Package 'micemd'

October 15, 2021
Type PackageTitle Multiple Imputation by Chained Equations with Multilevel Data
Version 1.8.0
Date 2021-10-15
DescriptionAddons for the 'mice' package to perform multiple imputation using chained equations with two-level data. Includes imputation methods dedicated to sporadically and systematically miss-ing values. Imputation of continuous, binary or count variables are available. Following the rec-ommendations of Audigier, V. et al (2018) doi:10.1214/18-STS646, the choice of the imputa-tion method for each variable can be facilitated by a default choice tuned according to the struc-ture of the incomplete dataset. Allows parallel calculation and overimputation for 'mice'.
License GPL-2। GPL-3
Depends R (>= 3.5.0), mice (>= 2.42)
Imports Matrix, graphics, utils, stats, MASS, parallel, nlme, lme4,mvmeta ($>=0.4 .7$), jomo ($>=2.6-3$), mvtnorm, digest, abind
Suggests VIM
RoxygenNote 6.1.0
NeedsCompilation no
Author Vincent Audigier [aut, cre] (CNAM MSDMA team),Matthieu Resche-Rigon [aut] (INSERM ECSTRA team)
Maintainer Vincent Audigier vincent.audigier@cnam.fr
Repository CRAN
Date/Publication 2021-10-15 13:30:02 UTC
R topics documented:
micemd-package 2
CHEM97Na 3
find.defaultMethod 5
IPDNa 7
mice.impute.21.2stage.bin 9
mice.impute.21.2stage.norm 10
mice.impute.21.2stage.pmm 11
mice.impute.21.2stage.pois 13
mice.impute.21.glm.bin 14
mice.impute.21.glm.norm 16
mice.impute.2l.glm.pois 17
mice.impute.21.jomo 18
mice.par 20
overimpute 24
plot.mira 26
Index 28
micemd-package Multiple Imputation by Chained Equations with Multilevel Data

Description

Addons for the mice package to perform multiple imputation using chained equations with twolevel data. Includes imputation methods specifically handling sporadically and systematically missing values (Resche-Rigon et al. 2013). Imputation of continuous, binary or count variables are available. Following the recommendations of Audigier, V. et al (2018), the choice of the imputation method for each variable can be facilitated by a default choice tuned according to the structure of the incomplete dataset. Allows parallel calculation for mice.

Author(s)

Vincent Audigier, Matthieu Resche-Rigon
Maintainer: Vincent Audigier vincent.audigier@cnam.fr

References

Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

Jolani, S., Debray, T. P. A., Koffijberg, H., van Buuren, S., and Moons, K. G. M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Statistics in Medicine, 34(11):18411863. doi:10.1002/sim.6451

Quartagno, M. and Carpenter, J. R. (2016). jomo: A package for Multilevel Joint Modelling Multiple Imputation.
Quartagno, M. and Carpenter, J. R. (2016). Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates. Statistics in Medicine, 35(17):2938 2954. doi:10.1002/sim.6837

Resche-Rigon, M. and White, I. R. (2016). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Statistical Methods in Medical Research. To appear. doi:10.1177/0962280216666564

Resche-Rigon, M., White, I. R., Bartlett, J., Peters, S., Thompson, S., and on behalf of the PROGIMT Study Group (2013). Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Statistics in Medicine, 32(28):48904905. doi:10.1002/sim.5894
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03 http://www.jstatsoft.org/v45/i03/

See Also

mice

Examples

```
require(lme4)
data(CHEM97Na)
ind.clust<-1#index for the cluster variable
#initialisation of the argument predictorMatrix
predictor.matrix<-mice(CHEM97Na,m=1,maxit=0)$pred
predictor.matrix[ind.clust,ind.clust]<-0
predictor.matrix[-ind.clust,ind.clust]<- -2
predictor.matrix[predictor.matrix==1]<-2
#initialisation of the argument method
method<-find.defaultMethod(CHEM97Na,ind.clust)
#multiple imputation by chained equations (parallel calculation) [time consumming]
#res.mice<-mice.par(CHEM97Na,predictorMatrix = predictor.matrix,method=method)
#check convergence
#plot(res.mice)
#analysis (apply a generalized linear mixed effects model to each imputed dataset)
#ana<-with(res.mice,expr=glmer(Score~Sex+GSCE+(1|School),
# family="poisson",
# control=glmerControl(optimizer = "bobyqa")))
#check the number of generated tables
#plot(ana)
#pooling
#res.pool<-pool(ana)
#summary(res.pool)
```


Description

This dataset is an extract of the CHEM97 dataset (Fielding, A. et al, 2003) dealing with point scores of 31,022 pupils grouped in 2,280 schools. CHEM97Na reports point score for Schools with more than 70 pupils only, i.e. 1681 pupils grouped in 18 schools. Systematically missing values and sporadically missing values have been added according to a missing completely at random (MCAR) mechanism (Little R.J.A. and Rubin D.B., 2002). Systematically missing values are values that are missing for all pupils of a same school, while sporadically missing values are values which are missing for an individual only (Resche-Rigon, et al 2013).

Usage

data("CHEM97Na")

Format

A data frame with 1681 observations on the following 5 variables.
School a numeric indexing the School
Sex a factor with levels M F
Age a numeric indicating the age in months
GSCE a numeric vector indicating the point score at the General Certificate of Secondary Education Score a numeric vector indicating the point score on A-level Chemistry in 1997

Details

For more details, see Fielding, A. et al (2003).

Source

Fielding, A., Yang, M., and Goldstein, H.(2003). Multilevel ordinal models for examination grades. Statistical Modelling, 3 (2): 127-153.
Available at http://www.bristol.ac.uk/cmm/learning/mmsoftware/data-rev.html\#chem97

References

Fielding, A., Yang, M., and Goldstein, H. (2003). Multilevel ordinal models for examination grades. Statistical Modelling, 3 (2): 127-153. doi:10.1191/1471082X03st052oa
Resche-Rigon, M., White, I. R., Bartlett, J., Peters, S., Thompson, S., and on behalf of the PROGIMT Study Group (2013). Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Statistics in Medicine, 32(28):48904905. doi:10.1002/sim.5894
Little R.J.A., Rubin D.B. (2002) Statistical Analysis with Missing Data. Wiley series in probability and statistics, New-York

See Also

matrixplot

Examples

data(CHEM97Na)
\#summary
summary (CHEM97Na)
\#summary per School
by (CHEM97Na, CHEM97Na\$School, summary)

$$
\begin{array}{ll}
\text { find. defaultMethod } \quad \begin{array}{l}
\text { Suggestion of conditional imputation models to use accordingly to the } \\
\text { incomplete dataset }
\end{array}
\end{array}
$$

Description

Provides conditionnal imputation models to use for each column of the incomplete dataset according to the number of clusters, the number of individuals per cluster and the class of the variables.

Usage

find.defaultMethod(don.na, ind.clust, I.small $=7$, ni.small $=100$, prop.small $=0.4$)

Arguments

don.na An incomplete data frame.
ind.clust A scalar indexes the variable corresponding to the cluster indicator.
I.small A scalar that is used as threshold to consider the number of observed clusters (fully observed or partially observed) as small. Default is I. small=7.
ni.small A scalar that is used as threshold to consider the number individuals per clusters (with observed values) as small. Default is ni.small=100.
prop.small A scalar that is used as threshold to consider the number of small clusters as small. Default is prop.small=0.4.

Details

Provides conditionnal imputation models to use for each column of the incomplete dataset according to the number of clusters, the number of individuals per cluster and the class of the variable (Audigier, V. et al 2017). Returned methods can be: 21.stage.bin (binary), 21.stage.norm (continuous), 21.stage.pois (integer), 21.glm.bin (binary), 21.glm.norm (continuous), 21.glm.pois (integer), 21.jomo (continuous or binary). For a given variable, the method retained is chosen according to the following decision tree:

Few observed	

	Few observed values per cluster	Many observed values per cluster
continuous binary integer	21.glm.norm	21.stage.norm
	21.glm.bin	21.stage.bin
	21.glm.pois	21.stage.pois
	Many observed	clusters
	Few observed values per cluster	Many observed values per cluster
continuous	21.glm.norm	21.stage.norm
binary	21.jomo	21.jomo
	21.glm.pois	21.stage.pois

For instance, with few observed clusters (i.e. less than I.small), and many observed values per cluster (i.e. less than prop. small clusters with less than ni.small observed values), imputation of a continuous variable according to the method 21 .stage.norm will be suggested.

Value

A vector of strings with length ncol (data).

Author(s)

Vincent Audigier vincent.audigier@cnam.fr

References

Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

Jolani, S., Debray, T. P. A., Koffijberg, H., van Buuren, S., and Moons, K. G. M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Statistics in Medicine, 34(11):18411863. doi:10.1002/sim.6451

Quartagno, M. and Carpenter, J. R. (2016). Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates. Statistics in Medicine, 35(17):2938 2954. doi:10.1002/sim.6837

Resche-Rigon, M. and White, I. R. (2016). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Statistical Methods in Medical Research. To appear. doi:10.1177/0962280216666564

See Also

mice, mice. par

Examples

```
    data(CHEM97Na)
    ind.clust<-1#index for the cluster variable
    #initialisation of the argument predictorMatrix
    predictor.matrix<-mice(CHEM97Na,m=1,maxit=0)$pred
    predictor.matrix[ind.clust,ind.clust]<-0
    predictor.matrix[-ind.clust,ind.clust]<- -2
    predictor.matrix[predictor.matrix==1]<-2
    #initialisation of the argument method
    method<-find.defaultMethod(CHEM97Na,ind.clust)
    print(method)
    #multiple imputation by chained equations (parallel calculation)
#res.mice<-mice.par(CHEM97Na, m = 3, predictorMatrix = predictor.matrix, method = method)
```

 IPDNa
 A simulated Individual Patient Data (IPD) meta-analysis with missing values.

Description

This dataset is a simulated version of an IPD meta-analysis consisting of 28 studies focusing on risk factors in acute heart failure (GREAT, 2013). Each study includes a list of patient characteristics and potential risk factors. Each of them is incomplete, leading to sporadically missing values (RescheRigon, et al 2013). In addition, some variables have been collected on some studies only, leading to systematically missing values. More details on the original dataset are provided in Audigier et al. (2018). To mimic the real data, a general location model has been fitted on each study (Schafer, 1997). Then, each study has been generated according to the estimated parameters. Finally, missing values have been allocated similarly to the original dataset.

Usage

data("IPDNa")

Format

A data frame with 11685 observations on the following 10 variables.
centre a numeric indexing the center where the study is conducted
gender a factor with levels 01
bmi a numeric vector indicating the body mass index
age a numeric vector indicating the age
sbp a numeric vector indicating the systolic blood pressure
dbp a numeric vector indicating the diastolic blood pressure
hr a numeric vector indicating the heart rate
lvef a numeric vector indicating the ventricular ejection fraction
bnp a numeric vector indicating the level of the brain natriuretic peptide biomarker
afib a factor with levels 01 indicating the atrial fibrillation

Details

For more details, see Audigier et al. (2018)

Source

GREAT Network (2013). Managing acute heart failure in the ed - case studies from the acute heart failure academy. http://www.greatnetwork.org

References

Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

Resche-Rigon, M., White, I. R., Bartlett, J., Peters, S., Thompson, S., and on behalf of the PROGIMT Study Group (2013). Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data. Statistics in Medicine, 32(28):48904905. doi:10.1002/sim.5894

Schafer, J. L. (1997) Analysis of Incomplete Multivariate Data. Chapman
\& Hall, Chapter 9.

Examples

```
data(IPDNa)
#summary
summary(IPDNa)
#summary per study
by(IPDNa, IPDNa$centre, summary)
```

```
mice.impute.2l.2stage.bin
    Imputation by a two-level logistic model based on a two-stage estima-
    tor
```


Description

Imputes univariate two-level binary variable from a logistic model. The imputation method is based on a two-stage estimator: at step 1, a logistic regression model is fitted to each observed cluster; at step 2, estimates obtained from each cluster are combined according to a linear random effect model.

Usage

mice.impute.2l.2stage.bin(y, ry, x, type, method_est = "mm", ...)

Arguments

y	Incomplete data vector of length n
ry	Vector of missing data pattern (FALSE=missing, TRUE=observed)
x	Matrix $(n \times p)$ of complete covariates.
type	Vector of length ncol (x) identifying random and class variables. Random vari- ables are identified by a '2'. The class variable (only one is allowed) is coded as '-2'. Random variables also include the fixed effect.
method_est	Vector of string given the version of the estimator to used. Choose method_est="reml" for restricted maximum likelihood estimator or method_est="mm" for the method of moments. By default method_est="mm".
	Other named arguments.
\ldots	

Details

Imputes univariate two-level continuous variable from a heteroscedastic normal model. The imputation method is based on a two-stage estimator: at step 1, a linear regression model is fitted to each observed cluster; at step 2, estimates obtained from each cluster are combined according to a linear random effect model. Two possibilities are available to combine estimates at stage 2 : by default, parameters of the linear random effect model are estimated according to the method of moments (MM), otherwise, parameters of the linear random effect model can be estimated according to the restricted maximum likelihood estimator (REML). The variability on the parameters of the imputation is propagated according to an asymptotic strategy requiring a large number of clusters. Compared to the REML version, the MM version is quicker to perform, but it provides less theoretical garanties. Nevertheless, simulation studies show that both versions lead to similar inferences (Audigier et al, 2018; Resche-Rigon, M. and White, I. R., 2016).

Value

A vector of length nmis with imputations.

Author(s)

Vincent Audigier vincent.audigier@cnam.fr

References

Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

Resche-Rigon, M. and White, I. R. (2016). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Statistical Methods in Medical Research. To appear. doi:10.1177/0962280216666564

See Also

```
mice,mice.impute.2l.glm.bin,mice.impute.2l.jomo
```

```
mice.impute.2l.2stage.norm
```

Imputation by a two-level heteroscedastic normal model based on a two-stage estimator

Description

Imputes univariate two-level continuous variable from a heteroscedastic normal model. The imputation method is based on a two-stage estimator: at step 1, a linear regression model is fitted to each observed cluster; at step 2, estimates obtained from each cluster are combined according to a linear random effect model.

Usage

mice.impute.2l.2stage.norm(y, ry, x, type, method_est = "mm", ...)

Arguments

y
ry
x
type
0

Incomplete data vector of length n
Vector of missing data pattern (FALSE=missing, TRUE=observed)
Matrix ($n \times p$) of complete covariates.
Vector of length $n \operatorname{col}(x)$ identifying random and class variables. Random variables are identified by a ' 2 '. The class variable (only one is allowed) is coded as '-2'. Random variables also include the fixed effect.
method_est Vector of string given the version of the estimator to used. Choose method_est="reml" for restricted maximum likelihood estimator or method_est="mm" for the method of moments. By default method_est="mm".
... Other named arguments.

Details

Imputes univariate two-level continuous variable from a heteroscedastic normal model. The imputation method is based on a two-stage estimator: at step 1 , a linear regression model is fitted to each observed cluster; at step 2, estimates obtained from each cluster are combined according to a linear random effect model. Two possibilities are available to combine estimates at stage 2 : by default, parameters of the linear random effect model are estimated according to the method of moments (MM), otherwise, parameters of the linear random effect model can be estimated according to the restricted maximum likelihood estimator (REML). The variability on the parameters of the imputation is propagated according to an asymptotic strategy requiring a large number of clusters. Compared to the REML version, the MM version is quicker to perform, but it provides less theoretical garanties. Nevertheless, simulation studies show that both versions lead to similar inferences (Resche-Rigon, M. and White, I. R. (2016)).

Value

A vector of length nmis with imputations.

Author(s)

Vincent Audigier <vincent. audigier@cnam.fr>

References

Resche-Rigon, M. and White, I. R. (2016). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Statistical Methods in Medical Research. To appear. doi:10.1177/0962280216666564
Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

See Also

```
mice,mice.impute.2l.2stage.pmm,mice.impute.2l.glm.norm,mice.impute.2l.jomo
```

```
mice.impute.2l.2stage.pmm
```

Predictive mean matching imputation for two-level variable

Description

Similarly to mice.impute.2l.stage.norm, this function imputes univariate two-level continuous variable from a heteroscedastic normal model. The difference consists in replacing missing values by observed values instead of adding a parametric noise to the prediction of a linear model with random effects (as done in mice.impute.21.stage.norm.mm and mice.impute.21.stage.norm.reml).

Usage

$$
\begin{aligned}
\text { mice.impute.2l.2stage.pmm(y, } & \text { ry, } x \text {, type, } \\
& \text { method_est }=" \mathrm{~mm} ", \\
& \text { incluster }=\text { FALSE, } \\
& \text { kpmm }=5, \ldots)
\end{aligned}
$$

Arguments

y	Incomplete data vector of length n
ry	Vector of missing data pattern (FALSE=missing, TRUE=observed)
x	Matrix ($n \times p$) of complete covariates.
type	Vector of length $n \operatorname{col}(x)$ identifying random and class variables. Random variables are identified by a ' 2 '. The class variable (only one is allowed) is coded as '-2'. Random variables also include the fixed effect.
method_est	Vector of string given the version of the estimator to used. Choose method_est="reml" for restricted maximum likelihood estimator or method_est="mm" for the method of moments. By default method_est="mm".
incluster	Boolean indicating if the imputed values are drawn from the cluster or from the full dataset. By default imputed values are drawn from all available clusters incluster=FALSE.
kpmm	The size of the donor pool among which a draw is made. The default is $\mathrm{k}=5$.
	Other named arguments.

Details

Imputes univariate two-level continuous variable from observed values. The imputation method is based on a two-stage estimator: at step 1, a linear regression model is fitted to each observed cluster; at step 2, estimates obtained from each cluster are combined according to a linear random effect model. To combine estimates at stage 2, parameters of the linear random effect model are estimated according to the method of moments or according to the restricted maximum likelihood estimator. The variability on the parameters of the imputation is propagated according to an asymptotic strategy requiring a large number of clusters. The sample variability is reflected by using a predictive mean matching approach, meaning that missing values are imputed by a draw from observed values. The pool of k donors is defined according to the Manhattan distance between the prediction of the observation which is imputed and the predictions of other available observations (matching of type 2). The pool can be restricted to the cluster of the individual that is imputed or from all clusters. By drawing values inside the cluster, the heteroscedasticity assumption is preserved. Otherwise, the sample variability of imputed values is the same for all clusters, which strengthen the homoscedasticity assumption. Among the pool of k donors, the selected one is drawn at random.

Value

Numeric vector of length sum(! ry) with imputations

Note

This method is experimental.

Author(s)

Vincent Audigier vincent.audigier@cnam.fr

References

Rubin, D.B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
Resche-Rigon, M. and White, I. R. (2016). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Statistical Methods in Medical Research. To appear. doi:10.1177/0962280216666564
Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

See Also

mice.impute.2l.2stage.norm

```
mice.impute.2l.2stage.pois
    Imputation by a two-level Poisson model based on a two-stage estima-
    tor
```


Description

Imputes univariate two-level count variable from a Poisson model. The imputation method is based on a two-stage estimator: at step 1, a Poisson regression model is fitted to each observed cluster; at step 2, estimates obtained from each cluster are combined according to a linear random effect model.

Usage

mice.impute.2l.2stage.pois(y, ry, x, type, method_est = "mm", ...)

Arguments

$y \quad$ Incomplete data vector of length n
ry Vector of missing data pattern (FALSE=missing, TRUE=observed)
$x \quad$ Matrix $(n \times p)$ of complete covariates.
type Vector of length $n \operatorname{col}(x)$ identifying random and class variables. Random variables are identified by a ' 2 '. The class variable (only one is allowed) is coded as '-2'. Random variables also include the fixed effect.
method_est Vector of string given the version of the estimator to used. Choose method_est="reml" for restricted maximum likelihood estimator or method_est=" mm " for the method of moments. By default method_est="mm".
$\ldots \quad$ Other named arguments.

Details

Imputes univariate two-level count variable from a Poisson model. The imputation method is based on a two-stage estimator: at step 1, a Poisson regression model is fitted to each observed cluster; at step 2, estimates obtained from each cluster are combined according to a linear random effect model. Two possibilities are available to combine estimates at stage 2 : by default, parameters of the linear random effect model are estimated according to the method of moments (MM), otherwise, parameters of the linear random effect model can be estimated according to the restricted maximum likelihood estimator (REML). The variability on the parameters of the imputation is propagated according to an asymptotic strategy requiring large samples and a large number of clusters. Compared to the REML version, the MM version is quicker to perform, but it provides less theoretical garanties. Nevertheless, simulation studies show that both versions lead to similar inferences (Audigier et al, 2018; Resche-Rigon and White, 2016).

Value

A vector of length nmis with imputations.

Author(s)

Vincent Audigier vincent.audigier@cnam.fr

References

Resche-Rigon, M. and White, I. R. (2016). Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Statistical Methods in Medical Research. To appear. doi:10.1177/0962280216666564

Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

See Also

```
mice,mice.impute.2l.glm.pois
```

```
mice.impute.2l.glm.bin
```

Imputation of univariate missing data using a Bayesian logistic mixed model based on non-informative prior distributions

Description

Imputes univariate missing data using a Bayesian logistic mixed model based on non-informative prior distributions. The method is dedicated to a binary outcome stratified in severals clusters. Should be used with few clusters and few individuals per cluster. Can be very slow to perform otherwise.

Usage

mice.impute.2l.glm.bin(y, ry, x, type, ...)

Arguments

y
Incomplete data vector of length n
ry Vector of missing data pattern (FALSE=missing, TRUE=observed)
$x \quad$ Matrix $(n \times p)$ of complete covariates.
type Vector of length $n \operatorname{col}(x)$ identifying random and class variables. Random variables are identified by a ' 2 '. The class variable (only one is allowed) is coded as '-2'. Random variables also include the fixed effect.
... Other named arguments.

Details

Imputes univariate missing data using a Bayesian logistic mixed model based on non-informative prior distributions. The variability on the parameters of the imputation is propagated according to an explicit Bayesian modelling. More precisely, improper prior distributions are used for regression coefficients and covariance matrix of random effects. The method is recommended for datasets with a small number of clusters and a small number of individuals per cluster. Otherwise, the method can be very slow to perform.

Value

A vector of length nmis with imputations.

Author(s)

Vincent Audigier vincent.audigier@cnam.fr from the R code of Shahab Jolani.

References

Jolani, S., Debray, T. P. A., Koffijberg, H., van Buuren, S., and Moons, K. G. M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Statistics in Medicine, 34(11):18411863. doi:10.1002/sim.6451
Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

See Also

mice, mice.impute. 2l. 2stage. bin, mice.impute. 21. jomo
mice.impute.2l.glm.norm
Imputation of univariate missing data using a Bayesian linear mixed model based on non-informative prior distributions

Description

Imputes univariate missing data using a Bayesian linear mixed model based on non-informative prior distributions. The method is dedicated to a continuous outcome stratified in severals clusters. Should be used with few clusters and few individuals per cluster. Can be very slow to perform otherwise.

Usage

mice.impute.2l.glm.norm(y, ry, x, type,...)

Arguments

y Incomplete data vector of length n
ry Vector of missing data pattern (FALSE=missing,TRUE=observed)
$x \quad$ Matrix ($n \times p$) of complete covariates.
type Vector of length $n \operatorname{col}(x)$ identifying random and class variables. Random variables are identified by a ' 2 '. The class variable (only one is allowed) is coded as '-2'. Random variables also include the fixed effect.
... Other named arguments.

Details

Imputes univariate two-level continuous variable from a homoscedastic normal model. The variability on the parameters of the imputation is propagated according to an explicit Bayesian modelling. More precisely, improper prior distributions are used for regression coefficients and variances components. The method is recommended for datasets with a small number of clusters and a small number of individuals per cluster. Otherwise, confidence intervals after applying analysis method on the multiply imputed dataset tend to be anti-conservative. In addition, the imputation can be highly time consumming.

Value

A vector of length nmis with imputations.

Author(s)

Vincent Audigier <vincent. audigier@cnam. fr> from the R code of Shahab Jolani.

References

Jolani, S. (2017) Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations. Biometrical Journal doi:10.1002/bimj.201600220

Jolani, S., Debray, T. P. A., Koffijberg, H., van Buuren, S., and Moons, K. G. M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Statistics in Medicine, 34(11):18411863. doi:10.1002/sim.6451

Audigier, V., White, I., Jolani ,S. Debray, T., Quartagno, M., Carpenter, J., van Buuren, S. and Resche-Rigon, M. Multiple imputation for multilevel data with continuous and binary variables (2018). Statistical Science. doi:10.1214/18-STS646.

See Also

mice,mice.impute.2l.2stage.norm, mice.impute.2l.jomo

```
mice.impute.2l.glm.pois
```

Imputation of count variable using a Bayesian mixed model based on non-informative prior distributions

Description

Imputes univariate missing data using a Bayesian mixed model (Poisson regression) based on noninformative prior distributions. The method is dedicated to a count outcome stratified in severals clusters. Should be used with few clusters and few individuals per cluster. Can be very slow to perform otherwise.

Usage
mice.impute.2l.glm.pois(y, ry, x, type,...)

Arguments

$y \quad$ Incomplete data vector of length n
ry Vector of missing data pattern (FALSE=missing,TRUE=observed)
$x \quad$ Matrix ($n \times p$) of complete covariates.
type Vector of length $n \operatorname{col}(x)$ identifying random and class variables. Random variables are identified by a ' 2 '. The class variable (only one is allowed) is coded as '-2'. Random variables also include the fixed effect.
$\ldots \quad$ Other named arguments.

Details

Imputes univariate missing data using a Bayesian mixed model (Poisson regression) based on noninformative prior distributions. The variability on the parameters of the imputation is propagated according to an explicit Bayesian modelling. More precisely, improper prior distributions are used for regression coefficients and variances components. The method is recommended for datasets with a small number of clusters and a small number of individuals per cluster. Otherwise, the method can be very slow to perform.

Value

A vector of length nmis with imputations.

Author(s)

Vincent Audigier <vincent.audigier@cnam. fr> from the R code of Shahab Jolani.

References

Jolani, S., Debray, T. P. A., Koffijberg, H., van Buuren, S., and Moons, K. G. M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Statistics in Medicine, 34(11):18411863. doi:10.1002/sim.6451

See Also

```
mice,mice.impute.2l.2stage.pois
```

```
mice.impute.2l.jomo Imputation of univariate missing data by a Bayesian multivariate gen-
eralized model based on conjugate priors
```


Description

Univariate imputation by a Bayesian multivariate generalized model based on conjugate priors. Can be used for a continuous or binary incomplete variable. For continuous variables, the modelling assumes heteroscedasticity for errors. For a binary variable, a probit link and a latent variables framework are used. The method should be used for a variable with large number of clusters and a large number of individuals per cluster.

Usage

mice.impute.2l.jomo(y, ry, x, type, nburn = 200, ...)

Arguments

y	Incomplete data vector of length n
ry	Vector of missing data pattern (FALSE=missing, TRUE=observed)
x	Matrix $(\mathrm{n} \times \mathrm{p})$ of complete covariates. type
Vector of length ncol (x) identifying random and class variables. Random vari- ables are identified by a ' 2 '. The class variable (only one is allowed) is coded as ' -2 '. Random variables also include the fixed effect.	
nburn	A scalar indicating the number of iterations for the Gibbs sampler. Default is nburn=200
\ldots	Other named arguments.

Details

Contrary to the approach developped in the R jomo package, the imputation is here sequentially performed through a FCS approach, instead of imputing all variables simulatenously. The motivation for such a method is that jomo presents some advantages over other imputation methods, but not always for any type of variables (binary or continuous). By proposing a FCS version of jomo, we allow imputation of mixed variables (continuous and binary), while taking the best of jomo and of other imputation methods. To impute one variable according to this method, other variables are assumed to be full, like in any FCS approach. The imputation function is a direct use of the R function jomolran from the jomo package. The argument meth is tuned to "random" to allow covariance matrices drawn from an inverse Wishart distribution. Only intercept are considered in covariates ($X=N U L L$ and $Z=N U L L$), while the multivariate outcome corresponds to all variables of the datasets.

Value

A vector of length nmis with imputations.

Author(s)

Vincent Audigier < vincent. audigier@cnam. fr> from the R code of Matteo Quartagno.

References

Carpenter J.R., Kenward M.G., (2013), Multiple Imputation and its Application. Chapters 3-5-9, Wiley, ISBN: 978-0-470-74052-1.

Yucel R.M., (2011), Random-covariances and mixed-effects models for imputing multivariate multilevel continuous data, Statistical Modelling, 11 (4), 351-370, doi:10.1177/1471082X100110040.

See Also

mice, jomo1ran

Parallel calculations for Multivariate Imputation by Chained Equations

Description

Parallel calculations for Multivariate Imputation by Chained Equations using the R package parallel.

Usage

mice.par(don.na, $m=5$, method $=$ NULL, predictorMatrix, where = NULL, visitSequence $=$ NULL, blots $=$ NULL, post $=$ NULL, blocks, formulas, defaultMethod = c("pmm", "logreg", "polyreg", "polr"), maxit = 5, seed $=$ NA, data.init $=$ NULL, nnodes $=5$, path.outfile $=$ NULL, ...)

Arguments

don.na A data frame or a matrix containing the incomplete data. Missing values are coded as NA.
$m \quad$ Number of multiple imputations. The default is $m=5$.
method Can be either a single string, or a vector of strings with length ncol(data), specifying the elementary imputation method to be used for each column in data. If specified as a single string, the same method will be used for all columns. The default imputation method (when no argument is specified) depends on the measurement level of the target column and are specified by the defaultMethod argument. Columns that need not be imputed have the empty method ' '. See details for more information.
predictorMatrix
A square matrix of size ncol(data) containing $0 / 1$ data specifying the set of predictors to be used for each target column. Rows correspond to target variables (i.e. variables to be imputed), in the sequence as they appear in data. A value of ' 1 ' means that the column variable is used as a predictor for the target variable (in the rows). The diagonal of predictorMatrix must be zero. The default for predictorMatrix is that all other columns are used as predictors (sometimes called massive imputation). Note: For two-level imputation codes '2' and '-2' are also allowed.
where A data frame or matrix with logicals of the same dimensions as data indicating where in the data the imputations should be created. The default, where $=$ is.na(data), specifies that the missing data should be imputed. The where argument may be used to overimpute observed data, or to skip imputations for selected missing values.
visitSequence A vector of integers of arbitrary length, specifying the column indices of the visiting sequence. The visiting sequence is the column order that is used to impute the data during one pass through the data. A column may be visited more than once. All incomplete columns that are used as predictors should be visited, or else the function will stop with an error. The default sequence $1: n c o l$ (data)

	implies that columns are imputed from left to right. It is possible to specify one of the keywords 'roman' (left to right), 'arabic' (right to left), 'monotone' (sorted in increasing amount of missingness) and 'revmonotone' (reverse of monotone). The keyword should be supplied as a string and may be abbreviated.
blots	A named list of alist's that can be used to pass down arguments to lower level imputation function. The entries of element blots[[blockname]] are passed down to the function called for block blockname.
post	A vector of strings with length ncol (data), specifying expressions. Each string is parsed and executed within the sampler() function to postprocess imputed values. The default is to do nothing, indicated by a vector of empty strings ' ' .
blocks	List of vectors with variable names per block. List elements may be named to identify blocks. Variables within a block are imputed by a multivariate imputation method (see method argument). By default each variable is placed into its own block, which is effectively fully conditional specification (FCS) by univariate models (variable-by-variable imputation). Only variables whose names appear in blocks are imputed. The relevant columns in the where matrix are set to FALSE of variables that are not block members. A variable may appear in multiple blocks. In that case, it is effectively re-imputed each time that it is visited.
formulas	A named list of formula's, or expressions that can be converted into formula's by as.formula. List elements correspond to blocks. The block to which the list element applies is identified by its name, so list names must correspond to block names. The formulas argument is an alternative to the predictorMatrix argument that allows for more flexibility in specifying imputation models, e.g., for specifying interaction terms.
defaultMethod	A vector of three strings containing the default imputation methods for numerical columns, factor columns with 2 levels, and columns with (unordered or ordered) factors with more than two levels, respectively. If nothing is specified, the following defaults will be used: pmm, predictive mean matching (numeric data) logreg, logistic regression imputation (binary data, factor with 2 levels) polyreg, polytomous regression imputation for unordered categorical data (factor $>=2$ levels) pol r, proportional odds model for (ordered, $>=2$ levels)
maxit	A scalar giving the number of iterations. The default is 5 .
seed	An integer that is used as argument by the set. seed () for offsetting the random number generator. Default is to leave the random number generator alone.
data.init	A data frame of the same size and type as data, without missing data, used to initialize imputations before the start of the iterative process. The default NULL implies that starting imputation are created by a simple random draw from the data. Note that specification of data.init will start the m Gibbs sampling streams from the same imputations.
nnodes	A scalar indicating the number of nodes for parallel calculation. Default value is 5 .
path.outfile	A vector of strings indicating the path for redirection of print messages. Default value is NULL, meaning that silent imputation is performed. Otherwise, print messages are saved in the files path.outfile/output.txt. One file per node is generated.
	Named arguments that are passed down to the elementary imputation functions.

Details

Performs multiple imputation of m tables in parallel by generating m seeds, and then by performing multiple imputation by chained equations in parallel from each one. The output is the same as the mice function of the mice package.

Value

Returns an S3 object of class mids (multiply imputed data set)

Author(s)

Vincent Audigier vincent.audigier@cnam.fr

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. https: //www. jstatsoft.org/article/ view/v045i03 doi:10.18637/jss.v045.i03
van Buuren, S. (2012). Flexible Imputation of Missing Data. Boca Raton, FL: Chapman \& Hall/CRC Press.
Van Buuren, S., Brand, J.P.L., Groothuis-Oudshoorn C.G.M., Rubin, D.B. (2006) Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 12, 1049-1064. doi:10.1080/10629360600810434
Van Buuren, S. (2007) Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16, 3, 219-242. doi:10.1177/0962280206074463
Van Buuren, S., Boshuizen, H.C., Knook, D.L. (1999) Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine, 18, 681-694. <doi:10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R>
Brand, J.P.L. (1999) Development, implementation and evaluation of multiple imputation strategies for the statistical analysis of incomplete data sets. Dissertation. Rotterdam: Erasmus University.

See Also

```
mice,parallel
```


Examples

```
##############
# nhanes (one level data)
##############
data(nhanes, package = "mice")
#imp <- mice.par(nhanes)
#fit <- with(data = imp, exp = lm(bmi ~ hyp + chl))
#summary(pool(fit))
##############
#CHEM97Na (Two levels data with }1681\mathrm{ observations and 5 variables)
```

```
##############
data(CHEM97Na)
ind.clust<-1#index for the cluster variable
#initialisation of the argument predictorMatrix
predictor.matrix<-mice(CHEM97Na,m=1,maxit=0)$pred
predictor.matrix[ind.clust,ind.clust]<-0
predictor.matrix[-ind.clust,ind.clust]<- -2
predictor.matrix[predictor.matrix==1]<-2
#initialisation of the argument method
method<-find.defaultMethod(CHEM97Na,ind.clust)
#multiple imputation by chained equations (parallel calculation) [1 minute]
#(the imputation process can be followed by opening output.txt files in the working directory)
#res.mice<-mice.par(CHEM97Na,
# predictorMatrix = predictor.matrix,
# method=method,
# path.outfile=getwd())
#multiple imputation by chained equations (without parallel calculation) [4.8 minutes]
#res.mice<-mice(CHEM97Na,
# predictorMatrix = predictor.matrix,
# method=method)
```

```
############
```

\#\#\#\#\#\#\#\#\#\#\#\#
\#IPDNa (Two levels data with }11685\mathrm{ observations and 10 variables)
\#IPDNa (Two levels data with }11685\mathrm{ observations and 10 variables)
\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#
data(IPDNa)
data(IPDNa)
ind.clust<-1\#index for the cluster variable
ind.clust<-1\#index for the cluster variable
\#initialisation of the argument predictorMatrix
\#initialisation of the argument predictorMatrix
predictor.matrix<-mice(IPDNa,m=1,maxit=0)$pred
predictor.matrix<-mice(IPDNa,m=1,maxit=0)$pred
predictor.matrix[ind.clust,ind.clust]<-0
predictor.matrix[ind.clust,ind.clust]<-0
predictor.matrix[-ind.clust,ind.clust]<- -2
predictor.matrix[-ind.clust,ind.clust]<- -2
predictor.matrix[predictor.matrix==1]<-2
predictor.matrix[predictor.matrix==1]<-2
\#initialisation of the argument method
\#initialisation of the argument method
method<-find.defaultMethod(IPDNa,ind.clust)
method<-find.defaultMethod(IPDNa,ind.clust)
\#multiple imputation by chained equations (parallel calculation)
\#multiple imputation by chained equations (parallel calculation)
\#res.mice<-mice.par(IPDNa,
\#res.mice<-mice.par(IPDNa,

predictorMatrix = predictor.matrix,

predictorMatrix = predictor.matrix,

method=method,

method=method,

path.outfile=getwd())

```
# path.outfile=getwd())
```


Description

Assess the fit of the predictive distribution after performing multiple imputation with mice

Usage

overimpute(res.mice, plotvars = NULL, plotinds = NULL, nnodes $=5$, path.outfile $=$ NULL, alpha $=0.1$)

Arguments

res.mice An object of class mids
plotvars column index of the variables overimputed
plotinds row index of the individuals overimputed
nnodes A scalar indicating the number of nodes for parallel calculation. Default value is 5 .
path.outfile A vector of strings indicating the path for redirection of print messages. Default value is NULL, meaning that silent imputation is performed. Otherwise, print messages are saved in the files path.outfile/output.txt. One file per node is generated.
alpha alpha level for prediction intervals

Details

This function imputes each observed values from each of the parameters of the imputation model obtained from the mice procedure. The comparison between the "overimputed" values and the observed values is made by building a confidence interval for each observed value using the quantiles of the overimputed values (Blackwell et al. (2015)). Note that confidence intervals builded with quantiles require a large number of imputations. If the model fits the data well, then the 90% confidence interval should contain the observed value in 90% of the cases (the proportion of intervals containing the observed value is reported in the title of each graph). The function overimpute takes as an input the output of the mice or mice.par function (res.mice), the indices of the incomplete continuous variables that are plotted (plotvars), the indices of individuals (can be useful for time consumming imputation methods), the number of nodes for parallel computation, and the path for exporting print message generated during the parallel process.

Value

A list of two matrices
res.plot $\quad 7$-columns matrix that contains (1) the variable which is overimputed, (2) the observed value of the observation, (3) the mean of the overimputations, (4) the lower bound of the confidence interval of the overimputations, (5) the upper
bound of the confidence interval of the overimputations, (6) the proportion of the other variables that were missing for that observation in the original data, and (7) the color for graphical representation.
res.values A matrix with overimputed values for each cell. The number of columns corresponds to the number of values generated (i.e. the number of imputed tables)

Author(s)

Vincent Audigier <vincent. audigier@cnam.fr>

References

Blackwell, M., Honaker, J. and King. G. 2015. A Unified Approach to Measurement Error and Missing Data: Overview and Applications. Sociological Methods and Research, 1-39. doi:10.1177/0049124115585360

See Also

mice, parallel,mice.par

Examples

```
require(parallel)
nnodes<-detectCores()-1#number of nodes
m<-1000#nb generated values per observation
################
#one level data
#################
require(mice)
data(nhanes)
#res.mice<-mice.par(nhanes,m = m,nnodes = nnodes)
#res.over<-overimpute(res.mice, nnodes = nnodes)
################
#two level data (time consumming)
#################
data(CHEM97Na)
ind.clust<-1#index for the cluster variable
#initialisation of the argument predictorMatrix
predictor.matrix<-mice(CHEM97Na,m=1,maxit=0)$pred
predictor.matrix[ind.clust,ind.clust]<-0
predictor.matrix[-ind.clust,ind.clust]<- -2
predictor.matrix[predictor.matrix==1]<-2
#initialisation of the argument method
method<-find.defaultMethod(CHEM97Na,ind.clust)
#multiple imputation by chained equations (time consumming)
```

\#res.mice<-mice.par(CHEM97Na,
\# predictorMatrix = predictor.matrix,
\# method=method,m=m,nnodes = nnodes)
\#overimputation on 30 individuals
\#res.over<-overimpute(res.mice,
\# nnodes=nnodes,
\# plotinds=sample(x = seq(nrow(CHEM97Na)), size = 30))
plot.mira Graphical investigation for the number of generated datasets

Description

The plot method for a mira object plots the confidence interval length against the number of multiply imputed datasets from 2 to m . This is a graphical tool to check if the variability due to the simulation of the multiple imputation process can be substantially reduced by increasing the number of generated datasets m.

Usage

\#\# S3 method for class 'mira'
plot(x, ...)

Arguments

x
An object of class mira.
.. Extra arguments for plot.mira

Author(s)

Vincent Audigier vincent.audigier@cnam.fr

References

Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman \& Hall/CRC, London

See Also

```
    mice, mira
```


Examples

```
require(nlme)
data(CHEM97Na)
ind.clust<-1#index for the cluster variable
#initialisation of the argument predictorMatrix
predictor.matrix<-mice(CHEM97Na,m=1,maxit=0)$pred
predictor.matrix[ind.clust,ind.clust]<-0
predictor.matrix[-ind.clust,ind.clust]<- -2
predictor.matrix[predictor.matrix==1]<-2
#initialisation of the argument method
method<-c("", "2l.2stage.bin", "2l.2stage.pois", "2l.2stage.norm", "") #quickest methods
#multiple imputation by chained equations (parallel calculation)
#res.mice<-mice.par(CHEM97Na,m=15,predictorMatrix = predictor.matrix,method=method)
#analysis (apply a linear mixed effects model to each imputed dataset)
#ana<-with(res.mice, expr=lme(fixed=formula(Score~Sex+GSCE+Age),
# random=formula(~1|School),method="REML",
# control=list(maxIter=100,msMaxIter=100,niterEM=25)))
#graphical investigation for the number of generated datasets m
#plot(ana)
```


Index

```
* datasets
    CHEM97Na, 3
    IPDNa,7
* imputation
    micemd-package, 2
* meta-analyse
    micemd-package, 2
* mice
    find.defaultMethod,5
    mice.impute.2l.2stage.bin, }
    mice.impute.2l.2stage.norm,10
    mice.impute.2l.2stage.pois, 13
    mice.impute.2l.glm.bin,14
    mice.impute.2l.glm.norm, 16
    mice.impute.2l.glm.pois, 17
    mice.impute.2l.jomo,18
    mice.par, 20
    overimpute, 24
* multilevel
    micemd-package, 2
* package
    micemd-package, 2
CHEM97Na, 3
find.defaultMethod,5
IPDNa, }
jomo1ran,19
matrixplot,4
mice, 3, 7, 10, 11, 14, 15,17-19, 22, 25, 26
mice.impute.2l.2stage.bin, 9, 15
mice.impute.2l.2stage.norm, 10, 13,17
mice.impute.2l.2stage.pmm, 11,11
mice.impute.2l.2stage.pois, 13,18
mice.impute.2l.glm.bin, 10,14
mice.impute.2l.glm.norm, 11,16
mice.impute.2l.glm.pois, 14, 17
mice.impute.2l.jomo, 10, 11, 15, 17,18
```

