Package 'micompr'

July 8, 2021
Title Multivariate Independent Comparison of Observations
Version 1.1.1
Date 2021-07-08
Maintainer Nuno Fachada faken@fakenmc.com
Description A procedure for comparing multivariate samples associated with different groups. It uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using a number of statistical methods. The procedure is independent of the distributional properties of samples and automatically selects features that best explain their differences, avoiding manual selection of specific points or summary statistics. It is appropriate for comparing samples of time series, images, spectrometric measures or similar multivariate observations.

Depends R (>= 3.5.0)
Imports utils, graphics, methods, stats
Suggests biotools, MVN ($>=5.0$), deseasonalize, testhat ($>=0.8$), knitr, roxygen2, devtools

License MIT + file LICENSE
URL https://github.com/fakenmc/micompr
BugReports https://github.com/fakenmc/micompr/issues
LazyData true
Encoding UTF-8
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Nuno Fachada [aut, cre] (https://orcid.org/0000-0002-8487-5837)
Repository CRAN
Date/Publication 2021-07-08 09:40:02 UTC

R topics documented:

assumptions 3
assumptions.cmpoutput 3
assumptions.micomp 4
assumptions_manova 5
assumptions_paruv 6
centerscale 6
cmpoutput 8
concat_outputs 9
grpoutputs 10
micomp 12
micompr 14
plot.assumptions_cmpoutput 15
plot.assumptions_manova 16
plot.assumptions_micomp 17
plot.assumptions_paruv 18
plot.cmpoutput 19
plot.grpoutputs 20
plot.micomp 21
pphpc_diff 21
pphpc_noshuff 22
pphpc_ok 23
print.assumptions_cmpoutput 23
print.assumptions_manova 24
print.assumptions_micomp 25
print.assumptions_paruv 25
print.cmpoutput 26
print.grpoutputs 27
print.micomp 28
pvalf 28
pvalf.default 29
summary.assumptions_cmpoutput 30
summary.assumptions_micomp 31
summary.cmpoutput 32
summary.grpoutputs 33
summary.micomp 34
tikzscat 35
toLatex.cmpoutput 36
toLatex.micomp 37
Index 40

Description

Generic function to get the assumptions for parametric tests applied to the comparison of output observations.

Usage

assumptions(obj)

Arguments

obj Object from which to get the assumptions.

Value

Assumptions for parametric tests applied to the comparison of outputs.

See Also

assumptions.cmpoutput, assumptions.micomp

```
assumptions.cmpoutput Get assumptions for parametric tests performed on output compar-
``` isons

\section*{Description}

Get assumptions for parametric tests performed on output comparisons (i.e. from objects of class cmpoutput).

\section*{Usage}
\#\# S3 method for class 'cmpoutput'
assumptions(obj)

\section*{Arguments}
obj Object of class cmpoutput.

\section*{Value}

Object of class assumptions_cmpoutput containing the assumptions for parametric tests performed on an output comparison. Basically a list containing the assumptions for the MANOVA (list of objects of class assumptions_manova, one per explained variance) and univariate parametric tests for each principal component (object of class assumptions_paruv).

\section*{Examples}
\# Create a cmpoutput object from the provided datasets
cmp <- cmpoutput("All", 0.9, pphpc_ok\$data[["All"]], pphpc_ok\$obs_lvls)
\# Get the assumptions for the parametric tests performed in cmp
acmp <- assumptions(cmp)
assumptions.micomp Get assumptions for parametric tests performed on each comparisons

\section*{Description}

Get assumptions for parametric tests performed on multiple comparisons (i.e. from objects of class micomp).

\section*{Usage}
```


## S3 method for class 'micomp'

    assumptions(obj)
    ```

\section*{Arguments}
obj Object of class micomp.

\section*{Value}

Object of class assumptions_micomp containing the assumptions for parametric tests performed for the multiple comparisons held by the mcmp object. This object is a multi-dimensional list of assumptions_cmpoutput objects. Rows are associated with individual outputs, while columns are associated with separate comparisons.

\section*{Examples}
```


# Create a micomp object, use provided dataset

mic <- micomp(6, 0.8,
list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)))

# Create an object containing the statistic tests evaluating the assumptions

# of the comparisons performed in the mic object

a <- assumptions(mic)

```

\section*{Description}

Determine two assumptions for the MANOVA test: a) multivariate normality of each group; b) homogeneity of covariance matrices.

\section*{Usage}
assumptions_manova(data, factors)

\section*{Arguments}
data Data used for the MANOVA test (rows correspond to observations, columns to dependent variables).
factors Groups to which rows of data belong to (independent variables).

\section*{Value}

An object of class assumptions_manova which is a list containing two elements:
mvntest List of results from the Royston multivariate normality test (mvn), one result per group. vartest Result of Box's \(M\) test for homogeneity of covariance matrices (boxM).

\section*{Note}

This function requires the MVN and biotools packages.

\section*{Examples}
```


# Determine the assumptions of applying MANOVA to the iris data

# (i.e. multivariate normality of each group and homogeneity of covariance

# matrices)

a <- assumptions_manova(iris[, 1:4], iris[, 5])

```

\section*{Description}

Determine two assumptions for the parametric comparison tests (i.e. either \(t\). test or aov) for each principal component, namely: a) univariate normality of each group; b) homogeneity of variances.

\section*{Usage}
assumptions_paruv(data, factors)

\section*{Arguments}
data Data used in the parametric test (rows correspond to observations, columns to principal components).
factors Groups to which rows of data belong to.

\section*{Value}

An object of class assumptions_paruv which is a list containing two elements:
uvntest List of results from the Shapiro-Wilk normality test (shapiro. test), one result per group per principal component.
vartest Result of Bartlett test for homogeneity of variances (bartlett.test).

\section*{Examples}
```


# Determine the assumptions of applying ANOVA to each column (dependent

# variable) of the iris data (i.e. normality of each group and homogeneity of

# variances)

a <- assumptions_paruv(iris[, 1:4], iris[, 5])

```
```

centerscale Center and scale vector

```

\section*{Description}

Center and scale input vector using the specified method.

\section*{Usage}
centerscale(v, type)

\section*{Arguments}
\begin{tabular}{ll}
\(v\) & Vector to center and scale. \\
type & Type of scaling: "center", "auto", "range", "iqrange", "vast", "pareto", "level" or \\
"none".
\end{tabular}

\section*{Value}

Center and scaled vector using the specified method.

\section*{References}

Berg, R., Hoefsloot, H., Westerhuis, J., Smilde, A., and Werf, M. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142. DOI: 10.1186/1471-2164-7-142

\section*{Examples}
```

v <- c(-100, 3, 4, 500, 10, 25, -8, -33, 321, 0, 2)
centerscale(v, "center")

# [1] -165.81818

# [7] -73.81818 -98.81818 255.18182

centerscale(v, "auto")

# [1] -0.9308937 -0.3526577 -0.3470437 2.4374717 -0.3133601 -0.2291509

# [7] -0.4144110 -0.5547596 1.4325760 -0.3694995 -0.3582716

centerscale(v, "range")

# [1] -0.2763636 -0.1046970-0.1030303 0.7236364 -0.0930303 -0.0680303

# [7] -0.1230303 -0.1646970 0.4253030 -0.1096970 -0.1063636

centerscale(v, "iqrange")

# [1] -6.085071 -2.305254 -2.268557 15.933278 -2.048374 -1.497915 -2.708924

# [8] -3.626355 9.364470 -2.415346 -2.341952

centerscale(v, "vast")

# [1] -0.34396474 -0.13030682 -0.12823247 0.90064453 -0.11578638-0.08467115

# [7] -0.15312466 -0.20498338 0.52933609 -0.13652987-0.13238117

centerscale(v, "pareto")

# [1] -12.424134 -4.706731 -4.631804 32.531614 -4.182247 -3.058353

# [7] -5.530919 -7.404075 19.119816 -4.931509 -4.781657

centerscale(v, "level")

# [1] -2.5193370 -0.9544199 -0.9392265 6.5966851 -0.8480663 -0.6201657

# [7] -1.1215470-1.5013812 3.8770718 -1.0000000 -0.9696133

centerscale(v, "none")

# [1] -100

```

\section*{Description}

Compares output observations from two or more groups.

\section*{Usage}
cmpoutput(name, ve_npcs, data, obs_lvls, lim_npcs = TRUE, mnv_test = "Pillai")

\section*{Arguments}
\begin{tabular}{ll}
name & \begin{tabular}{l}
Comparison name (useful when calling this function to perform multiple com- \\
parisons).
\end{tabular} \\
ve_npcs & \begin{tabular}{l}
Percentage \((0<\) ve_npcs < 1) of variance explained by the \(q\) principal compo- \\
nents (i.e. number of dimensions) used in MANOVA, or the number of principal \\
components (ve_npcs \(>1\), must be integer). Can be a vector, in which case the \\
MANOVA test will be applied multiple times, one per specified variance to ex- \\
plain / number of principal components.
\end{tabular} \\
data & \begin{tabular}{l}
A \(n \times m\) matrix, where \(n\) is the total number of output observations (runs) and \(m\) \\
is the number of variables (i.e. output length).
\end{tabular} \\
obs_lvls & \begin{tabular}{l}
Levels or groups associated with each observation.
\end{tabular} \\
lim_npcs & \begin{tabular}{l}
Limit number of principal components used for MANOVA to minimum number \\
of observations per group?
\end{tabular} \\
mnv_test & \begin{tabular}{l}
The name of the test statistic to be used in MANOVA, as described in summary.manova.
\end{tabular}
\end{tabular}

\section*{Value}

Object of class cmpoutput containing the following data:
scores \(n \mathrm{x} n\) matrix containing projections of output data in the principal components space. Rows correspond to observations, columns to principal components.
obs_Ivls Levels or groups associated with each observation.
varexp Percentage of variance explained by each principal component.
npes Number of principal components specified in ve_npcs OR which explain the variance percentages given in ve_npcs.
ve Percentage (between 0 and 1) of variance explained by the \(q\) principal components (i.e. number of dimensions) used in MANOVA.
name Comparison name (useful when calling this function to perform multiple comparisons).
p.values \(P\)-values for the performed statistical tests, namely:
manova List of \(p\)-values for the MANOVA test for each number of principal component in npcs.
parametric Vector of \(p\)-values for the parametric test applied to groups along each principal component (\(t\)-test for 2 groups, ANOVA for more than 2 groups).
nonparametric Vector of \(p\)-values for the non-parametric test applied to groups along each principal component (Mann-Whitney \(U\) test for 2 groups, Kruskal-Wallis test for more than 2 groups).
parametric_adjusted Same as field parametric, but \(p\)-values are adjusted using weighted Bonferroni procedure. Percentages of explained variance are used as weights.
nonparametric_adjusted Same as field nonparametric, but \(p\)-values are adjusted using weighted Bonferroni procedure. Percentages of explained variance are used as weights.
tests manova Objects returned by the manova function for each value specified in ve_npcs.
parametric List of objects returned by applying t. test (two groups) or aov (more than two groups) to each principal component.
nonparametric List of objects returned by applying wilcox. test (two groups) or kruskal. test (more than two groups) to each principal component.

\section*{Examples}
```


# Comparing the first output ("Pop.Sheep") of one the provided datasets.

cmp <-
cmpoutput("SheepPop", 0.8, pphpc_ok$data[["Pop.Sheep"]], pphpc_ok$obs_lvls)

# Compare bogus outputs created from 2 random sources, 5 observations per

# source, 20 variables each, yielding a 10 x 20 data matrix.

data <- matrix(c(rnorm(100), rnorm(100, mean = 1)), nrow = 10, byrow = TRUE)
olvls <- factor(c(rep("A", 5), rep("B", 5)))
cmp <- cmpoutput("Bogus", 0.7, data, olvls)

```
concat_outputs Concatenate multiple outputs with multiple observations

\section*{Description}

Concatenate multiple outputs with multiple observations.

\section*{Usage}
concat_outputs(outputlist, centscal = "none")

\section*{Arguments}
outputlist List of outputs. Each output is a \(n \times m\) matrix, where \(n\) is the number of observations and \(m\) is the number of variables (i.e. output length).
centscal Centering and scaling method: "center", "auto", "range", "iqrange", "vast", "pareto", "level" or "none". This task is delegated to the centerscale function.

\section*{Value}

An \(n \times p\) matrix, representing the \(n\) observations of the concatenated output, each observation of length \(p\), which is the sum of individual output lengths.

\section*{Examples}
```


# Collect 20 observations of 3 outputs with different scales and lengths

# Output 1, length 100

out1 <- matrix(rnorm(2000, mean = 0, sd = 1), nrow = 20)

# Output 2, length 200

out2 <- matrix(rnorm(4000, mean = 100, sd = 200), nrow = 20)

# Output 1, length 50

out3 <- matrix(rnorm(1000, mean = -1000, sd = 10), nrow = 20)

# Concatenate and range scale outputs, resulting matrix dimensions will be

# 20 x 350

outconcat <- concat_outputs(list(out1, out2, out3), "range")

```
```

grpoutputs Load and group outputs from files

```

\section*{Description}

Load and group outputs from files containing multiple observations of the groups to be compared.

\section*{Usage}
```

grpoutputs(
outputs,
folders,
files,
lvls = NULL,
concat = F,
centscal = "range",
)

```

\section*{Arguments}
outputs A vector with the labels of each output, or an integer with the number of outputs (in which case output labels will be assigned automatically). In either case, the number of outputs should account for an additional concatenated output, as specified in the concat parameter.
\begin{tabular}{ll}
folders & \begin{tabular}{l}
Vector of folder names where to read files from. These are recycled if length(folders) \\
< length(files).
\end{tabular} \\
files & \begin{tabular}{l}
Vector of filenames or file sets to load in each folder. File sets can be given as \\
regular expressions, or as wildcards by wrapping them with glob2rx. \\
Vector of factor levels (groups). Must be the same length as files, i.e. each file \\
set will be associated with a different level or group. If not given, default group \\
names will be used.
\end{tabular} \\
concat & \begin{tabular}{l}
If TRUE add an additional output which corresponds to the concatenation of all \\
outputs, properly centered and scaled. \\
Method for centering and scaling outputs if concat is TRUE. It can be one of \\
"center", "auto", "range" (default), "iqrange", "vast", "pareto" or "level". Cen- \\
tering and scaling is performed by the centerscale function.
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l}
Options passed to read. table, which is used to read the files specified in the \\
files parameter.
\end{tabular}
\end{tabular}

\section*{Details}

Each file corresponds to an observation, and should have a tabular format where columns correspond to outputs and rows to variables or dimensions. Observations (files) are grouped by factor levels which correspond to the file groups given in the files parameter. Factor levels differentiate observations from distinct groups.

\section*{Value}

Object of class grpoutputs containing the following data:
data List of all outputs, each one grouped into a \(n \times m\) matrix, where \(n\) is the total number of output observations and \(m\) is the number of variables or dimensions (i.e. output length).
groupsize Vector containing number of observations for each level or group.
obs_lvls Factor vector of levels or groups associated with each observation.
Ivls Vector of factor levels in the order they occur (as given in parameter with the same name).
concat Boolean indicating if this object was created with an additional concatenated output.

\section*{Examples}
```


# Determine paths for data folders, each containing outputs for 10 runs of

# the PPHPC model

dir_nl_ok <- system.file("extdata", "nl_ok", package = "micompr")
dir_jex_ok <- system.file("extdata", "j_ex_ok", package = "micompr")
files <- glob2rx("stats400v1*.tsv")

# Create a grouped outputs object using outputs from NetLogo and Java

# implementations of the PPHPC model

go <- grpoutputs(7, c(dir_nl_ok, dir_jex_ok), c(files, files),
lvls = c("NL", "JEX"), concat = TRUE)

# Do the same, but specify output names and don't specify levels

go <- grpoutputs(c("a", "b", "c", "d", "e", "f"),
c(dir_nl_ok, dir_jex_ok), c(files, files))

```
```

micomp Multiple independent comparisons of observations

```

\section*{Description}

Performs multiple independent comparisons of output observations.

\section*{Usage}
```

    micomp(
        outputs,
        ve_npcs,
        comps,
        concat = F,
        centscal = "range",
        lim_npcs = TRUE,
        mnv_test = "Pillai",
    )
    ```

\section*{Arguments}
outputs A vector with the labels of each output, or an integer with the number of outputs (in which case output labels will be assigned automatically).
ve_npcs Percentage (\(0<\) ve_npcs \(<1\)) of variance explained by the \(q\) principal components (i.e. number of dimensions) used in MANOVA, or the number of principal components (ve_npcs > 1, must be integer). Can be a vector, in which case the MANOVA test will be applied multiple times, one per specified variance to explain / number of principal components.
comps A list of lists, where each list contains information regarding an individual comparison. Each list can have one of two configurations:
1. Lists with the first configuration are used to load data from files, and require the following fields:
name A string specifying the comparison name.
folders Vector of folder names where to read files from. These are recycled if length(folders) < length(files).
files Vector of filenames (with wildcards) to load in each folder.
lvls Vector of level or group names, must be the same length as files, i.e. each file set will be associated with a different group. If not given, default group names will be set.
2. Lists with the second configuration are used to load data from environment variables, and require the following fields:
name A string specifying the comparison name.
grpout Either an object of class grpoutputs or a list with the following two fields:
data List of all outputs, where tags correspond to output names and values correspond to the output data. Output data is a \(n \times m\) matrix, where \(n\) is the total number of output observations and \(m\) is the number of variables (i.e. output length).
obs_lvls Levels or groups associated with each observation.
\begin{tabular}{ll}
concat & \begin{tabular}{l}
Create an additional, concatenated output? Ignored for sublists passed in the \\
comps which follow the second configuration.
\end{tabular} \\
centscal & \begin{tabular}{l}
Method for centering and scaling outputs if concat is TRUE. It can be one of \\
"center", "auto", "range" (default), "iqrange", "vast", "pareto" or "level". Cen- \\
tering and scaling is performed by the centerscale function.
\end{tabular} \\
lim_npcs & \begin{tabular}{l}
Limit number of principal components used for MANOVA to minimum number \\
of observations per group?
\end{tabular} \\
mnv_test & \begin{tabular}{l}
The name of the test statistic to be used in MANOVA, as described in summary .manova. \\
\(\ldots\)
\end{tabular} \\
\begin{tabular}{l}
Options passed to read. table, which is used to read the files specified in lists \\
using the first configuration in the comp parameter.
\end{tabular}
\end{tabular}

\section*{Value}

An object of class micomp, which is a two-dimensional list of cmpoutput objects. Rows are associated with individual outputs, while columns are associated with separate comparisons.

\section*{Examples}
```


# Create a micomp object from existing files and folders

dir_nl_ok <-
system.file("extdata", "nl_ok", package = "micompr")
dir_jex_ok <-
system.file("extdata", "j_ex_ok", package = "micompr")
dir_jex_noshuff <-
system.file("extdata", "j_ex_noshuff", package = "micompr")
dir_jex_diff <-
system.file("extdata", "j_ex_diff", package = "micompr")
files <- glob2rx("stats400v1*.tsv")
mic <- micomp(7, 0.8,
list(list(name = "NLOKvsJEXOK",
folders = c(dir_nl_ok, dir_jex_ok),
files = c(files, files),
lvls = c("NLOK", "JEXOK")),
list(name = "NLOKvsJEXNOSHUFF",
folders = c(dir_nl_ok, dir_jex_noshuff),
files = c(files, files),
lvls = c("NLOK", "JEXNOSHUFF")),
list(name = "NLOKvsJEXDIFF",
folders = c(dir_nl_ok, dir_jex_diff),
files = c(files, files),
lvls = c("NLOK", "JEXDIFF"))),
concat = TRUE)

```
```


# Create a micomp object from package datasets (i.e. grpoutputs objects)

# directly

mic <- micomp(c("o1", "o2", "o3", "04"), 0.9,
list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)))

# Create a micomp object using manually inserted data

mic <- micomp(6, 0.5, list(
list(name = "NLOKvsJEXOK",
grpout = list(data = pphpc_ok$data,
                            obs_lvls = pphpc_ok$obs_lvls)),
list(name = "NLOKvsJEXNOSHUFF",
grpout = list(data = pphpc_noshuff$data,
                            obs_lvls = pphpc_noshuff$obs_lvls)),
list(name = "NLOKvsJEXDIFF",
grpout = list(data = pphpc_diff$data,
                obs_lvls = pphpc_diff$obs_lvls))))

```
micompr micompr: multivariate independent comparison of observations

\section*{Description}

The micompr R package implements a procedure for comparing multivariate samples associated with different groups. The procedure uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using a number of statistical methods. This technique is independent of the distributional properties of samples and automatically selects features that best explain their differences, avoiding manual selection of specific points or summary statistics. The procedure is appropriate for comparing samples of time series, images, spectrometric measures or similar multivariate observations.

\section*{Note}

MIT License

\section*{Author(s)}

Nuno Fachada

\section*{References}
micompr: An R Package for Multivariate Independent Comparison of Observations, Nuno Fachada, João Rodrigues, Vitor V. Lopes, Rui C. Martins and Agostinho C. Rosa, The R Journal (2016) 8:2, pages 405-420.

\section*{See Also}
cmpoutput, micomp, grpoutputs
```

plot.assumptions_cmpoutput
Plot p-values for testing the assumptions of the parametric tests used
in output comparison

```

\section*{Description}

Plot method for objects of class assumptions_cmpoutput containing \(p\)-values produced by testing the assumptions of the parametric tests used for comparing an output.

\section*{Usage}
\#\# S3 method for class 'assumptions_cmpoutput'
plot(x, ...)

\section*{Arguments}
x
Objects of class assumptions_cmpoutput.
... Extra options passed to plot.default.

\section*{Details}

Several bar plots are presented, showing the \(p\)-values yielded by the Shapiro-Wilk (shapiro.test) and Royston tests (mvn) for univariate and multivariate normality, respectively, and for the Bartlett (bartlett.test) and Box's \(M\) (boxM) for testing homogeneity of variances and of covariance matrices, respectively. The following bar plots are shown:
- One bar plot for the \(p\)-values of the Bartlett test, one bar (\(p\)-value) per individual principal component.
- \(s\) bar plots for \(p\)-values of the Shapiro-Wilk test, where \(s\) is the number of groups being compared. Individual bars in each plot are associated with a principal component.
- \(t\) bar plot for the \(p\)-values of the Royston test with \(s\) bars each, where \(t\) is the number of unique MANOVA tests performed (one per requested explained variances) and \(s\) is the number of groups being compared. These plots will not show if there is only one principal component being considered.
- One plot for the \(p\)-values of the Box's M test, one bar (\(p\)-value) per unique MANOVA tests performed (one per requested explained variances).

\section*{Value}

None.

\section*{Examples}
\# Create a cmpoutput object from the provided datasets
cmp <- cmpoutput("All", 0.9, pphpc_ok\$data[["All"]], pphpc_ok\$obs_lvls)
\# Display a bar plot with the p-values of the assumptions for the parametric
\# tests performed in cmp
plot(assumptions(cmp))
```

plot.assumptions_manova

```

Plot p -values for testing the multivariate normality assumptions of the MANOVA test

\section*{Description}

Plot method for objects of class assumptions_manova which presents a bar plot containing the \(p\)-values produced by the Royston multivariate normality test (mvn) for each group being compared.

\section*{Usage}
```


## S3 method for class 'assumptions_manova'

plot(x, ...)

```

\section*{Arguments}
\(\begin{array}{ll}x & \text { Objects of class assumptions_manova. } \\ \ldots & \text { Extra options passed to barplot. The col parameter defines colors for } p \text {-values } \\ \text { below } 1,0.05 \text { and } 0.01 \text {, respectively. }\end{array}\)

\section*{Value}

None.

\section*{Examples}
```


# Plot the Royston test p-value for multivariate normality of each group

# (species) of the iris data

plot(assumptions_manova(iris[, 1:4], iris[, 5]))

# Plot the same data with logarithmic scale for p-values

plot(assumptions_manova(iris[, 1:4], iris[, 5]), log = "y")

```
```

    plot.assumptions_micomp
    ```
 Plot p -values for testing the assumptions of the parametric tests used
 in multiple output comparison

\section*{Description}

Plot method for objects of class assumptions_cmpoutput containing \(p\)-values produced by testing the assumptions of the parametric tests used for multiple output comparisons.

\section*{Usage}
\#\# S3 method for class 'assumptions_micomp'
plot(x, ...)

\section*{Arguments}
\(x \quad\) Object of class assumptions_micomp.
... Extra options passed to barplot.

\section*{Details}

Several bar plots are presented, one for each comparison and output combination, showing the several statistical tests employed to verify the assumptions of the parametric tests.

\section*{Value}

None.

\section*{Examples}
\# Create a micomp object, use provided dataset
mic <- micomp(6, 0.65,
list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)))
\# Plot the p-values of the statistic tests evaluating the assumptions of the
\# comparisons performed in the mic object
plot(assumptions(mic))
```

plot.assumptions_paruv

```

Plot p -values for testing the assumptions of the parametric tests used in output comparison

\section*{Description}

Plot method for objects of class assumptions_paruv containing \(p\)-values produced by testing the assumptions of the parametric tests used for comparing outputs.

\section*{Usage}
```


## S3 method for class 'assumptions_paruv'

```
plot(x, ...)

\section*{Arguments}
\(\begin{array}{ll}\mathrm{x} & \text { Objects of class assumptions_paruv. } \\ \ldots & \begin{array}{l}\text { Extra options passed to barplot. The col parameter defines colors for } p \text {-values } \\ \text { below } 1,0.05 \text { and } 0.01 \text {, respectively. }\end{array}\end{array}\)

\section*{Details}

One bar plot is presented for the Bartlett test (bartlett.test), showing the respective \(p\)-values along principal component. \(s\) bar plots are presented for the Shapiro-Wilk (shapiro.test), where \(s\) is the number of groups being compared; individual bars in each plot represent the \(p\)-values associated with each principal component.

\section*{Value}

None.

\section*{Examples}
```


# Plot the Shapiro-Wilk and Bartlett test p-values for each dependent

# variable of the iris data

plot(assumptions_paruv(iris[, 1:4], iris[, 5]))

# Plot the same data with logarithmic scale for p-values

plot(assumptions_paruv(iris[, 1:4], iris[, 5]), log = "y")

```
```

plot.cmpoutput Plot comparison of an output

```

\section*{Description}

Plot objects of class cmpoutput.

\section*{Usage}
\#\# S3 method for class 'cmpoutput'
plot(x, ...)

\section*{Arguments}
\(x \quad\) Object of class cmpoutput.
... Extra options passed to plot. default. The col option determines the colors to use on observations of different groups (scatter plot only).

\section*{Details}

This method produces four sub-plots, namely:
- Scatter plot containing the projection of output observations on the first two dimensions of the principal components space.
- Bar plot of the percentage of variance explain per principal component.
- Bar plot of \(p\)-values for the parametric test for each principal component.
- Bar plot of \(p\)-values for the non-parametric test for each principal component.

\section*{Value}

None.

\section*{Examples}
```


# Comparing the concatenated output of the pphpc_ok dataset, which

# contains simulation output data from two similar implementations of the

# PPHPC model.

plot(cmpoutput("All", 0.95, pphpc_ok$data[["All"]], pphpc_ok$obs_lvls))

```

\section*{Description}

Plot objects of class grpoutputs.

\section*{Usage}
\#\# S3 method for class 'grpoutputs'
plot(x, ...)

\section*{Arguments}
x
Object of class grpoutputs.
... Extra options passed to plot.default.

\section*{Details}

Each output is plotted individually, and observations are plotted on top of each other. Observations from different groups are plotted with different colors (which can be controlled through the col parameter given in ...).
This function can be very slow for a large number of observations.

\section*{Value}

None.

\section*{Examples}
```


# Determine paths for the data folder containing outputs of different

# lengths

dir_na <- system.file("extdata", "testdata", "NA", package = "micompr")

# Sets of files A and B have 3 files each

filesA <- glob2rx("stats400v1*n20A.tsv")
filesB <- glob2rx("stats400v1*n20B.tsv")

# Instantiate grpoutputs object

go <-
grpoutputs(7, dir_na, c(filesA, filesB), lvls = c("A", "B"), concat = TRUE)

# Plot grpoutputs object

plot(go)

```

Plot projection of output observations on the first two dimensions of the principal components space

\section*{Description}

For each comparison and output combination, draw a scatter plot containing the projection of output observations on the first two dimensions of the principal components space.

\section*{Usage}
\#\# S3 method for class 'micomp'
plot(x, ...)

\section*{Arguments}
\(\begin{array}{ll}x & \text { An object of class mi comp. } \\ \ldots & \begin{array}{l}\text { Extra options passed to plot. default. The col option determines the colors to } \\ \text { use on observations of different groups. }\end{array}\end{array}\)

\section*{Value}

None.

\section*{Examples}
```

plot(micomp(c("SheepPop", "WolfPop", "GrassQty"), 0.95,
list(list(name = "I", grpout = pphpc_ok),
list(name = "II", grpout = pphpc_noshuff),
list(name = "III", grpout = pphpc_diff))))

```
pphpc_diff

Data from two implementations of the PPHPC model, one of which setup with a different parameter

\section*{Description}

A dataset containing simulation output data from two implementations of the PPHPC model, one of which setup with a different parameter.

\section*{Usage}
pphpc_diff

\section*{Format}

A grpoutputs object containing simulation output data from 20 runs of the PPHPC model, 10 runs from each implementation. The model has six outputs, but the object contains a seventh output corresponding to the concatenation of the six outputs

\section*{Source}

Runs are obtained from the NetLogo and Java (EX with 8 threads) implementations of the PPHPC model available at https://github.com/fakenmc/pphpc. The config400v1.txt configuration was used in both cases, with the exception of restart parameter, \(c_{r}\), in the Java implementation, which was set to 9 instead of 10 . has agent list shuffling deactivated

\section*{Description}

A dataset containing simulation output data from two implementations of the PPHPC model, one of which has agent list shuffling deactivated.

\section*{Usage}
pphpc_noshuff

\section*{Format}

A grpoutputs object containing simulation output data from 20 runs of the PPHPC model, 10 runs from each implementation. The model has six outputs, but the object contains a seventh output corresponding to the concatenation of the six outputs

\section*{Source}

Runs are obtained from the NetLogo and Java (EX with 8 threads) implementations of the PPHPC model available at https://github.com/fakenmc/pphpc. The config400v1.txt configuration was used in both cases. Runs with the Java implementation were performed with the '-u' option, i.e. with agent list shuffling turned off.

\section*{Description}

A dataset containing simulation output data from two implementations of the PPHPC model.

\section*{Usage}
pphpc_ok

\section*{Format}

A grpoutputs object containing simulation output data from 20 runs of the PPHPC model, 10 runs from each implementation. The model has six outputs, but the object contains a seventh output corresponding to the concatenation of the six outputs

\section*{Source}

Runs are obtained from the NetLogo and Java (EX with 8 threads) implementations of the PPHPC model available at https://github.com/fakenmc/pphpc. The config400v1.txt configuration was used in both cases.
```

print.assumptions_cmpoutput
Print method for the assumptions of parametric tests used in a com-
parison of an output

```

\section*{Description}

Print method for objects of class assumptions_cmpoutput, which contain the assumptions for the parametric tests used in a comparison of an output.

\section*{Usage}
\#\# S3 method for class 'assumptions_cmpoutput'
print(x, ...)

\section*{Arguments}
\begin{tabular}{ll}
x & Object of class assumptions_cmpoutput. \\
\(\ldots\) & Currently ignored.
\end{tabular}

\section*{Value}

None.

\section*{Examples}
\# Create a cmpoutput object from the provided datasets
cmp <- cmpoutput("All", c(0.7, 0.8, 0.9), pphpc_diff\$data[["All"]], pphpc_diff\$obs_lvls)
```

print.assumptions_manova

```

Print information about the assumptions of the MANOVA test

\section*{Description}

Print information about objects of class assumptions_manova, which represent the assumptions of the MANOVA test performed on a comparison of outputs.

\section*{Usage}
\#\# S3 method for class 'assumptions_manova' print(x, ...)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Object of class assumptions_manova. \\
\(\ldots\) & Currently ignored.
\end{tabular}

\section*{Value}

The argument x , invisibly, as for all print methods.

\section*{Examples}
```


# Print information concerning the assumptions of applying MANOVA to the iris

# data (i.e. multivariate normality of each group and homogeneity of

# covariance matrices)

assumptions_manova(iris[, 1:4], iris[, 5])

```
```

print.assumptions_micomp

```

Print information about the assumptions concerning the parametric tests performed on multiple comparisons of outputs

\section*{Description}

Print information about objects of class assumptions_micomp, which represent the assumptions concerning the parametric tests performed on multiple comparisons of outputs.

\section*{Usage}
```


## S3 method for class 'assumptions_micomp'

```
print(x, ...)

\section*{Arguments}
X Object of class assumptions_micomp.
... Currently ignored.

\section*{Value}

The argument \(x\), invisibly, as for all print methods.

\section*{Examples}
\# Create a micomp object, use provided dataset
mic <- micomp(c("SheepPop", "WolfPop", "GrassQty"), 0.7,
\[
\text { list(list(name }=\text { "NLOKvsJEXOK", grpout }=\text { pphpc_ok), }
\]
list(name \(=\) "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)))
\# Print the results (p-values) of the statistic tests evaluating the
\# assumptions of the comparisons performed in the mic object
assumptions(mic)
```

print.assumptions_paruv

```

Print information about the assumptions of the parametric test

\section*{Description}

Print information about objects of class assumptions_paruv, which represent the assumptions of the parametric test (i.e. either \(t\). test or aov) performed on a comparison of outputs.

\section*{Usage}
\#\# S3 method for class 'assumptions_paruv'
print(x, ...)

\section*{Arguments}
\(\begin{array}{ll}x & \text { Object of class assumptions_paruv. } \\ \ldots & \text { Currently ignored. }\end{array}\)

\section*{Value}

The argument \(x\), invisibly, as for all print methods.

\section*{Examples}
```

    # Print information about the assumptions of applying ANOVA to each column
    # (dependent variable) of the iris data (i.e. normality of each group and
    # homogeneity of variances)
    assumptions_paruv(iris[, 1:4], iris[, 5])
    ```
 print.cmpoutput Print information about comparison of an output

\section*{Description}

Print information about objects of class cmpoutput.

\section*{Usage}
\#\# S3 method for class 'cmpoutput'
print(x, ...)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Object of class cmpoutput. \\
\(\ldots\) & Currently ignored.
\end{tabular}

\section*{Value}

The argument x , invisibly, as for all print methods.

\section*{Examples}
\# Comparing the fifth output of the pphpc_diff dataset, which contains
\# simulation output data from two implementations of the PPHPC model executed
\# with a different parameter.
cmpoutput("WolfPop", 0.7, pphpc_diff\$data[[5]], pphpc_diff\$obs_lvls)
print.grpoutputs Print information about grouped outputs

\section*{Description}

Print information about objects of class grpoutputs.

\section*{Usage}
```


## S3 method for class 'grpoutputs'

print(x, ...)

```

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Object of class grpoutputs. \\
\(\ldots\) & Currently ignored.
\end{tabular}

\section*{Value}

The argument \(x\), invisibly, as for all print methods.

\section*{Examples}
```


# Determine paths for data folders, each containing outputs for 10 runs of

# the PPHPC model

dir_nl_ok <- system.file("extdata", "nl_ok", package = "micompr")
dir_jex_diff <- system.file("extdata", "j_ex_diff", package = "micompr")
files <- glob2rx("stats400v1*.tsv")

# Create a grpoutputs object

go <- grpoutputs(6, c(dir_nl_ok, dir_jex_diff), c(files, files))

# Print information about object (could just type "go" instead)

print(go)

```
```

print.micomp Print information about multiple comparisons of outputs

```

\section*{Description}

Print information about objects of class micomp.

\section*{Usage}
\#\# S3 method for class 'micomp'
print(x, ...)

\section*{Arguments}
x Object of class micomp. ... Currently ignored.

\section*{Value}

The argument \(x\), invisibly, as for all print. methods.

\section*{Examples}
\# A micomp object from package datasets (i.e. grpoutputs objects) directly
micomp(c("outA", "outB", "outC", "outD"), 0.9,
list(list(name = "Comp1", grpout = pphpc_ok),
list(name = "Comp2", grpout = pphpc_noshuff),
list(name = "Comp3", grpout = pphpc_diff)))
pvalf Format p-values

\section*{Description}

Generic function to format \(p\)-values.

\section*{Usage}
pvalf(pval, params)

\section*{Arguments}
pval Numeric \(p\)-value to format (between 0 and 1).
params A list of method-dependent options.

\section*{Value}

A string representing the formatted \(p\)-value.

\author{
See Also \\ pvalf.default
}
```

pvalf.default

```

Default p-value formatting method

\section*{Description}

Format a \(p\)-value for printing in a LaTeX table. Requires the ulem LaTeX package for underlining the \(p\)-values.

\section*{Usage}
\#\# Default S3 method:
pvalf(pval, params = list())

\section*{Arguments}
pval \(\quad\) Numeric value between 0 and 1.
params A list of options. This function accepts the following options:
minval If \(p\)-value is below this value, return this value preceded by a " \(<\) " sign instead instead.
lim1val If \(p\)-value is below this value, it will be double-underlined.
\(\lim 2\) val If \(p\)-value is below this value, it will be underlined.
na_str String to use for NAs. By default NAs are returned as is.

\section*{Value}

A string representing the formatted pval.

\section*{Examples}
pvalf(0.1)
pvalf(0.000001)
pvalf(c(0.06, 0.04, 0.005, 0.00001), list(minval = 0.0001))
```

summary.assumptions_cmpoutput

```

Summary method for the assumptions of parametric tests used in a comparison of an output

\section*{Description}

Summary method for objects of class assumptions_cmpoutput, which contain the assumptions for the parametric tests used in a comparison of an output.

\section*{Usage}
\#\# S3 method for class 'assumptions_cmpoutput'
summary (object, ...)

\section*{Arguments}
object Object of class assumptions_cmpoutput.
... Currently ignored.

\section*{Value}

A list with the following items:
manova A matrix of \(p\)-values for the MANOVA assumptions. All rows, expect the last one, correspond to the Royston test for multivariate normality for each group; the last row corresponds to Box's M test for homogeneity of covariance matrices. Columns correspond to number of principal components required to explain the percentage of user-specified variance.
ttest A matrix of \(p\)-values for the \(t\)-test assumptions. All rows, expect the last one, correspond to the Shapiro-Wilk normality test for each group; the last row corresponds to Bartlett's for equality of variances. Columns correspond to the principal components on which the \(t\)-test was applied.

\section*{Examples}
```


# Create a cmpoutput object from the provided datasets

cmp <- cmpoutput("All", c(0.5, 0.6, 0.7),
pphpc_ok$data[["All"]], pphpc_ok$obs_lvls)

# Obtain the summary of the assumptions of the cmpoutput object

summary(assumptions(cmp))

```
```

summary.assumptions_micomp

```

Summary method for the assumptions of parametric tests used in multiple comparisons of outputs

\section*{Description}

Summary method for objects of class assumptions_micomp, which contain the assumptions for the parametric tests used in multiple comparisons of outputs.

\section*{Usage}
\#\# S3 method for class 'assumptions_micomp'
summary (object, ...)

\section*{Arguments}
object Object of class assumptions_micomp.
... Currently ignored.

\section*{Value}

A list in which each component is associated with a distinct comparison. Each component contains a matrix, in which columns represent individual outputs and rows correspond to the statistical tests evaluating the assumptions of the parametric tests used in each output. More specifically, each matrix has rows with the following information:

Royston (group, \(\boldsymbol{v e =}=\boldsymbol{\%} / \boldsymbol{n p c s}=\)) One row per group per variance to explain / number of PCs, with the \(p\)-value yielded by the Royston test (mvn) for the respective group and variance/npcs combination.
Box's M (ve=\%/npcs=) One row per variance to explain with the \(p\)-value yielded by Box's M test (boxM).
Shapiro-Wilk (group) One row per group, with the \(p\)-value yielded by the Shapiro-Wilk test (shapiro.test) for the respective group.
Bartlett One row with the \(p\)-value yielded by Bartlett's test (bartlett.test).

\section*{Examples}
\# Create a micomp object, use provided dataset
mic <- micomp(5, c(0.7, 0.8, 0.9),
list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff)),
concat \(=\) TRUE)
\# Get the assumptions summary
sam <- summary(assumptions(mic))

\section*{Description}

Summary method for objects of class cmpoutput.

\section*{Usage}
\#\# S3 method for class 'cmpoutput'
summary (object, ...)

\section*{Arguments}
object Object of class cmpoutput.
... Currently ignored.

\section*{Value}

A list with the following components:
output.name Output name.
num.pes Number of principal components which explain var. exp percentage of variance.
var.exp Minimum percentage of variance which must be explained by the number of principal components used for the MANOVA test.
manova.pvals \(P\)-value of the MANOVA test.
parametric.test Name of the used parametric test.
parametric.pvals Vector of \(\$ \mathrm{p} \$\)-values returned by applying the parametric test to each principal component.
parametric.pvals.adjusted Vector of \(\$ \mathrm{p} \$\)-values returned by applying the parametric test to each principal component, adjusted with the weighted Bonferroni procedure, percentage of explained variance used as weight.
nonparametric.test Name of the used non-parametric test.
nonparametric.pvals Vector of \(\$ \mathrm{p} \$\)-values returned by applying the non-parametric test to each principal component.
nonparametric.pvals.adjusted Vector of \(\$ \mathrm{p} \$\)-values returned by applying the non-parametric test to each principal component, adjusted with the weighted Bonferroni procedure, percentage of explained variance used as weight.

\section*{Examples}
```


# Comparing the concatenated output of the pphpc_noshuff dataset, which

# contains simulation output data from two implementations of the PPHPC model

# executed with a minor implementation difference.

summary(
cmpoutput("All", 0.6, pphpc_noshuff$data[["All"]], pphpc_noshuff$obs_lvls)
)

```
summary.grpoutputs Summary method for grouped outputs

\section*{Description}

Summary method for objects of class grpoutputs.

\section*{Usage}
\#\# S3 method for class 'grpoutputs'
summary (object, ...)

\section*{Arguments}
object Object of class grpoutputs.
... Currently ignored.

\section*{Value}

A list with the following components:
output.dims Dimensions for each output, i.e. number of observations and number of variables (i.e. output length).
group.sizes Number of output observations in each group.

\section*{Examples}
\# Determine paths for data folders, each containing outputs for 10 runs of
\# the PPHPC model
dir_nl_ok <- system.file("extdata", "nl_ok", package = "micompr")
dir_jex_noshuff <-
system.file("extdata", "j_ex_noshuff", package = "micompr")
files <- glob2rx("stats400v1*.tsv")
\# Create a grpoutputs object
go <-
grpoutputs(c("o1", "o2"), c(dir_nl_ok, dir_jex_noshuff), c(files, files))

\section*{Description}

Summary method for objects of class micomp.

\section*{Usage}
\#\# S3 method for class 'micomp'
summary (object, ...)

\section*{Arguments}
object Object of class micomp.
... Currently ignored.

\section*{Value}

A list in which each component is associated with a distinct comparison. Each component contains a matrix, in which columns represent individual outputs and rows have information about the outputs. More specifically, each matrix has the following rows:
\#PCs (\(\mathbf{v e}=\%\)) Number of principal components required to explain the specified percentage of variance. There is one row of this kind for each percentage of variance specified when creating the micomp object.
MANOVA (ve=\%) \(P\)-value for the MANOVA test applied to the \#PCs required to explain the specified percentage of variance. There is one row of this kind for each percentage of variance specified when creating the micomp object.
par.test \(P\)-value for the parametric test (first principal component).
nonpar.test \(P\)-value for the non-parametric test (first principal component).
par.test.adjust \(P\)-value for the parametric test (first principal component), adjusted with the weighted Bonferroni procedure, percentage of explained variance used as weight.
nonpar.test.adjust \(P\)-value for the non-parametric test (first principal component), adjusted with the weighted Bonferroni procedure, percentage of explained variance used as weight.

\section*{Examples}
```


# A micomp object from package datasets (i.e. grpoutputs objects) directly

summary(micomp(5, 0.85,
list(list(name = "CompEq", grpout = pphpc_ok),
list(name = "CompNoShuf", grpout = pphpc_noshuff),
list(name = "CompDiff", grpout = pphpc_diff))))

```
```

tikzscat Simple TikZ scatter plot

```

\section*{Description}

Create a simple 2D TikZ scatter plot, useful for plotting PCA data.

\section*{Usage}
tikzscat(data, obs_lvls, marks, tscale, axes_color = "gray")

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline data & Data to plot, \(m \times 2\) numeric matrix, where \(m\) is the number of observations or points to plot. \\
\hline obs_lvls & Levels or groups associated with each observation. \\
\hline marks & ```
Character vector determining how to draw the points in TikZ, for example:
c("mark=square*,mark options={color=red},mark size=0.8pt","mark=diamond*, mark
options={color=black},mark size=1pt", "mark=triangle*,mark options={color=green},mark
size=1pt").
``` \\
\hline tscale & The scale property of the TikZ figure. \\
\hline axes_color & Axes color (must be a LaTeX/TikZ color). \\
\hline
\end{tabular}

\section*{Details}

This function creates a simple TikZ 2D scatter plot within a tikzpicture environment. The points are plotted on a normalized figure with \(x\) and \(y\) axes bounded between \([-1,1]\). To render adequately, the final LaTeX document should load the plotmarks TikZ library.

\section*{Value}

A string containing the TikZ figure code for plotting the specified data.

\section*{Examples}
```

tikzscat(rbind(c(1.5, 2), c(0.5, 1)), factor(c(1,2)),
c("mark=square*,mark options={color=red},mark size=0.8pt",
"mark=diamond*,mark options={color=black},mark size=1pt"),
6)

```
```

toLatex.cmpoutput Convert cmpoutput object to LaTeX table

```

\section*{Description}

This method converts cmpoutput objects to character vectors representing LaTeX tables.

\section*{Usage}
```


S3 method for class 'cmpoutput'

toLatex(object, cmp_name = "Comp. 1", ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & A cmpoutput object. \\
cmp_name & Comparison name (to appear in table). \\
\(\ldots\) & Any options accepted by the toLatex.micomp function.
\end{tabular}

\section*{Details}

This method simply wraps the cmpoutput object into a mi comp object, and invokes toLatex.micomp on the wrapped object.

\section*{Value}

A character vector where each element holds one line of the corresponding LaTeX table.

\section*{Examples}
```


Create a cmpoutput object by comparing the first output ("Pop.Sheep") of

one the provided datasets.

cmp <-
cmpoutput("SheepPop", 0.9, pphpc_ok$data[["Pop.Sheep"]], pphpc_ok$obs_lvls)

Print latex table source to screen

toLatex(cmp)

```
```

 toLatex.micomp Convert micomp object to LaTeX table
    ```

\section*{Description}

This method converts micomp objects to character vectors representing LaTeX tables.

\section*{Usage}
```


S3 method for class 'micomp'

toLatex(
object,
...,
orientation = T,
data_show = c("npcs-1", "mnvp-1", "parp-1", "nparp-1", "scoreplot"),
data_labels = NULL,
labels_cmp_show = T,
labels_col_show = T,
label_row_show = T,
tag_comp = "Comp.",
tag_data = "Data",
tag_outputs = "Outputs",
table_placement = "ht",
latex_envs = c("center"),
booktabs = F,
booktabs_cmalign = "l",
caption = NULL,
caption_cmd = "
caption",
label = NULL,
col_width = F,
pvalf_f = pvalf.default,
pvalf_params = list(),
scoreplot_marks = c("mark=square*,mark options={color=red},mark size=0.8pt",
"mark=diamond*,mark options={color=black},mark size=1pt",
"mark=triangle*,mark options={color=green},mark size=1pt"),
scoreplot_scale = 6,
scoreplot_before = "
\raisebox{-.5
height}{
\resizebox {1.2cm} {1.2cm} {",
scoreplot_after = "}}"
)

```

\section*{Arguments}
object A micomp object.
... Currently ignored.
orientation If TRUE, outputs are placed along columns, while data is placed along rows. If FALSE, outputs are placed along rows, while data is placed along columns.
\begin{tabular}{ll} 
data_show & \begin{tabular}{l} 
Vector of strings specifying what data to show. Available options are: \\
npes-i Number of principal components required to explain i-th user-specified \\
percentage of variance.
\end{tabular} \\
& \begin{tabular}{l} 
mnvp-i MANOVA p-values for the i-th user-specified percentage of variance to \\
explain.
\end{tabular} \\
parp-j Parametric test p-values for the j-th principal component. \\
nparp-j Non-parametric test p-values for the j-th principal component. \\
aparp-j Parametric test p-values adjusted with weighted Bonferroni procedure \\
for the j-th principal component.
\end{tabular}
```

pvalf_params Parameters for pvalf_f function. Default is empty list.
scoreplot_marks
Vector of strings specifying how TikZ should draw points belonging to each group in the score plot.
scoreplot_scale
TikZ scale for each score plot figure.
scoreplot_before
LaTeX code to paste before each TikZ score plot figure.
scoreplot_after
LaTeX code to paste after each TikZ score plot figure.

```

\section*{Details}

This method is inspired by the functionality provided by the xtable and print.xtable functions (from the xtable package), but follows the standard behavior of the toLatex generic.

\section*{Value}

A character vector where each element holds one line of the corresponding LaTeX table.

\section*{Examples}
```


Create a micomp object, use provided dataset, three first outputs, plus

a fourth concatenated output

mic <- micomp(4, 0.8,
list(list(name = "NLOKvsJEXOK", grpout = pphpc_ok),
list(name = "NLOKvsJEXNOSHUFF", grpout = pphpc_noshuff),
list(name = "NLOKvsJEXDIFF", grpout = pphpc_diff)),
concat = TRUE)

Print latex table source to screen

toLatex(mic)

```

\section*{Index}
```

* datasets
pphpc_diff,21
pphpc_noshuff, 22
pphpc_ok,23
aov, 6, 9, 25
assumptions, 3
assumptions.cmpoutput, 3, 3
assumptions.micomp, 3,4
assumptions_manova, 3, 5, 16
assumptions_paruv, 3, 6,18
barplot, 16-18
bartlett.test, 6, 15, 18, 31
boxM, 5, 15, 31
centerscale, 6, 9, 11, 13
cmpoutput, 3, 8, 13, 15,36
concat_outputs, }
glob2rx, 11
grpoutputs, 10, 12, 15, 22, 23
kruskal.test, }
manova, }
mi comp, 4, 12, 15, 21, 28, 34, 36, 37
micompr, 14
mvn, 5, 15, 16, 31
plot.assumptions_cmpoutput, 15
plot.assumptions_manova, 16
plot.assumptions_micomp, 17
plot.assumptions_paruv, 18
plot.cmpoutput,19
plot.default, 15, 19-21
plot.grpoutputs,20
plot.micomp, 21
pphpc_diff, 21
pphpc_noshuff, 22
pphpc_ok, 23

```
print, 24-28
print.assumptions_cmpoutput, 23
print.assumptions_manova, 24
print.assumptions_micomp, 25
print.assumptions_paruv, 25
print.cmpoutput, 26
print.grpoutputs, 27
print.micomp, 28
pvalf, 28
pvalf.default, 29, 29, 38
read.table, 11, 13
regular expressions, 11
shapiro.test, \(6,15,18,31\)
summary.assumptions_cmpoutput, 30
summary.assumptions_micomp, 31
summary.cmpoutput, 32
summary.grpoutputs, 33
summary.manova, 8,13
summary.micomp, 34
t.test, \(6,9,25\)
tikzscat, 35
toLatex, 39
toLatex.cmpoutput, 36
toLatex.micomp, 36, 37
wilcox.test, 9```

