or covariance) matrices together.
There are two classes of models in meta-analysis—fixed-effects models and random-effects models (see
Hedges and Vevea, 1998; Schmidt et al., 2009). Fixed-effects models are used for conditional inferences
based on the selected studies. They are intended to draw conclusions on the studies included in the
meta-analysis. Researchers are mainly interested in the studies used in the analysis. The assumption in
fixed-effects models is usually, but not always that all studies share common effect sizes. The stage one
analysis in both the fixed- and the random-effects TSSEM is based on the ML estimation method. Thus,
the parameter estimates are unbiased and efficient when the missing correlation coefficients are missing
completely at random (MCAR) or missing at random (MAR) (e.g., Enders, 2010).

3.1.1 Fixed-effects model

Under the fixed-effects (or more correctly the common effects) model, it is assumed that the population
correlation (or covariance) matrices are the same while there are study-specific correlations (or covariance
matrices) under the random-effects model. To simplify the presentation, I will mainly focus on the
analysis of correlation matrices. Generalizing to the analysis of covariance matrices is a straight-forward
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process (see Cheung and Chan, 2009). A covariance matrix in the ith study can be decomposed into a
product of the matrices of correlations and standard deviations:

Σi(θ) = DiPiDi, (23)

where Σi(θ) is the model implied covariance matrix, Di is the diagonal matrix of standard deviations,
and Pi is the correlation matrix. Under the assumption of the homogeneity of correlation matrices, we
may obtain a common correlation matrix by imposing the constraint P = P1 = P2 = . . . = Pk, where
Di may vary across studies. When there are missing correlations, the missing data are filtered out. If
we want to obtain a common covariance matrix under the assumption of the homogeneity of covariance
matrices, we may also add the constraint D = D1 = D2 = . . . = Dk.

An LR statistic can be used to test the null hypothesis of homogeneity of correlation matrices P1 =
P2 = . . . = Pk. Moreover, various goodness-of-fit indices may also be used to evaluate the appropriateness
of the ”close” fit of the homogeneity of correlation matrices.

3.1.2 Random-effects model

Since the primary studies are independently conducted by different researchers, the samples, measures
and research focuses are likely different. The assumption of homogeneity of correlation matrices may
not be reasonable. A random-effects TSSEM is usually more appropriate to analyze the data (Cheung,
2014a). When a random-effects model is used, the correlation matrices are treated as vectors of multi-
variate effect sizes. Let ri = vechs(Ri) be the p(p−1)/2×1 vector of a sample correlation for p variables
by taking the column-wise non-redundant elements from Ri. If an analysis of the covariance matrices is
conducted, the p(p+ 1)/2× 1 vectorized multivariate effect sizes become si = vech(Si).

The model for the sample correlation vector ri is:

ri = ρR + ui + ei, (24)

where ρR is the p(p − 1)/2 × 1 vector of average population correlation vector under a random-effects
model, Var(ui) = T2 is the variance components of the random effects, and Var(ei) = Vi is the known
conditional sampling covariance matrix. The multivariate random-effects meta-analysis introduced in
Section 2.4 may be used to conduct the stage 1 analysis with a random-effects model.

When there are many variables or not enough data (studies) in the analysis, T̂2 can be non-positive
definite. The results cannot be trusted. One workaround is to fix T2 to a diagonal matrix rather than as
a symmetric matrix. This can be done easily by specifying the argument RE.type="Diag" when calling
the tssem1() function.

3.2 Stage 2 analysis

After the stage 1 analysis with either a fixed- or a random-effects model, a vector of pooled correlations
r and its asymptotic covariance matrix V are available after the analysis. It should be noted that T̂2 is
not directly involved in fitting the correlation structure in the stage 2 analysis. However, the presence
of T2 is required so that the heterogeneity of the random effects has been properly taken into account
in the stage 1 analysis.

Most applications of MASEM use the pooled correlation matrix as if it was an observed correlation
matrix to fit structural equation models. Cheung and Chan (2005b) discussed some of these problems.
For example, the elements of the pooled correlation matrix are usually based on different studies. Re-
searchers usually use an ad-hoc sample size, such as the harmonic or arithmetic means of the individual
sample sizes, as the sample size in fitting structural equation models. Unless all the correlation coefficients
are based on the same number of studies, the precision of some correlation coefficients is over-estimated
while others of that is under-estimated. Another issue is that the pooled correlation matrix is analyzed as
it was a covariance matrix. It is incorrect to analyze the correlation matrix in SEM, although most pub-
lished articles using MASEM have treated the pooled correlation matrix as a covariance matrix. Many
SEM experts (e.g., Cudeck, 1989) have warned about the problems of analyzing the correlation matrix
instead of the covariance matrix in primary-research applications of SEM. Specifically, the chi-square
statistics and (or) the SE s of parameter estimates may be incorrect.

The TSSEM approach addresses all of these issues by using the weighted least square (WLS) estima-
tion to fitting the proposed models in the stage 2 analysis. A correlation structural model ρ(γ̂) is fitted
with the WLS estimation method by minimizing the following fit function,

F (γ̂) = (r− ρ(γ̂))>V−1(r− ρ(γ̂)). (25)
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An LR statistic and various goodness-of-fit indices may be used to judge whether the proposed structural
model is appropriate, while SE s may be used to test the significance of individual parameter estimates.

4 Illustrations with R

Several examples are used to demonstrate the procedures of fitting various meta-analyses and MASEM
using the metaSEM package implemented in R. All the data sets are stored in the metaSEM package. We
may access the data by calling library("metaSEM") in R.

4.1 Univariate meta-analysis

4.1.1 Example 1

Becker (1983) reported 10 studies on sex differences in conformity using the fictitious norm group
paradigm. di and vi are the standardized mean difference and its sampling variance, respectively.
percentage and items are the percentage of male authors and the number of items, respectively. We
need to load the metaSEM package before calling the functions in the package.

## Load the library

library("metaSEM")

## Display the content of the data

Becker83

## study di vi percentage items

## 1 1 -0.33 0.03 25 2

## 2 2 0.07 0.03 25 2

## 3 3 -0.30 0.02 50 2

## 4 4 0.35 0.02 100 38

## 5 5 0.69 0.07 100 30

## 6 6 0.81 0.22 100 45

## 7 7 0.40 0.05 100 45

## 8 8 0.47 0.07 100 45

## 9 9 0.37 0.05 100 5

## 10 10 -0.06 0.03 100 5

Univariate random-effects model The function meta() is used to conduct the univariate and mul-
tivariate meta-analyses. The arguments y and v are used to specify the effect sizes and their sampling
variances, respectively. By default, a random-effects meta-analysis is fitted. After running the analysis,
summary() is used to extract the results.

summary( meta(y=di, v=vi, data=Becker83) )

##

## Call:

## meta(y = di, v = vi, data = Becker83)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.1747 0.1134 -0.0475 0.3970 1.54 0.12

## Tau2_1_1 0.0774 0.0541 -0.0287 0.1834 1.43 0.15

##

## Q statistic on the homogeneity of effect sizes: 30.65

## Degrees of freedom of the Q statistic: 9

## P value of the Q statistic: 0.0003399

##
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## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## Intercept1: I2 (Q statistic) 0.67

##

## Number of studies (or clusters): 10

## Number of observed statistics: 10

## Number of estimated parameters: 2

## Degrees of freedom: 8

## -2 log likelihood: 7.928

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

Before interpreting the results, we must check whether the optimization was successful. The OpenMx

status1 returns the status from the optimizer. The optimization can be considered to be fine if the
code is either 0 or 1. Users may refer to OpenMx’s Common Errors (and how to avoid them) for more
details. From the output, the Q statistic (df = 9) is 30.6495, p = 0.0003. The estimated heterogeneity
variance is 0.0774, while the I2 based on the Q statistic is 0.6718. The average effect size with its 95%
Wald confidence interval (CI) based on the random-effects model is 0.1747 (-0.0475, 0.3970).

Univariate mixed-effects model Following Becker (1983), we may conduct a mixed-effects meta-
analysis by including log(items) as a moderator. The argument x is used to specify the predictors. The
estimated regression coefficients are represented by the Slopei j parameter, where i and j represent the
ith effect size and the jth predictor in the output.

summary( meta(y=di, v=vi, x=log(items), data=Becker83) )

##

## Call:

## meta(y = di, v = vi, x = log(items), data = Becker83)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 -3.20e-01 1.10e-01 -5.35e-01 -1.05e-01 -2.92 0.0036

## Slope1_1 2.11e-01 4.51e-02 1.23e-01 2.99e-01 4.68 2.9e-06

## Tau2_1_1 1.00e-10 2.01e-02 -3.94e-02 3.94e-02 0.00 1.0000

##

## Intercept1 **

## Slope1_1 ***

## Tau2_1_1

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 30.65

## Degrees of freedom of the Q statistic: 9

## P value of the Q statistic: 0.0003399

##

## Explained variances (R2):

## y1

## Tau2 (no predictor) 0.08

## Tau2 (with predictors) 0.00

## R2 1.00

##

## Number of studies (or clusters): 10

## Number of observed statistics: 10

## Number of estimated parameters: 3

## Degrees of freedom: 7

## -2 log likelihood: -4.208
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## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The result shows that log(items) is a significant predictor with the estimated regression coefficient
and its 95% Wald CI of 0.2109 (0.1225, 0.2992) with R2 = 1.0000. This suggests that the effect sizes in
the studies become larger when there are more items used to measure the constructs.

Univariate fixed-effects model Mathematically, the fixed-effects meta-analysis is a special case of
the random-effects meta-analysis by fixing the heterogeneity variance of the random-effects at 0. The
argument RE.constraints is used to constrain the variance component of the random effects. The
following analysis shows that the estimated common effect and its 95% Wald CI under a fixed-effects
model is 0.1006 (-0.0180, 0.2192).

summary( meta(y=di, v=vi, data=Becker83, RE.constraints=0) )

##

## Call:

## meta(y = di, v = vi, data = Becker83, RE.constraints = 0)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.1006 0.0605 -0.0180 0.2192 1.66 0.096 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 30.65

## Degrees of freedom of the Q statistic: 9

## P value of the Q statistic: 0.0003399

##

## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## Intercept1: I2 (Q statistic) 0

##

## Number of studies (or clusters): 10

## Number of observed statistics: 10

## Number of estimated parameters: 1

## Degrees of freedom: 9

## -2 log likelihood: 17.86

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

4.1.2 Example 2

Jaramillo et al. (2005) conducted a meta-analysis of 61 studies on the relationship between organizational
commitment and salesperson job performance. The effect size was a correlation coefficient. Jaramillo
et al. (2005) corrected for unreliability before conducting the analysis. As an illustration, we use the
uncorrected correlation coefficients here. The effect size and its sampling variance are r and r v, respec-
tively.

## Show the first few cases

head(Jaramillo05)

## Author Sample_size Sales Country IDV

## 1 Aryee et al. (2002) 179 mixed India 48

## 2 Balfour and Wechsler (1991) 232 nonsales USA 91

## 3 Bashaw and Grant (1994) 560 sales USA 91
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## 4 Benkhoff (1997) 181 sales Germany 67

## 5 Brett et al. (1995) 156 sales USA 91

## 6 Brett et al. (1995) 180 sales USA 91

## OC_scale OC_alpha JP_alpha r r_v

## 1 Porter or Mowday 0.87 0.89 0.02 0.005582

## 2 other 0.82 NA 0.12 0.004187

## 3 Porter or Mowday 0.83 0.76 0.09 0.001757

## 4 Porter or Mowday NA 1.00 0.20 0.005092

## 5 Porter or Mowday 0.83 NA 0.08 0.006328

## 6 Porter or Mowday 0.83 NA 0.04 0.005538

Random-effects model We employ a random-effects model with the following syntax. By default,
the I2 is calculated based on the Q statistic (with the I2="I2q" argument in calling the meta() function).
Readers can also use either the harmonic mean (I2="I2hm") or the arithmetic mean (I2="I2am") of the
sampling variances to calculate the I2.

summary( meta(y=r, v=r_v, data=Jaramillo05) )

##

## Call:

## meta(y = r, v = r_v, data = Jaramillo05)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.18662 0.01933 0.14874 0.22451 9.65 < 2e-16 ***

## Tau2_1_1 0.01703 0.00414 0.00893 0.02514 4.12 3.8e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 339.4

## Degrees of freedom of the Q statistic: 60

## P value of the Q statistic: 0

##

## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## Intercept1: I2 (Q statistic) 0.81

##

## Number of studies (or clusters): 61

## Number of observed statistics: 61

## Number of estimated parameters: 2

## Degrees of freedom: 59

## -2 log likelihood: -55.44

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The homogeneity test of effect sizes is statistically significant with Q(df = 60) = 339.3886, p = 0.0000.
The τ̂2 = 0.0170 and I2 = 0.8144. These indicate that there is a high degree of heterogeneity. The
between-study effect explains 81% of the total variation. The estimated average population correlation
coefficient (with its 95% Wald CI) based on a random-effects model is 0.1866 (0.1487, 0.2245).

Likelihood-based CI The above CIs are based on the Wald approximation (labelled as a z statistic

approximation in the output). When the number of studies is small, a LBCI (labelled as a Likelihood-based
statistic in the output) is preferred (e.g., Cheung, 2009; Neale and Miller, 1997). We may request the
LBCI by specifying the intervals.type="LB" argument. Since I2 is a function of τ̂2, LBCI on I2 is
also reported. The 95% LBCIs on τ̂2 and I2 are (0.0106, 0.0276), and (0.7319, 0.8767), respectively.
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summary( meta(y=r, v=r_v, data=Jaramillo05, intervals.type="LB") )

##

## Call:

## meta(y = r, v = r_v, data = Jaramillo05, intervals.type = "LB")

##

## 95% confidence intervals: Likelihood-based statistic

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.1866 NA 0.1480 0.2250 NA NA

## Tau2_1_1 0.0170 NA 0.0106 0.0276 NA NA

##

## Q statistic on the homogeneity of effect sizes: 339.4

## Degrees of freedom of the Q statistic: 60

## P value of the Q statistic: 0

##

## Heterogeneity indices (I2) and their 95% likelihood-based CIs:

## lbound Estimate ubound

## Intercept1: I2 (Q statistic) 0.732 0.814 0.88

##

## Number of studies (or clusters): 61

## Number of observed statistics: 61

## Number of estimated parameters: 2

## Degrees of freedom: 59

## -2 log likelihood: -55.44

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

Mixed-effects model The moderators can be included by specifying the x argument in the meta()

function. When there is more than one moderators, they are combined using the cbind() command.
The explained variance R2 on the effect size is also reported.

The dataset includes the coefficient alpha of the scales on measuring organizational commitment and
job performance (OC alpha and JP alpha in the dataset). As an illustration, we include both OC alpha

and JP alpha as the moderators.

## Label this model as "Unequal coefficients"

model1 <- meta(y=r, v=r_v, x=cbind(OC_alpha, JP_alpha),

data=Jaramillo05, model.name="Unequal coefficients")

summary(model1)

##

## Call:

## meta(y = r, v = r_v, x = cbind(OC_alpha, JP_alpha), data = Jaramillo05,

## model.name = "Unequal coefficients")

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 -0.57554 0.50152 -1.55849 0.40742 -1.15 0.25114

## Slope1_1 0.13110 0.45872 -0.76797 1.03018 0.29 0.77503

## Slope1_2 0.80442 0.43038 -0.03912 1.64796 1.87 0.06161 .

## Tau2_1_1 0.01873 0.00565 0.00765 0.02981 3.31 0.00092 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 257.7

## Degrees of freedom of the Q statistic: 34
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## P value of the Q statistic: 0

##

## Explained variances (R2):

## y1

## Tau2 (no predictor) 0.02

## Tau2 (with predictors) 0.02

## R2 0.00

##

## Number of studies (or clusters): 35

## Number of observed statistics: 35

## Number of estimated parameters: 4

## Degrees of freedom: 31

## -2 log likelihood: -31.01

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The estimated regression coefficients for OC alpha and JP alpha (Slope1 1 and Slope1 2 in the

output) are β̂OCalpha
= 0.1311, SEOCalpha

= 0.4587, pOCalpha
= 0.7750, and β̂JPalpha

= 0.8044, SEJPalpha
=

0.4304, pJPalpha
= 0.0616, respectively. Neither of them is statistically significant at α = 0.05 and the

R2 = 0.0000. Therefore, there is no evidence indicating that the reliabilities of the measures are correlated
with the effect size.

Although both coefficients are non-significant in the above analysis, we test H0 : βequal = βOCalpha
=

βJPalpha
as an illustration. First, we need to fit a model with an equality constraint on the regression

coefficients by specifying the coef.constraints argument. This argument expects a p×m matrix, where
p is the number of effect sizes and m is the number of predictors. In this example, it is 1×2 matrix, where
the first and second elements refer to the regression coefficients of OC alpha, and JP alpha, respectively.

We may impose the equality constraint by using the same label in the constraint. In this example,
0* represents the starting value for the regression coefficients while Slope equal is the name of both
coefficients. We further call this model model.name="Equal slopes" for ease of comparison and save
the results to an R object called model2.

( constraint <- matrix(c("0*Slope_equal", "0*Slope_equal"), nrow=1, ncol=2) )

## [,1] [,2]

## [1,] "0*Slope_equal" "0*Slope_equal"

model2 <- meta(y=r, v=r_v, x=cbind(OC_alpha, JP_alpha), data=Jaramillo05,

coef.constraints=constraint, model.name="Equal coefficients")

summary(model2)

##

## Call:

## meta(y = r, v = r_v, x = cbind(OC_alpha, JP_alpha), data = Jaramillo05,

## coef.constraints = constraint, model.name = "Equal coefficients")

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 -0.60367 0.50745 -1.59826 0.39092 -1.19 0.23420

## Slope_equal 0.48630 0.29531 -0.09249 1.06509 1.65 0.09961 .

## Tau2_1_1 0.01937 0.00582 0.00796 0.03079 3.33 0.00088 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 257.7

## Degrees of freedom of the Q statistic: 34

## P value of the Q statistic: 0
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##

## Explained variances (R2):

## y1

## Tau2 (no predictor) 0.02

## Tau2 (with predictors) 0.02

## R2 0.00

##

## Number of studies (or clusters): 35

## Number of observed statistics: 35

## Number of estimated parameters: 3

## Degrees of freedom: 32

## -2 log likelihood: -30.02

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The estimated constrained regression coefficient is β̂equal = 0.4863, SEequal = 0.2953, pequal = 0.0996,
which is still non-significant. To test H0 : βOCalpha

= βJPalpha
, we compare model1 against model2 with

the anova() function.

anova(model1, model2)

## base comparison ep minus2LL df AIC

## 1 Unequal coefficients <NA> 4 -31.01 31 -93.01

## 2 Unequal coefficients Equal coefficients 3 -30.02 32 -94.02

## diffLL diffdf p

## 1 NA NA NA

## 2 0.9943 1 0.3187

The LR statistic is ∆χ2(df = 1) = 0.9943, p = 0.3187. Therefore, there is not enough evidence to
reject the null hypothesis of equal regression coefficients.

Testing categorical predictors There are three types of samples in the data set: sales, nonsales,
and mixed in the variable Sales. A typical approach is to use one group, say nonsales, as the reference
group and create two dummy variables (Dsales and Dmixed) with only 0 and 1 for sales and mixed to
represent the differences between these groups to the reference group, the nonsales. The model is:

y = β0 + β1Dsales + β2Dmixed + u + e, (26)

where β0 is the population effect size for nonsales, β1 is the difference between sales and nonsales,
and β2 is the difference between mixed and nonsales.

Although the model can be used to test the differences among the groups, it does not provide the
estimates for all groups. An alternative approach is to create three indicator variables. We may fit a
model without an intercept:

y = β1Dsales + β2Dmixed + β3Dnonsales + u + e, (27)

where β1, β2, and β3 now represent the average population effect sizes for sales, mixed, and nonsales,
respectively. To estimate the means for all three groups, the intercept must be fixed at 0; otherwise, the
model is not identified. To test whether all group means are the same, we compare the above model
against the intercept model. Under the null hypothesis H0 : β1 = β2 = β3, the test statistic has a
chi-square distribution with df = 2.

First, we show the frequency table of the variable Sales. Then, we create three indicator variables
by using the ifelse() command.

table(Jaramillo05$Sales)

##

## mixed nonsales sales

## 6 27 28
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sales <- ifelse(Jaramillo05$Sales=="sales", yes=1, no=0)

mixed <- ifelse(Jaramillo05$Sales=="mixed", yes=1, no=0)

nonsales <- ifelse(Jaramillo05$Sales=="nonsales", yes=1, no=0)

To fit the model without an intercept, we fix the intercept at 0 by specifying the intercept.constraints=0
argument. Since the original starting values assume that there is an intercept, there were estimation
problems in the model without the intercept. We provide better starting values for the regression coef-
ficients by using the coef.constraints argument:

( startvalues <- matrix(c("0*Slope1_1", "0*Slope1_2", "0*Slope1_3"), nrow=1, ncol=3) )

## [,1] [,2] [,3]

## [1,] "0*Slope1_1" "0*Slope1_2" "0*Slope1_3"

model3 <- meta(y=r, v=r_v, x=cbind(sales, mixed, nonsales),

data=Jaramillo05, coef.constraints=startvalues,

intercept.constraints=0, model.name="Indicator variables")

summary(model3)

##

## Call:

## meta(y = r, v = r_v, x = cbind(sales, mixed, nonsales), data = Jaramillo05,

## intercept.constraints = 0, coef.constraints = startvalues,

## model.name = "Indicator variables")

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Slope1_1 0.22830 0.02759 0.17421 0.28238 8.27 2.2e-16 ***

## Slope1_2 0.14659 0.06328 0.02257 0.27061 2.32 0.021 *

## Slope1_3 0.15196 0.02794 0.09720 0.20672 5.44 5.4e-08 ***

## Tau2_1_1 0.01573 0.00385 0.00818 0.02328 4.08 4.4e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 339.4

## Degrees of freedom of the Q statistic: 60

## P value of the Q statistic: 0

##

## Explained variances (R2):

## y1

## Tau2 (no predictor) 0.02

## Tau2 (with predictors) 0.02

## R2 0.08

##

## Number of studies (or clusters): 61

## Number of observed statistics: 61

## Number of estimated parameters: 4

## Degrees of freedom: 57

## -2 log likelihood: -59.56

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The estimated average effects and their 95% Wald CIs for the sales, mixed, and nonsales are
0.2283 (0.1742, 0.2824), 0.1466 (0.0226, 0.2706), and 0.1520 (0.0972, 0.2067), respectively. All of them
are statistically significant at α = .05.

When the null hypothesis H0 : β1 = β2 = β3 is true, this model is equivalent to the model with only
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an intercept. Since the model with only an intercept model4 is nested within the model with predictors
model3, we compare them with the following code:.

model4 <- meta(y=r, v=r_v, data=Jaramillo05, model.name="Null hypothesis")

anova(model3, model4)

## base comparison ep minus2LL df AIC diffLL

## 1 Indicator variables <NA> 4 -59.56 57 -173.6 NA

## 2 Indicator variables Null hypothesis 2 -55.44 59 -173.4 4.114

## diffdf p

## 1 NA NA

## 2 2 0.1278

The LR statistic is ∆χ2(df = 2) = 4.1140, p = 0.1278. Therefore, there is not enough evidence
to reject the null hypothesis of equal population correlations. When there are missing values in the
moderators, effect sizes with the missing values are deleted before conducting the analyses. The numbers
of studies may be different in model comparisons. Users must make sure that the same studies are used
in the model comparisons.

4.2 Multivariate meta-analysis

4.2.1 Example 1

This data set was adapted from Berkey et al. (1998) that compared surgical and non-surgical treatments
for a medium-severity periodontal disease one year after treatment. The effect sizes are PD, and AL,
while their sampling variance-covariance matrix is var PD, cov PD AL, and var AL. A multivariate meta-
analysis can be fitted by specifying the multivariate effect sizes and their sampling covariance matrix in
the arguments y and v with cbind(), respectively. Only the lower triangle of the sampling covariance
matrix arranged by the column major is used in v. For example, if there are three effect sizes and Vi = V11
V21 V22
V31 V32 V33

, we may use meta(y=cbind(y1,y2,y3), v=cbind(V11,V21,V31,V22,V32,V33)).

The following syntax conducts a multivariate random-effects meta-analysis on Berkey98:

## Display the content of the data

Berkey98

## trial pub_year no_of_patients PD AL var_PD cov_PD_AL var_AL

## 1 1 1983 14 0.47 -0.32 0.0075 0.0030 0.0077

## 2 2 1982 15 0.20 -0.60 0.0057 0.0009 0.0008

## 3 3 1979 78 0.40 -0.12 0.0021 0.0007 0.0014

## 4 4 1987 89 0.26 -0.31 0.0029 0.0009 0.0015

## 5 5 1988 16 0.56 -0.39 0.0148 0.0072 0.0304

summary( meta(y=cbind(PD,AL), v=cbind(var_PD,cov_PD_AL,var_AL),

data=Berkey98, model.name="Random effects model") )

##

## Call:

## meta(y = cbind(PD, AL), v = cbind(var_PD, cov_PD_AL, var_AL),

## data = Berkey98, model.name = "Random effects model")

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.34484 0.05363 0.23972 0.44995 6.43 1.3e-10 ***
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## Intercept2 -0.33794 0.08125 -0.49718 -0.17870 -4.16 3.2e-05 ***

## Tau2_1_1 0.00700 0.00905 -0.01074 0.02474 0.77 0.44

## Tau2_2_1 0.00946 0.00997 -0.01008 0.02900 0.95 0.34

## Tau2_2_2 0.02614 0.01774 -0.00863 0.06092 1.47 0.14

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 128.2

## Degrees of freedom of the Q statistic: 8

## P value of the Q statistic: 0

##

## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## Intercept1: I2 (Q statistic) 0.60

## Intercept2: I2 (Q statistic) 0.92

##

## Number of studies (or clusters): 5

## Number of observed statistics: 10

## Number of estimated parameters: 5

## Degrees of freedom: 5

## -2 log likelihood: -11.68

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

Multivariate random-effects model The Q statistic (df = 8) of the above example is 128.2267,

p = 0.0000. The estimated variance component is

[
0.0070
0.0095 0.0261

]
. The I2 based on the Q statistic

for PD and AL are 0.6021 and 0.9250, respectively. The pooled effect sizes with their 95% Wald CIs
based on the random-effects model for PD and AL are 0.3448 (0.2397, 0.4500), and -0.3379 (-0.4972,
-0.1787), respectively.

Multivariate mixed-effects model As an illustration, we use pub year as a predictor. To make
the intercept more interpretable, we center the publication year at 1979, the first year of publication
recorded in the data set.

mult2 <- meta(y=cbind(PD,AL), v=cbind(var_PD,cov_PD_AL,var_AL), data=Berkey98,

x=scale(pub_year,center=1979), model.name="No constraint")

summary(mult2)

##

## Call:

## meta(y = cbind(PD, AL), v = cbind(var_PD, cov_PD_AL, var_AL),

## x = scale(pub_year, center = 1979), data = Berkey98, model.name = "No constraint")

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.34400 0.08577 0.17590 0.51210 4.01 6e-05 ***

## Intercept2 -0.29182 0.13128 -0.54912 -0.03451 -2.22 0.026 *

## Slope1_1 0.00635 0.10782 -0.20498 0.21768 0.06 0.953

## Slope2_1 -0.07059 0.16210 -0.38829 0.24711 -0.44 0.663

## Tau2_1_1 0.00804 0.01012 -0.01180 0.02788 0.79 0.427

## Tau2_2_1 0.00934 0.01055 -0.01134 0.03002 0.89 0.376

## Tau2_2_2 0.02501 0.01708 -0.00846 0.05849 1.46 0.143

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 128.2
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## Degrees of freedom of the Q statistic: 8

## P value of the Q statistic: 0

##

## Explained variances (R2):

## y1 y2

## Tau2 (no predictor) 0.00700 0.03

## Tau2 (with predictors) 0.00804 0.03

## R2 0.00000 0.04

##

## Number of studies (or clusters): 5

## Number of observed statistics: 10

## Number of estimated parameters: 7

## Degrees of freedom: 3

## -2 log likelihood: -12.01

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The estimated regression coefficients and their 95% CIs on PD and AL are 0.0064 (-0.2050, 0.2177),
and -0.0706 (-0.3883, 0.2471), respectively. The R2 for predicting PD and AL are 0.0000, and 0.0433,
respectively.

When there are multiple effect sizes, it is preferable to test the significance of all effect sizes simul-
taneously. We may formulate two nested models and compare them with the anova() function. The
following analysis indicates that the likelihood ratio (LR) statistic for comparing both regression coeffi-
cients is ∆χ2(df = 2) = 0.3273, p = 0.8490. Thus, the null hypothesis that both regression coefficients
are zero is not rejected.

## Coefficients are fixed at 0 for both effect sizes

mult0 <- meta(y=cbind(PD,AL), v=cbind(var_PD,cov_PD_AL,var_AL),

data=Berkey98, x=scale(pub_year,center=1979),

model.name="Fixed at 0",

coef.constraints=matrix(c("0","0"),nrow=2))

summary(mult0)

##

## Call:

## meta(y = cbind(PD, AL), v = cbind(var_PD, cov_PD_AL, var_AL),

## x = scale(pub_year, center = 1979), data = Berkey98, coef.constraints = matrix(c("0",

## "0"), nrow = 2), model.name = "Fixed at 0")

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.34484 0.05363 0.23972 0.44995 6.43 1.3e-10 ***

## Intercept2 -0.33794 0.08125 -0.49718 -0.17870 -4.16 3.2e-05 ***

## Tau2_1_1 0.00700 0.00905 -0.01074 0.02474 0.77 0.44

## Tau2_2_1 0.00946 0.00997 -0.01008 0.02900 0.95 0.34

## Tau2_2_2 0.02614 0.01774 -0.00863 0.06092 1.47 0.14

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 128.2

## Degrees of freedom of the Q statistic: 8

## P value of the Q statistic: 0

##

## Explained variances (R2):

## y1 y2

## Tau2 (no predictor) 7.00e-03 0.03

## Tau2 (with predictors) 7.00e-03 0.03
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## R2 2.67e-09 0.00

##

## Number of studies (or clusters): 5

## Number of observed statistics: 10

## Number of estimated parameters: 5

## Degrees of freedom: 5

## -2 log likelihood: -11.68

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

## Compare two models with an LR statistic

anova(mult2, mult0)

## base comparison ep minus2LL df AIC diffLL diffdf p

## 1 No constraint <NA> 7 -12.01 3 -18.01 NA NA NA

## 2 No constraint Fixed at 0 5 -11.68 5 -21.68 0.3273 2 0.849

Multivariate fixed-effects model A multivariate fixed-effects meta-analysis is a special case of the
random effects meta-analysis by fixing the variance component at a zero matrix. The pooled effect sizes
with their 95% Wald CIs based on the fixed-effects model for PD and AL are 0.3072 (0.2512, 0.3632),
and -0.3944 (-0.4309, -0.3578), respectively. It should be noted that the CIs on a fixed-effects model are
usually shorter than those on a random-effects model when the heterogeneity is ignored in the analysis.

summary( meta(y=cbind(PD,AL), v=cbind(var_PD,cov_PD_AL,var_AL),

RE.constraints=matrix(0,nrow=2,ncol=2), data=Berkey98,

model.name="Fixed effects model") )

##

## Call:

## meta(y = cbind(PD, AL), v = cbind(var_PD, cov_PD_AL, var_AL),

## data = Berkey98, RE.constraints = matrix(0, nrow = 2, ncol = 2),

## model.name = "Fixed effects model")

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.3072 0.0286 0.2512 0.3632 10.8 <2e-16 ***

## Intercept2 -0.3944 0.0186 -0.4309 -0.3578 -21.1 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 128.2

## Degrees of freedom of the Q statistic: 8

## P value of the Q statistic: 0

##

## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## Intercept1: I2 (Q statistic) 0

## Intercept2: I2 (Q statistic) 0

##

## Number of studies (or clusters): 5

## Number of observed statistics: 10

## Number of estimated parameters: 2

## Degrees of freedom: 8

## -2 log likelihood: 90.88

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)
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Although we may compare the fixed-effects model (without constraints) and the random-effects model
(without any constraint) with an LR statistic, the p is too conservative. It is because it is testing on the
boundary (e.g., Stoel et al., 2006).

Plots of multivariate effect sizes If a multivariate meta-analysis is conducted, pairwise plots on the
pooled effect sizes and their confidence ellipses can be obtained via the plot() function. This plot is a
multivariate generalization of the forest plot in the univariate meta-analysis. By default, 95% confidence
intervals on the average effect sizes and confidence ellipses on the random effects are plotted (see Cheung,
2013b). Figure 1 shows the average effect sizes of the Berkey98 example. The black dots and the black
dashed ellipses are the observed effect sizes and their 95% confidence ellipses in the primary studies. The
blue square is the estimated average population effect sizes, while the red ellipse is the 95% confidence
ellipse of estimated population average effect sizes. This is a multivariate generalization of the average
effect size and its 95% confidence interval in the univariate meta-analysis. The green ellipse is the 95%
confidence ellipse of the random effects. Ninety-five percent of the studies with average population effect
sizes falls inside this confidence ellipse in the long run.

## Run the analysis again and save the object

my.fit <- meta(y=cbind(PD,AL),v=cbind(var_PD,cov_PD_AL,var_AL), data=Berkey98)

## No main title and label the axes

plot(my.fit, main="", axis.label=c("PD","AL"))
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Figure 6: Plot of PD and AL

We may also combine the forest plots provided by the metafor package to provide more details on
the individual effect sizes. Readers may understand both the univariate effects using the forest plot and
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the multivariate effects using the confidence ellipses. Figure 2 shows the confidence ellipses and the forest
plots of the Berkey98 example.

## Load the library for forest plots

library("metafor")

## Create extra panels for the forest plots

plot(my.fit, diag.panel=TRUE, main="Multivariate meta-analysis", axis.label=c("PD", "AL"))

## Forest plot for PD

forest( rma(yi=PD, vi=var_PD, data=Berkey98) )

title("Forest plot of PD")

## Forest plot for AL

forest( rma(yi=AL, vi=var_AL, data=Berkey98) )

title("Forest plot of AL")
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Figure 7: Plot of PD and AL with their forest plots
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4.2.2 Example 2

The second example was based on the sixteen studies reported by Aloe et al. (2014). These authors
studied how the classroom management self-efficacy (CMSE) predicts the three dimensions of burnout.
The effect sizes are the correlation coefficients between CMSE and emotional exhaustion (EE), deperson-
alization (DP), and (lowered) personal accomplishment (PA). Their sampling variances and covariances
are labelled as V xx and C xx yy in the data set where xx and yy are either EE, DP or PA.

## Show the first few cases

head(Aloe14)

## Study Year EE DP PA V_EE V_DP V_PA C_EE_DP

## 1 Betoret 2009 -0.38 -0.32 0.62 0.0016 0.0018 0.0011 0.0005

## 2 Brouwers & Tomic 2000 -0.40 -0.39 0.56 0.0013 0.0009 0.0008 0.0006

## 3 Bumen 2010 -0.31 -0.34 0.48 0.0014 0.0014 0.0012 0.0007

## 4 Chang 2009 -0.32 -0.41 0.41 0.0021 0.0019 0.0019 0.0009

## 5 Durr 2008 -0.47 -0.54 0.71 0.0061 0.0063 0.0041 0.0032

## 6 Evers et al. 2002 -0.26 -0.31 0.39 0.0093 0.0067 0.0066 0.0028

## C_EE_PA C_DP_PA Publication_type Percentage_females

## 1 -0.0002 -0.0003 Journal 0.70

## 2 -0.0004 -0.0004 Journal 0.26

## 3 -0.0003 -0.0004 Journal 0.69

## 4 -0.0010 -0.0011 Dissertation 0.79

## 5 -0.0010 -0.0012 Dissertation 0.82

## 6 -0.0015 -0.0045 Journal 0.23

## Years_experience

## 1 10.08

## 2 21.25

## 3 18.14

## 4 2.58

## 5 2.71

## 6 22.14

Random-effects model We may conduct a multivariate random-effects meta-analysis with the fol-
lowing syntax. The average effect sizes and their SE s for EE, DP, and PA are -0.2779 (0.0293), -0.3289
(0.0277), and 0.4336 (0.0436), respectively. All the average effect sizes are statistically significant.

meta1 <- meta(y=cbind(EE,DP,PA),

v=cbind(V_EE, C_EE_DP, C_EE_PA, V_DP, C_DP_PA, V_PA),

data=Aloe14)

## Rerun it to remove the error code

meta1 <- rerun(meta1)

## Running Meta analysis with ML with 9 parameters

##

## Beginning initial fit attempt

## Running Meta analysis with ML with 9 parameters

##

## Lowest minimum so far: -98.5749816295342

##

## Solution found

##

## Solution found! Final fit=-98.574982 (started at -98.574982) (1 attempt(s): 1 valid,

0 errors)

summary(meta1)
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##

## Call:

## meta(y = cbind(EE, DP, PA), v = cbind(V_EE, C_EE_DP, C_EE_PA,

## V_DP, C_DP_PA, V_PA), data = Aloe14)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 -0.277878 0.029339 -0.335381 -0.220375 -9.47 <2e-16

## Intercept2 -0.328886 0.027656 -0.383090 -0.274681 -11.89 <2e-16

## Intercept3 0.433649 0.043555 0.348283 0.519015 9.96 <2e-16

## Tau2_1_1 0.010416 0.005007 0.000604 0.020229 2.08 0.037

## Tau2_2_1 0.008562 0.004235 0.000261 0.016864 2.02 0.043

## Tau2_2_2 0.009076 0.004341 0.000568 0.017583 2.09 0.037

## Tau2_3_1 -0.016350 0.006951 -0.029973 -0.002727 -2.35 0.019

## Tau2_3_2 -0.013799 0.006298 -0.026142 -0.001456 -2.19 0.028

## Tau2_3_3 0.027025 0.011013 0.005441 0.048610 2.45 0.014

##

## Intercept1 ***

## Intercept2 ***

## Intercept3 ***

## Tau2_1_1 *

## Tau2_2_1 *

## Tau2_2_2 *

## Tau2_3_1 *

## Tau2_3_2 *

## Tau2_3_3 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 256.7

## Degrees of freedom of the Q statistic: 45

## P value of the Q statistic: 0

##

## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## Intercept1: I2 (Q statistic) 0.79

## Intercept2: I2 (Q statistic) 0.80

## Intercept3: I2 (Q statistic) 0.93

##

## Number of studies (or clusters): 16

## Number of observed statistics: 48

## Number of estimated parameters: 9

## Degrees of freedom: 39

## -2 log likelihood: -98.57

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

We may extract and arrange the variance component for ease of inspection.

## Extract the variance component of the random effects

( coef1 <- coef(meta1, select="random") )

## Tau2_1_1 Tau2_2_1 Tau2_2_2 Tau2_3_1 Tau2_3_2 Tau2_3_3

## 0.010416 0.008562 0.009076 -0.016350 -0.013799 0.027025

## Convert it into a symmetrix matrix by row major

my.cov <- vec2symMat(coef1, byrow=TRUE)
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## Add the dimensions for ease of interpretation

dimnames(my.cov) <- list( c("EE", "DP", "PA"),

c("EE", "DP", "PA") )

my.cov

## EE DP PA

## EE 0.010416 0.008562 -0.01635

## DP 0.008562 0.009076 -0.01380

## PA -0.016350 -0.013799 0.02703

## Convert it into a correlation matrix

( cov2cor(my.cov) )

## EE DP PA

## EE 1.0000 0.8807 -0.9745

## DP 0.8807 1.0000 -0.8811

## PA -0.9745 -0.8811 1.0000

The correlations among the random effects are extremely high. We may also visualize these correla-
tions by the means of the confidence ellipses .

## Plot the multivariate effect sizes

plot(meta1, main="", axis.labels=c("EE", "DP", "PA"))
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Figure 8: Plot of effect sizes and their confidence ellipses

Mixed-effects model Aloe et al. (2014) tested several potential moderators. One of them was whether
or not the studies were published in peer-reviewed journals. We may replicate the analysis with the
following code.

## Create a variable on journal

( journal <- ifelse(Aloe14$Publication_type=="Journal", 1, 0) )

## [1] 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0

meta2 <- meta(y=cbind(EE,DP,PA),

v=cbind(V_EE, C_EE_DP, C_EE_PA, V_DP, C_DP_PA, V_PA),

x=journal, data=Aloe14)

## Rerun it to remove the error code

meta2 <- rerun(meta2)

## Running Meta analysis with ML with 12 parameters
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##

## Beginning initial fit attempt

## Running Meta analysis with ML with 12 parameters

##

## Lowest minimum so far: -99.9705220583337

##

## Solution found

##

## Solution found! Final fit=-99.970522 (started at -99.970522) (1 attempt(s): 1 valid,

0 errors)

summary(meta2)

##

## Call:

## meta(y = cbind(EE, DP, PA), v = cbind(V_EE, C_EE_DP, C_EE_PA,

## V_DP, C_DP_PA, V_PA), x = journal, data = Aloe14)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 -0.264953 0.052210 -0.367283 -0.162624 -5.07 3.9e-07

## Intercept2 -0.338812 0.049541 -0.435910 -0.241715 -6.84 8.0e-12

## Intercept3 0.395094 0.072567 0.252865 0.537322 5.44 5.2e-08

## Slope1_1 -0.022936 0.063128 -0.146664 0.100791 -0.36 0.716

## Slope2_1 0.009657 0.059932 -0.107808 0.127121 0.16 0.872

## Slope3_1 0.059014 0.090085 -0.117550 0.235577 0.66 0.512

## Tau2_1_1 0.010269 0.004902 0.000661 0.019878 2.09 0.036

## Tau2_2_1 0.008518 0.004168 0.000348 0.016688 2.04 0.041

## Tau2_2_2 0.008979 0.004283 0.000585 0.017374 2.10 0.036

## Tau2_3_1 -0.016129 0.006798 -0.029454 -0.002805 -2.37 0.018

## Tau2_3_2 -0.013998 0.006238 -0.026225 -0.001772 -2.24 0.025

## Tau2_3_3 0.026266 0.010693 0.005307 0.047224 2.46 0.014

##

## Intercept1 ***

## Intercept2 ***

## Intercept3 ***

## Slope1_1

## Slope2_1

## Slope3_1

## Tau2_1_1 *

## Tau2_2_1 *

## Tau2_2_2 *

## Tau2_3_1 *

## Tau2_3_2 *

## Tau2_3_3 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 256.7

## Degrees of freedom of the Q statistic: 45

## P value of the Q statistic: 0

##

## Explained variances (R2):

## y1 y2 y3

## Tau2 (no predictor) 0.01042 0.00908 0.03

## Tau2 (with predictors) 0.01027 0.00898 0.03
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## R2 0.01411 0.01061 0.03

##

## Number of studies (or clusters): 16

## Number of observed statistics: 48

## Number of estimated parameters: 12

## Degrees of freedom: 36

## -2 log likelihood: -99.97

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The estimated slopes and their SE s on predicting for EE, DP, and PA are -0.0229 (0.0631), 0.0097
(0.0599), and 0.0590 (0.0901), respectively. All the slopes are non-significant. The R2 for EE, DP, and PA

are 0.0141, 0.0106, and 0.0281, respectively.
We may also test the null hypothesis βEE = βDP = βPA = 0 by comparing the models with and

without the moderators with the following code. The ∆χ2(df = 3) = 1.3955, p = 0.7066. Thus, the null
hypothesis that both regression coefficients are zero is not rejected.

anova(meta2, meta1)

## base comparison ep minus2LL df AIC

## 1 Meta analysis with ML <NA> 12 -99.97 36 -172.0

## 2 Meta analysis with ML Meta analysis with ML 9 -98.57 39 -176.6

## diffLL diffdf p

## 1 NA NA NA

## 2 1.396 3 0.7066

4.3 Three-level meta-analysis

This data set, reported by Konstantopoulos (2011) and Cooper et al. (2003), described fifty-six effect
sizes clustered in 11 districts (District). The effect size is the standardized mean difference of the
modified school calendar effectiveness. The meta3() function is used to fit three-level meta-analysis.

## Display the first few cases

head(Cooper03)

## District Study y v Year

## 1 11 1 -0.18 0.118 1976

## 2 11 2 -0.22 0.118 1976

## 3 11 3 0.23 0.144 1976

## 4 11 4 -0.30 0.144 1976

## 5 12 5 0.13 0.014 1989

## 6 12 6 -0.26 0.014 1989

4.3.1 Random-effects model

The syntax of meta3() is similar to that of the meta() except that we need to specify the argument for
cluster. For example,

summary( meta3(y=y, v=v, cluster=District, data=Cooper03) )

##

## Call:

## meta3(y = y, v = v, cluster = District, data = Cooper03)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)
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## Intercept 0.18446 0.08054 0.02660 0.34231 2.29 0.0220 *

## Tau2_2 0.03286 0.01114 0.01103 0.05470 2.95 0.0032 **

## Tau2_3 0.05774 0.03074 -0.00252 0.11799 1.88 0.0604 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 578.9

## Degrees of freedom of the Q statistic: 55

## P value of the Q statistic: 0

##

## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## I2_2 (Typical v: Q statistic) 0.34

## I2_3 (Typical v: Q statistic) 0.60

##

## Number of studies (or clusters): 11

## Number of observed statistics: 56

## Number of estimated parameters: 3

## Degrees of freedom: 53

## -2 log likelihood: 16.79

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The analysis shows that the Q(df = 55) = 578.8640, p = 0.0000. The I2 based on the Q statistic at
level 2 and level 3 are 0.3440, and 0.6043, respectively. These indicate that the studies (level 2) and the
cluster (level 3) explain about 34% and 60% percentages of the total variation. There is only 6% of the
variation is due to sampling error. The average effect and its 95% CI under a random-effects model is
0.1845 (0.0266, 0.3423).

4.3.2 Mixed-effects model

We use Year of publication as a moderator. To make the intercept more meaningful, we may center
the predictor. The estimated coefficient (and its 95% Wald CI) of Year of publication in the following
analysis is 0.0051 (-0.0116, 0.0218), which is not statistically significant. The R2 at level 2 and level 3
are only 0.0000, and 0.0221, respectively.

summary( meta3(y=y, v=v, cluster=District,

x=scale(Year, scale=FALSE), data=Cooper03) )

##

## Call:

## meta3(y = y, v = v, cluster = District, x = scale(Year, scale = FALSE),

## data = Cooper03)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept 0.17803 0.08052 0.02021 0.33585 2.21 0.0270 *

## Slope_1 0.00507 0.00853 -0.01164 0.02179 0.60 0.5518

## Tau2_2 0.03294 0.01116 0.01106 0.05482 2.95 0.0032 **

## Tau2_3 0.05646 0.03003 -0.00240 0.11533 1.88 0.0601 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 578.9

## Degrees of freedom of the Q statistic: 55

## P value of the Q statistic: 0

##
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## Explained variances (R2):

## Level 2 Level 3

## Tau2 (no predictor) 0.0329 0.06

## Tau2 (with predictors) 0.0329 0.06

## R2 0.0000 0.02

##

## Number of studies (or clusters): 11

## Number of observed statistics: 56

## Number of estimated parameters: 4

## Degrees of freedom: 52

## -2 log likelihood: 16.44

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

4.4 Meta-analytic structural equation modeling

Two examples are used to illustrate how to use the TSSEM approach to fit structural equation models
on the pooled correlation matrices.

4.4.1 Example 1

Digman (1997) reported a second-order factor analysis on a five-factor model with 14 studies. He
suggested that there were two second-order factors on the five-factor model: an Alpha factor for agree-
ableness A, conscientiousness C, and emotional stability ES, and a Beta factor for extroversion E and
intellect I. We use the TSSEM approach to test the proposed model. This data set has been illustrated
in several places (e.g., Cheung and Chan, 2005a; Cheung, 2014a, 2015a). The correlation matrices and
the sample sizes are stored in Digman97$data and Digman97$n, respectively. We may display the first
few cases of the data set by calling the following commands in R.

## Show the correlation matrices

head(Digman97$data)

## $`Digman 1 (1994)`

## A C ES E I

## A 1.00 0.62 0.41 -0.48 0.00

## C 0.62 1.00 0.59 -0.10 0.35

## ES 0.41 0.59 1.00 0.27 0.41

## E -0.48 -0.10 0.27 1.00 0.37

## I 0.00 0.35 0.41 0.37 1.00

##

## $`Digman 2 (1994)`

## A C ES E I

## A 1.00 0.39 0.53 -0.30 -0.05

## C 0.39 1.00 0.59 0.07 0.44

## ES 0.53 0.59 1.00 0.09 0.22

## E -0.30 0.07 0.09 1.00 0.45

## I -0.05 0.44 0.22 0.45 1.00

##

## $`Digman 3 (1963c)`

## A C ES E I

## A 1.00 0.65 0.35 0.25 0.14

## C 0.65 1.00 0.37 -0.10 0.33

## ES 0.35 0.37 1.00 0.24 0.41

## E 0.25 -0.10 0.24 1.00 0.41

## I 0.14 0.33 0.41 0.41 1.00

##

## $`Digman & Takemoto-Chock (1981b)`
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## A C ES E I

## A 1.00 0.65 0.70 -0.26 -0.03

## C 0.65 1.00 0.71 -0.16 0.24

## ES 0.70 0.71 1.00 0.01 0.11

## E -0.26 -0.16 0.01 1.00 0.66

## I -0.03 0.24 0.11 0.66 1.00

##

## $`Graziano & Ward (1992)`

## A C ES E I

## A 1.00 0.64 0.35 0.29 0.22

## C 0.64 1.00 0.27 0.16 0.22

## ES 0.35 0.27 1.00 0.32 0.36

## E 0.29 0.16 0.32 1.00 0.53

## I 0.22 0.22 0.36 0.53 1.00

##

## $`Yik & Bond (1993)`

## A C ES E I

## A 1.00 0.66 0.57 0.35 0.38

## C 0.66 1.00 0.45 0.20 0.31

## ES 0.57 0.45 1.00 0.49 0.31

## E 0.35 0.20 0.49 1.00 0.59

## I 0.38 0.31 0.31 0.59 1.00

## Show the sample sizes

head(Digman97$n)

## [1] 102 149 334 162 91 656

Fixed-effects model: Stage 1 analysis The tssem1() function is used to pool the correlation
matrices with a fixed-effects model in the first stage of the analysis by specifying method="FEM" in the
argument:

fixed1 <- tssem1(Digman97$data, Digman97$n, method = "FEM")

summary(fixed1)

##

## Call:

## tssem1FEM(Cov = Cov, n = n, cor.analysis = cor.analysis, model.name = model.name,

## cluster = cluster, suppressWarnings = suppressWarnings, silent = silent,

## run = run)

##

## Coefficients:

## Estimate Std.Error z value Pr(>|z|)

## S[1,2] 0.3633 0.0134 27.18 < 2e-16 ***

## S[1,3] 0.3904 0.0129 30.31 < 2e-16 ***

## S[1,4] 0.1036 0.0150 6.88 5.9e-12 ***

## S[1,5] 0.0923 0.0150 6.13 8.6e-10 ***

## S[2,3] 0.4161 0.0125 33.23 < 2e-16 ***

## S[2,4] 0.1351 0.0148 9.15 < 2e-16 ***

## S[2,5] 0.1414 0.0149 9.51 < 2e-16 ***

## S[3,4] 0.2445 0.0142 17.27 < 2e-16 ***

## S[3,5] 0.1383 0.0148 9.33 < 2e-16 ***

## S[4,5] 0.4246 0.0124 34.31 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Goodness-of-fit indices:
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## Value

## Sample size 4496.00

## Chi-square of target model 1505.44

## DF of target model 130.00

## p value of target model 0.00

## Chi-square of independence model 4471.42

## DF of independence model 140.00

## RMSEA 0.18

## RMSEA lower 95% CI 0.17

## RMSEA upper 95% CI 0.19

## SRMR 0.16

## TLI 0.66

## CFI 0.68

## AIC 1245.44

## BIC 412.02

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The fit indices for testing the homogeneity of the correlation matrices in the Stage 1 analysis are
χ2(df = 130, N = 4, 496) = 1505.4443, p = 0.0000, CFI=0.1621, SRMR=0.1736, and RMSEA=0.1815.
These value indicate that it is not reasonable to assume that the correlation matrices are homogeneous.
Rather, it would be more appropriate to employ a random-effects model that will be illustrated later. As
an illustration, however, we continue to fit the stage 2 model even though the homogeneity assumption
of the correlation matrices is questionable.

We may also extract the pooled correlation matrix by the following command.

coef(fixed1)

## A C ES E I

## A 1.00000 0.3633 0.3904 0.1036 0.09229

## C 0.36328 1.0000 0.4161 0.1351 0.14143

## ES 0.39037 0.4161 1.0000 0.2445 0.13834

## E 0.10357 0.1351 0.2445 1.0000 0.42457

## I 0.09229 0.1414 0.1383 0.4246 1.00000

Stage 2 analysis The tssem2() function is used to fit a factor analytic model on the pooled correlation
matrix with the inverse of its asymptotic covariance matrix as the weight matrix. The structural model
in the stage 2 analysis is specified via the reticular action model (RAM) formulation (McArdle and
McDonald, 1984). Structural models are specified via three matrices. A and S are used to specify
the asymmetric paths and the symmetric variance covariance matrices, respectively. A denotes the
asymmetric paths, such as the regression coefficients and the factor loadings among the variables, with
aij in A representing the regression coefficient from variable j to variable i. S is a symmetric matrix
representing the variances and covariances of the variables. It is used to specify the double arrows in path
diagrams. The diagonal elements represent the variances of the variables. If the variables are independent
variables, the corresponding diagonals in S denote the variances; otherwise, the corresponding diagonals
in S represent the residuals of the dependent variables. The off-diagonals in S represent the covariances
of the variables. F is a selection matrix used to filter observed variables. The following syntax specifies
the A matrix:

## Factor loadings

Lambda <- matrix(c(".3*Alpha_A", ".3*Alpha_C", ".3*Alpha_ES",

rep(0,5),".3*Beta_E", ".3*Beta_I"),

ncol = 2, nrow = 5)

## It is easier to create A this way since there are lots of 0

A1 <- rbind(cbind(matrix(0,ncol=5,nrow=5), Lambda), matrix(0,ncol=7,nrow=2))
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## This step is not necessary but is helpful in inspecting the content of A1.

dimnames(A1) <- list(c("A", "C", "ES", "E", "I", "Alpha", "Beta"),

c("A", "C", "ES", "E", "I", "Alpha", "Beta"))

## Display the content of A1

A1

## A C ES E I Alpha Beta

## A "0" "0" "0" "0" "0" ".3*Alpha_A" "0"

## C "0" "0" "0" "0" "0" ".3*Alpha_C" "0"

## ES "0" "0" "0" "0" "0" ".3*Alpha_ES" "0"

## E "0" "0" "0" "0" "0" "0" ".3*Beta_E"

## I "0" "0" "0" "0" "0" "0" ".3*Beta_I"

## Alpha "0" "0" "0" "0" "0" "0" "0"

## Beta "0" "0" "0" "0" "0" "0" "0"

The above output shows the A1 matrix. Alpha A is the label of the factor loading from Alpha to A,
while ”0.3” is the starting value. When the labels are the same, the parameters are constrained equally.
The values of ”0” mean that these factor loadings are fixed at 0. The following syntax specifies the S
matrix:

## Covariance matrix among the latent factors

Phi <- matrix(c(1, "0.3*cor", "0.3*cor",1), ncol=2, nrow=2)

## Error variances among the errors

Psi <- Diag(c(".2*e1", ".2*e2", ".2*e3", ".2*e4", ".2*e5"))

## Combine them to create the S matrix

S1 <- bdiagMat(list(Psi, Phi))

## This step is not necessary but is helpful in inspecting the content of S1.

dimnames(S1) <- list(c("A", "C", "ES", "E", "I", "Alpha", "Beta"),

c("A", "C", "ES", "E", "I", "Alpha", "Beta"))

S1

## A C ES E I Alpha Beta

## A ".2*e1" "0" "0" "0" "0" "0" "0"

## C "0" ".2*e2" "0" "0" "0" "0" "0"

## ES "0" "0" ".2*e3" "0" "0" "0" "0"

## E "0" "0" "0" ".2*e4" "0" "0" "0"

## I "0" "0" "0" "0" ".2*e5" "0" "0"

## Alpha "0" "0" "0" "0" "0" "1" "0.3*cor"

## Beta "0" "0" "0" "0" "0" "0.3*cor" "1"

The following syntax specifies the F matrix:

## The first 5 variables are observed, whereas the last 2 are latent.

F1 <- create.Fmatrix(c(1, 1, 1, 1, 1, 0, 0), as.mxMatrix=FALSE)

## This step is not necessary but is helpful in inspecting the content of F1.

dimnames(F1) <- list(c("A", "C", "ES", "E", "I"),

c("A", "C", "ES", "E", "I", "Alpha", "Beta"))

F1

## A C ES E I Alpha Beta

## A 1 0 0 0 0 0 0

## C 0 1 0 0 0 0 0

## ES 0 0 1 0 0 0 0

## E 0 0 0 1 0 0 0

## I 0 0 0 0 1 0 0

We may then fit the structural model via the tssem2() command:
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fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,

model.name="Digman97 FEM")

summary(fixed2)

##

## Call:

## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),

## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,

## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,

## intervals.type = intervals.type, mx.algebras = mx.algebras,

## model.name = model.name, suppressWarnings = suppressWarnings,

## silent = silent, run = run)

##

## 95% confidence intervals: z statistic approximation

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Alpha_A 0.5628 0.0154 0.5327 0.5929 36.6 <2e-16 ***

## Alpha_C 0.6052 0.0153 0.5752 0.6353 39.5 <2e-16 ***

## Beta_E 0.7814 0.0342 0.7143 0.8485 22.8 <2e-16 ***

## Alpha_ES 0.7192 0.0157 0.6885 0.7499 45.9 <2e-16 ***

## Beta_I 0.5514 0.0260 0.5004 0.6024 21.2 <2e-16 ***

## cor 0.3627 0.0224 0.3188 0.4065 16.2 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Goodness-of-fit indices:

## Value

## Sample size 4496.00

## Chi-square of target model 65.45

## DF of target model 4.00

## p value of target model 0.00

## Number of constraints imposed on "Smatrix" 0.00

## DF manually adjusted 0.00

## Chi-square of independence model 3112.72

## DF of independence model 10.00

## RMSEA 0.06

## RMSEA lower 95% CI 0.05

## RMSEA upper 95% CI 0.07

## SRMR 0.03

## TLI 0.95

## CFI 0.98

## AIC 57.45

## BIC 31.81

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values indicate problems.)

The fit indices on the Stage 2 structural model are χ2(df = 4, N = 4, 496) = 65.4526, p = 0.0000,
CFI=0.0284, SRMR=0.0465, and RMSEA=0.0585. Although the goodness-of-fit indices look good, we
should be cautious when interpreting them because of the poor goodness-of-fit indices in the Stage 1
analysis.

Random-effects model: Stage 1 analysis The random-effects TSSEM may be requested by speci-
fying the method="REM" argument in tssem1(). By default (RE.type="Symm"), a positive definite sym-
metric covariance matrix among the random effects is used. For practical reasons, such as an insufficient
number of studies, it may not be feasible to estimate the full variance components of the random effects.
A diagonal matrix of the random effects may be specified by using RE.type="Diag". Researchers may
also specify RE.type="Zero". Since the variance component of the random effects is zero, the model be-
comes a fixed-effects model. This model is equivalent to the Generalized Least Squares (GLS) approach
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proposed by Becker (1992).

random1 <- tssem1(Digman97$data, Digman97$n, method="REM", RE.type="Diag")

summary(random1)

##

## Call:

## meta(y = ES, v = acovR, RE.constraints = Diag(paste0(RE.startvalues,

## "*Tau2_", 1:no.es, "_", 1:no.es)), RE.lbound = RE.lbound,

## I2 = I2, model.name = model.name, suppressWarnings = TRUE,

## silent = silent, run = run)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 0.389719 0.054293 0.283308 0.496130 7.18 7.1e-13

## Intercept2 0.432659 0.041451 0.351416 0.513902 10.44 < 2e-16

## Intercept3 0.049456 0.060711 -0.069535 0.168447 0.81 0.4153

## Intercept4 0.096037 0.044787 0.008256 0.183818 2.14 0.0320

## Intercept5 0.427242 0.039116 0.350576 0.503909 10.92 < 2e-16

## Intercept6 0.119293 0.041062 0.038813 0.199773 2.91 0.0037

## Intercept7 0.192924 0.047580 0.099670 0.286178 4.05 5.0e-05

## Intercept8 0.226902 0.032409 0.163381 0.290422 7.00 2.5e-12

## Intercept9 0.181056 0.042589 0.097584 0.264528 4.25 2.1e-05

## Intercept10 0.436150 0.032060 0.373314 0.498985 13.60 < 2e-16

## Tau2_1_1 0.036484 0.015131 0.006828 0.066139 2.41 0.0159

## Tau2_2_2 0.019631 0.008598 0.002779 0.036483 2.28 0.0224

## Tau2_3_3 0.045714 0.019523 0.007450 0.083978 2.34 0.0192

## Tau2_4_4 0.022361 0.009951 0.002858 0.041864 2.25 0.0246

## Tau2_5_5 0.017291 0.007964 0.001681 0.032900 2.17 0.0299

## Tau2_6_6 0.018155 0.008959 0.000596 0.035714 2.03 0.0427

## Tau2_7_7 0.026049 0.011303 0.003896 0.048202 2.30 0.0212

## Tau2_8_8 0.009888 0.005137 -0.000181 0.019956 1.92 0.0543

## Tau2_9_9 0.019882 0.008951 0.002340 0.037425 2.22 0.0263

## Tau2_10_10 0.010492 0.005016 0.000661 0.020323 2.09 0.0365

##

## Intercept1 ***

## Intercept2 ***

## Intercept3

## Intercept4 *

## Intercept5 ***

## Intercept6 **

## Intercept7 ***

## Intercept8 ***

## Intercept9 ***

## Intercept10 ***

## Tau2_1_1 *

## Tau2_2_2 *

## Tau2_3_3 *

## Tau2_4_4 *

## Tau2_5_5 *

## Tau2_6_6 *

## Tau2_7_7 *

## Tau2_8_8 .

## Tau2_9_9 *

## Tau2_10_10 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## Q statistic on the homogeneity of effect sizes: 1220

## Degrees of freedom of the Q statistic: 130

## P value of the Q statistic: 0

##

## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## Intercept1: I2 (Q statistic) 0.93

## Intercept2: I2 (Q statistic) 0.89

## Intercept3: I2 (Q statistic) 0.93

## Intercept4: I2 (Q statistic) 0.87

## Intercept5: I2 (Q statistic) 0.88

## Intercept6: I2 (Q statistic) 0.85

## Intercept7: I2 (Q statistic) 0.89

## Intercept8: I2 (Q statistic) 0.77

## Intercept9: I2 (Q statistic) 0.86

## Intercept10: I2 (Q statistic) 0.82

##

## Number of studies (or clusters): 14

## Number of observed statistics: 140

## Number of estimated parameters: 20

## Degrees of freedom: 120

## -2 log likelihood: -112.4

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The I2 indicates the heterogeneity of the correlation coefficients. For example, the above analysis
shows that the I2 based on the Q statistic varies from 0.7669 to 0.9326, indicating a high degree of
heterogeneity among the correlation elements. There are no goodness-of-fit indices for the random-
effects TSSEM since it is usually based on a saturated model of mean vectors of fixed effects and variance
components of random effects in a multivariate random-effects meta-analysis.

If we want to extract the estimated average correlation matrix in matrix form, we may use the
following command.

## Select the fixed effects and convert it into a correlation matrix

vec2symMat( coef(random1, select="fixed"), diag=FALSE )

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.00000 0.3897 0.4327 0.04946 0.09604

## [2,] 0.38972 1.0000 0.4272 0.11929 0.19292

## [3,] 0.43266 0.4272 1.0000 0.22690 0.18106

## [4,] 0.04946 0.1193 0.2269 1.00000 0.43615

## [5,] 0.09604 0.1929 0.1811 0.43615 1.00000

Stage 2 analysis The Stage 2 analysis is conducted as usual via the tssem2() function. This functions
automatically handles whether a fixed- or a random-effects model is used in the stage 1 analysis.

random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, Fmatrix=F1)

summary(random2)

##

## Call:

## wls(Cov = pooledS, aCov = aCov, n = tssem1.obj$total.n, RAM = RAM,

## Amatrix = Amatrix, Smatrix = Smatrix, Fmatrix = Fmatrix,

## diag.constraints = diag.constraints, cor.analysis = cor.analysis,

## intervals.type = intervals.type, mx.algebras = mx.algebras,

## model.name = model.name, suppressWarnings = suppressWarnings,

## silent = silent, run = run)
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##

## 95% confidence intervals: z statistic approximation

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Alpha_A 0.5694 0.0524 0.4667 0.6722 10.86 < 2e-16 ***

## Alpha_C 0.5906 0.0526 0.4874 0.6938 11.22 < 2e-16 ***

## Beta_E 0.6800 0.0757 0.5315 0.8284 8.98 < 2e-16 ***

## Alpha_ES 0.7605 0.0620 0.6390 0.8819 12.27 < 2e-16 ***

## Beta_I 0.6418 0.0725 0.4998 0.7839 8.86 < 2e-16 ***

## cor 0.3777 0.0474 0.2848 0.4706 7.97 1.6e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Goodness-of-fit indices:

## Value

## Sample size 4496.00

## Chi-square of target model 7.82

## DF of target model 4.00

## p value of target model 0.10

## Number of constraints imposed on "Smatrix" 0.00

## DF manually adjusted 0.00

## Chi-square of independence model 501.68

## DF of independence model 10.00

## RMSEA 0.01

## RMSEA lower 95% CI 0.00

## RMSEA upper 95% CI 0.03

## SRMR 0.04

## TLI 0.98

## CFI 0.99

## AIC -0.18

## BIC -25.82

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values indicate problems.)

The fit indices on the Stage 2 structural model are χ2(df = 4, N = 4, 496) = 7.8204, p = 0.0984,
CFI=0.0436, SRMR=0.0000, and RMSEA=0.0146. This indicates that the model fits the data quite
well. The factor loadings on the Alpha factor are 0.5694, 0.5906, and 0.7605, while the factor loadings
on the Beta factor are 0.6800, and 0.6418. The factor correlation between these two factors is 0.3937.
All of these estimates are statistically significant.

We may check whether the parameters are correctly labelled by displaying the model graphically.
This helps us to check whether the theoretical model is the same as the fitted one.

plot(random2, whatLabels="path", edge.label.cex=0.8)

## Registered S3 methods overwritten by ’huge’:

## method from

## plot.sim BDgraph

## print.sim BDgraph
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Figure 9: Plot of parameter labels

More importantly, we may plot the parameter estimates by the following command.

## Plot the parameter estimates

plot(random2, color="yellow")
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Figure 10: Plot of parameter estimates

4.4.2 Example 2

This dataset was based on Becker (2009); Craft et al. (2003). It includes ten studies of correlation
matrices among Performance Per, Cognitive Cog, Somatic SO, and Self confidence SC. The dependent
variable is Performance, while the other variables are either independent variables or mediators.

## Display the first few cases of the data

head(Becker09$data)

## $`1`

## Performance Cognitive Somatic Self_confidence

## Performance 1.00 -0.55 -0.48 0.66

## Cognitive -0.55 1.00 0.47 -0.38

## Somatic -0.48 0.47 1.00 -0.46

## Self_confidence 0.66 -0.38 -0.46 1.00

##

## $`3`

## Performance Cognitive Somatic Self_confidence
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## Performance 1.00 0.53 -0.12 0.03

## Cognitive 0.53 1.00 0.52 -0.48

## Somatic -0.12 0.52 1.00 -0.40

## Self_confidence 0.03 -0.48 -0.40 1.00

##

## $`6`

## Performance Cognitive Somatic Self_confidence

## Performance 1.00 0.44 0.46 NA

## Cognitive 0.44 1.00 0.67 NA

## Somatic 0.46 0.67 1.00 NA

## Self_confidence NA NA NA NA

##

## $`10`

## Performance Cognitive Somatic Self_confidence

## Performance 1.00 -0.39 -0.17 0.19

## Cognitive -0.39 1.00 0.21 -0.54

## Somatic -0.17 0.21 1.00 -0.43

## Self_confidence 0.19 -0.54 -0.43 1.00

##

## $`17`

## Performance Cognitive Somatic Self_confidence

## Performance 1.00 0.1 0.31 -0.17

## Cognitive 0.10 1.0 NA NA

## Somatic 0.31 NA NA NA

## Self_confidence -0.17 NA NA NA

##

## $`22`

## Performance Cognitive Somatic Self_confidence

## Performance 1.00 0.23 0.08 0.51

## Cognitive 0.23 1.00 0.45 -0.29

## Somatic 0.08 0.45 1.00 -0.44

## Self_confidence 0.51 -0.29 -0.44 1.00

## Display the sample sizes

Becker09$n

## [1] 142 37 16 14 45 100 51 128 70 30

Fixed-effects model: Stage 1 analysis We may conduct the first stage analysis with a fixed-effects
TSSEM with the following syntax. The fit indices for testing the homogeneity of the correlation matrices
in the Stage 1 analysis are χ2(df = 46, N = 633) = 212.2591, p = 0.0000, CFI=0.2048, RMSEA=0.2391,
and SRMR=0.2086. These value indicate that it is not reasonable to assume that the correlation matrices
are homogeneous.

## First stage analysis

fixed1 <- tssem1(Becker09$data, Becker09$n, method="FEM")

summary(fixed1)

##

## Call:

## tssem1FEM(Cov = Cov, n = n, cor.analysis = cor.analysis, model.name = model.name,

## cluster = cluster, suppressWarnings = suppressWarnings, silent = silent,

## run = run)

##

## Coefficients:

## Estimate Std.Error z value Pr(>|z|)

## S[1,2] -0.0676 0.0420 -1.61 0.10721
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## S[1,3] -0.1572 0.0410 -3.84 0.00012 ***

## S[1,4] 0.3699 0.0371 9.96 < 2e-16 ***

## S[2,3] 0.5263 0.0300 17.56 < 2e-16 ***

## S[2,4] -0.4139 0.0349 -11.86 < 2e-16 ***

## S[3,4] -0.4167 0.0348 -11.98 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Goodness-of-fit indices:

## Value

## Sample size 633.00

## Chi-square of target model 212.26

## DF of target model 46.00

## p value of target model 0.00

## Chi-square of independence model 638.41

## DF of independence model 52.00

## RMSEA 0.24

## RMSEA lower 95% CI 0.21

## RMSEA upper 95% CI 0.27

## SRMR 0.20

## TLI 0.68

## CFI 0.72

## AIC 120.26

## BIC -84.46

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

Stage 2 analysis A random-effects model is preferred for this data set. As an illustration, we also fit
the structural equation model in the stage two analysis.

## Regression coefficients

A1 <- create.mxMatrix(c(0, "0.1*Cog2Per", "0.1*SO2Per", "0.1*SC2Per",

0, 0, 0, 0,

0, 0, 0, 0,

0, "0.1*Cog2SC", "0.1*SO2SC",0),

type="Full", byrow=TRUE, ncol=4, nrow=4,

as.mxMatrix=FALSE)

## This step is not necessary but it is useful for inspecting the model.

dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Per","Cog","SO","SC")

A1

## Per Cog SO SC

## Per "0" "0.1*Cog2Per" "0.1*SO2Per" "0.1*SC2Per"

## Cog "0" "0" "0" "0"

## SO "0" "0" "0" "0"

## SC "0" "0.1*Cog2SC" "0.1*SO2SC" "0"

## Covariance matrix among the variables

S1 <- create.mxMatrix(c("0.1*var_Per",

0, 1,

0, "0.1*cor", 1,

0, 0, 0, "0.1*var_SC"),

byrow=TRUE, type="Symm", as.mxMatrix=FALSE)

## This step is not necessary but it is useful for inspecting the model.
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dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Per","Cog","SO","SC")

S1

## Per Cog SO SC

## Per "0.1*var_Per" "0" "0" "0"

## Cog "0" "1" "0.1*cor" "0"

## SO "0" "0.1*cor" "1" "0"

## SC "0" "0" "0" "0.1*var_SC"

## Second stage analysis

fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB")

summary(fixed2)

##

## Call:

## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),

## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,

## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,

## intervals.type = intervals.type, mx.algebras = mx.algebras,

## model.name = model.name, suppressWarnings = suppressWarnings,

## silent = silent, run = run)

##

## 95% confidence intervals: Likelihood-based statistic

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Cog2Per 0.1281 NA 0.0324 0.2246 NA NA

## SC2Per 0.3985 NA 0.3149 0.4829 NA NA

## SO2Per -0.0585 NA -0.1532 0.0362 NA NA

## Cog2SC -0.2691 NA -0.3533 -0.1855 NA NA

## SO2SC -0.2750 NA -0.3591 -0.1915 NA NA

## cor 0.5263 NA 0.4676 0.5851 NA NA

##

## Goodness-of-fit indices:

## Value

## Sample size 633

## Chi-square of target model 0

## DF of target model 0

## p value of target model 0

## Number of constraints imposed on "Smatrix" 0

## DF manually adjusted 0

## Chi-square of independence model 530

## DF of independence model 6

## RMSEA 0

## RMSEA lower 95% CI 0

## RMSEA upper 95% CI 0

## SRMR 0

## TLI -Inf

## CFI 1

## AIC 0

## BIC 0

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values indicate problems.)

Fixed-effects model with subgroup analysis: Stage 1 analysis The above analysis indicates
that the correlation matrices are heterogeneous. This section illustrates how to group the studies into
sub-groups. If the studies become homogeneous, the grouping variable may be used to explain the
heterogeneity.
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## Display Type of sport

Becker09$Type_of_sport

## [1] "Individual" "Individual" "Team" "Individual" "Individual"

## [6] "Individual" "Team" "Team" "Team" "Individual"

cluster1 <- tssem1(Becker09$data, Becker09$n, method="FEM",

cluster=Becker09$Type_of_sport)

summary(cluster1)

## $Individual

##

## Call:

## tssem1FEM(Cov = data.cluster[[i]], n = n.cluster[[i]], cor.analysis = cor.analysis,

## model.name = model.name, suppressWarnings = suppressWarnings)

##

## Coefficients:

## Estimate Std.Error z value Pr(>|z|)

## S[1,2] -0.1269 0.0556 -2.28 0.023 *

## S[1,3] -0.2114 0.0541 -3.91 9.2e-05 ***

## S[1,4] 0.4874 0.0437 11.16 < 2e-16 ***

## S[2,3] 0.4730 0.0433 10.92 < 2e-16 ***

## S[2,4] -0.3865 0.0472 -8.18 2.2e-16 ***

## S[3,4] -0.4667 0.0435 -10.73 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Goodness-of-fit indices:

## Value

## Sample size 368.00

## Chi-square of target model 136.68

## DF of target model 25.00

## p value of target model 0.00

## Chi-square of independence model 402.87

## DF of independence model 31.00

## RMSEA 0.27

## RMSEA lower 95% CI 0.23

## RMSEA upper 95% CI 0.32

## SRMR 0.22

## TLI 0.63

## CFI 0.70

## AIC 86.68

## BIC -11.02

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

##

## $Team

##

## Call:

## tssem1FEM(Cov = data.cluster[[i]], n = n.cluster[[i]], cor.analysis = cor.analysis,

## model.name = model.name, suppressWarnings = suppressWarnings)

##

## Coefficients:

## Estimate Std.Error z value Pr(>|z|)

## S[1,2] 0.00514 0.06327 0.08 0.93523

## S[1,3] -0.08688 0.06230 -1.39 0.16314

## S[1,4] 0.20875 0.06092 3.43 0.00061 ***

## S[2,3] 0.58503 0.04048 14.45 < 2e-16 ***

## S[2,4] -0.44541 0.05146 -8.66 < 2e-16 ***
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## S[3,4] -0.34644 0.05613 -6.17 6.7e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Goodness-of-fit indices:

## Value

## Sample size 265.00

## Chi-square of target model 50.80

## DF of target model 15.00

## p value of target model 0.00

## Chi-square of independence model 235.54

## DF of independence model 21.00

## RMSEA 0.19

## RMSEA lower 95% CI 0.13

## RMSEA upper 95% CI 0.25

## SRMR 0.15

## TLI 0.77

## CFI 0.83

## AIC 20.80

## BIC -32.90

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

The LR statistics and the goodness-of-fit indicate that the correlation matrices are still heterogeneous.
Grouping the studies does not help.

Stage 2 analysis As an illustration, we still show how to conduct the stage two analysis though we
are not going to interpret the results.

## Second stage analysis

cluster2 <- tssem2(cluster1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE,

intervals.type="LB")

summary(cluster2)

## $Individual

##

## Call:

## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),

## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,

## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,

## intervals.type = intervals.type, mx.algebras = mx.algebras,

## model.name = model.name, suppressWarnings = suppressWarnings,

## silent = silent, run = run)

##

## 95% confidence intervals: Likelihood-based statistic

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Cog2Per 0.07488 NA -0.04290 0.19380 NA NA

## SC2Per 0.51281 NA 0.41099 0.61679 NA NA

## SO2Per -0.00753 NA -0.12858 0.11411 NA NA

## Cog2SC -0.21349 NA -0.31997 -0.10754 NA NA

## SO2SC -0.36571 NA -0.46877 -0.26351 NA NA

## var_Per 0.75797 NA 0.66687 0.83461 NA NA

## var_SC 0.74682 NA 0.65879 0.82253 NA NA

## cor 0.47304 NA 0.38816 0.55792 NA NA

##

## Goodness-of-fit indices:

## Value
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## Sample size 368

## Chi-square of target model 0

## DF of target model 0

## p value of target model 0

## Number of constraints imposed on "Smatrix" 2

## DF manually adjusted 0

## Chi-square of independence model 344

## DF of independence model 6

## RMSEA 0

## RMSEA lower 95% CI 0

## RMSEA upper 95% CI 0

## SRMR 0

## TLI -Inf

## CFI 1

## AIC 0

## BIC 0

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values indicate problems.)

##

## $Team

##

## Call:

## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),

## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,

## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,

## intervals.type = intervals.type, mx.algebras = mx.algebras,

## model.name = model.name, suppressWarnings = suppressWarnings,

## silent = silent, run = run)

##

## 95% confidence intervals: Likelihood-based statistic

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Cog2Per 0.17815 NA 0.02022 0.33918 NA NA

## SC2Per 0.25216 NA 0.11755 0.38803 NA NA

## SO2Per -0.10374 NA -0.25333 0.04520 NA NA

## Cog2SC -0.36904 NA -0.50404 -0.23669 NA NA

## SO2SC -0.13054 NA -0.26974 0.00756 NA NA

## var_Per 0.93743 NA 0.86451 0.98287 NA NA

## var_SC 0.79040 NA 0.68991 0.87177 NA NA

## cor 0.58503 NA 0.50569 0.66436 NA NA

##

## Goodness-of-fit indices:

## Value

## Sample size 265

## Chi-square of target model 0

## DF of target model 0

## p value of target model 0

## Number of constraints imposed on "Smatrix" 2

## DF manually adjusted 0

## Chi-square of independence model 291

## DF of independence model 6

## RMSEA 0

## RMSEA lower 95% CI 0

## RMSEA upper 95% CI 0

## SRMR 0

## TLI -Inf

## CFI 1

## AIC 0
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## BIC 0

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values indicate problems.)

Plot the figures When there is a cluster variable, it is of interest to display the differences on the
parameter estimates. We may use the following code to plot the models for the individual sport and the
team sport.

library("semPlot")

## Convert the model to semPlotModel object with 2 plots

## Use the short forms of the variable names to simplify the figures

my.plots <- lapply(X=cluster2, FUN=meta2semPlot,

manNames=c("Per","Cog","SO","SC") )

## Setup two plots

layout(t(1:2))

## The labels are overlapped. We may modify it by using layout="spring"

semPaths(my.plots[[1]], whatLabels="est", nCharNodes=10,

color="orange", layout="spring", edge.label.cex=0.8)

title("Individual sport")

semPaths(my.plots[[2]], whatLabels="est", nCharNodes=10,

color="skyblue", layout="spring", edge.label.cex=0.8)

title("Team sport")
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Figure 11: Plot of individual sport versus team sport

Random-effects model: Stage 1 analysis We may conduct a random-effects TSSEM with the
following syntax. Since there is not enough data, we restrict the structure of the variance component
of the random effects by specifying RE.type="Diag". The I2 of the correlation coefficients varies from
0.0000 to 0.8521. A random-effects model is more appropriate than a fixed-effects model for this data
set.

## First stage analysis

random1 <- tssem1(Becker09$data, Becker09$n, method="REM", RE.type="Diag")

## Rerun it to remove possible errors

## random1 <- rerun(random1)

summary(random1)

##

## Call:

## meta(y = ES, v = acovR, RE.constraints = Diag(paste0(RE.startvalues,

## "*Tau2_", 1:no.es, "_", 1:no.es)), RE.lbound = RE.lbound,
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## I2 = I2, model.name = model.name, suppressWarnings = TRUE,

## silent = silent, run = run)

##

## 95% confidence intervals: z statistic approximation (robust=FALSE)

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Intercept1 -4.49e-02 1.09e-01 -2.58e-01 1.68e-01 -0.41 0.67968

## Intercept2 -1.34e-01 7.80e-02 -2.87e-01 1.89e-02 -1.72 0.08581

## Intercept3 2.99e-01 8.00e-02 1.42e-01 4.56e-01 3.74 0.00018

## Intercept4 5.23e-01 3.27e-02 4.59e-01 5.87e-01 15.99 < 2e-16

## Intercept5 -4.15e-01 4.55e-02 -5.05e-01 -3.26e-01 -9.12 < 2e-16

## Intercept6 -4.18e-01 4.58e-02 -5.08e-01 -3.28e-01 -9.14 < 2e-16

## Tau2_1_1 9.49e-02 5.11e-02 -5.19e-03 1.95e-01 1.86 0.06312

## Tau2_2_2 3.35e-02 2.37e-02 -1.30e-02 8.00e-02 1.41 0.15773

## Tau2_3_3 3.47e-02 2.28e-02 -1.00e-02 7.93e-02 1.52 0.12831

## Tau2_4_4 2.28e-10 6.73e-03 -1.32e-02 1.32e-02 0.00 1.00000

## Tau2_5_5 4.96e-03 7.42e-03 -9.60e-03 1.95e-02 0.67 0.50447

## Tau2_6_6 4.97e-03 6.71e-03 -8.17e-03 1.81e-02 0.74 0.45849

##

## Intercept1

## Intercept2 .

## Intercept3 ***

## Intercept4 ***

## Intercept5 ***

## Intercept6 ***

## Tau2_1_1 .

## Tau2_2_2

## Tau2_3_3

## Tau2_4_4

## Tau2_5_5

## Tau2_6_6

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Q statistic on the homogeneity of effect sizes: 173.5

## Degrees of freedom of the Q statistic: 46

## P value of the Q statistic: 1.11e-16

##

## Heterogeneity indices (based on the estimated Tau2):

## Estimate

## Intercept1: I2 (Q statistic) 0.85

## Intercept2: I2 (Q statistic) 0.68

## Intercept3: I2 (Q statistic) 0.72

## Intercept4: I2 (Q statistic) 0.00

## Intercept5: I2 (Q statistic) 0.29

## Intercept6: I2 (Q statistic) 0.29

##

## Number of studies (or clusters): 10

## Number of observed statistics: 52

## Number of estimated parameters: 12

## Degrees of freedom: 40

## -2 log likelihood: -30.49

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values may indicate problems.)

Stage 2 analysis Since the model is a saturated model, the LR statistic is 0 with 0 df. When there
are mediators, we may also want to estimate the indirect effects. The tssem2() function allows us to
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include arbitrary algebras. For example, we may define the indirect effects via Cog and SO separately and
totally with the following syntax. LBCI on these values may also be obtained. The results show that
the indirect effects via Cog and SO separately and totally are -0.0877, -0.0896 and -0.1772, respectively.
All of these effects are statistically significant.

## Second stage analysis

random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, intervals.type="LB",

model.name="TSSEM2 Becker09",

mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"),

SO=mxAlgebra(SO2SC*SC2Per, name="SO"),

Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per,

name="Cog_SO")) )

summary(random2)

##

## Call:

## wls(Cov = pooledS, aCov = aCov, n = tssem1.obj$total.n, RAM = RAM,

## Amatrix = Amatrix, Smatrix = Smatrix, Fmatrix = Fmatrix,

## diag.constraints = diag.constraints, cor.analysis = cor.analysis,

## intervals.type = intervals.type, mx.algebras = mx.algebras,

## model.name = model.name, suppressWarnings = suppressWarnings,

## silent = silent, run = run)

##

## 95% confidence intervals: Likelihood-based statistic

## Coefficients:

## Estimate Std.Error lbound ubound z value Pr(>|z|)

## Cog2Per 0.1225 NA -0.1971 0.4467 NA NA

## SC2Per 0.3239 NA 0.1084 0.5432 NA NA

## SO2Per -0.0627 NA -0.3163 0.1910 NA NA

## Cog2SC -0.2708 NA -0.3934 -0.1486 NA NA

## SO2SC -0.2765 NA -0.3996 -0.1536 NA NA

## cor 0.5231 NA 0.4590 0.5872 NA NA

##

## mxAlgebras objects (and their 95% likelihood-based CIs):

## lbound Estimate ubound

## Cog[1,1] -0.1780 -0.08770 -0.02765

## SO[1,1] -0.1755 -0.08955 -0.02888

## Cog_SO[1,1] -0.3142 -0.17725 -0.05953

##

## Goodness-of-fit indices:

## Value

## Sample size 633

## Chi-square of target model 0

## DF of target model 0

## p value of target model 0

## Number of constraints imposed on "Smatrix" 0

## DF manually adjusted 0

## Chi-square of independence model 323

## DF of independence model 6

## RMSEA 0

## RMSEA lower 95% CI 0

## RMSEA upper 95% CI 0

## SRMR 0

## TLI -Inf

## CFI 1

## AIC 0

## BIC 0

## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

## Other values indicate problems.)
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We may plot the model and label the parameters for checking.

## Plot the model with labels

## The labels are overlapped. We may modify it by using layout="spring"

plot(random2, whatLabels="path", layout="spring", nCharEdges=10,

nCharNodes=10, edge.label.cex=0.8)

SO2Per

Cog2Per

Cog2SC

SO2SC

SC2Per

Performanc

Cognitive

Somatic

Slf_cnfdnc

Figure 12: Plot of parameter labels

We may also plot the parameter estimates in the figure.

## Plot the parameter estimates

plot(random2, whatLabels="est", layout="spring", nCharEdges=10,

nCharNodes=10, edge.label.cex=0.8, color="green")
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Figure 13: Plot of parameter estimates

5 Conclusion

This paper introduced various meta-analytic models using an SEM approach. More importantly, these
models have all been implemented in the metaSEM package which is freely available as an R package.
Due to space constraint, I did not include topics, such as using REML as the estimation method (see
Cheung, 2013a), constructing a likelihood-based confidence interval (LBCI) (see Cheung, 2009), and
using alternative random-effects MASEM (see Cheung and Cheung, 2016). Readers may refer to Cheung
(2015a) for details. Some of these models can be implemented in standard SEM software such as Mplus
(Muthén and Muthén, 2012). Since SEM software was not designed for meta-analysis, transformations
on the effect sizes are required to meet the distribution assumptions (see, e.g., Cheung, 2008, 2013b,
2015a). To conclude, SEM provides a flexible framework to develop meta-analytic techniques. Many of
the techniques available in SEM can be easily extended to meta-analysis. The supplementary material
includes some examples on how to analyze these models using the metaSEM package. The analyses were
conducted based on the following R Packages.
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sessionInfo()

## R version 4.0.3 (2020-10-10)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 20.04.1 LTS

##

## Matrix products: default

## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

##

## locale:

## [1] LC_CTYPE=en_SG.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_SG.UTF-8 LC_COLLATE=en_SG.UTF-8

## [5] LC_MONETARY=en_SG.UTF-8 LC_MESSAGES=en_SG.UTF-8

## [7] LC_PAPER=en_SG.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_SG.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods

## [7] base

##

## other attached packages:

## [1] semPlot_1.1.2 metafor_2.4-0 Matrix_1.2-18 metaSEM_1.2.5

## [5] OpenMx_2.18.1 knitr_1.30

##

## loaded via a namespace (and not attached):

## [1] nlme_3.1-149 RColorBrewer_1.1-2 mi_1.0

## [4] tools_4.0.3 backports_1.1.10 R6_2.5.0

## [7] d3Network_0.5.2.1 rpart_4.1-15 Hmisc_4.4-1

## [10] colorspace_1.4-1 nnet_7.3-14 tidyselect_1.1.0

## [13] gridExtra_2.3 mnormt_2.0.2 compiler_4.0.3

## [16] fdrtool_1.2.15 qgraph_1.6.5 htmlTable_2.1.0

## [19] regsem_1.6.2 scales_1.1.1 checkmate_2.0.0

## [22] psych_2.0.9 mvtnorm_1.1-1 pbapply_1.4-3

## [25] sem_3.1-11 stringr_1.4.0 digest_0.6.27

## [28] pbivnorm_0.6.0 foreign_0.8-80 minqa_1.2.4

## [31] base64enc_0.1-3 jpeg_0.1-8.1 pkgconfig_2.0.3

## [34] htmltools_0.5.0 lme4_1.1-23 lisrelToR_0.1.4

## [37] highr_0.8 htmlwidgets_1.5.2 rlang_0.4.8

## [40] huge_1.3.4.1 rstudioapi_0.11 generics_0.0.2

## [43] gtools_3.8.2 dplyr_1.0.2 zip_2.1.1

## [46] magrittr_1.5 Formula_1.2-3 Rcpp_1.0.5

## [49] munsell_0.5.0 abind_1.4-5 rockchalk_1.8.144

## [52] lifecycle_0.2.0 whisker_0.4 stringi_1.5.3

## [55] carData_3.0-4 MASS_7.3-53 plyr_1.8.6

## [58] matrixcalc_1.0-3 lavaan_0.6-7 grid_4.0.3

## [61] parallel_4.0.3 crayon_1.3.4 lattice_0.20-41

## [64] kutils_1.70 splines_4.0.3 tmvnsim_1.0-2

## [67] pillar_1.4.6 igraph_1.2.6 rjson_0.2.20

## [70] boot_1.3-25 corpcor_1.6.9 BDgraph_2.63

## [73] reshape2_1.4.4 stats4_4.0.3 XML_3.99-0.5

## [76] glue_1.4.2 evaluate_0.14 latticeExtra_0.6-29

## [79] data.table_1.13.2 png_0.1-7 vctrs_0.3.4

## [82] nloptr_1.2.2.2 gtable_0.3.0 purrr_0.3.4

## [85] ggplot2_3.3.2 xfun_0.19 openxlsx_4.2.2

## [88] xtable_1.8-4 coda_0.19-4 Rsolnp_1.16

## [91] glasso_1.11 survival_3.2-7 truncnorm_1.0-8
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## [94] tibble_3.0.4 arm_1.11-2 ellipse_0.4.2

## [97] cluster_2.1.0 statmod_1.4.34 ellipsis_0.3.1
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