
Linked Micromaps

Quinn Payton, Marc Weber, Michael McManus, Tony Olsen, Tom Kincaid

August 31, 2015

1 Introduction

The R package micromap is used to create linked micromaps, which display sta-
tistical summaries associated with areal units, or polygons. Linked micromaps
provide a means to simultaneously summarize and display both statistical and
geographic distributions by linking statistical summaries to a series of small
maps. The package contains functions, heavily dependent on the utilities of the
ggplot2 package, which may be used to produce a row-oriented graph composed
of different panels, or columns, of information. These panels at a minimum con-
tain maps, a legend, and statistical summaries.

The key to using these functions is to have your data set up correctly. For a
first example, we would like to display US state names, a graph illustrating their
poverty level, a graph illustrating their percentage of college graduates, and a
micromap indicating which states are being referenced. In order to do this, all
we need is a table with state names and estimates of each of the two metrics
we’re interested in. The dataset edpov included in the micromap library is in
this form:

> library(micromap)

> data("edPov")

> head(edPov)

state ed pov region StateAb

IL Illinois 26.1 10.7 MW IL

IN Indiana 19.4 9.5 MW IN

IA Iowa 21.2 9.1 MW IA

KS Kansas 25.8 9.9 MW KS

MI Michigan 21.8 10.5 MW MI

MN Minnesota 27.4 7.9 MW MN

Next, we need a table of polygons to map. We can use the create_map_table
function to take a spatial object file and create a small efficient table in the form
that the mmplot function can use or we can construct our table directly. In or-
der to do this successfully our table must end up with 4 essential columns that
must be named as follows: ID; coordsx; coordsy; and poly. The ID column is

1

what links to the table of statistics. The poly column is used to identify state
polygons for the same ID (otherwise R will connect all the vertices with some
odd looking results). For this first example we will use the USstates included
with the library and use create_map_table in order to get the data in the right
format.

Some preliminary steps are usually required to use the create_map_table

function. First, many spatial objects are quite detailed, far more detailed than
what is needed for a micromap. The size and complexity of these files will
drastically reduce the speed at which plots can be produced and, in some cases,
overwhelm R with the amount of data being handled causing it to crash. One
option for reducing shapefile complexity is to use a simplification function from
the maptools library which can be used to reduce the size and complexity of a
spatial object. See Section 3,”Preparing data for use with the library”, for more
details and an example. The USstates data is very simple and therefore we will
hold off discussion of the thinning function until later.

The second (and much simpler) step in successfully using the create_map_table
function is assigning an explicit ID to each polygon. The data table associated
with the spatial object must have an ID column (literally called ’ID’) to name
each polygon. This is the column that will be used to link the information from
the stat table to this built map table. With this in mind we can check the data
table from our USstates file by using the following @data syntax. The ”@” syn-
tax refers to grabbing the data object stored in this slot of an sp spatial object.
To examine the other slots of this shapefile one would use the slotNames()

function.

> data("USstates")

> head(USstates@data)

ST ST_NAME AREA_KM PERIM_KM

0 AK Alaska 1506038.1 60260.638

1 AL Alabama 133761.0 2354.600

2 AR Arkansas 137733.7 2172.208

3 AZ Arizona 295267.5 2395.409

4 CA California 409603.3 5682.304

5 CO Colorado 269599.9 2100.092

Since there is no ID column in this table we can insert a second argument
into create_map_table identifying which column we would like to use as our
ID. The ST column will be used in linking to our stats table so that will be
used:

> statePolys <- create_map_table(USstates, IDcolumn="ST")

> head(statePolys)

ID region poly coordsx coordsy hole plotorder plug

1 AK 1 1 2 5 0 1 0

2 AK 1 1 7 10 0 1 0

2

3 AK 1 1 4 12 0 1 0

4 AK 1 1 7 15 0 1 0

5 AK 1 1 4 15 0 1 0

6 AK 1 1 4 17 0 1 0

From here we can create the draft micromap plot. To graph our poverty and
college degree metrics we must specify the type of graph to be used. As of now,
there are only 6 types of graphs built in:

❼ Dot plots (with or without confidence limits)

❼ Bar plots (with or without confidence limits)

❼ Box summary (5 and 7 point)

Additional graph types will be built and included as needed. Users can
create and include new graph types as is explained later in section 5, “Creating
a new panel/graph type”. The draft version of a micromap plot can be made
with this code:

> mmplot(stat.data=edPov,map.data=statePolys,

+ panel.types=c("labels", "dot","dot", "map"),

+ panel.data=list("state","pov","ed", NA),

+ ord.by="pov", grouping=5,

+ median.row=T,

+ map.link=c("StateAb","ID"),

+ print.file="fig1.jpeg",print.res=300

+)

A full explanation of all the function arguments is provided below but 3
things should be made clear here:

❼ panel.data is list of lists to specify which columns of the stat.data table
to use in filling out the panels. For a panel needing multiple columns you
would enter a sublist. There needs to be an entry for every panel even
when specific data from the stat table isn’t supplied by the user. As you
can see here, the map panel has an NA entry. These entries cannot be
left out. Note: The order of the entries in panel.data and panel.types
must coincide. If we want to rearrange the order of the panels, the entries
of both panel.data and panel.types need to be rearranged.

❼ map.link is a vector specifying which column from the stat table matches
the respective column from the map table. In this example the StateAb
column from the stat table matches each data line to its associated poly-
gons in the map table labeled by matching entries in that table’s ID col-
umn. Note that the StateAB column and the ID column have to be of the
same case. Here both columns are uppercase.

3

Figure 1: State Education and Poverty

4

❼ Setting median.row=TRUE will insert a median row. As is noted below,
this will override the default to force the x and y axis coordinates to
stay respective to each other which will probably cause distortion in the
maps being presented. Adjusting panel.width should be used to manually
correct this. If median.row is specified with an even number of polygons
then the median is simply the average of the values of the n/2 and (n/2)+1
polygons. As that median value will not correspond to an observed data
value and polygon then that median value is plotted on the statistical
panel, but no label or polygon are assigned to that symbol.

This initial call will rarely result in high quality, final looking results. From
here we can make notes on what adjustments would make this look better. We
are attempting to replicate a figure created by Dan Carr http://mason.gmu.
edu/~dcarr/ and so we must make some adjustments.

As with most R functions, a few plot wide adjustments can be made by
simply adding in extra arguments in the function call (such as plot.height, colors,
and inactive.fill in this example). To adjust the individual panels, however, we
must make a list of lists specifying which panel we are adjusting and then which
attributes we would like to modify.

To make this more intuitive here is a quick and simple example. Suppose
we just want to change the text alignment in panel 1 and the graph background
colors in panels 2 and 3. First we make a list for each of these panels specifying
the changes we would like to make with the first entry of each list specifying
which panel is to be altered:

> list(1, align="left")

> list(2, graph.bgcolor="lightgray")

> list(3, graph.bgcolor="lightgray")

Now we compile these lists into a list of lists:

> list(list(1, align="left"), list(2, graph.bgcolor="lightgray"),

+ list(3, graph.bgcolor="lightgray"))

Now we can just add:

panel.att= list(list(1, align=”left”), list(2, graph.bgcolor=”lightgray”),
list(3,graph.bgcolor=”lightgray”))

to our mmplot function call and see the changes. We have a lot more changes to
make, though, so we might as well implement all of them at once. The following
code is used to make the graph below in Figure 2:

> mmplot(stat.data=edPov, map.data=statePolys,

+ panel.types=c("labels", "dot", "dot","map"),

+ panel.data=list("state","pov","ed", NA),

+ ord.by="pov", grouping=5,

+ median.row=T,

+ map.link=c("StateAb","ID"),

5

http://mason.gmu.edu/~dcarr/
http://mason.gmu.edu/~dcarr/

+ plot.height=9,

+ colors=c("red","orange","green","blue","purple"),

+ panel.att=list(list(1, header="States",

+ panel.width=.8,

+ align="left", text.size=.9),

+ list(2, header="Percent Living Below \n Poverty Level",

+ graph.bgcolor="lightgray", point.size=1.5,

+ xaxis.ticks=list(10,15,20), xaxis.labels=list(10,15,20),

+ xaxis.title="Percent"),

+ list(3, header="Percent Adults With\n4+ Years of College",

+ graph.bgcolor="lightgray", point.size=1.5,

+ xaxis.ticks=list(20,30,40), xaxis.labels=list(20,30,40),

+ xaxis.title="Percent"),

+ list(4, header="Light Gray Means\nHighlighted Above",

+ inactive.fill="lightgray",

+ inactive.border.color=gray(.7), inactive.border.size=2,

+ panel.width=.8)), print.file="fig2.jpeg",

+ print.res=300)

This seems pretty good. Note “\n” inserts a carriage return in the header.
Actual carriage returns have the same effect but should not be used as this will
result in mmplot being unable to properly align panels, e.g. use:

“. . . header=”Percent Living Below \n Poverty Level”. . . ”
not
“. . . header=”Percent Living Below
Poverty Level”. . . ”

We have two options for storing this final figure. In the mmplot function call
we can add a line to the final list of panel attributes specifying a filename (and
resolution if desired) as follows:

“mmplot(stat.data=edPov,. . . ,print.file=’myFigure.tiff’, print.res=300)”

The “.tiff” tells the mmplot function that a tiff file is requested. Jpeg, jpg, png,
ps, and eps files may also be produced in a similar manner. The other option
is to store our function output in an R object as we build it. When we have
results we are satisfied with we can use the printmmplot function to print it
out:

myPlot <- mmplot(stat.data=edPov,. . .)
print(myPlot, name=“myFigure.tiff”, res=300)

2 Quick Plotting Tips

Quick tips for making higher quality figures with the mmplot function:

6

Figure 2: State Education and Poverty

7

❼ Panel widths will almost certainly need to be adjusted in order to have
the text correctly fit across the panel. Text in the labels and ranks panels
are defaulted to fit vertically correctly. If text is overlapping vertically, it
may be because not enough vertical space is being provided on the plot.
Adjusting plot.height (defaults to 7) and plot.pGrp.spacing (defaults to 1)
can, and should, be used to correct this.

❼ Adjusting right and left panel margins are perhaps the most useful tool
in making a plot look nice. Panels are printed out from left to right and
many times a panel will overlap its preceding neighbor; therefore bringing
in the left margin by setting left.margin=-.5 or even left.margin=-1 can
be very helpful in clearing out white space. For neighboring panels (such
as the poverty and education panels in the example) adjusting the left
panel’s right margin and the right panel’s left margin can cause them to
share a border thus appearing attached.

❼ As noted elsewhere, the micromaps are set to have the x and y axis coor-
dinates set respective to each other. This causes quite a few unintended
consequences, one of which is micromap “shrinkage” if the panel.width is
not wide enough. If your maps look too small at first, expanding the panel
width will probably enlarge your graph quite a bit.

❼ Also, due to an artifact (some might call it a bug) in ggplot2, this coor-
dinate “respectivity” in the micromaps goes away when adding a median
row. Therefore, one should be careful in such situations and take care in
setting the panel width of the map panel to correct any distortion that
may present itself.

We can illustrate these options by adding to our example. Suppose we wish to
add a series of color coded bullets in front of our state names in the original
poverty and education micromap. We can do this by specifying the dot legend
panel.type. This now gives us five panel types.

> mmplot(stat.data=edPov,map.data=statePolys,

+ panel.types=c("dot_legend","labels","dot","dot","map"),

+ panel.data=list(NA,"state","pov","ed",NA),

+ map.link=c("StateAb","ID"),

+ ord.by="pov",

+ grouping=5,

+ median.row=T,

+ plot.height=9,

+ colors=c("red","orange","green","blue","purple"),

+ panel.att=list(list(1, point.type=20, point.border=TRUE),

+ list(2, header="States", panel.width=.8,

+ align="left", text.size=.9),

+ list(3, header="Percent Living Below\nPoverty Level",

+ graph.bgcolor="lightgray", point.size=1.5,

+ xaxis.ticks=list(10,15,20), xaxis.labels=list(10,15,20),

8

+ xaxis.title="Percent"),

+ list(4, header="Percent Adults With\n4+ Years of College",

+ graph.bgcolor="lightgray", point.size=1.5,

+ xaxis.ticks=list(20,30,40), xaxis.labels=list(20,30,40),

+ xaxis.title="Percent", left.margin=-.8, right.margin=0),

+ list(5, header="Light Gray Means\nHighlighted Above",

+ inactive.fill="lightgray",

+ inactive.border.color=gray(.7), inactive.border.size=2,

+ panel.width=.8)),

+ print.file="fig3.jpeg",print.res=300)

Note the correspondence between the panel.types and panel.data statements.
The panel.data statement refers to the data from the statistical data frame ed-
Pov. The first ”dot legend” in panel.types corresponds to the ”NA”as no statist-
cal data are being referenced, the ”labels” corresponds to the ”state” column, the
second ”dot”corresponds to the poverty column, and the third ”dot”corresponds
to the education column. The last panel.type, ”map” corresponds to ”NA” in
the panel.data list as there is no map data in the edPov data frame. The map
data is associated with the statePolys data frame. Also, note that the addition
of the dots before the state names increased the number of panels displayed in
the linked micromap to five so the panel.att statement contains five lists now.

A final option that we can illustrate is that we can easily rearrange the panels
by changing the order of the panel.types and panel.data by re-numbering the
panel attributes section. We now move the maps to the first panel.

> mmplot(stat.data=edPov,map.data=statePolys,

+ panel.types=c("map","dot_legend","labels","dot","dot"),

+ panel.data=list(NA,NA,"state","pov","ed"),

+ map.link=c("StateAb","ID"),

+ ord.by="pov",

+ grouping=5,

+ median.row=T,

+ plot.height=9,

+ colors=c("red","orange","green","blue","purple"),

+ panel.att=list(list(2, point.type=20,

+ point.border=TRUE),

+ list(3, header="States", panel.width=.8,

+ align="left", text.size=.9),

+ list(4, header="Percent Living Below\nPoverty Level",

+ graph.bgcolor="lightgray", point.size=1.5,

+ xaxis.ticks=list(10,15,20), xaxis.labels=list(10,15,20),

+ xaxis.title="Percent"),

+ list(5, header="Percent Adults With\n4+ Years of College",

+ graph.bgcolor="lightgray", point.size=1.5,

+ xaxis.ticks=list(20,30,40), xaxis.labels=list(20,30,40),

+ xaxis.title="Percent"),

+ list(1, header="Light Gray Means\nHighlighted Above",

9

Figure 3: State Education and Poverty with Dot Legend

10

+ inactive.fill="lightgray",

+ inactive.border.color=gray(.7), inactive.border.size=2,

+ panel.width=.8)),

+ print.file="fig4.jpeg",print.res=300)

3 Preparing data for use with the library

Example Steps for simplifying spatial polygons in a spatial data set
for the mmplot function: Users can download an example shapefile. We will
use level 3 ecoregions of Texas as an example (located here):
ftp://ftp.epa.gov/wed/ecoregions/tx/tx_eco_l3.zip

We will look at two approaches to simplifying spatial polygons for use in mi-
cromaps —one using GIS software such as ESRI ArcMap and the other entirely
in R.
Method for simplifying polygons using simplification in GIS software such as
ArcMap:

❼ Read the shapefile into R from your working directory

File > Add Data > navigate to where you downloaded file

❼ Open the Simplify Polygon tool in ArcToolbox

Generalization > Simplify Polygon

❼ Choose simplification algorithm, maximum allowable offset, and minimum
area. Point remove is quick, bend simplify can take longer but gives more
aesthetically pleasing results

Simplification Algorithm: POINT REMOVE

Maximum Allowable Offset: 1000 Meters

Minimum Area: .001

Handling Topological Errors: RESOLVE ERRORS

❼ Read resulting shapefile into R using readOGR (uses readOGR from rgdal,
loaded with the micromap library):

> txeco <- readOGR(”.”,”tx eco l3”)

❼ Create an ID column in your spatial dataframe for the create_map_table
function

> txeco$ID <- txeco$US L3CODE

11

ftp://ftp.epa.gov/wed/ecoregions/tx/tx_eco_l3.zip

Figure 4: State Education and Poverty with Map Panel First

12

Method two is to simplify polygons within R , and this can be done in sev-
eral ways, two of which will be illustrated below. One way is to use the
thinnedSpatialPoly function in the maptools library. The other way is to
use the gSimplify method in rgeos, which includes the step of converting a
SpatialPolygon object in R into a SpatialPolygonDataFrame. The create_map_table
function in the micromap library only works on a
SpatialPolygonDataFrame.

Steps for simplifying very large spatial data: For very large data you
need to take extra steps to get manageable spatial data for use in linked mi-
cromaps. We will use level 3 ecoregions for the conterminous US as an example.
Note that these are one example of steps that work, other combinations of steps
could possibly work better for other data —the point is to get rid of very small
features and simplify line work as much as possible. First we’ll download level
3 ecoregions for the US (located here):
ftp://ftp.epa.gov/wed/ecoregions/us/Eco_Level_III_US.zip

In ArcMap:

❼ To get rid of state boundaries, first open the Dissolve tool in the Gener-
alization toolbox:

Generalization > Dissolve

❼ Simplify newly created feature using the Simplify Polygon tool:

Cartography Tools > Generalization > Simplify Polygon

Choose simplification algorithm = Bend Simplify, Reference Base-
line 100 kilometers, minimum area 100 square kilometers, and
handling toplogical errors = resolve errors

❼ Now simplify features you just created again, but using a different simpli-
fication algorithm:

Open Simplify Polygon tool

Choose simplification algorithm = Point Remove, Maximum al-
lowable offset 10,000 meters, minimum area 10,000 square me-
ters, and handling toplogical errors = resolve errors

This will create a sufficiently simplified shapefile to use with the mmplot func-
tion
In R: The best option for getting a sufficiently simplified spatial object that
still looks reasonable is to use ArcMap. We have found it difficult to use ex-
isting simplification algorithms available through R packages to create visually
acceptable, as well as simple enough, spatial objects for the mmplot function.
However, methods to try in R are available in both maptools and rgeos library,
such as:

13

ftp://ftp.epa.gov/wed/ecoregions/us/Eco_Level_III_US.zip

> eco3 thin1 <- thinnedSpatialPoly(eco3, tolerance=50000, topolo-
gyPreserve=TRUE, avoidGEOS=FALSE)

> eco3 thin2<- thinnedSpatialPoly(eco3, tolerance=50000, minarea=100,avoidGEOS
= TRUE)

> eco3 thin3<- gSimplify(eco3, tol=50000, topologyPreserve=TRUE)

If you do not have valid topology, you will need to fix topology errors in your
shapefile. If you try gSimplify method, you will need to promote the object to a
SpatialPolygonsDataFrame in R using your original SpatialPolygonsDataFrame
prior to thinning, in this manner:

> df <- eco3data

> eco3 <- SpatialPolygonsDataFrame(eco3 thin3, df)

Other simplification approaches using open source or free tools include the
online tool MapShaper available here:
http://www.mapshaper.org/. Both polygon simplification as well as line smooth-
ing (Bezier curves for instance) can be implemented as well in Quantum GIS
via the ’Generalizer’ plugin, and in PostGIS the Douglas-Peucker algorithm is
implemented with ’simplify’.

For further reading on polygon simplification, we refer users to the following
papers:

Douglas, D. and Peucker, T. (1973). Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. The
Canadian Cartographer 10(2). 112-122.

Harrower, M. and Bloch, M. (2006). MapShaper.org: A Map Generalization
Web Service. IEE Computer Graphics and Applications 26(4). 22-27.

Mansouryar, M. and Hedayati, A. (2012). Smoothing Via Iterative Aver-
aging (SIA) A Basic Techniqu for Line Smoothing. International Journal of
Computer and Electrical Engineering 4(3), 307-311.

Technical paper, ESRI, ”Automation of Map Generalization: The Cutting-
Edge Technology,” 1996. It can be found in the White Papers section of ArcOn-
line at this Internet address: http://downloads.esri.com/support/whitepapers/
ao_/mapgen.pdf

4 Full List of Adjustable Attributes

❼ Attribute arguments recognized by the mmplot function:

❼ cat - category column within stats table for a categorization type linked
micromap.

❼ colors - the color palette used within each perceptual group. (e.g. brewer.pal(5,
”Spectral”)).

14

http://www.mapshaper.org/
http://downloads.esri.com/support/whitepapers/ao_/mapgen.pdf
http://downloads.esri.com/support/whitepapers/ao_/mapgen.pdf

❼ grouping (required)- the number of lines per perceptual group. E.g.
simply entering “5” will put 5 lines in each perceptual group or you can
enter c(5,6,5,4) to have disproportionate numbers of lines in each group.

❼ map.data (required) - data table likely created by the create map table
function applied to a spatial polygon data frame.

❼ map.link (required) - a vector specifying which column from the stat table
matches which column from the map table respectively (e.g. “c(“StateAb”,
“ID”))”. The two columns must be of the same case.

❼ median.color - if median.row is specified, then the user can specify the
color for the median symbol, such as median.color=”black”.

❼ median.row - specifies whether a median row should be included. If
an odd number of data lines are supplied a data line itself will be used
as the median; otherwise median entries will be calculated from the sup-
plied data. Note that without a median row maps are forced into proper
size. However, an artifact in ggplot2 removes this feature when a me-
dian row is added and so a user must use the panel.width argument (and
left.margin/right.margin panel attribute) for the map panel so that panel
that does not have distorted coordinates. (The default setting is FALSE)

❼ median.text.color - the default is median.text.color=’black’. Other col-
ors can be specified to change the color of the word Median plotted when
median.row=TRUE.

❼ median.text.label - the default is median.text.label=’Median’ when me-
dian.row=TRUE.

❼ median.text.size - the default is median.text.size=1 when median.row=TRUE.
As with all defaults set to 1, any change from default will magnify the de-
fault size by a factor. For example, meidan.text.size=.5 will print the word
”Median” half as big as the default size.

❼ ord.by, grp.by (required) - ord.by specifies the stats.data column to be
ranked for the ordering of the figure. See related rev.ord. grp.by is used
for grouped plots in order to specify which data table column to sort the
figure by.

❼ panel.att - a list of panel specific attributes to be altered (described in
more detail below).

❼ panel.data (required) - a list of lists to specify which columns of the
stat.data table to use in filling out the panels. For a panel needing multiple
columns you enter a sublist. For example, the dot cl requires a sublist that
includes three column names from the statistics data frame. One column
name identifies the summary statistics, and the other two column names
identify the lower and upper confidence bounds. There needs to be an

15

entry for every panel even when specific data from the stat table isn’t
supplied by the user. That is to say map and rank panels (as well as
user created panel types) should have NAs. e.g. panel.data=list(“State”,
list(“Estimate”, “Lower.Bound”, “Upper.Bound”), NA).

❼ panel.types (required) - a vector specifying the panels of the plot. Note:
each “panel.type” (e.g. “map”, “labels”, “dot cl”, etc.) is the name of a
function that will be called to create that panel. Therefore a user can
create a new panel type (e.g. “new.graph.type”) and the mmplot function
will automatically go look for and call that function just by changing the
entry here. See the section “Creating a New Panel Type”.

❼ plot.footer - not implemented yet.

❼ plot.footer.size - not implemented yet.

❼ plot.footer.color - not implemented yet.

❼ plot.grp.spacing - the verticle spacing between groups measured in lines.
Defaults to 1.

❼ plot.pGrp.spacing - the spacing between perceptual groups. “1”, the
default, implies standard spacing.

❼ plot.header - not implemented yet.

❼ plot.header.size - not implemented yet.

❼ plot.header.color - not implemented yet.

❼ plot.height - the height of the plot window.

❼ plot.width - the width of the plot window. (Defaults to 7)

❼ print.file - the full file name (i.e. including extension) to save the resulting
figure. The extension tells the mmplot function which type of printing
function to run. Tiff, png ,jpeg, .jpg, .ps, or .eps are all recognized.

❼ print.res - the resolution desired for the resulting file.

❼ rev.ord - reverse the order for ranking the plot.

❼ stat.data (required) - data table of statistic.

❼ vertical.align - the default is vertical.align=”top” specifying that the
rows within a perceptual group are aligned at the top. Specifying ver-
tical.align=”center” will center align the rows within a perceptual group,
which is useful when perceptual groups do not contain the same number
of rows, such as group=c(5,5,4,4,5,5)

❼ Attribute arguments applied to the panels:

16

❼ panel.att - is a list object (simply referred to as “a” throughout the func-
tion) which contains a sublist of specifications for each panel. Some at-
tributes are standard for all panel types (e.g. header, graph color, etc.),
while other options are only available to alter for certain panels (bar size,
point type, etc.). If a user tries to alter a panel specific attribute that
isn’t recognized (e.g. bar size on a dot plot), it is ignored and a warning
is printed.

Standard Attributes

❼ graph.bgcolor -the background color within any graphs being drawn.

❼ graph.border.color - alters the border color on graphs. Note this can
be used to hide borders on graphs by setting it equal to white or whatever
the specified panel background color is. Defaults to “Black”on graphs. No
borders are shown on maps, labels and ranks.

❼ graph.grid.major - a boolean variable stating whether major grid lines
should appear in the graph. (T/F or 0/1 should both work). The defaults
is “TRUE” for graphs, and “FALSE” for all other panels.

❼ graph.grid.minor - see above.

❼ panel.att - a list of panel specific attributes. These are to be entered as
a list of lists, with the first entry of each sublist specifying with panel’s
attributes are being altered: For example panel.att=list(list(1, . . .),list(2,
. . .),. . . , list(n, . . .)) The following attributes can be specified for each
list.

❼ left.margin, right.margin - set panel specific panel margins individu-
ally.

❼ panel.bgcolor - the back ground color in each panel.

❼ panel.footer - not implemented yet.

❼ panel.footer.size - not implemented yet.

❼ panel.footer.color - not implemented yet.

❼ panel.header - a title for the whole panel.

❼ panel.header.size - size relative to default. All panels should have the
same size header to keep proper alignment between panels. If a user has
specified unequal header sizes between panels, the function will return a
warning.

❼ panel.header.color - not implemented yet.

❼ panel.width - this is the relative panel width compared to the other
panels.

17

❼ xaxis.color - the color of the x axis line.

❼ xaxis.labels - this is a list or vector of text to be written at each tick
mark. Note: if these are being explicitly specified then xaxis.ticks must
be explicitly specified as well. e.g. xaxis.labels=list(500,1000,1500,2000)

❼ xaxis.labels.angle - rotates the labels on the x axis. The default xaxis.labels.angle=0
has the labels horizontally arranged; whereas xaxis.labels.angle=90 orients
the labels vertically.

❼ xaxis.labels.size - controls the size of of the labels under the x axis of
the panels by specifying, for example, xaxis.labels.size=c(1.5). All x axis
labels will be sized the same across the panels.

❼ xaxis.line.display - a boolean variable stating whether the line of the x
axis should appear on the graph. (T/F or 0/1 should both work). This
defaults to “FALSE”on maps, labels and ranks panel types so no x axis
line is displayed for those panels.

❼ xaxis.text.display - a boolean variable indicating whether text should
be displayed on the x axis. This is the text associated with each tick, not
the axis title. For the panel types of maps, labels, and ranks the default
is set to “FALSE”.

❼ xaxis.ticks - this is a list or vector of points at which ticks should be
drawn on the x axis. e.g. xaxis.ticks=list(500,1000,1500,2000)

❼ xaxis.ticks.display - a boolean variable stating whether the axis ticks
should appear on the x axis. (T/F or 0/1 should both work) Defaults to
”FALSE” on all graphs.

❼ xaxis.title - specifies what the x axis should be labeled. The default is
for to no axis label.

❼ yaxis.labels - see description for xaxis.labels.

❼ yaxis.line.display - see description for xaxis.line.display.

❼ yaxis.text.display - see description for xaxis.text.display.

❼ yaxis.ticks - see description for xaxis.ticks.

❼ yaxis.ticks.display - see description for xaxis.ticks.display.

❼ yaxis.title - see description for xaxis.title.

Attributes for Specific Panel Types labels:

❼ align - horizontal alignment for labels with alignment options of “center”,
“left”, “right’.

❼ text.size - relative to default size.

18

ranks:

❼ align - horizontal alignment for ranks with alignment options of “center”,
“left”, “right”.

❼ text.size - relative to default size.

dot legend:

❼ point.border - by default a black border will be placed around dots. To
correct this, set this option to FALSE.

❼ point.size - size relative to default.

❼ point.type - the pch specification for points contained in a graph.

dot:

❼ add.line - add a line at some specified x coordinate.

❼ add.line.col - specify color.

❼ add.line.typ - specify type**.

❼ connected.dots - set equal “TRUE” makes a line connecting the dots
within each perceptual group of a dot plot.

❼ connected.col - color of the connecting line, such as “gray(.6)”.

❼ connected.typ - specify line type, such as = “solid”, for the connecting
line.

❼ connected.size - specify the size of the line type for the connecting line.

❼ median.line - add a line at the calculated median.

❼ median.line.col - specify line color.

❼ median.line.typ - specify type**.

❼ point.border - by default a black border will be placed around dots. To
correct this, set this option to FALSE.

❼ point.size - size relative to default.

❼ point.type - the pch specification for points contained in a graph.

dot cl: requires a sublist identifying that statistics column and the two columns
containing the lower and upper confidcence bounds from the statistics data
frame.

❼ add.line - add a line at some specified x coordinate.

❼ add.line.col - specify color.

19

❼ add.line.typ - specify type**.

❼ line.width - thickness of confidence bands relative to default.

❼ median.line - add a line at the calculated median.

❼ median.line.col - specify line color.

❼ median.line.typ - specify type**.

❼ point.border - by default a black border will be placed around dots. To
correct this, set this option to FALSE.

❼ point.size - size relative to default.

❼ point.type - the pch specification for points contained in a graph.

bar:

❼ add.line - add a line at some specified x coordinate.

❼ add.line.col - specify color.

❼ add.line.typ - specify type**.

❼ graph.bar.size - relative to default size

❼ median.line - add a line at the calculated median.

❼ median.line.col - specify line color.

❼ median.line.typ - specify type**.

bar cl: see description of dot cl sublist

❼ add.line - add a line at some specified x coordinate.

❼ add.line.col - specify color.

❼ add.line.typ - specify type**.

❼ graph.bar.size - relative to default size

❼ median.line - add a line at the calculated median.

❼ median.line.col - specify line color.

❼ median.line.typ - specify type**.

box summary: requires a sublist identifying for a five-number summary the
columns containing the minimum, first quartile, median, third quarterile, and
maximum from the statistics data frame.

❼ add.line - add a line at some specified x coordinate.

20

❼ add.line.col - specify color.

❼ add.line.typ - specify type**.

❼ graph.bar.size - relative to default size

❼ median.line - add a line at the calculated median.

❼ median.line.col - specify line color.

❼ median.line.typ - specify type**.

map:

❼ map.all - by default, the mmplot function will only plot the polygons
associated with data in the stats table. Setting “map.all=T” will tell it
to show all the polygons from the map table regardless of whether the
polygons have data associated with the stats table. Setting “map.all=F”
eliminates polygons from the map that do not have data associated with
the stats table.

❼ fill.regions=”aggregate”is the default and creates the standard micromap
in which polygons in a previous perceptual group are shaded or filled in
subsequent perceptual groups. The fill.regions=“aggregate” proceeds from
the top perceptual group to the bottom perceptual group by sequentially
filling the polygons that have already been displayed. Arguments typically
used when fill.regions=“aggregate” is specified include:

❼ active.border.color - specifies the border color of the polygons that are
linked to the statistical summaries being displayed in that row’s perceptual
group. The default is active.border.color=“black”.

❼ active.border.size - specifies the size of the line around the border of
the polygons that are linked to the statistical summaries being displayed
in that row’s perceptual group. The default is active.border.size=1.

❼ inactive.fill - “lightgray” is the default, and inactive polygons are those
polygons that were displayed in a previous perceptual group.

❼ inactive.border.color - gray(.25) is the default.

❼ inactive.border.size - 1 is the default.

❼ fill.regions =“two ended” is typically used along with the median.row=T
statement to indicate which polygons are above or below the median value
of the variable specified in the ord.by= statement. With fill.regions=“two
ended”, the active and inactive arguments previously described are only
applied to the subset of polygons that are above the median or the subset
below the median.

21

❼ fill.regions = ”with data” simply applies a fill to all the polygons not
being displayed in a specific row of a perceptual group. These polygons
do have statistical data that will be displayed in a later perceptual group.
Additional arguments used with fill.regons=“with data” include:

❼ withdata.fill - “white” is the default.

❼ withdata.border.color - “gray(.75)” is the default.

❼ withdata.border.size - “1” is the default.

Two other arguments can be applied to the map panel for two situations
when a user wants to display polygons on the map, but those polygons are not
included in the statistics data table. Such “no data” polygons will never be
included in a perceptual group. In the first situation, fill, border color, and
border size arguments are used so that the individual polyons that have no
statistical data are displayed. These arguments are:

❼ nodata.fill - “white” is the default.

❼ nodata.border.color - “gray(.75)” is the default.

❼ nodata.border.size - “1” is the default.

In the second situation, the user does not want to display the individual polygons
of the no data polygons. For example, forty-seven states have statistical sum-
mary data on a public health variable, but Alabama, Georgia, and Florida do
not. With the “outerhull” arguments, the three individual polygons of Alabam,
Georgia, and Florida are not displayed in the map, but only their exterior border
outline, or outer hull, are displayed; whereas the polygons for the forty-seven
other states are displayed on the map panel.

❼ outer.hull - setting equalt to “TRUE” draws only the outer.hull.

❼ outer.hull.color - “black” is the default.

❼ outer.hull.size - is the size of the line, with the default of “1”.

***Here is a helpful site for line types: http://www.cookbook-r.com/Graphs/
Shapes_and_line_types/ See the section“Creating a New Panel Type”on how
to specify other attributes.

5 Creating a new panel type

Note: A general understanding of ggplot2 is needed and assumed
throughout this section

Now let’s say we would like to illustrate the change in lung cancer rates
using arrows on a graph. We can build our own graph type by creating our own
graphing function; we’ll call it arrow.plot.build. The mmplot function sends

22

http://www.cookbook-r.com/Graphs/Shapes_and_line_types/
http://www.cookbook-r.com/Graphs/Shapes_and_line_types/

all graphing functions the same arguments (in this order): the panel ggplot2
object being worked on; the number of the panel; the stats data table; and the
attributes list (this is a little involved so we won’t get into it until a little later).
(Note: the panel number tells you which sublist in the attribute list to work
with). To start, let’s get our data and store it in a new object:

> data(lungMort)

> myStats <- lungMort

> head(myStats)

StateAb Rate_95 Count_95 Lower_95 Upper_95 Pop_95

AK AK 50.0 298 44.2 56.3 1089123

AL AL 40.2 4095 39.0 41.4 8124753

AR AR 43.8 3079 42.3 45.4 5479988

AZ AZ 38.4 4794 37.3 39.5 10557561

CA CA 41.5 26931 41.0 42.0 64354973

CO CO 31.5 2723 30.3 32.7 9245273

StdErr_95 Rate_00 Count_00 Lower_00 Upper_00 Pop_00

AK 3.1 46.8 350 41.8 52.2 1122525

AL 0.6 43.4 4630 42.2 44.7 8245919

AR 0.8 48.3 3568 46.7 49.9 5661547

AZ 0.6 38.5 5482 37.4 39.5 12066024

CA 0.3 39.2 27406 38.7 39.6 68478617

CO 0.6 33.9 3265 32.7 35.1 10159130

StdErr_00 State

AK 2.6 Alaska

AL 0.6 Alabama

AR 0.8 Arkansas

AZ 0.5 Arizona

CA 0.2 California

CO 0.6 Colorado

For the time being, we’ll also remove Washington D.C. so that we have nice
even grouping numbers and can momentarily avoid the median row topic.

> myStats <- subset(myStats, !StateAb=="DC")

The data table that will actually be passed into our graphing function once
we implement it into the function is not exactly like our stats table. Before
constructing the panels, the mmplot function adds the extra columns ”rank”,
”median”, ”color”, ”pGrp” and ”pGrpOrd” that specify, respectively, the overall
order to plot the information, whether the row should be seperated as a median,
the color from the color list to use, the perceptual group each table entry belongs
to and the order in each perceptual group of each entry. These columns are
added using a built-in function called create_DF_rank. The syntax for this
function is: create_DF_rank (data, ord.by, group). We need these columns to

23

know the nature of what we are working with in order to build our new graph
type.

For now, we can assume groups of 5 will look good and we will want our
table ordered by the rate from 2000. To create a new table with these columns
file we run:

> myNewStats <- create_DF_rank(myStats, ord.by="Rate_00", group=5)

> head(myNewStats)

pGrp StateAb Rate_95 Count_95 Lower_95 Upper_95 Pop_95

1 1 UT 17.6 685 16.3 18.9 5036638

2 1 ND 30.6 574 28.1 33.3 1527853

3 1 NM 31.8 1293 30.1 33.6 3899455

4 1 SD 30.5 659 28.2 33.1 1710003

5 1 CO 31.5 2723 30.3 32.7 9245273

6 2 ID 33.0 981 31.0 35.2 2976963

StdErr_95 Rate_00 Count_00 Lower_00 Upper_00 Pop_00

1 0.7 16.9 738 15.7 18.2 5488475

2 1.3 31.4 608 28.9 34.1 1480915

3 0.9 31.5 1420 29.9 33.2 4038163

4 1.2 32.9 736 30.5 35.5 1716683

5 0.6 33.9 3265 32.7 35.1 10159130

6 1.1 35.0 1158 33.0 37.1 3230513

StdErr_00 State rank median addOrd pGrpRank

1 0.6 Utah 1 FALSE 0 1

2 1.3 North Dakota 2 FALSE 0 2

3 0.8 New Mexico 3 FALSE 0 3

4 1.2 South Dakota 4 FALSE 0 4

5 0.6 Colorado 5 FALSE 0 5

6 1.0 Idaho 6 FALSE 0 1

pGrpOrd color

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 1 1

Now, to build our new graphing function, we have 4 basic steps to go through:

1. create the general graph’s structure

2. generalize the inputs

3. integrate it with the mmplot function

4. enable user customization if desired

24

Step 1: First we use ggplot2 to create the general structure of the graphs
as we would like to see them. We can use geom_segment function in ggplot2
to make arrows. On our graph we would like an arrow starting at the 1995
rate extending to the 2000 rate so these columns will obviously be used for
our ”x” and ”xend” parameters. The y coordinates can be inferred from the
”pGrpOrd” column which has been created for just this purpose. Setting both
the ”y” and ”yend” parameters equal to ”pGrpOrd” should result in a flat arrow
for each state, descending down our graph in an order which will match our
label column as well as any other graphs being presented.

First, we can use the ”color” column (which is calculated in create.DF.rank

based on the pGrpOrd column) to vary the color of arrows within each percep-
tual group. Second, for various portions of the mmplot function code, we must
use facet_grid instead of facet_wrap.

> library(ggplot2)

> library(grid)

> ### ggplot2 code:

> ggplot(myNewStats) +

+ geom_segment(aes(x=Rate_95, y=-pGrpOrd,

+ xend=Rate_00, yend=-pGrpOrd, colour=factor(color)),

+ arrow=arrow(length=unit(0.1,"cm"))) +

+ facet_grid(pGrp~., scales="free_y") +

+ scale_colour_manual(values=c("red","orange","green","blue","purple"),

+ guide="none")

> ggsave(file="fig5.jpeg", dpi=300)

Step 2: This graph in Figure 5 looks like it is in the basic form we need.
Good initial start but we need to change our x coordinate columns and color
palette from being hard coded to being user specified. As noted earlier, the
mmplot function provides the panel object, the panel number, the stats data
table and the attribute list. It is this attributes list through which the color and
data specifications are going to be provided to the function. Without delving
too far into the details of this list just yet, we can take for granted that the user
specified color palette will be stored in the colors slot in the plot section of the
object and the names of our data columns will be stored in the panel.data slot
of one of the panel sections; the panel number tells us which panel section to
look in.

In writing our function we can refer to the panel object, the panel number,
stats table and the attribute list however we like. We’ve already been referring
to the data table as myNewStats so, along those same lines, let’s call the other
items myPanel, myNumber, and myAtts respectively. In the next section we
will start referring to myAtts and myNumber so it is helpful to set up a fake
list and fake number to work with while we build our function that we can work
with to test our code as we go along. The sample.att function will provide this
list for us and we will simply set myNumber equal to 1.

> myAtts <- sample_att()

25

Figure 5: Initial mmplot with new panel type of arrow plot

> myNumber <- 1

This is just a dummy attribute list for now so we need to overwrite its
entries with our specifications from above so that we can continue to test and
have everything work as expected:

> myAtts$colors <- c("red","orange","green","blue","purple")

> myAtts[[myNumber]]$panel.data <- c("Rate_95","Rate_00")

We will pull out our color list and panel column list into variables called
myColors and myColumns. This means myColumns will be a vector with the
myColumns[1] referring to the start points and myColumns[2] referring to the
end points of our arrows. The code to pull these items out of the attributes list
will look like this:

> myColors <- myAtts$colors

> # pulls color out of the plot level

> # section of the "myAtts" attributes list

> myColumns <- myAtts[[myNumber]]$panel.data

> # looks in the panel level section numbered

> # "myNumber" of the "myAtts" attributes list

We need to work around ggplot a bit in order for it to understand where to
find our data. Using the syntax ”x=myColumns[1], xend=myColumns[2]”won’t
work in ggplot. Instead, we have to hard code which column names to look for

26

(i.e. ”x=data1, xend=data2”) and add those columns to myNewStats. This is
illustrated with the following code:

> myNewStats$data1 <- myNewStats[, myColumns[1]]

> myNewStats$data2 <- myNewStats[, myColumns[2]]

> myPanel <- ggplot(myNewStats) +

+ geom_segment(aes(x=data1, y=-pGrpOrd,

+ xend= data2, yend=-pGrpOrd, colour=factor(color)),

+ arrow=arrow(length=unit(0.1,"cm"))) +

+ facet_grid(pGrp~.) +

+ scale_colour_manual(values=myColors,

+ guide="none")

> myPanel

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

1
2

3
4

5
6

7
8

9
1

0

20 30 40 50

data1

−
p

G
rp

O
rd

Note that we have also gone ahead and stored this graph in the myPanel
object as we will eventually be returning this back to the mmplot function any-
ways. This means the last line of code (simply ”myPanel”) has the dual purpose
of telling R to show us our graph but will also return the panel object back
to the mmplot function when we’re finally ready to compile this into function
form.

Step 3: We are getting close to being able to implement our graph but we
still have to clean it up a bit in order for it to seamlessly match the rest of our
linked micromap. There are several built in functions that work to this end. We

27

Figure 6: Intermediate mmplot with new panel type of arrow plot

have stored our plot in a variable called myPanel that we can send out to the
assimilatePlot function to do all the needed work for us.

> assimilatePlot(myPanel, myNumber, myAtts)

> ggsave(file="fig6.jpeg", dpi=300)

Our graph in Figure 6 looks like it will probably fit right in with the rest of
the linked micromap plot. Now, we just need to put our code in proper function
form:

> arrow_plot_build <- function(myPanel, myNumber, myNewStats, myAtts){

+ myColors <- myAtts$colors

+ myColumns <- myAtts[[myNumber]]$panel.data

+ myNewStats$data1 <- myNewStats[, myColumns[1]]

+ myNewStats$data2 <- myNewStats[, myColumns[2]]

+ myPanel <- ggplot(myNewStats) +

+ geom_segment(aes(x=data1, y=-pGrpOrd,

+ xend= data2, yend=-pGrpOrd,

+ colour=factor(color)),

+ arrow=arrow(length=unit(0.1,"cm"))) +

+ facet_grid(pGrp~.) +

+ scale_colour_manual(values=myColors, guide="none")

+ myPanel <- assimilatePlot(myPanel, myNumber, myAtts)

+ }

> myPanel

28

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

1
2

3
4

5
6

7
8

9
1

0

20 30 40 50

data1

−
p

G
rp

O
rd

Dealing with a median row: An additional issue to deal with is dealing
with inserting a median row. There is a built in function that should handle
this fairly we called alterForMedian. If, after we’ve added our new columns,
we simply hand that function our stats table and the attributes list, it should
give us back one that has been altered as needed. We also need to slightly alter
the facet_grid line to allow for the median to be a different size.

> arrow_plot_build <- function(myPanel, myNumber, myNewStats, myAtts){

+ myColors <- myAtts$colors

+ myColumns <- myAtts[[myNumber]]$panel.data

+ myNewStats$data1 <- myNewStats[, myColumns[1]]

+ myNewStats$data2 <- myNewStats[, myColumns[2]]

+ myNewStats <- alterForMedian(myNewStats, myAtts)

+ myPanel <- ggplot(myNewStats) +

+ geom_segment(aes(x=data1, y=-pGrpOrd,

+ xend= data2, yend=-pGrpOrd,

+ colour=factor(color)),

+ arrow=arrow(length=unit(0.1,"cm"))) +

+ facet_grid(pGrp~., space="free", scales="free_y") +

+ scale_colour_manual(values=myColors, guide="none")

+ myPanel <- assimilatePlot(myPanel, myNumber, myAtts)

+ }

> myPanel

29

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

1
2

3
4

5
6

7
8

9
1

0

20 30 40 50

data1

−
p

G
rp

O
rd

After we run this function, or saving it to a file and then sourcing that file,
we’ll be able to tell the mmplot function to build this graph simply entering a
panel type of ”arrow.plot”.

Optional Step 4 - specializing user controlled attributes: If we run
the line of code:

> print(myAtts)

We can see a full list of attributes available for alteration/specification by a
user. All of these attributes (e.g. axis labels, background color, grid lines, etc.)
are applied to the graph through the assimilatePlot function so if we like how
our graph looks and don’t feel the need to give the user any more control on
its features we can stop here. However, there might be some changes that users
would like to make such as the width of the arrows and lengths of the arrow
heads. In order to allow these changes by users we need to: a) create extra slots
in our panel level of the attributes list and b) alter our code to recognize these
options.

Creating the extra slots in the attribute list is actually not a terribly dif-
ficult process. This is done for every graph that has already been built into
the micromap library. What these built in graphs have that ours is still lack-
ing is a personalized ”attribute function”. When the mmplot function sees a
panel type of ”arrow.plot”, it’s already looking for an attribute function called
arrow.plot.att to supply the panel level list for our all encompassing attribute

30

list that is being passed around, but we haven’t created this yet; so it settles on
a built in function called standard.att. We’ll use standard.att to build our
new arrow.plot.att function.

In the code below we first start with standard.att to get our useful base
list, and then we append on the new attributes we’d like to control. We’ll call
these new attributes ”line.width” and ”tip.length”.

> myPanelAtts <- standard_att()

> myPanelAtts <- append(myPanelAtts,

+ list(line.width=1, tip.length=1))

Note that the ”=1” is setting our defaults for these 2 entries at ”1”. We can
control what ”1” actually implies later. Now let’s put this into function form.
Note that the mmplot function ”sends” nothing to this function. It only wants
a list of attributes back. Which makes our function simply look like:

> arrow_plot_att <- function(){

+ myPanelAtts <- standard_att()

+ myPanelAtts <- append(myPanelAtts,

+ list(line.width=1, tip.length=1))

+ }

Simple enough. Now let’s revisit our arrow.plot function and insert lines to
pull these attribute specifications out of the attribute list and implement them
in our graphing code:

> arrow_plot_build <- function(myPanel, myNumber, myNewStats, myAtts){

+ myColors <- myAtts$colors

+ myColumns <- myAtts[[myNumber]]$panel.data

+ myLineWidth <- myAtts[[myNumber]]$line.width

+ # Again, note that these are stored in the panel level section of the

+ myTipLength <- myAtts[[myNumber]]$tip.length # attributes object

+ myNewStats$data1 <- myNewStats[, myColumns[1]]

+ myNewStats$data2 <- myNewStats[, myColumns[2]]

+ myNewStats <- alterForMedian(myNewStats, myAtts)

+ myPanel <- ggplot(myNewStats) +

+ geom_segment(aes(x=data1, y=-pGrpOrd,

+ xend= data2, yend=-pGrpOrd,

+ colour=factor(color)),

+ arrow=arrow(length=unit(0.1*myTipLength,"cm")),

+ size=myLineWidth) +

+ facet_grid(pGrp~., space="free", scales="free_y") +

+ scale_colour_manual(values=myColors, guide="none")

+ myPanel <- assimilatePlot(myPanel, myNumber, myAtts)

+ }

> myPanel

31

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

−5
−4
−3
−2
−1

1
2

3
4

5
6

7
8

9
1

0

20 30 40 50

data1

−
p

G
rp

O
rd

Step Last: Now let’s try to implement this new panel in a simple linked
micromap (using the statePolys map data from the initial example) and adjust
the line width and tip length while we’re at it.

> mmplot(stat.data=myStats,

+ map.data=statePolys,

+ panel.types=c("map","labels", "arrow_plot"),

+ panel.data=list(NA,"State", list("Rate_95","Rate_00")),

+ ord.by="Rate_00",

+ grouping=5,

+ map.link=c("StateAb","ID"),

+ panel.att=list(list(3, line.width=1.25, tip.length=1.5)),

+ print.file="fig7.jpeg", print.res=300)

It looks like our new graph has been implemented nicely. We can obviously
still clean this up a bit and might as well add in some extra plots as well. Also,
we should bring Washington DC back into the picture (i.e. use our original
myStats table) and make sure our median row is displaying correctly with the
new graph. Using dot legend we will add a legend and tweek the panel attributes
section quite a bit, we are ready to present the following:

> data(lungMort)

> myStats <- lungMort

32

Figure 7: mmplot with new panel type of arrow plot

33

> mmplot(stat.data=myStats,

+ map.data=statePolys,

+ panel.types=c("map", "dot_legend", "labels", "dot_cl", "arrow_plot"),

+ panel.data=list(NA,

+ "points",

+ "State",

+ list("Rate_00","Lower_00","Upper_00"),

+ list("Rate_95","Rate_00")),

+ ord.by="Rate_00", grouping=5,

+ median.row=T,

+ map.link=c("StateAb","ID"),

+ plot.height=10,

+ colors=c("red","orange","green","blue","purple"),

+ panel.att=list(list(1, header="Light Gray Means\n Highlighted Above",

+ map.all=TRUE,

+ fill.regions="two ended",

+ inactive.fill="lightgray",

+ inactive.border.color=gray(.7),

+ inactive.border.size=2,

+ panel.width=1),

+ list(2, point.type=20,

+ point.border=TRUE),

+ list(3, header="U.S. \nStates ",

+ panel.width=.8,

+ align="left", text.size=.9),

+ list(4, header="State 2000\n Rate and 95% CI",

+ graph.bgcolor="lightgray",

+ xaxis.ticks=list(20,30,40,50),

+ xaxis.labels=list(20,30,40,50),

+ xaxis.title="Deaths per 100,000"),

+ list(5, header="State Rate Change\n 1995-99 to 2000-04",

+ line.width=1.25, tip.length=1.5,

+ graph.bgcolor="lightgray",

+ xaxis.ticks=list(20,30,40,50),

+ xaxis.labels=list(20,30,40,50),

+ xaxis.title="Deaths per 100,000")),

+ print.file="fig8.jpeg", print.res=300)

6 Group-Categorized Micromaps (mmgrouped-
plot function)

mmgroupedplot(stat.data, map.data, panel.types, panel.data, cat, map.link,
. . .) The mmgroupedplot function is very similar to the mmplot function
described earlier. With the mmplot function, we had a one-to-one relationship

34

Figure 8: Cancer Rate in 2000 and Change from 1995-1999 to 2000-2004

35

with one polygon being associated with one statistical summary that appeared
as a single row in a perceptual group. With a group-categorized micromap,
we are going to have a one-to-many relationship with one polygon now being
associated with several statistical summaries. This one to many relationship is
reflected in the structure of the statistical data table.

> library(micromap)

> data("vegCov")

> head(vegCov, n = 9)

Type Subpopulation Indicator

1140 National National CondClassWgt4b.VEGCVR_COND

1141 National National CondClassWgt4b.VEGCVR_COND

1142 National National CondClassWgt4b.VEGCVR_COND

1188 ecowsa3 EHIGH CondClassWgt4b.VEGCVR_COND

1189 ecowsa3 EHIGH CondClassWgt4b.VEGCVR_COND

1190 ecowsa3 EHIGH CondClassWgt4b.VEGCVR_COND

1193 ecowsa3 PLNLOW CondClassWgt4b.VEGCVR_COND

1194 ecowsa3 PLNLOW CondClassWgt4b.VEGCVR_COND

1195 ecowsa3 PLNLOW CondClassWgt4b.VEGCVR_COND

Category NResp Estimate.P StdError.P

1140 1:LEAST DISTURBED 698 47.61908 1.511643

1141 2:INTERMEDIATE DISTURBANCE 394 28.31880 1.533217

1142 3:MOST DISTURBED 291 19.33501 1.229759

1188 1:LEAST DISTURBED 129 42.16749 2.597053

1189 2:INTERMEDIATE DISTURBANCE 92 30.70827 2.685939

1190 3:MOST DISTURBED 48 17.58212 1.990464

1193 1:LEAST DISTURBED 155 47.53334 2.753267

1194 2:INTERMEDIATE DISTURBANCE 111 24.45491 2.544108

1195 3:MOST DISTURBED 145 25.95537 2.341336

LCB95Pct.P UCB95Pct.P Estimate.U StdError.U LCB95Pct.U

1140 44.65632 50.58185 516806.99 18907.163 479749.63

1141 25.31375 31.32385 307342.20 17184.380 273661.43

1142 16.92473 21.74529 209841.67 13516.940 183348.96

1188 37.07736 47.25762 187505.36 13383.579 161274.03

1189 25.44393 35.97261 136549.87 12402.806 112240.82

1190 13.68088 21.48336 78182.07 8887.312 60763.26

1193 42.13704 52.92965 186008.37 11785.392 162909.42

1194 19.46855 29.44127 95697.40 10313.978 75482.37

1195 21.36644 30.54430 101569.04 9522.937 82904.42

UCB95Pct.U

1140 553864.35

1141 341022.96

1142 236334.39

1188 213736.69

1189 160858.93

1190 95600.88

36

1193 209107.31

1194 115912.42

1195 120233.65

The polygons, or areas, that we want to use are listed under Subpopulation as
“National”, “EHIGH”, “PLNLOW”, and “WMTNS”, and each of those areas are
repeated three times in the statistical data to correspond to the three levels of
disturbance listed under the Category column. We want to produce a micromap
that has a panel showing the Estimate.P values crossed with the disturbance
categories for each area. We want a similar panel produced using the Estimate.U
values. We need to examine the spatial polgyon dataframe to see how it is
structured. We will use the WSA3 spatial polygon data frame that has already
been thinned.

> data("WSA3")

> print(WSA3@data)

WSA_3 WSA_3_NM area_mdm ID

1 EHIGH Eastern Highlands 1.197706e+12 EHIGH

2 PLNLOW Plains and Lowlands 3.949916e+12 PLNLOW

3 WMTNS West 2.640471e+12 WMTNS

area_mdm area_mdm

1 1.197676e+12 1.196321e+12

2 3.949854e+12 3.951018e+12

3 2.640467e+12 2.641354e+12

Note that the column WSA 3 is potentially a good ID variable that could link
the spatial and statistical data together. However, the WSA 3 column does not
list “National”, but we can create that area after we make an inital map table
using the create map table function.

> wsa.polys<-create_map_table(WSA3)

> head(wsa.polys)

ID region poly coordsx coordsy hole plotorder plug

1 EHIGH 1 2 672579.2 49281.8017 0 3 0

2 EHIGH 1 2 692236.2 27743.7400 0 3 0

3 EHIGH 1 2 662403.9 17823.7596 0 3 0

4 EHIGH 1 2 656638.2 3781.2090 0 3 0

5 EHIGH 1 2 643629.7 9115.8818 0 3 0

6 EHIGH 1 2 632432.9 -139.7886 0 3 0

To create a National area, we can just use the perimeter outline from EHIGH,
PLNLOW, and WMTNS and avoid using any of the interior polygons by setting
“plug” and “hole” arguments to zero. Each of the polygons needs to have an
unique number. Here is the code to create a National area and to assign a
unique number to every polygon.

37

> national.polys<-subset(wsa.polys, hole==0 & plug==0)

> national.polys<-transform(national.polys, ID="National", region=4,

+ poly=region*1000 + poly)

> head(national.polys)

ID region poly coordsx coordsy hole plotorder

1 National 4 1002 672579.2 49281.8017 0 3

2 National 4 1002 692236.2 27743.7400 0 3

3 National 4 1002 662403.9 17823.7596 0 3

4 National 4 1002 656638.2 3781.2090 0 3

5 National 4 1002 643629.7 9115.8818 0 3

6 National 4 1002 632432.9 -139.7886 0 3

plug

1 0

2 0

3 0

4 0

5 0

6 0

> wsa.polys<-rbind(wsa.polys,national.polys)

> head(wsa.polys)

ID region poly coordsx coordsy hole plotorder plug

1 EHIGH 1 2 672579.2 49281.8017 0 3 0

2 EHIGH 1 2 692236.2 27743.7400 0 3 0

3 EHIGH 1 2 662403.9 17823.7596 0 3 0

4 EHIGH 1 2 656638.2 3781.2090 0 3 0

5 EHIGH 1 2 643629.7 9115.8818 0 3 0

6 EHIGH 1 2 632432.9 -139.7886 0 3 0

> str(wsa.polys)

✬data.frame✬: 4626 obs. of 8 variables:

$ ID : Factor w/ 4 levels "EHIGH","PLNLOW",..: 1 1 1 1 1 1 1 1 1 1 ...

$ region : num 1 1 1 1 1 1 1 1 1 1 ...

$ poly : num 2 2 2 2 2 2 2 2 2 2 ...

$ coordsx : num 672579 692236 662404 656638 643630 ...

$ coordsy : num 49282 27744 17824 3781 9116 ...

$ hole : num 0 0 0 0 0 0 0 0 0 0 ...

$ plotorder: num 3 3 3 3 3 3 3 3 3 3 ...

$ plug : num 0 0 0 0 0 0 0 0 0 0 ...

We assigned the National region equal to 4 as the other areas had already been
assigned the values 1, 2, and 3 when we applied the create map table function.
Note how the ID column in the map table can be linked to the Subpopulation
column in the data table.

38

We can now produce the basic group-categorized micromap using syntax
very similar to mmplot function. We now specify two new arguments “grp.by”
and “cat”. The “grp”.by specifies the areas or polygons we are using from the
statistical data, and “cat” specifies the categories that will be crossed with each
of the areas.

> mmgroupedplot(stat.data=vegCov,

+ map.data=wsa.polys,

+ panel.types=c("map", "labels", "bar_cl", "bar_cl"),

+ panel.data=list(NA,"Category",

+ list("Estimate.P","LCB95Pct.P","UCB95Pct.P"),

+ list("Estimate.U","LCB95Pct.U","UCB95Pct.U")),

+ grp.by="Subpopulation",

+ cat="Category",

+ map.link=c("Subpopulation", "ID"),

+ print.file="fig9.jpeg",print.res=300)

We can the refine that code to produce the finished version of a group-categorized
micromap.

> mmgroupedplot(stat.data= vegCov,

+ map.data= wsa.polys,

+ panel.types=c("map", "labels", "bar_cl", "bar_cl"),

+ panel.data=list(NA,"Category",

+ list("Estimate.P","LCB95Pct.P","UCB95Pct.P"),

+ list("Estimate.U","LCB95Pct.U","UCB95Pct.U")),

+ grp.by="Subpopulation",

+ cat="Category",

+ colors=c("red3","green3","lightblue"),

+ map.link=c("Subpopulation", "ID"),

+ map.color="orange3",

+ plot.grp.spacing=2,

+ plot.width=7,

+ plot.height=4,

+ panel.att=list(list(1, header="Region", header.size=1.5,

+ panel.width=.75),

+ list(2, header="Category",

+ header.size=1.5,

+ panel.width=1.7),

+ list(3, header="Percent", header.size=1.5,

+ graph.bgcolor="lightgray",

+ xaxis.title="percent",

+ xaxis.ticks=list(0,20,40,60),

+ xaxis.labels=list(0,20,40,60)),

+ list(4, header="Unit", header.size=1.5,

+ graph.bgcolor="lightgray",

+ xaxis.title="thousands",

39

Figure 9: National Lake Assessment

40

Figure 10: National Lake Assessment

+ xaxis.ticks=list(0,200000,350000,550000),

+ xaxis.labels=list(0,200,350,550))),

+ print.file="fig10.jpeg",print.res=300)

41

	Introduction
	Quick Plotting Tips
	Preparing data for use with the library
	Full List of Adjustable Attributes
	Creating a new panel type
	Group-Categorized Micromaps (mmgroupedplot function)

