Package 'migest'

December 2, 2021
Type Package
Title Methods for the Indirect Estimation of Bilateral Migration
Version 2.0.2
Maintainer Guy J. Abel g.j.abel@gmail.com
Description Tools for estimating, measuring and working with migration data.
URL http://guyabel.github.io/migest/
BugReports https://github.com/guyabel/migest/issues
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Imports dplyr, purrr, tidyr, stringr, magrittr, stats, tibble, forcats, utils, matrixStats, migration.indices, circlize, graphics, grDevices
Depends R ($>=2.10$)
Suggests spelling, tidyverse, countrycode
Language en-US
NeedsCompilation no
Author Guy J. Abel [aut, cre] (https://orcid.org/0000-0002-4893-5687)
Repository CRAN
Date/Publication 2021-12-02 05:30:02 UTC

R topics documented:

migest-package 3
alabama_1970 4
birth_mat 5
block_matrix 5
block_sum 6
bombay_1951 7
cm2 8
cm3 10
cm_net 12
cm_net_tot 13
death_mat 15
dict_ims 16
ffs_demo 17
ffs_diff 20
ffs_rates 22
format_migration_matrix 23
format_migration_tibble 24
index_age 25
index_age_rc 27
index_connectivity 27
index_distance 30
index_impact 31
index_intensity 33
indian_sub 35
ipf2 36
ipf2_block 38
ipf2_stripe 39
ipf3 41
ipf3_qi 43
ipf_seed 45
ipumsi_age 46
italy_area 47
korea_dist 48
korea_pop 48
korea_reg 49
manila_1970 49
match_pob_tot 50
mig_chord 51
multi_comp 54
multi_comp2 55
nchars_wrap 56
net_sr 57
net_vs 58
new_england_1960 59
quadratic_eqn 60
rc_model_fund 61
rc_model_un 61
rescale_integer_sum 62
rescale_nb 63
rescale_net 64
stripe_matrix 66
str_wrap_n 67
str_wrap_n_single 67
sum_bilateral 68
sum_expand 69
sum_lump 71
sum_net 73
sum_od 74
sum_region 75
uar_1960 77
umbrella 77
usa_1960 78
Index 79
migest-package Methods for the Indirect Estimation of Bilateral Migration

Description

The migest package contains a collection of R functions for indirect methods to estimate bilateral migration flows in the presence of partial or missing data. Methods might be relevant to other categorical data situations on non-migration data, where for example, marginal totals are known and only auxiliary bilateral data is available.

Details

Package:	migest
Type:	Package
License:	GPL-2

The estimation methods in this package can be grouped as 1) functions for origin-destination matrices (cm2 and ipf2) and 2) functions for origin-destination matrices categorized by a further set of characteristics, such as ethnicity, employment or health status (cm3, ipf3 and ipf3_qi). Each of these routines are based on indirect estimation methods where marginal totals are known, and a Poisson regression (log-linear) model is assumed.

The ffs_diff, ffs_rates and ffs_demo functions provide different methods to estimate migration bilateral flows from changes in stocks, see Abel and Cohen (2019) for a review of different methods. The demo files, demo(cfplot_reg2), demo(cfplot_reg) and demo(cfplot_nat), produce circular migration flow plots for migration estimates from Abel(2018) and Abel and Sander (2014), which were derived using the ffs_demo function.

Github repo: https://github.com/guyabel/migest

Author(s)

Guy J. Abel

References

Abel and Cohen (2019) Bilateral international migration flow estimates for 200 countries Scientific Data 6 (1), 1-13
Abel, G. J. (2018). Estimates of Global Bilateral Migration Flows by Gender between 1960 and 2015. International Migration Review 52 (3), 809-852.

Abel, G. J. (2013). Estimating Global Migration Flow Tables Using Place of Birth. Demographic Research 28, (18) 505-546
Abel, G. J. (2005) The Indirect Estimation of Elderly Migrant Flows in England and Wales (MS.c. Thesis). University of Southampton
Abel, G. J. and Sander, N. (2014). Quantifying Global International Migration Flows. Science, 343 (6178) 1520-1522

Raymer, J., G. J. Abel, and P. W. F. Smith (2007). Combining census and registration data to estimate detailed elderly migration flows in England and Wales. Journal of the Royal Statistical Society: Series A (Statistics in Society) 170 (4), 891-908.
Willekens, F. (1999). Modelling Approaches to the Indirect Estimation of Migration Flows: From Entropy to EM. Mathematical Population Studies 7 (3), 239-78.
alabama_1970 Alabama population totals in 1960 and 1970 by age, sex and race

Description

Population data for Alabama by age, sex and race in 1960 and 1970

Usage

alabama_1970

Format

Data frame with 68 rows and 6 columns:
age_1970 Age group in 1970
sex Sex from 'male' or 'female'
race Race from 'white' or 'non-white'
pop_1960 Enumerated population in 1960. Number of births in first and second half of 1960s used for age groups ' $0-4$ ' and '5-9'.
pop_1970 Enumerated population in 1970
us_census_sr Census survival ratio based on US population

Source

Data scraped from Figure 2.3 and Table 1-3A of Bogue, D. J., Hinze, K., \& White, M. (1982). Techniques of Estimating Net Migration. Community and Family Study Center. University of Chicago.
birth_mat Calculate births for each element of place of birth-place of residence stock matrix

Description

This function is predominantly intended to be used within the ffs routines in the migest package.

Usage

```
birth_mat(b_por = NULL, m2 = NULL, method = "native", non_negative = TRUE)
```


Arguments

b_por	Vector of numeric values for births in each place of residence
m 2	Matrix of migrant stock totals at time $t+1$. Rows in the matrix correspond to place of birth and columns to place of residence at time $t+1$.
method	Character string of either "native" or "proportion" to choose method to dis- tribute births. The "proportion" method assumes the rate of non-migration in- crease in each place of birth sub-group (native born and all foreign born stocks) is the same. The "native" method ensures that all births (non-migration in- creases) in stocks belong to the native born population (they do not move straight after birth).
non_negative	Adjust birth matrix calculation to ensure all deductions from m2 will result in positive population counts. On rare occasions when working with international stock data the number of births can exceed the increase in the number of native
born population.	

Value

Matrix of place of birth by place of residence for new-born's

$$
\text { block_matrix } \quad \text { Create a block matrix with non-uniform block sizes. }
$$

Description

Creates a matrix with differing size blocks

Usage

block_matrix (x = NULL, b = NULL, byrow = FALSE, dimnames = NULL)

Arguments

$x \quad$ Vector of numbers to identify each block.
b Numeric value for the size of the blocks within the matrix ordered depending on byrow
byrow Logical value. If FALSE (the default) the blocks are filled by columns, otherwise the blocks in the matrix are filled by rows.
dimnames Character string of name attribute for the basis of the block matrix. If NULL a vector of the same length of b provides the basis of row and column names.\#'

Value

Returns a matrix with block sizes determined by the b argument. Each block is filled with the same value taken from x.

Author(s)

Guy J. Abel

See Also

stripe_matrix

Examples

```
block_matrix(x = 1:16, b = c(2,3,4,2))
block_matrix(x = 1:25, b = c(2,3,4,2,1))
```

block_sum Sum over a selected block in a block matrix

Description

Returns of a sum of a block within a matrix. This function is predominantly intended to be used within the ipf2_block routine.

Usage

block_sum(block = NULL, m = NULL, block_id = NULL)

Arguments

block Numeric value of block to summed. To be matched against the matrix in block_id.
m Matrix of all blocks combined.
block_id Matrix of the same dimensions of m used to identify blocks.

Value

Returns a numeric value of the sum of a single block.

Author(s)

Guy J. Abel

See Also

block_matrix, stripe_matrix, ipf2_block

Examples

```
m <- matrix(data = 100:220, nrow = 11, ncol = 11)
b <- block_matrix(x = 1:16, b = c(2, 3, 4, 2))
block_sum(block = 1, m = m, block_id = b)
block_sum(block = 4, m = m, block_id = b)
block_sum(block = 16, m = m, block_id = b)
```


Description

Population data for Bombay by age in 1941 and 1951

Usage

bombay_1951

Format

Data frame with 13 rows and 5 columns:
age_1941 Age group in 1941
age_1951 Age group in 1951
pop_1941 Enumerated population in 1941
pop_1951 Enumerated population in 1951
sr Census survival ratio derived from the United Nations model life table corresponding to a life expectancy at birth of 45 years for males. See Manual III: Methods for Popu- lation Projections by Sex and Age (United Nations publication, Sales No.: 56.XIII.3).

Source

Indian Population Census. Published in United Nations Department of Economic and Social Affairs Population Division - 1983-Methods of measuring internal migration https://www.un.org/en/ development/desa/population/publications/manual/migration/measuring-migration.asp

Conditional maximization routine for the indirect estimation of origindestination migration flow table with known margins

Description

The cm 2 function finds the maximum likelihood estimates for parameters in the log-linear model:

$$
\log y_{i j}=\log \alpha_{i}+\log \beta_{j}+\log m_{i j}
$$

as introduced by Willekens (1999). The α_{i} and β_{j} represent background information related to the characteristics of the origin and destinations respectively. The $m_{i j}$ factor represents auxiliary information on migration flows, which imposes its interaction structure onto the estimated flow matrix.

Usage

```
    cm2(
```

 row_tot = NULL,
 col_tot \(=\) NULL,
 \(\mathrm{m}=\) matrix \((\mathrm{data}=1\), nrow \(=\) length(row_tot), ncol = length(col_tot)),
 tol \(=1 \mathrm{e}-06\),
 maxit \(=500\),
 verbose \(=\) TRUE,
 rtot \(=\) row_tot,
 ctot \(=\) col_tot
)

Arguments

row_tot	Vector of origin totals to constrain the sum of the imputed cell rows.
col_tot	Vector of destination totals to constrain the sum of the imputed cell columns. m Matrix of auxiliary data. By default set to 1 for all origin-destination combina- tions.
tol	Numeric value for the tolerance level used in the parameter estimation.
vaxit	Numeric value for the maximum number of iterations used in the parameter estimation.
rtot	Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.
ctot	Depreciated. Use row_tot

Value

Parameter estimates are obtained using the EM algorithm outlined in Willekens (1999). This is equivalent to a conditional maximization of the likelihood, as discussed by Raymer et. al. (2007). It also provides identical indirect estimates to those obtained from the ipf2 routine.
The user must ensure that the row and column totals are equal in sum. Care must also be taken to allow the dimension of the auxiliary matrix (m) to equal those provided in the row (row_tot) and column (col_tot) arguments.

Returns a list object with

$$
\begin{array}{ll}
\mathrm{N} & \text { Origin-Destination matrix of indirect estimates } \\
\text { theta } & \text { Collection of parameter estimates }
\end{array}
$$

Author(s)

Guy J. Abel

References

Raymer, J., G. J. Abel, and P. W. F. Smith (2007). Combining census and registration data to estimate detailed elderly migration flows in England and Wales. Journal of the Royal Statistical Society: Series A (Statistics in Society) 170 (4), 891-908.
Willekens, F. (1999). Modelling Approaches to the Indirect Estimation of Migration Flows: From Entropy to EM. Mathematical Population Studies 7 (3), 239-78.

See Also

ipf2

Examples

```
## with Willekens (1999) data
r <- LETTERS[1:2]
y <- cm2(row_tot = c(18, 20), col_tot = c(16, 22),
    m = matrix(c(5, 1, 2, 7), ncol = 2, dimnames = list(orig = r, dest = r)))
y
## with all elements of offset equal (independence fit)
y <- cm2(row_tot = c(18, 20), col_tot = c(16, 22))
y
## with bigger matrix
r <- LETTERS[1:4]
y <- cm2(row_tot = c(250, 100, 140, 110), col_tot = c(150, 150, 180, 120),
            m = matrix(data = c(0, 100, 30, 70, 50, 0, 45, 5, 60, 35, 0, 40, 20, 25, 20, 0),
                            nrow = 4, ncol = 4, dimnames = list(orig = r, dest = r), byrow = TRUE))
# display with row and col totals
round(addmargins(y$n))
```

Conditional maximization routine for the indirect estimation of origin-destination-migrant type migration flow tables with known origin and destination margins.

Description

The cm3 function finds the maximum likelihood estimates for parameters in the log-linear model:

$$
\log y_{i j k}=\log \alpha_{i}+\log \beta_{j}+\log m_{i j k}
$$

as introduced by Abel (2005). The α_{i} and β_{j} represent background information related to the characteristics of the origin and destinations respectively. The $m_{i j k}$ factor represents auxiliary information on origin-destination migration flows by a migrant characteristic (such as age, sex, disability, household type, economic status, etc.). This method is useful for combining data from detailed data collection processes (such as a Census) with more up-to-date information on migration inflows and outflows (where details on movements by migrant characteristics are not known).

```
Usage
    cm3(
        row_tot = NULL,
        col_tot = NULL,
        m = NULL,
        tol = 1e-06,
        maxit = 500,
        verbose = TRUE
    )
```


Arguments

row_tot Vector of origin totals to constrain the sum of the imputed cell rows.
col_tot Vector of destination totals to constrain the sum of the imputed cell columns.
m
Array of auxiliary data. By default set to 1 for all origin-destination-migrant typology combinations.
tol Numeric value for the tolerance level used in the parameter estimation.
maxit Numeric value for the maximum number of iterations used in the parameter estimation.
verbose Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.

Value

Parameter estimates were obtained using the conditional maximization of the likelihood, as discussed by Abel (2005) and Raymer et. al. (2007).

The user must ensure that the row and column totals are equal in sum. Care must also be taken to allow the row and column dimension of the auxiliary matrix (m) to equal those provided in the row and column totals.

Returns a list object with

N	Origin-Destination matrix of indirect estimates
theta	Collection of parameter estimates

Author(s)

Guy J. Abel

References

Abel, G. J. (2005) The Indirect Estimation of Elderly Migrant Flows in England and Wales (MS.c. Thesis). University of Southampton

Raymer, J., G. J. Abel, and P. W. F. Smith (2007). Combining census and registration data to estimate detailed elderly migration flows in England and Wales. Journal of the Royal Statistical Society: Series A (Statistics in Society) 170 (4), 891-908.

See Also

```
cm2, ipf3
```


Examples

```
## over two tables
r <- LETTERS[1:2]
y <- cm3(row_tot = c(18, 20) * 2, col_tot = c(16, 22) * 2,
        m = array(c(5, 1, 2, 7, 4, 2, 5, 9), dim = c(2, 2, 2),
                            dimnames = list(orig = r, dest = r, type = c("ILL", "HEALTHY"))))
# display with row, col and table totals
y
## over three tables
y <- cm3(row_tot = c(170, 120, 410), col_tot = c(500, 140, 60),
    m = array(c(5, 1, 2, 7, 4, 2, 5, 9, 5, 4, 3, 1), dim = c(2, 2, 3),
            dimnames = list(orig = r, dest = r, type = c("0--15", "15-60", ">60"))),
                verbose = FALSE)
# display with row, col and table totals
y
```

cm_net Conditional maximization routine for the indirect estimation of origin-destination-type migration flow tables with known net migration totals.

Description

The cm_net function finds the maximum likelihood estimates for fitted values in the log-linear model:

$$
\log y_{i j}=\log \alpha_{i}+\log \alpha_{i}^{-1}+\log m_{i j}
$$

Usage

cm_net (
net_tot $=$ NULL,
$\mathrm{m}=\mathrm{NULL}$,
tol $=1 \mathrm{e}-06$,
maxit $=500$,
verbose $=$ TRUE,
alpha0 $=\operatorname{rep}(1$, length(net_tot))
)

Arguments

net_tot Vector of net migration totals to constrain the sum of the imputed cell row and columns. Elements must sum to zero.
$\mathrm{m} \quad$ Array of auxiliary data. By default, set to 1 for all origin-destination-migrant typologies combinations.
tol Numeric value for the tolerance level used in the parameter estimation.
maxit Numeric value for the maximum number of iterations used in the parameter estimation.
verbose Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.
alpha0 Vector of initial estimates for alpha

Value

Conditional maximisation routine set up using the partial likelihood derivatives. The argument net_tot takes the known net migration totals. The user must ensure that the net migration totals sum globally to zero.
Returns a list object with
mu
it
tol

Array of indirect estimates of origin-destination matrices by migrant characteristic

Iteration count
Tolerance level at final iteration

Author(s)

Guy J. Abel, Peter W. F. Smith

Examples

```
m <- matrix(data = 1:16, nrow = 4)
# m[lower.tri(m)] <- t(m)[lower.tri(m)]
addmargins(m)
sum_net(m)
y <- cm_net(net_tot = c(30, 40, -15, -55), m = m)
addmargins(y$n)
sum_net(y$n)
m <- matrix(data = c(0, 100, 30, 70, 50, 0, 45, 5, 60, 35, 0, 40, 20, 25, 20, 0),
    nrow = 4, ncol = 4, byrow = TRUE,
    dimnames = list(orig = LETTERS[1:4], dest = LETTERS[1:4]))
addmargins(m)
sum_net(m)
y <- cm_net(net_tot = c(-100, 125, -75, 50), m = m)
addmargins(y$n)
sum_net(y$n)
```

cm_net_tot

Conditional maximization routine for the indirect estimation of origin-destination-type migration flow tables with known net migration and grand totals.

Description

The cm_net function finds the maximum likelihood estimates for fitted values in the log-linear model:

$$
\log y_{i j}=\log \alpha_{i}+\log \alpha_{i}^{-1}+\log m_{i j}
$$

Usage

```
cm_net_tot(
    net_tot = NULL,
    tot = NULL,
    m = NULL,
    tol = 1e-06,
    maxit = 500,
    verbose = TRUE,
    alpha0 = rep(1, length(net_tot)),
    lambda0 = 1,
    alpha_constrained = TRUE
)
```


Arguments

net_tot Vector of net migration totals to constrain the sum of the imputed cell row and columns. Elements must sum to zero.
tot Numeric value of grand total to constrain sum of all imputed cells.
$\mathrm{m} \quad$ Array of auxiliary data. By default, set to 1 for all origin-destination-migrant typologies combinations.
tol Numeric value for the tolerance level used in the parameter estimation.
maxit \quad Numeric value for the maximum number of iterations used in the parameter estimation.
verbose Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.
alpha0 Vector of initial estimates for alpha
lambda0 Numeric value of initial estimates for lambda
alpha_constrained
Logical value to indicate if the first alpha should be constrain to unity. By default TRUE

Value

Conditional maximisation routine set up using the partial likelihood derivatives. The argument net_tot takes the known net migration totals. The user must ensure that the net migration totals sum globally to zero.

Returns a list object with
mu
Array of indirect estimates of origin-destination matrices by migrant characteristic
it Iteration count
tol Tolerance level at final iteration

Author(s)

Guy J. Abel, Peter W. F. Smith

Examples

```
m <- matrix(data = 1:16, nrow = 4)
# m[lower.tri(m)] <- t(m)[lower.tri(m)]
addmargins(m)
sum_net(m)
y <- cm_net_tot(net_tot = c(30, 40, -15, -55), tot = 200, m = m)
addmargins(y$n)
sum_net(y$n)
m <- matrix(data = c(0, 100, 30, 70, 50, 0, 45, 5, 60, 35, 0, 40, 20, 25, 20, 0),
    nrow = 4, ncol = 4, byrow = TRUE,
    dimnames = list(orig = LETTERS[1:4], dest = LETTERS[1:4]))
```

```
addmargins(m)
sum_net(m)
y <- cm_net_tot(net_tot = c(-100, 125, -75, 50), tot = 600, m = m)
addmargins(y$n)
sum_net(y$n)
```

death_mat Calculate deaths for each element of place of birth - place of residence
stock matrix

Description

This function is predominantly intended to be used within the ffs routines in the migest package.

Usage

```
death_mat(
    d_por = NULL,
    m1 = NULL,
    method = "proportion",
    m2 = NULL,
    b_por = NULL
)
```


Arguments

d_por	Vector of numeric values for deaths in each place of residence. m1 Matrix of migrant stock totals at time t. Rows in the matrix correspond to place of birth and columns to place of residence at time t. Used to distribute deaths proportionally to each migrant stock population.
method	Character string of either "proportion" or "accounting" to choose method to distribute deaths. The "proportion" method assumes the mortality rate in each place of birth sub-group (native born and all foreign born stocks) is the same. The "accounting" method ensures that the the deaths by place of birth matches that implied by demographic accounting. Still needs to be explored fully.
m2	Matrix of migrant stock totals at time $t+1$. Rows in the matrix correspond to place of birth and columns to place of residence at time $t+1$. Used to distribute deaths proportionally to each migrant stock population. For use when method = "accounting"
b_por	Vector of numeric values for births in each place of residence. For use when method = "accounting".

Value

Matrix of place of death by place of residence
dict_ims Dictionary to look up region geographies based on countries used in UN DESA International Migrant Stock.

Description

Intended for use as a custom dictionary with the countrycode package, where the existing UN region and area codes do not match those used by UN DESA in the WPP, see https://github. com/vincentarelbundock/countrycode/issues/253

Usage

dict_ims

Format

Data frame with 237 rows and 13 columns. One of first three columns intended as input for origin in countrycode.
name Country name
iso3n ISO 3 letter code
iso3c ISO numeric code
Remaining columns intended as input for destination in countrycode.
region Geographic region of country (6)
region_sub Geographic sub region of country (22). Filled using region if none given in original data
region_sdg SDG region of country (8)
region_sdg_sub Sub SDG region of country (9). Filled using region_sdg if none given in original data
un_develop UN development group of country (3)
wb_income World Bank income group of country (3)
wb_income_detail Detailled World Bank income group of country (4)
lldc Indicator variable for Land-Locked Developing Countries (32)
sids Indicator variable for Small Island Developing States (58)
region_as2014 Region grouping used for global chord diagram plots by Abel and Sander (2014)
region_sba2014 Region grouping used for global chord diagram plots by Sander, Abel and Bauer (2014)
region_a2018 Region grouping used for global chord diagram plots by Abel (2018)
region_ac2021 Region grouping used for global chord diagram plots by Abel and Cohen (2021)

Source

The aggregates_correspondence_table_2020_1.xlsx file of United Nations Department of Economic and Social Affairs, Population Division (2020). International Migrant Stock 2020.

Examples

```
## Not run:
library(tidyverse)
library(countrycode)
# download Abel and Cohen (2019) estimates
f <- read_csv("https://ndownloader.figshare.com/files/26239945")
# use dictionary to get region to region flows
d <- f %>%
    mutate(
        orig = countrycode(
            sourcevar = orig, custom_dict = dict_ims,
            origin = "iso3c", destination = "region"),
        dest = countrycode(
            sourcevar = dest, custom_dict = dict_ims,
            origin = "iso3c", destination = "region")
        ) %>%
    group_by(year0, orig, dest) %>%
    summarise_all(sum)
d
## End(Not run)
```

ffs_demo Estimation of bilateral migrant flows from bilateral migrant stocks using demographic accounting approaches

Description

Estimates migrant transitions flows between two sequential migrant stock tables. Replaces old ffs .

Usage

```
ffs_demo(
    m1 = NULL,
    m2 = NULL,
    b_por = NULL,
    d_por = NULL,
    m = NULL,
    stayer_assumption = TRUE,
    match_global = "before-demo-adjust",
    match_pob_tot_method = "rescale",
    birth_method = "native",
```

```
    birth_non_negative = TRUE,
    death_method = "proportion",
    verbose = FALSE,
)
```


Arguments

m1 Matrix of migrant stock totals at time t. Rows in the matrix correspond to place of birth and columns to place of residence at time t
m2 Matrix of migrant stock totals at time $t+1$. Rows in the matrix correspond to place of birth and columns to place of residence at time $t+1$.
b_por \quad Vector of the number of births between time t and $t+1$ in each region.
d_por \quad Vector of the number of deaths between time t and $t+1$ in each region.
m Matrix of auxiliary data. By default set to 1 for all origin-destination combinations.
stayer_assumption
Logical value to indicate whether to use ipf3 or ipf3_qi to estimate flows. By default uses ipf3_qi, i.e. is set to TRUE. The ipf function is useful for replicating method of Azose and Raftery.
match_global Character string used to indicate whether to balance the change in stocks totals with the changes in births and deaths. Only applied when match_pob_tot_method is either rescale or rescale-adjust-zero-fb. By default uses after-demo-adjust rather than before-demo-adjust which I think minimises risk of negative values.
match_pob_tot_method
Character string passed to method argument in match_pob_tot to ensure place of birth margins in stock tables match.
birth_method Character string passed to method argument in birth_mat.
birth_non_negative
Logical value passed to non_negative argument in birth_mat.
death_method Character string passed to method argument in death_mat.
verbose Logical value to indicate the print the parameter estimates at each iteration of the various IPF routines. By default FALSE.
... Additional arguments passes to ipf3_qi or ipf3.

Value

Estimates migrant transitions flows between two sequential migrant stock tables using various methods. See the example section for possible variations on estimation methods.
Returns a list object with:
mu Array of indirect estimates of origin-destination matrices by place of birth.
it Iteration count.
tol Tolerance level at final iteration.
y Array of indirect estimates of origin-destination matrices by place of birth with additional rows and columns for births, deaths and moves to other regions.
. . . Slots to record which estimation method was used (as set by arguments above)
od_flow Matrix of estimated origin-destination flows

Author(s)

Guy J. Abel

References

Abel and Cohen (2019) Bilateral international migration flow estimates for 200 countries Scientific Data 6 (1), 1-13
Azose \& Raftery (2019) Estimation of emigration, return migration, and transit migration between all pairs of countries Proceedings of the National Academy of Sciences 116 (1) 116-122

Abel, G. J. (2018). Estimates of Global Bilateral Migration Flows by Gender between 1960 and 2015. International Migration Review 52 (3), 809-852.

Abel, G. J. and Sander, N. (2014). Quantifying Global International Migration Flows. Science, 343 (6178) 1520-1522

Abel, G. J. (2013). Estimating Global Migration Flow Tables Using Place of Birth. Demographic Research 28, (18) 505-546

See Also

```
ffs_diff,ffs_rates
```


Examples

```
##
## without births and deaths over period
##
# data as in papers
s1 <- matrix(data = c(1000, 100, 10, 0, 55, 555, 50, 5, 80, 40, 800, 40, 20, 25, 20, 200),
    nrow = 4, ncol = 4, byrow = TRUE)
s2 <- matrix(data =c(950, 100, 60, 0, 80, 505, 75, 5, 90, 30, 800, 40, 40, 45, 0, 180),
    nrow = 4, ncol = 4, byrow = TRUE)
b <- d <- rep(0, 4)
r <- LETTERS[1:4]
dimnames(s1) <- dimnames(s2) <- list(pob = r, por = r)
names(b) <- names(d) <- r
s1
s2
b
d
# demographic research and science paper example
```

```
e0 <- ffs_demo(m1 = s1, m2 = s2, b_por = b, d_por = d)
e0$od_flow
# international migration review paper example
s1[,] <- c(100, 20, 10, 20, 10, 55, 40, 25, 10, 25, 140, 20, 0, 10, 65, 200)
s2[,] <- c(70, 25, 10, 40, 30, 60, 55, 45, 10, 10, 140, 0, 10, 15, 50, 180)
e1 <- ffs_demo(m1 = s1, m2 = s2, b_por = b, d_por = d)
e1$od_flow
# international migration review supp. material example
# distance matrix
dd <- matrix(data = c(0, 5, 50, 500, 5, 0, 45, 495, 50, 45, 0, 450, 500, 495, 450, 0),
    nrow = 4, ncol = 4, byrow = TRUE)
dimnames(dd) <- list(orig = r, dest = r)
dd
e3 <- ffs_demo(m1 = s1, m2 = s2, b_por = b, d_por = d, m = dd)
e3$od_flow
##
## with births and deaths over period
##
# demographic research paper example (with births and deaths)
s1[,] <- c(1000, 55, 80, 20, 100, 555, 40, 25, 10, 50, 800, 20, 0, 5, 40, 200)
s2[,] <- c(1060, 45, 70, 30, 60, 540, 75, 30, 10, 40, 770, 20, 10, 0, 70, 230)
b[] <- c(80, 20, 40, 60)
d[] <- c(70, 30, 50, 10)
e4 <- ffs_demo(m1 = s1, m2 = s2, b_por = b, d_por = d, match_pob_tot_method = "open-dr")
# makes more sense to use this method
e5 <- ffs_demo(m1 = s1, m2 = s2, b_por = b, d_por = d, match_pob_tot_method = "open")
e5$od_flow
# science paper supp. material example
b[] <- c(80, 20, 60, 60)
e6 <- ffs_demo(m1 = s1, m2 = s2, b_por = b, d_por = d)
e6$od_flow
# international migration review supp. material example (with births and deaths)
s1[,] <- c(100, 20, 10, 20, 10, 55, 40, 25, 10, 25, 140, 20, 0, 10, 65, 200)
s2[,] <- c(75, 20, 30, 30, 25, 45, 40, 30, 5, 30, 150, 20, 0, 15, 60, 230)
b[] <- c(10, 50, 25, 60)
d[] <- c(30, 10, 40, 10)
e7 <- ffs_demo(m1 = s1, m2 = s2, b_por = b, d_por = d)
e7$od_flow
```


Description

Estimates migrant transitions flows between two sequential migrant stock tables using differencing approaches commonly used by economists.

Usage

ffs_diff(m1, m2, decrease = "return", include_native_born = FALSE)

Arguments

m1 Matrix of migrant stock totals at time t. Rows in the matrix correspond to place of birth and columns to place of residence at time t
m2 Matrix of migrant stock totals at time $t+1$. Rows in the matrix correspond to place of birth and columns to place of residence at time $t+1$.
decrease How to treat decreases in bilateral stocks over the t to $t+1$ period (so as to avoid a negative bilateral flow estimates). See details for possible options. Default is return
include_native_born
Logical value to indicate whether to include diagonal elements of $m 1$ and $m 2$. Default of FALSE - not include.

Value

Estimates migrant transitions flows between two sequential migrant stock tables.
When decrease = "zero" all decreases in migrant stocks over there period are set to zero, following the approach of Bertoli and Fernandez-Huertas Moraga (2015)
When decrease = "return" all decreases in migrant stocks are assumed to correspond to return flows back to their place of birth, following the approach of Beine and Parsons (2015)

Author(s)

Guy J. Abel

References

Beine, Michel, Simone Bertoli, and Jesús Fernández-Huertas Moraga. (2016). A Practitioners’ Guide to Gravity Models of International Migration. The World Economy 39(4):496-512.

See Also

ffs_demo, ffs_rates

Examples

```
s1 <- matrix(data = c(100, 10, 10, 0, 20, 55, 25, 10, 10, 40, 140, 65, 20, 25, 20, 200),
    nrow = 4, ncol = 4, byrow = TRUE)
s2 <- matrix(data = c(75, 25, 5, 15, 20, 45, 30, 15, 30, 40, 150, 35, 10, 50, 5, 200),
    nrow = 4, ncol = 4, byrow = TRUE)
r <- LETTERS[1:4]
```

```
dimnames(s1) <- dimnames(s2) <- list(pob = r, por = r)
s1; s2
ffs_diff(m1 = s1, m2 = s2, decrease = "zero")
ffs_diff(m1 = s1, m2 = s2, decrease = "return")
```

ffs_rates Estimation of bilateral migrant flows from bilateral migrant stocks us- ing rates approaches

Description

Estimates migrant transitions flows between two sequential migrant stock tables using approached based on rates.

Usage

ffs_rates(m1 = NULL, m2 = NULL, M = NULL, method = "dennett")

Arguments

$\mathrm{m} 1 \quad$ Matrix of migrant stock totals at time t. Rows in the matrix correspond to place of birth and columns to place of residence at time t
$\mathrm{m} 2 \quad$ Matrix of migrant stock totals at time $t+1$. Rows in the matrix correspond to place of birth and columns to place of residence at time $t+1$.
M Numeric value for the global sum of migration flows, used for dennett approach.
method Method to estimate flows. Can take values dennett or rogers-von-rabenau. See details section for more information. Uses dennett as default.

Value

Estimates migrant transitions flows based on migration rates.
When method = "dennett" migration are derived from the matrix supplied to m1. Dennett uses bilateral migrant stocks at beginning of period. Rates then multiplied by global migration flows supplied in M.
When method = "rogers-von-rabenau" a matrix of growth rates are derived from the changes in initial populations stock m 1 to obtain m 2 ;

$$
P^{t+1}=g P^{t}
$$

and then multiplied by the corresponding populations at risk in m 1 . Can result in negative flows.

Author(s)

Guy J. Abel

References

Dennett, A. (2015). Estimating an Annual Time Series of Global Migration Flows - An Alternative Methodology for Using Migrant Stock Data. Global Dynamics: Approaches from Complexity Science, 125-142. https://doi.org/10.1002/9781118937464.ch7

Rogers, A., \& Von Rabenau, B. (1971). Estimation of interregional migration streams from place-of-birth-by-residence data. Demography, 8(2), 185-194.

See Also

ffs_demo, ffs_rates

Examples

```
s1 <- matrix(data = c(100, 10, 10, 0, 20, 55, 25, 10, 10, 40, 140, 65, 20, 25, 20, 200),
    nrow = 4, ncol = 4, byrow = TRUE)
s2 <- matrix(data = c(75, 25, 5, 15, 20, 45, 30, 15, 30, 40, 150, 35, 10, 50, 5, 200),
    nrow = 4, ncol = 4, byrow = TRUE)
r <- LETTERS[1:4]
dimnames(s1) <- dimnames(s2) <- list(pob = r, por = r)
s1; s2
# calculate total migration flows for dennett approach
n <- colSums(s2) - colSums(s1)
ffs_rates(m1 = s1, M = sum(abs(n)), method = "dennett" )
ffs_rates(m1 = s1, m2 = s2, method = "rogers-von-rabenau" )
```

```
format_migration_matrix
```

Helper function to format migration input

Description

Helper function to format migration input

Usage

```
format_migration_matrix(
```

 m,
 array = TRUE,
 orig_col = "orig",
 dest_col = "dest",
 flow_col = "flow"
)

Arguments

m
A matrix or data frame of origin-destination flows. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and flow_col.
array Logical on return of array of all dimensions or origin-destination matrix (summed over all other dimensions)
orig_col Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col Character string of the flow column name (when m is a data frame rather than a matrix)

Value

Formatted matrix

```
format_migration_tibble
    Helper function to format migration input
```


Description

Helper function to format migration input

Usage

format_migration_tibble(
m,
orig_col = "orig",
dest_col = "dest",
flow_col = "flow"
)

Arguments

m
orig_col Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col Character string of the flow column name (when m is a data frame rather than a matrix)

Value

Formatted tibble

```
index_age Summary indices of migration age profile
```


Description

Summary measures of migration age profiles as proposed by Rogers (1975), Bell et. al. (2002), Bell and Muhidin (2009) and Bernard, Bell and Charles-Edwards (2014)

Usage

index_age(
$\mathrm{d}=$ NULL,
age,
mi,
age_min = 5,
age_max $=65$,
breadth $=5$, age_col = "age", mi_col = "mi", long $=$ TRUE
)

Arguments

d
Data frame of age specific migration intensities. If used, ensure the correct column names are passed to age_col and mi_col.
age \quad Numeric vector of ages. Used if $d=$ NULL.
$\mathrm{mi} \quad$ Numeric vector of migration intensities corresponding to each value of age. Used if $\mathrm{d}=$ NULL.
age_min Numeric value for minimum age for peak calculations. Taken as 5 by default.
age_max \quad Numeric value for maximum age for peak calculations. Taken as 65 by default.
breadth Numeric value for number of age groups around peak to be used in breadth_peak measure. Default of 5 .
age_col Character string of the age column name (when d is provided)
mi_col
long
Character string of the migration intensities column name (when d is provided)
Logical to return a long data frame with index values all in one column

Value

A tibble with 8 summary measures where
gmr Gross migraproduction rate of Rogers (1975)
peak_mi Peak migration intensities, from Bell et. al. (2002)
peak_age Corresponding age of peak_mi, from Bell et. al. (2002)
peak_breadth Breadth of peak, from Bell and Muhidin (2009)
peak_share Percentage share of peak breadth of all migration, from Bell and Muhidin (2009)
murc Maximum upward rate of change of Bernard, Bell and Charles-Edwards (2014)
mdrc Maximum downward rate of change of Bernard, Bell and Charles-Edwards (2014)
asymmetry Asymmetry between the murc and mudc, from Bernard, Bell and Charles-Edwards (2014)

Source

Rogers, A. (1975). Introduction to Multiregional Mathematical Demography. Wiley.
Bell, M., Blake, M., Boyle, P., Duke-Williams, O., Rees, P. H., Stillwell, J., \& Hugo, G. J. (2002). Cross-national comparison of internal migration: issues and measures. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(3), 435-464. https://doi.org/10.1111/1467985X. 00247

Bell, M., \& Muhidin, S. (2009). Cross-National Comparisons of Internal Migration (Research Paper 2009/30; Human Development Reports).

Bernard, A., Bell, M., \& Charles-Edwards, E. (2014). Improved measures for the cross-national comparison of age profiles of internal migration. Population Studies, 68(2), 179-195. https://doi.org/10.1080/00324728.2014

Examples

```
library(dplyr)
ipumsi_age %>%
    filter(sample == "BRA2000") %>%
    mutate(mi = migrants/population) %>%
    index_age()
ipumsi_age %>%
    group_by(sample) %>%
    mutate(mi = migrants/population) %>%
    index_age(long = FALSE)
```

index_age_rc Summary indices of age migration profile based on parameters from a Rogers and Castro schedule

Description

Summary indices of age migration profile based on parameters from a Rogers and Castro schedule

Usage

index_age_rc(pars = NULL, long = TRUE)

Arguments

pars Named vector or parameters parameters from a Rogers and Castro schedule
long Logical to return a long data frame with index values all in one column

Value

A tibble with at least five summary measures

Source

Rogers, A., \& Castro, L. J. (1981). Model Migration Schedules. In IIASA Research Report (Vol. 81, Issue RR-81-30). http://webarchive.iiasa.ac.at/Admin/PUB/Documents/RR-81-030.pdf

Examples

```
library(dplyr)
library(tibble)
rc_model_fund %>%
    deframe() %>%
    index_age_rc()
```

 index_connectivity Summary indices of migration connectivity

Description

Summary indices of migration connectivity

Usage

```
index_connectivity(
        m = NULL,
        gini_orig_all = FALSE,
        gini_dest_all = FALSE,
        gini_corrected = TRUE,
        orig_col = "orig",
        dest_col = "dest",
        flow_col = "flow",
        long = TRUE
)
```


Arguments

m A matrix or data frame of origin-destination flows. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and flow_col.
gini_orig_all Logical to include gini index values for all origin regions. Default FALSE.
gini_dest_all Logical to include gini index values for all destination regions. Default FALSE.
gini_corrected Logical to use corrected denominator in Gini index of Bell (2002) or original of David A. Plane and Mulligan (1997)
orig_col Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col Character string of the flow column name (when m is a data frame rather than a matrix)
long Logical to return a long data frame with index values all in one column

Value

A tibble with 12 summary measures:
connectivity I_mc of Bell et. al. (2002) for the share of non-zero flows. A value of 0 means no connections (all zero flows) and 1 shows that all regions are connected by migrants.
inequality_equal
I_mi of Bell et. al. (2002) based on a distributions of flows compared to equal distributions of expected flows. A value of 0 shows complete equality in flows and 1 shows maximum inequality.
inequality_sim I_mi of Bell et. al. (2002) based on a distributions of flows compared to distributions of expected flows from a Poisson regression independence fit flow ~ orig + dest. A value of 0 shows complete equality in flows and 1 shows maximum inequality.

```
gini_total Overall concentration of migration from Bell (2002), corrected from Plane and
    Mulligan (1997). A value of 0 means no spatial focusing and 1 shows that all mi-
    grants are found in one single flow. Calculated using migration.indices::migration.gini.total()
gini_orig_standardized
    Relative extent to which the origin selections of out-migrations are spatially fo-
    cused. A value of 0 means no spatial focusing and 1 shows maximum focusing.
    Adapted frommigration.indices::migration.gini.row.standardized().
gini_dest_standardized
Relative extent to which the destination selections of in-migrations are spatially focused. A value of 0 means no spatial focusing and 1 shows maximum focusing. Adapted from migration.indices: :migration.gini.col.standardized().
mwg_orig Origin spatial focusing, from Bell et. al. (2002). Calculated using migration.indices::migration.we
mwg_dest Destination spatial focusing, from Bell et. al. (2002). Calculated using migration.indices::migratior
mwg_mean Mean spatial focusing, from Bell et. al. (2002). Average of the origin and desti-
    nation migration weighted Gini indices (mwg_orig and mwg_dest). A value of 0
    means no spatial focusing and 1 shows that all migrants are found in one region.
    Calculated using migration.indices::migration.weighted.gini.mean()
cv Coefficient of variation from Rogers and Raymer (1998).
acv Aggregated system-wide coefficient of variation from Rogers and Sweeney (1998),
    using migration.indices::migration.acv()
```


Source

Bell, M., Blake, M., Boyle, P., Duke-Williams, O., Rees, P. H., Stillwell, J., \& Hugo, G. J. (2002). Cross-national comparison of internal migration: issues and measures. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(3), 435-464. https://doi.org/10.1111/1467985X. 00247

Rogers, A., \& Raymer, J. (1998). The Spatial Focus of US Interstate Migration Flows. International Journal of Population Geography, 4(1), 63-80. https://doi.org/10.1002/(SICI)1099-1220(199803)4\%3A1<63\%3A\%3AAID-IJPG87>3.0.CO\%3B2-U

Rogers, A., \& Sweeney, S. (1998). Measuring the Spatial Focus of Migration Patterns. Professional Geographer, 50(2), 232-242.

Plane, D., \& Mulligan, G. F. (1997). Measuring spatial focusing in a migration system. Demography, 34(2), 251-262.

Examples

```
library(dplyr)
korea_reg %>%
    filter(year == 2020) %>%
    index_connectivity()
```


Description

Summary indices of migration distance

Usage

index_distance(
m = NULL,
$\mathrm{d}=\mathrm{NULL}$,
orig_col = "orig", dest_col = "dest", flow_col = "flow", dist_col = "dist",
long = TRUE
)

Arguments

$m \quad$ A matrix or data frame of origin-destination flows. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and flow_col.
d A matrix or data frame of origin-destination distances. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and dist_col. Region names should match those in m .
orig_col Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col Character string of the flow column name (when m is a data frame rather than a matrix)
dist_col Character string of the distance column name (when dist is a data frame rather than a matrix)
long Logical to return a long data frame with index values all in one column

Value

A tibble with 3 summary measures where
mean Mean migration distance from Bell et. al. (2002) - not discussed in text but given in Table 6

```
median Mean migration distance from Bell et. al. (2002)
decay Distance decay parameter obtained from a Poisson regression model (flow ~
orig + dest + log(dist))
```


Source

Bell, M., Blake, M., Boyle, P., Duke-Williams, O., Rees, P. H., Stillwell, J., \& Hugo, G. J. (2002). Cross-national comparison of internal migration: issues and measures. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(3), 435-464. https://doi.org/10.1111/1467985X. 00247

Examples

```
# single year
index_distance(
    m = subset(korea_reg, year == 2020),
    d = korea_dist
)
library(dplyr)
library(tidyr)
library(purrr)
# multiple years
korea_reg %>%
    nest(m = c(orig, dest, flow)) %>%
    mutate(d = list(korea_dist)) %>%
    mutate(i = map2(.x = m, .y = d,
        f = ~index_distance(m = .x, d = .y, long = FALSE))) %>%
    select(-m, -d) %>%
    unnest(i)
```

 index_impact Summary indices of migration impact

Description

Summary indices of migration impact

Usage

```
index_impact(
    m,
    p,
    pop_col = "pop",
    reg_col = "region",
    orig_col = "orig",
    dest_col = "dest",
    flow_col = "flow",
    long = TRUE
)
```


Arguments

m
A matrix or data frame of origin-destination flows. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and flow_col.
p
A data frame or named vector for the total population. When data frame, column of populations labelled using pop_col and region names labelled reg_col.
pop_col Character string of the population column name
reg_col Character string of the region column name. Must match dimension names or values in origin and destination columns of m.
orig_col Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col Character string of the flow column name (when m is a data frame rather than a matrix)
long Logical to return a long data frame with index values all in one column

Value

A tibble with 4 summary measures where
effectivness Migration effectiveness index (MEI) from Shryock et al. (1975). Values range between 0 and 100. High values indicate migration is an efficient mechanism of population redistribution, generating a large net migration. Conversely, low values denote that migration is closely balanced, leading to comparatively little redistribution.

anmr	Aggregate net migration rate from Bell et. al. (2002). The population weighted version of mei.
perference	Index of preference, given in UN DESA (1983). From Bachi (1957) and Shry- ock et al. (1975) - measures size of migration compared to expected flows based on unifrom migration. Can go from 0 to infinity
velocity	Index of velocity, given in UN DESA (1983). From Bogue, Shryock, Jr. \& Ho- ermann (1957) - measures size of migration compared to expected flows based on population size alone. Can go from 0 to infinity

Source

Bell, M., Blake, M., Boyle, P., Duke-Williams, O., Rees, P. H., Stillwell, J., \& Hugo, G. J. (2002). Cross-national comparison of internal migration: issues and measures. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(3), 435-464. https://doi.org/10.1111/1467985X. 00247

Shryock, H. S., \& Siegel, J. S. (1976). The Methods and Materials of Demography. (E. G. Stockwell (ed.); Condensed). Academic Press.

United Nations Department of Economic and Social Affairs Population Division. (1983). Methods of measuring internal migration. United Nations Publication. https://www.un.org/en/development/desa/population/publicatio migration.asp

Examples

```
# single year
index_impact(
    m = subset(korea_reg, year == 2020),
    p = subset(korea_pop, year == 2020),
    pop_col = "population"
)
# multiple years
library(dplyr)
library(tidyr)
library(purrr)
korea_reg %>%
    nest(m = c(orig, dest, flow)) %>%
    left_join(korea_pop) %>%
    nest(p = c(region, population)) %>%
    mutate(i = map2(.x = m, . y = p,
        .f = ~index_impact(m = .x, p = .y, pop_col = "population", long = FALSE))) %>%
    select(-m, -p) %>%
    unnest(i)
```

 index_intensity Summary indices of migration intensity

Description

Summary indices of migration intensity

Usage

index_intensity(mig_total = NULL, pop_total = NULL, n = NULL, long = TRUE)

Arguments

mig_total Numeric value for the total number of migrations.
pop_total Numeric value for the total population.
n
Numeric value for the number of regions used in the definition of migration for mig_total.
long Logical to return a long data frame with index values all in one column

Value

A tibble with 2 summary measures where
cmp Crude migration probability from Bell et. al. (2002), sometimes known as crude migration intensity, e.g. Bernard (2017)
courgeau_k Intensity measure of Courgeau (1973)

Source

Bell, M., Blake, M., Boyle, P., Duke-Williams, O., Rees, P. H., Stillwell, J., \& Hugo, G. J. (2002). Cross-national comparison of internal migration: issues and measures. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(3), 435-464. https://doi.org/10.1111/1467985X. 00247

Courgeau, D. (1973). Migrants et migrations. Population, 28(1), 95-129. https://doi.org/10.2307/1530972
Bernard, A., Rowe, F., Bell, M., Ueffing, P., Charles-Edwards, E., \& Zhu, Y. (2017). Comparing internal migration across the countries of Latin America: A multidimensional approach. Plos One, 12(3), e0173895. https://doi.org/10.1371/journal.pone. 0173895

Examples

```
# single year
library(dplyr)
m <- korea_reg %>%
    filter(year == 2020,
            orig != dest) %>%
    pull(flow) %>%
    sum()
m
p <- korea_pop %>%
    filter(year == 2020) %>%
    pull(population) %>%
    sum()
p
index_intensity(mig_total = m, pop_total = p, n = n_distinct(korea_pop$region))
# multiple years
mm <- korea_reg %>%
    group_by(year) %>%
    filter(orig != dest) %>%
    summarise(m = sum(flow))
mm
pp <- korea_pop %>%
    group_by(year) %>%
    summarise(p = sum(population))
pp
library(purrr)
library(tidyr)
mm %>%
    left_join(pp) %>%
```

```
mutate(i = map2(.x = m, . y = p,
    .f = ~index_intensity(mig_total = .x,
    pop_total = .y,
    n = n_distinct(korea_pop$region),
    long = FALSE))) %>%
unnest(cols = i)
```

indian_sub Lifetime migration totals for states and zones in the Indian 1901 to 1931

Description

Lifetime migration (stock) totals from India

Usage

indian_sub

Format

Data frame with 164 rows and 7 columns:
zone Zone of state. In some cases the state and zone are the same entity
state Indian state
sex Migrant sex
in_migrants In-migrant total based on birthplace
out_migrants Out-migrant total based on birthplace
net_migrants Net migrant total based on birthplace

Source

Zachariah, K. C. (1964). A Historical Study of Internal Migration in the Indian Sub-Continent 1901-1931. (Vol. 19). Asia Publishing House.

Scraped from https://archive.org/details/in.ernet.dli.2015.130424/page/n73/mode/ 2up origin-destination migration flow table with known margins.

Description

The ipf2 function finds the maximum likelihood estimates for fitted values in the log-linear model:

$$
\log y_{i j}=\log \alpha_{i}+\log \beta_{j}+\log m_{i j}
$$

where $m_{i j}$ is a set of prior estimates for $y_{i j}$ and itself is no more complex than the one being fitted.

```
Usage
    ipf2(
        row_tot = NULL,
        col_tot = NULL,
        m = matrix(1, length(row_tot), length(col_tot)),
        tol = 1e-05,
        maxit = 500,
        verbose = FALSE
    )
```


Arguments

row_tot Vector of origin totals to constrain the sum of the imputed cell rows.
col_tot Vector of destination totals to constrain the sum of the imputed cell columns.
m Matrix of auxiliary data. By default set to 1 for all origin-destination combinations.
tol Numeric value for the tolerance level used in the parameter estimation.
maxit Numeric value for the maximum number of iterations used in the parameter estimation.
verbose Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.

Value

Iterative Proportional Fitting routine set up in a similar manner to Agresti (2002, p.343). This is equivalent to a conditional maximization of the likelihood, as discussed by Willekens (1999), and hence provides identical indirect estimates to those obtained from the cm 2 routine.
The user must ensure that the row and column totals are equal in sum. Care must also be taken to allow the dimension of the auxiliary matrix (m) to equal those provided in the row and column totals.
If only one of the margins is known, the function can still be run. The indirect estimates will correspond to the log-linear model without the α_{i} term if (row_tot $=$ NULL) or without the β_{j} term if (col_tot = NULL)
Returns a list object with

mu	Origin-Destination matrix of indirect estimates
it	Iteration count
tol	Tolerance level at final iteration

Author(s)

Guy J. Abel

References

Agresti, A. (2002). Categorical Data Analysis 2nd edition. Wiley.
Willekens, F. (1999). Modelling Approaches to the Indirect Estimation of Migration Flows: From Entropy to EM. Mathematical Population Studies 7 (3), 239-78.

See Also

cm2, ipf3

Examples

```
## with Willekens (1999) data
dn <- LETTERS[1:2]
y <- ipf2(row_tot = c(18, 20), col_tot = c(16, 22),
    m = matrix(c(5, 1, 2, 7), ncol = 2,
                            dimnames = list(orig = dn, dest = dn)))
round(addmargins(y$mu),2)
## with all elements of offset equal
y <- ipf2(row_tot = c(18, 20), col_tot = c(16, 22))
round(addmargins(y$mu),2)
## with bigger matrix
dn <- LETTERS[1:3]
y <- ipf2(row_tot = c(170, 120, 410), col_tot = c(500, 140, 60),
    m = matrix(c(50, 10, 220, 120, 120, 30, 545, 0, 10), ncol = 3,
                            dimnames = list(orig = dn, dest = dn)))
# display with row and col totals
round(addmargins(y$mu))
## only one margin known
dn <- LETTERS[1:2]
y <- ipf2(row_tot = c(18, 20), col_tot = NULL,
    m = matrix(c(5, 1, 2, 7), ncol = 2,
    dimnames = list(orig = dn, dest = dn)))
round(addmargins(y$mu))
```

ipf2_block
Iterative proportional fitting routine for the indirect estimation of origin-destination-type migration flow tables with known origin and destination margins and block diagonal elements.

Description

The ipf2.b function finds the maximum likelihood estimates for fitted values in the log-linear model:

$$
\log y_{p q}=\log \alpha_{p}+\log \beta_{q}+\log \lambda_{i j} I(p \in i, q \in j)+\log m_{p q}
$$

where $m_{p q}$ is a prior estimate for $y_{p q}$ and is no more complex than the matrices being fitted. The $\lambda_{i j} I(p \in i, q \in j)$ term ensures a saturated fit on the block the (i, j) block.

Usage
 ipf2_block(
 row_tot $=$ NULL,
 col_tot $=$ NULL,
 block_tot $=$ NULL,
 block = NULL,
 $\mathrm{m}=\mathrm{NULL}$,
 tol $=1 \mathrm{e}-05$,
 maxit $=500$,
 verbose = TRUE,
)

Arguments

row_tot	Vector of origin totals to constrain the sum of the imputed cell rows.
col_tot	Vector of destination totals to constrain the sum of the imputed cell columns.
block_tot	Matrix of block totals to constrain the sum of the imputed cell blocks. block
m	Matrix of block structure corresponding to block_tot. Matrix of auxiliary data. By default set to 1 for all origin-destination combina- tions.
tol	Numeric value for the tolerance level used in the parameter estimation.
maxit	Numeric value for the maximum number of iterations used in the parameter estimation.
verbose	Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.
\ldots	Additional arguments passes to block_matrix.

Value

Iterative Proportional Fitting routine set up using the partial likelihood derivatives. The arguments row_tot and col_tot take the row-table and column-table specific known margins. The block_tot take the totals over the blocks in the matrix defined with b. Diagonal values can be added by the user, but care must be taken to ensure resulting diagonals are feasible given the set of margins.
The user must ensure that the row and column totals in each table sum to the same value. Care must also be taken to allow the dimension of the auxiliary matrix (m) equal those provided in the row and column totals.

Returns a list object with

mu	Array of indirect estimates of origin-destination matrices by migrant character- istic
it	Iteration count
tol	Tolerance level at final iteration

Author(s)

Guy J. Abel

See Also

block_matrix, stripe_matrix

Examples

```
y <- ipf2_block(row_tot= c(30,20,30,10, 20,5,0,10,5,5,5,10),
    col_tot = c(45,10,10,5,5,10,50,5,10,0,0,0),
    block_tot = matrix(data = c(0,0 ,50,0, 35,0,25,0, 10,10,0,0, 10,10,0,0),
                nrow = 4, byrow = TRUE),
    block = block_matrix(x = 1:16, b = c(2,3,4,3)))
addmargins(y$mu)
```

ipf2_stripe iterative proportional fitting routine for the indirect estimation of origin-destination-type migration flow tables with known origin and destination margins and stripe elements.

Description

The ipf2.b function finds the maximum likelihood estimates for fitted values in the log-linear model:

$$
\log y_{p q}=\log \alpha_{p}+\log \beta_{q}+\log \lambda_{i j} I(p \in i, q \in j)+\log m_{p q}
$$

where $m_{p q}$ is a prior estimate for $y_{p q}$ and is no more complex than the matrices being fitted. The $\lambda_{i j} I(p \in i, q \in j)$ term ensures a saturated fit on the block the (i, j) block.

Usage
 ipf2_stripe(
 row_tot = NULL,
 col_tot $=$ NULL,
 stripe_tot $=$ NULL,
 stripe = NULL,
 $\mathrm{m}=\mathrm{NULL}$,
 tol $=1 \mathrm{e}-05$,
 maxit $=500$,
 verbose $=$ TRUE,
)

Arguments

row_tot	Vector of origin totals to constrain the sum of the imputed cell rows.		
col_tot	Vector of destination totals to constrain the sum of the imputed cell columns.		
stripe_tot	Matrix of stripe totals to constrain the sum of the imputed cell blocks. stripe		
m	Matrix of stripe structure corresponding to stripe_tot. Matrix of auxiliary data. By default set to 1 for all origin-destination combina- tions.		
tol	Numeric value for the tolerance level used in the parameter estimation. maxit		
verbose	Numeric value for the maximum number of iterations used in the parameter estimation.		
Logical value to indicate the print the parameter estimates at each iteration. By			
default FALSE.		\quad	Additional arguments passes to stripe_matrix.
:---			

Value

Iterative Proportional Fitting routine set up using the partial likelihood derivatives. The arguments row_tot and col_tot take the row-table and column-table specific known margins. The stripe_tot take the totals over the stripes in the matrix defined with b. Diagonal values can be added by the user, but care must be taken to ensure resulting diagonals are feasible given the set of margins. The user must ensure that the row and column totals in each table sum to the same value. Care must also be taken to allow the dimension of the auxiliary matrix (m) equal those provided in the row and column totals. Returns a list object with

mu	Array of indirect estimates of origin-destination matrices by migrant character-
istic	

Author(s)

Guy J. Abel

See Also

```
stripe_matrix,block_matrix
```


Examples

```
y <- ipf2_stripe(row_tot =c(85, 70, 35, 30, 60, 55, 65),
    stripe_tot = matrix(c(15,20,50,
                35,10,25,
                        5,0,30,
                        10,10,10,
            30,30,0,
            15,30,10,
                        35,25,5 ), ncol = 3, byrow = TRUE),
    stripe = stripe_matrix(x = 1:21, s = c(2,2,3), byrow = TRUE))
    addmargins(y$mu)
```

 ipf3
 Iterative proportional fitting routine for the indirect estimation of origin-destination-migrant type migration flow tables with known origin and destination margins.

Description

The ipf3 function finds the maximum likelihood estimates for fitted values in the log-linear model:

$$
\log y_{i j k}=\log \alpha_{i}+\log \beta_{j}+\log \lambda_{k}+\log \gamma_{i k}+\log \kappa_{j k}+\log m_{i j k}
$$

where $m_{i j k}$ is a set of prior estimates for $y_{i j k}$ and is no more complex than the matrices being fitted.

Usage

```
ipf3(
    row_tot = NULL,
    col_tot = NULL,
    m = NULL,
    tol = 1e-05,
    maxit = 500,
    verbose = TRUE
)
```


Arguments

row_tot Vector of origin totals to constrain the sum of the imputed cell rows.
col_tot Vector of destination totals to constrain the sum of the imputed cell columns.
m
Array of auxiliary data. By default set to 1 for all origin-destination-migrant typologies combinations.
tol Numeric value for the tolerance level used in the parameter estimation.

maxit	Numeric value for the maximum number of iterations used in the parameter estimation.
verbose	Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.

Value

Iterative Proportional Fitting routine set up in a similar manner to Agresti (2002, p.343). The arguments row_tot and col_tot take the row-table and column-table specific known margins.
The user must ensure that the row and column totals in each table sum to the same value. Care must also be taken to allow the dimension of the auxiliary matrix (m) to equal those provided in the row and column totals.
Returns a list object with

mu	Array of indirect estimates of origin-destination matrices by migrant character- istic
it	Iteration count
tol	Tolerance level at final iteration

Author(s)

Guy J. Abel

References

Abel and Cohen (2019) Bilateral international migration flow estimates for 200 countries Scientific Data 6 (1), 1-13

Azose \& Raftery (2019) Estimation of emigration, return migration, and transit migration between all pairs of countries Proceedings of the National Academy of Sciences 116 (1) 116-122
Abel, G. J. (2013). Estimating Global Migration Flow Tables Using Place of Birth. Demographic Research 28, (18) 505-546

Agresti, A. (2002). Categorical Data Analysis 2nd edition. Wiley.

See Also

ipf3_qi, ipf2

Examples

```
## create row-table and column-table specific known margins.
dn <- LETTERS[1:4]
P1 <- matrix(c(1000, 100, 10, 0,
    55, 555, 50, 5,
    80, 40, 800 , 40,
    20, 25, 20, 200),
    nrow = 4, ncol = 4, byrow = TRUE,
    dimnames = list(pob = dn, por = dn))
P2 <- matrix(c(950, 100, 60, 0,
```

$80,505,75,5$,
$90,30,800,40$,
$40,45, \quad 0,180)$,
nrow $=4$, ncol $=4$, byrow $=$ TRUE,
dimnames $=$ list $($ pob $=d n$, por $=d n))$
\# display with row and col totals
addmargins(P1)
addmargins(P2)
\# run ipf
y <- ipf3(row_tot = t(P1), col_tot = P2)
\# display with row, col and table totals
round(addmargins(y\$mu), 1)
\# origin-destination flow table
round(sum_od(y\$mu), 1)
\#\# with alternative offset term
dis <- $\operatorname{array}(c(1,2,3,4,2,1,5,6,3,4,1,7,4,6,7,1), c(4,4,4))$
y <- ipf3(row_tot = t(P1), col_tot = P2, m = dis)
\# display with row, col and table totals
round(addmargins(y\$mu), 1)
\# origin-destination flow table
round(sum_od(y\$mu), 1)

```
ipf3_qi
```

Iterative proportional fitting routine for the indirect estimation of origin-destination-migrant type migration flow tables with known origin and destination margins and diagonal elements.

Description

This function is predominantly intended to be used within the ffs routine.

Usage

```
ipf3_qi(
    row_tot = NULL,
    col_tot = NULL,
    diag_count = NULL,
    m = NULL,
    speed = TRUE,
    tol = 1e-05,
    maxit = 500,
    verbose = TRUE
)
```


Arguments

row_tot Vector of origin totals to constrain the sum of the imputed cell rows.
col_tot Vector of destination totals to constrain the sum of the imputed cell columns.
diag_count Array with counts on diagonal to constrain diagonal elements of the indirect estimates too. By default these are taken as their maximum possible values given the relevant margins totals in each table. If user specifies their own array of diagonal totals, values on the non-diagonals in the array can take any positive number (they are ultimately ignored).
m
Array of auxiliary data. By default set to 1 for all origin-destination-migrant typologies combinations.
speed Speeds up the IPF algorithm by minimizing sufficient statistics.
tol Numeric value for the tolerance level used in the parameter estimation.
maxit Numeric value for the maximum number of iterations used in the parameter estimation.
verbose Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.

Details

The ipf3 function finds the maximum likelihood estimates for fitted values in the log-linear model:

$$
\log y_{i j k}=\log \alpha_{i}+\log \beta_{j}+\log \lambda_{k}+\log \gamma_{i k}+\log \kappa_{j k}+\log \delta_{i j k} I(i=j)+\log m_{i j k}
$$

where $m_{i j k}$ is a set of prior estimates for $y_{i j k}$ and is no more complex than the matrices being fitted. The $\delta_{i j k} I(i=j)$ term ensures a saturated fit on the diagonal elements of each (i, j) matrix.

Value

Iterative Proportional Fitting routine set up using the partial likelihood derivatives illustrated in Abel (2013). The arguments row_tot and col_tot take the row-table and column-table specific known margins. By default the diagonal values are taken as their maximum possible values given the relevant margins totals in each table. Diagonal values can be added by the user, but care must be taken to ensure resulting diagonals are feasible given the set of margins.

The user must ensure that the row and column totals in each table sum to the same value. Care must also be taken to allow the dimension of the auxiliary matrix (m) equal those provided in the row and column totals.
Returns a list object with

mu	Array of indirect estimates of origin-destination matrices by migrant character- istic
it	Iteration count
tol	Tolerance level at final iteration

Author(s)

Guy J. Abel

References

Abel, G. J. (2013). Estimating Global Migration Flow Tables Using Place of Birth. Demographic Research 28, (18) 505-546

See Also

ipf3, ffs_demo

Examples

```
## create row-table and column-table specific known margins.
dn <- LETTERS[1:4]
P1 <- matrix(c(1000, 100, 10, 0,
            55, 555, 50, 5,
            80, 40, 800 , 40,
            20, 25, 20, 200),
            nrow = 4, ncol = 4, byrow = TRUE,
            dimnames = list(pob = dn, por = dn))
P2 <- matrix(c(950, 100, 60, 0,
            80, 505, 75, 5,
            90, 30, 800, 40,
            40, 45, 0, 180),
            nrow = 4, ncol = 4, byrow = TRUE,
            dimnames = list(pob = dn, por = dn))
# display with row and col totals
addmargins(P1)
addmargins(P2)
# # run ipf
# y <- ipf3_qi(row_tot = t(P1), col_tot = P2)
# # display with row, col and table totals
# round(addmargins(y$mu), 1)
# # origin-destination flow table
# round(sum_od(y$mu), 1)
## with alternative offset term
# dis <- array(c(1, 2, 3, 4, 2, 1, 5, 6, 3, 4, 1, 7, 4, 6, 7, 1), c(4, 4, 4))
# y <- ipf3_qi(row_tot = t(P1), col_tot = P2, m = dis)
# # display with row, col and table totals
# round(addmargins(y$mu), 1)
# # origin-destination flow table
# round(sum_od(y$mu), 1)
```


Description

This function is predominantly intended to be used within the ipf routines in the migest package.

Usage

ipf_seed(m = NULL, $\mathrm{R}=\mathrm{NULL}, \mathrm{n}$ _dim $=$ NULL, $\mathrm{dn}=$ NULL)

Arguments

m Matrix, Array or NULL to build seed. If NULL seed will be 1 for all elements.
R Number of rows, columns and possibly n_dimensions for seed matrix or array.
n_dim Numeric integer for the number of n_dimensions - 2 for matrix, 3 or more for an array
dn Vector of character strings for n_dimension names

Value

An array or matrix

Author(s)

Guy J. Abel

$$
\begin{array}{ll}
\text { ipumsi_age } & \begin{array}{l}
\text { Age specific migration and population counts from two IPUMSI sam- } \\
\text { ples }
\end{array}
\end{array}
$$

Description

Age specific migration and population counts for Brazil 2000 and France 2006 IPUMS International samples. Attempt to recreate the unsmoothed data used in the appendix of Bernard, Bell and Charles-Edwards (2014)

Usage

ipumsi_age

Format

Data frame with 202 rows and 4 columns:
sample IPUMS International sample - either BRA2000 or FRA2006
age Age on census data
migrants Number of migrants, defined by those who had changed usual place of residence to a different minor administrative region compared to usual place of residence five years prior to the census. Obtained by summing person weights for 'migrate5' variable equal to any of code 12,20 or 30.
population Population of each age group, obtained by summing person weights 'perwt' variable.

Source

Minnesota Population Center. (2015). Integrated Public Use Microdata Series, International: Version 6.4 [Machine-readable database]. https://international.ipums.org/international/

Bernard, A., Bell, M., \& Charles-Edwards, E. (2014). Improved measures for the cross-national comparison of age profiles of internal migration. Population Studies, 68(2), 179-195.

```
italy_area Single year age-specific origin destination migration flows between Italian NUTS1 areas
```


Description

Origin-destination migration flows from 7 years between 1970 and 2000 by five-year age groups

Usage

italy_area

Format

Data frame with 3500 rows and 5 columns:
orig Origin area (NUTS1 region)
dest Destination area (NUTS1 region)
year Year of flow
age_grp Five-year age group
flow Migration flow

Source

Provided by James Raymer. Originally from ISTAT. 2003. Rapporto annuale: La situazione nel Paese nel 2003. ISTAT, Rome.

Data used in Raymer, J., Bonaguidi, A., \& Valentini, A. (2006). Describing and projecting the age and spatial structures of interregional migration in Italy. Population, Space and Place, 12(5), 371-388.

```
korea_dist
```

Weighted distances in kilometers between 2020 population centroids of Korean administrative regions

Description

Distance matrix of kilometers between population weighted centroids in 2020 of first level administrative regions of South Korea.

Usage

korea_dist

Format

An object of class matrix (inherits from array) with 17 rows and 17 columns.

Source

Robin Edwards, Maksym Bondarenko, Andrew J. Tatem and Alessandro Sorichetta. Unconstrained subnational Population Weighted Density in 2000, 2005, 2010, 2015 and 2020 (100 m resolution). WorldPop, University of Southampton, UK.
korea_pop Annual resident population totals of Korean regions

Description

Annual resident population totals between 2012 and 2020 based on first level administrative regions.

Usage

korea_pop

Format

Data frame with 2,601 rows and 4 columns:
region Administrative region
year Year of flow
population Resident Population

Source
Source: Statistics Korea, Population Statistics Based on Resident Registration. Data downloaded from https://kosis.kr/eng in July 2021.

```
korea_reg
Annual origin destination migration flows between Korean regions
```


Description

Origin-destination migration flows between 2012 and 2020 based on first level administrative regions.

Usage

korea_reg

Format

Data frame with 2,601 rows and 4 columns:
orig Origin region
dest Destination region
year Year of flow
flow Migration flow

Source

Statistics Korea, Internal Migration Statistics. Data downloaded from https://kosis.kr/eng in July 2021.

```
manila_1970
```

Manila female population 1970 by age

Description

Population data for Manila by age in 1960 and 1970

Usage

manila_1970

Format

Data frame with 13 rows and 5 columns:
age_1970 Age group in 1970
pop_1960 Enumerated population in 1960
pop_1970 Enumerated population in 1970
phl_census_sr Census survival ratio derived from the national data.

Source

Scraped from Table 6 of United Nations Department of Economic and Social Affairs Population Division. (1992). Preparing Migration Data for Subnational Population Projections.

Examples

\# match table 6 - perhaps small error in children net migration numbers in the published table? net_sr(manila_1970, pop0_col = "pop_1960", pop1_col = "pop_1970", survival_ratio_col = "phl_census_sr", net_children = TRUE)

```
match_pob_tot Adjust migrant stock tables to have matching place of birth totals
```


Description

This function is predominantly intended to be used within the ffs routines in the migest package.

Usage

match_pob_tot(m1, m2, method = "rescale", verbose = FALSE)

Arguments

m1 Matrix of migrant stock totals at time t. Rows in the matrix correspond to place of birth and columns to place of residence at time $t+1$.
m2 Matrix of migrant stock totals at time $t+1$. Rows in the matrix correspond to place of birth and columns to place of residence at time $t+1$.
method Character string matching either rescale, rescale-adjust-zero-fb, open or open-dr. See details.
verbose Logical value to indicate the print the parameter estimates at each iteration of the rescale, as used in ipf2. By default FALSE.

Details

The rescale and rescale-adjust-zero-fb method ensure flow estimates closely match the net migration totals implied by the changes in population totals, births and deaths - as introduced in the Science paper. The rescale-adjust-zero-fb can adjust for rare cases when row total margins that are smaller than native born totals in countries where there are no foreign born populations (e.g. South Sudan 1990-1995). The open-dr method allows for moves in and out of the global system as introduced in the Demographic Research paper. The open method is a slight improvement over open-dr - the calculation of the moves and in and out using more sensible weights.

Value

Returns a list object with:
m1_adj Matrix of adjusted m 1 where rows (place of births) match m2_adj.
$m 2 _$adj \quad Matrix of adjusted m 2 where rows (place of births) match m1_adj.
in_mat Matrix of estimated inflows into the system.
out_mat Matrix of estimated outflows from the system.

Author(s)

Guy J. Abel

References

Abel and Cohen (2019) Bilateral international migration flow estimates for 200 countries Scientific Data 6 (1), 1-13

Azose \& Raftery (2019) Estimation of emigration, return migration, and transit migration between all pairs of countries Proceedings of the National Academy of Sciences 116 (1) 116-122
Abel, G. J. (2018). Estimates of Global Bilateral Migration Flows by Gender between 1960 and 2015. International Migration Review 52 (3), 809-852.

Abel, G. J. and Sander, N. (2014). Quantifying Global International Migration Flows. Science, 343 (6178) 1520-1522

See Also

ipf3_qi,ffs_diff

Description

Adaption of circlize: :chordDiagramFromDataFrame() with defaults set to allow for more effective visualisation of directional origin-destination data

Usage

mig_chord(
x ,
lab = NULL,
lab_bend1 = NULL,
lab_bend2 = NULL,
label_size = 1,
label_nudge = 0,
axis_size = 0.8,

```
    axis_breaks = NULL,
    ...,
    no_labels = FALSE,
    no_axis = FALSE,
    clear_circos_par = TRUE,
    zero_margin = TRUE,
    start.degree = 90,
    gap.degree = 4,
    track.margin = c(-0.1, 0.1),
    points.overflow.warning = FALSE
)
```


Arguments

$x \quad$ Data frame with origin in first column, destination in second column and bilat-
lab Named vector of labels for plot. If NULL will use names from d
lab_bend1 Named vector of bending labels for plot. Note line breaks do not work with facing = "bending" in circlize.
lab_bend2 Named vector of second row of bending labels for plot.
label_size Font size of label text.
label_nudge Numeric value to nudge labels towards (negative number) or away (positive number) the sector axis.
axis_size Font size on axis labels.
axis_breaks Numeric value for how often to add axis label breaks. Default not activated, uses default from circlize: :circos.axis()
... Arguments for circlize: chordDiagramFromDataFrame().
no_labels Logical to indicate if to include plot labels. Set to FALSE by default.
no_axis Logical to indicate if to include plot axis. Set to FALSE by default.
clear_circos_par
Logical to run circlize::circos.clear(). Set to TRUE by default. Set to FALSE if you wish to add further to the plot.
zero_margin Set margins of the plotting graphics device to zero. Set to TRUE by default.
start.degree Argument for circlize::circos.par().
gap.degree Argument for circlize: chordDiagramFromDataFrame().
track.margin Argument for circlize::chordDiagramFromDataFrame().
points.overflow.warning
Argument for circlize: :chordDiagramFromDataFrame().

Value

Chord diagram based on first three columns of x. The function tweaks the defaults of circlize : :chordDiagramFromDataFr for easier plotting of directional origin-destination data. Users can override these defaults and pass additional tweaks using any of the circlize: :chordDiagramFromDataFrame() arguments.

The layout of the plots are designed to specifically work on plotting images into PDF devices with widths and heights of 7 inches (the default dimension when using the pdf function). See the end of the examples for converting PDFs to images.
Fitting all the labels on the page is usually the most time consuming task. Use the different label options, including line breaks, label_nudge, track height in preAllocateTracks and font sizes in label_size and axis_size to find the best fit. If none of the label options produce desirable results, plot your own using circlize: :circos.text having set no_labels = TRUE and clear_circos_par = FALSE.

Examples

```
## Not run:
library(tidyverse)
library(countrycode)
# download Abel and Cohen (2019) estimates
f <- read_csv("https://ndownloader.figshare.com/files/26239945")
# use dictionary to get region to region flows
d <- f %>%
        mutate(
        orig = countrycode(
            sourcevar = orig, custom_dict = dict_ims,
            origin = "iso3c", destination = "region"),
        dest = countrycode(
            sourcevar = dest, custom_dict = dict_ims,
            origin = "iso3c", destination = "region")
        ) %>%
group_by(year0, orig, dest) %>%
summarise_all(sum) %>%
ungroup()
d
# 2015-2020 pseudo-Bayesian estimates for plotting
pb <- d %>%
    filter(year0 == 2015) %>%
    mutate(flow = da_pb_closed/1e6) %>%
    select(orig, dest, flow)
# pdf(file = "chord.pdf")
mig_chord(x = pb)
# dev.off()
# file.show("chord.pdf")
# pass arguments to circlize::chordDiagramFromDataFrame
# pdf(file = "chord.pdf")
mig_chord(x = pb,
    # order of regions
        order = rev(unique(pb$orig)),
        # spacing for labels
        preAllocateTracks = list(track.height = 0.3),
        # colours
    grid.col = c("blue", "royalblue", "navyblue", "skyblue", "cadetblue", "darkblue")
```

```
    )
# dev.off()
# file.show("chord.pdf")
# multiple line labels to fit on longer labels
r <- pb %>%
    sum_region() %>%
    mutate(lab = str_wrap_n(string = region, n = 2)) %>%
    separate(col = lab, into = c("lab1", "lab2"), sep = "\n", remove = FALSE, fill = "right")
r
# pdf(file = "chord.pdf")
mig_chord(x = pb,
    lab = r %>%
        select(region, lab) %>%
        deframe(),
            preAllocateTracks = list(track.height = 0.25),
            label_size = 0.8,
            axis_size = 0.7
            )
# dev.off()
# file.show("chord.pdf")
# bending labels
# pdf(file = "chord.pdf")
mig_chord(x = pb,
    lab_bend1 = r %>%
        select(region, lab1) %>%
        deframe(),
    lab_bend2 = r %>%
        select(region, lab2) %>%
        deframe()
    )
# dev.off()
# file.show("chord.pdf")
# convert pdf to image file
# library(magick)
# p <- image_read_pdf("chord.pdf")
# image_write(image = p, path = "chord.png")
# file.show("chord.png")
## End(Not run)
```

multi_comp

Multiplicative component description of origin-destination migration flow tables

Description

Multiplicative component descriptions of *n*-dimension flow tables based on total reference coding system.

Usage

multi_comp(m)

Arguments

m matrix or array of migration flows

Value

matrix or array of multiplicative components of ' m '. When output is an array the total for each table of origin-destination flows is used.

References

Rogers, A., Willekens, F., Little, J., \& Raymer, J. (2002). Describing migration spatial structure. Papers in Regional Science, 81(1), 29-48. https://doi.org/10.1007/s101100100090
Raymer, J., Bonaguidi, A., \& Valentini, A. (2006). Describing and projecting the age and spatial structures of interregional migration in Italy. Population, Space and Place, 12(5), 371-388. https://doi.org/10.1002/psp. 414

Examples

```
r <- LETTERS[1:4]
m0 <- matrix(data = c(0, 100, 30, 70, 50, 0, 45, 5, 60, 35, 0, 40, 20, 25, 20, 0),
    nrow = 4, ncol = 4, byrow = TRUE, dimnames = list(orig = r, dest = r))
addmargins(m0)
multi_comp(m = m0)
# data frame
library(dplyr)
italy_area %>%
    filter(year == 2000) %>%
    multi_comp() %>%
    round(digits = 3)
```

multi_comp2 Multiplicative component descriptions of origin-destination flow ta-
bles based on total reference coding system.

Description

Multiplicative component descriptions of origin-destination flow tables based on total reference coding system.

Usage

multi_comp2(m)

Arguments

m matrix of migration flows

Value

matrix of multiplicative components of ' m '. When output is an array the total for each table of origin-destination flows is used.

References

Rogers, A., Willekens, F., Little, J., \& Raymer, J. (2002). Describing migration spatial structure. Papers in Regional Science, 81(1), 29-48. https://doi.org/10.1007/s101100100090
Raymer, J., Bonaguidi, A., \& Valentini, A. (2006). Describing and projecting the age and spatial structures of interregional migration in Italy. Population, Space and Place, 12(5), 371-388. https://doi.org/10.1002/psp. 414

Examples

```
r <- LETTERS[1:2]
m0 <- array(c(5, 1, 2, 7, 4, 2, 5, 9), dim = c(2, 2, 2),
    dimnames = list(orig = r, dest = r, type = c("ILL", "HEALTHY")))
addmargins(m0)
multi_comp2(m = m0)
```

```
nchars_wrap
```

Count the number of characters per line

Description

Count the number of characters per line

Usage

nchars_wrap(b, w)

Arguments

b
Numeric vector for the position of line breaks between the words in w
w
Character string vector of words

Value

List with vectors for number of characters per line and the number of words per line

```
net_sr
Estimate net migration from survival ratios applied to lifetime migration data
```


Description

Using survival ratios to estimate net migration from lifetime migration data

Usage

```
net_sr(
        .data,
        pop0_col = "pop0",
        pop1_col = "pop1",
        survival_ratio_col = "sr",
        net_children = FALSE,
        maternal_exposure = c(0.25, 0.75),
        maternal_age_id = 4:9,
        maternal_col = pop1_col
    )
```


Arguments

.data	A data frame with two rows with the total number of lifetime in- and out- migrants in separate columns. The first row contains totals at the first time point and second row at the second time point. Character string name of column containing name of initial populations. Default "pop0". Character string name of column containing name of end populations. Default "pop1".
pop0_col_col	
survival_ratio_col	
Character string name of column containing survivor ratios. Default "sr".	

Value

Data frame with estimates of net migration

References

Bogue, D. J., Hinze, K., \& White, M. (1982). Techniques of Estimating Net Migration. Community and Family Study Center. University of Chicago.

Examples

```
# results to match un manual 1984 (table 24)
net_sr(bombay_1951, pop0_col = "pop_1941", pop1_col = "pop_1951")
# results to match Bogue, Hinze and White (1982)
library(dplyr)
alabama_1970 %>%
        filter(race == "white", sex == "male") %>%
        select(-race, -sex) %>%
        group_by(age_1970) %>%
        net_sr(pop0_col = "pop_1960", pop1_col = "pop_1970",
                survival_ratio_col = "us_census_sr")
# results to match UN manual 1992 (table 6)
net_sr(manila_1970, pop0_col = "pop_1960", pop1_col = "pop_1970",
            survival_ratio_col = "phl_census_sr")
# with children net migration estimate
net_sr(manila_1970, pop0_col = "pop_1960", pop1_col = "pop_1970",
        survival_ratio_col = "phl_census_sr", net_children = TRUE)
```

 net_vs Estimate net migration from vital statistics

Description

Estimate net migration from vital statistics

Usage

```
    net_vs(
        .data,
        pop0_col = NULL,
        pop1_col = NULL,
        births_col = "births",
        deaths_col = "deaths"
    )
```


Arguments

A data frame with two rows with the total number of lifetime in- and outmigrants in separate columns. The first row contains totals at the first time point and second row at the second time point.

pop0_col	Character string name of column containing name of initial populations. Default "pop0".
pop1_col	Character string name of column containing name of end populations. Default "pop1".
births_col	Character string name of column containing name of births over the period. Default "births".
deaths_col	Character string name of column containing name of deaths over the period. Default "deaths".

Value

A tibble with additional columns for the population change ('pop_change'), the natural population increase ('natural_inc') and the net migration ('net') over the period.

References

Bogue, D. J., Hinze, K., \& White, M. (1982). Techniques of Estimating Net Migration. Community and Family Study Center. University of Chicago.

Examples

```
library(dplyr)
d <- alabama_1970 %>%
    group_by(race, sex) %>%
    summarise(births = sum(pop_1960[1:2]),
            pop_1960 = sum(pop_1960) - births,
            pop_1970 = sum(pop_1970)) %>%
        ungroup()
d
d %>%
    mutate(deaths = c(51449, 58845, 86880, 123220)) %>%
    net_vs(pop0_col = "pop_1960", pop1_col = "pop_1970")
```

new_england_1960 New England male white-native population totals in 1950 and 1960
by place of birth and age

Description

New England population data for by place of birth and age in 1950 and 1960 for male white native born.

Usage

new_england_1960

Format

Data frame with 72 rows and 4 columns:
birthplace Place of birth (US Census area)
year Year
age_1960 Age group in 1960
pop_1950 Enumerated population in 1950
pop_1960 Enumerated population in 1960

Source

United States Bureau of the Census, United States Census of Population: 1960..Subject Reports.."State of birth" (Washington, D.C.), table 25, pp. 61-62. Persons with place of birth not reported were distributed pro rata among those with place of birth reported.

Published in United Nations Department of Economic and Social Affairs Population Division 1983 - Methods of measuring internal migration https://www.un.org/en/development/desa/ population/publications/manual/migration/measuring-migration.asp

```
quadratic_eqn Solutions from the quadratic equation
```


Description

General function to solve classic quadratic equation:

$$
a x^{2}+b x+c=0
$$

Usage

quadratic_eqn(a, b, c)

Arguments

a Numeric value for quadratic term of x.
b Numeric value for multiplicative term of x.
c Numeric value for constant term.

Value

Vector of two values corresponding to the roots for the quadratic equation.

Author(s)

Guy J. Abel

Source

Adapted from https://rpubs.com/kikihatzistavrou/80124

Examples

```
quadratic_eqn(a = 2, b = 4, c = -6)
```

rc_model_fund Fundamental parameters for Rogers-Castro migration schedule

Description

Set of fundamental parameters for the Rogers-Castro migration age schedule, as suggested in Rogers and Castro (1981).

Usage

rc_model_fund

Format

A tibble with two columns and seven rows:
param Character string for the seven parameters
value Parameter values

Source

Rogers, A., and L. J. Castro. (1981). Model Migration Schedules. IIASA Research Report 81 RR-81-30
rc_model_un

Model parameters for six Rogers-Castro migration schedules proposed by UN DESA

Description

Sets of parameters for the Rogers-Castro migration age schedule proposed by UN DESA

Usage

rc_model_un

Format

A tibble with five columns and 84 rows:
schedule Character string for full name of schedule
value Character string for abbreviated name of schedule
param Character string for sex of schedule
param Character string for the seven parameters
value Parameter values

Source

United Nations Department of Economic and Social Affairs Population Division. (1992). Preparing
Migration Data for Subnational Population Projections. http://www.un.org/esa/population/techcoop/IntMig/migdata_popproj

```
rescale_integer_sum Rescale integer vector to a set sum
```


Description

For when you want to rescale a set of numbers to sum to a given value and do not want all rescaled values to be integers.

Usage

rescale_integer_sum(x, tot)

Arguments

x	Vector of numeric values
tot	Numeric integer value to rescale sum to.

Value

Vector or integer values that sum to to tot

Author(s)

Guy J. Abel

See Also

> ipf3_qi,ffs_diff

Examples

```
x <- rnorm(n = 10, mean = 5, sd = 20)
y <- rescale_integer_sum(x, tot = 10)
y
sum(y)
for(i in 1:10){
    y <- rescale_integer_sum(x = rpois(n = 10, lambda = 10), tot = 1000)
    print(sum(y))
}
```

rescale_nb Rescale native born populations to match global differences in births and deaths over period

Description

This function is predominantly intended to be used within the ffs routines in the migest package. Adjustment to ensure that global differences in stocks match the global demographic changes from births and deaths.

Usage

rescale_nb(m1, m2, b, d, verbose = FALSE)

Arguments

m1 Matrix of migrant stock totals at time t. Rows in the matrix correspond to place of birth and columns to place of residence at time t
m2 Matrix of migrant stock totals at time $t+1$. Rows in the matrix correspond to place of birth and columns to place of residence at time $t+1$.
b Vector of the number of births between time t and $t+1$ in each region.
d \quad Vector of the number of deaths between time t and $t+1$ in each region.
verbose Logical value to indicate the print the parameter estimates at each iteration. By default FALSE.

Value

List with adjusted m 1 and m 2 .

Author(s)

Guy J. Abel

See Also
ipf3_qi,ffs_diff

Examples

```
dn <- LETTERS[1:4]
P1 <- matrix(data = c(1000, 100, 10, 0, 55, 555, 50, 5, 80, 40, 800, 40, 20, 25, 20, 200),
    nrow = 4, ncol = 4, dimnames = list(pob = dn, por = dn), byrow = TRUE)
P2 <- matrix(data = c(950, 100, 60, 0, 80, 505, 75, 5, 90, 30, 800, 40, 40, 45, 0, 180),
        nrow = 4, ncol = 4, dimnames = list(pob = dn, por = dn), byrow = TRUE)
    # display with row and col totals
    addmargins(A = P1)
    addmargins(A = P2)
    # births and deaths
    b <- rep(x = 10, 4)
    d <- rep(x = 5, 4)
    # no change in stocks, but }20\mathrm{ more births than deaths...
    sum(P2 - P1) + sum(b - d)
    # rescale
    # y <- rescale_nb(m1 = P1, m2 = P2, b = b, d = d)
    # y
    # sum(y$m1_adj - y$m2_adj) + sum(b - d)
    # check for when extra is positive and odd
    d[1] <- 31
d
sum(P2 - P1) - sum(b - d)
# rescale
# y <- rescale_nb(m1 = P1, m2 = P2, b = b, d = d)
# sum(y$m1_adj - y$m2_adj) - sum(b - d)
```

rescale_net

Rescale net migration total to a global zero sum

Description

Modify a set of net migration (or any numbers) so that they sum to zero.

Usage

```
rescale_net (
    x ,
    method = "no-switches",
    w = rep(1, length(x)),
    integer_result = TRUE
)
```


Arguments

X
method Method used to adjust net migration values of x to obtain a global zero sum. By default method="no-switches". Can also take values method="switches". See details for explanation on each method.

W
integer_result Logical operator to indicate if output should be integers, default is TRUE.

Value

Rescales net migration for a number of regions in vector x to sum to zero. When method="no-switches" rescaling of values are done for the positive and negative values separately, to ensure the final global sum is zero. When method="switches" the mean of the unscaled net migration is subtracted from each value.

Author(s)

Guy J. Abel

References

Abel, G. J. (2018). Non-zero trajectories for long-run net migration assumptions in global population projection models. Demographic Research 38, (54) 1635-1662

Examples

```
# net migration in regions countries (does not add up to zero)
x <- c(-200, -30, -5, 0, 10, 20, 60, 80)
x
sum(x)
# rescale
y1 <- rescale_net(x)
y1
sum(y1)
# rescale without integer restriction
y2 <- rescale_net(x, integer_result = FALSE)
y2
sum(y2)
# rescale allowing switching of signs (small negative value becomes positive)
y3 <- rescale_net(x, method = "switches")
y3
sum(y3)
```


Description

Create a stripped matrix with non-uniform block sizes.

Usage

stripe_matrix(x = NULL, s = NULL, byrow = FALSE, dimnames = NULL)

Arguments

x
s
dimnames
byrow Logical value. If FALSE (the default) the stripes are filled by columns, otherwise the stripes in the matrix are filled by rows.
Vector of numbers to identify each stripe.
Vector of values for the size of the stripes, order depending on byrow Character string of name attribute for the basis of the stripped matrix. If NULL a vector of the same length of s provides the basis of row and column names.

Value

Returns a matrix with stripe sizes determined by the s argument. Each stripe is filled with the same value taken from x .

Author(s)

Guy J. Abel

See Also

```
block_matrix,ipf2_stripe
```


Examples

```
stripe_matrix(x = 1:44, s = c(2,3,4,2), dimnames = LETTERS[1:4], byrow = TRUE)
```

```
str_wrap_n Wrap character string to fit a target number of lines
```


Description

Inserts line breaks for spaces, where the position of the line breaks are chosen to provide the most balanced length of each line.

Usage

str_wrap_n(string = NULL, $\mathrm{n}=2$)

Arguments

string	Character string to be broken up
n	Number of lines to break the string over

Details

Function is intended for a small number of line breaks. The n argument is not allowed to be greater than 8 as all combinations of possible line breaks are explored.
When there a number of possible solutions that provide equally balanced number of characters in each line, the function returns the character string where the number of spaces are distributed most evenly.

Value

The original string with line breaks inserted at optimal positions.

Examples

```
str_wrap_n(string = "a bb ccc dddd eeee ffffff", n = 2)
str_wrap_n(string = "a bb ccc dddd eeee ffffff", n = 4)
str_wrap_n(string = "a bb ccc dddd eeee ffffff", n = 8)
str_wrap_n(string = c("a bb", "a bb ccc"), n = 2)
```

```
str_wrap_n_single Single line wrap for string
```


Description

Single line wrap for string

Usage

str_wrap_n_single(string = NULL, n = 2)

Arguments

string string from str_wrap_n
n \quad n from from str_wrap_n

Value

String with line breaks

```
sum_bilateral Summary of bilateral flows, counter-flow and net migration flow
```


Description

Summary of bilateral flows, counter-flow and net migration flow

Usage

```
sum_bilateral(
        m,
        label = "flow",
        orig_col = "orig",
        dest_col = "dest",
        flow_col = "flow"
    )
    sum_bilat(
        m,
        label = "flow",
        orig_col = "orig",
        dest_col = "dest",
        flow_col = "flow"
    )
```


Arguments

m
label

A matrix or data frame of origin-destination flows. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and flow_col.
label Character string for the prefix of the calculated columns. Can take values flow or stream
orig_col Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col Character string of the flow column name (when m is a data frame rather than a matrix)

Value

A tibble with columns for orig, destination, corridor, flow, counter-flow and net flow in each bilateral pair.

Examples

```
    # matrix
    r <- LETTERS[1:4]
    m <- matrix(data = c(0, 100, 30, 70, 50, 0, 45, 5, 60, 35, 0, 40, 20, 25, 20, 0),
        nrow = 4, ncol = 4, dimnames = list(orig = r, dest = r), byrow = TRUE)
    m
    sum_bilateral(m)
    # data frame
    library(dplyr)
    library(tidyr)
    d <- expand_grid(orig = r, dest = r, sex = c("female", "male")) %>%
        mutate(flow = sample(x = 1:100, size = 32))
    d
    # use group_by to distinguish od tables
    d %>%
    group_by(sex) %>%
    sum_bilateral()
```

sum_expand

Sum bilateral data to include aggregate bilateral totals for origin and destination meta areas

Description

Expand matrix of data frame of migration data to include aggregate sums for corresponding origin and destination meta regions.

Usage

sum_expand(
m ,
return_matrix = TRUE,
guess_order = TRUE,
area_first = TRUE,
orig_col = "orig",
dest_col = "dest",
flow_col = "flow",
orig_area_col = "orig_area",
dest_area_col = "dest_area",
orig_area = NULL,
dest_area = NULL
)

Arguments

m
A matrix or data frame of origin-destination flows. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and flow_col.
return_matrix Logical to return a matrix. Default TRUE.
guess_order Logical to return a matrix or data frame ordered by origin and destination with area names at the end of each block. Default TRUE. If FALSE returns matrix or data frame based on alphabetical order of origin and destinations.
area_first Order area sums to be placed before the origin and destination values. Default TRUE
orig_col Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col Character string of the flow column name (when m is a data frame rather than a matrix)
orig_area_col Character string of the origin area column name (when m is a data frame rather than a matrix)
dest_area_col Character string of the destination area column name (when m is a data frame rather than a matrix)
orig_area Vector of labels for the origin areas of each row of m.
dest_area Vector of labels for the destination areas of each row of m.

Value

A tibble or matrix with additional row and columns (for matrices) for aggregate sums for origin and destination meta-regions

Examples

```
##
## from matrix
##
m <- block_matrix(x = 1:16, b = c(2,3,4,2))
m
# requires a vector of origin and destination areas
a <- rep(LETTERS[1:4], times = c(2,3,4,2))
a
sum_expand(m = m, orig_area = a, dest_area = a)
# place area sums after regions
sum_expand(m = m, orig_area = a, dest_area = a, area_first = FALSE)
##
## from large data frame
```

```
##
## Not run:
library(tidyverse)
library(countrycode)
# download Abel and Cohen (2019) estimates
f <- read_csv("https://ndownloader.figshare.com/files/26239945")
cm <- c("CHI" = "Europe",
            "SCG" = "Europe",
            "SUD" = "Africa")
# 1990-1995 flow estimates
f %>%
        filter(year0 == 1990) %>%
        mutate(
            orig_area = countrycode(sourcevar = orig, custom_match = cm,
                                    origin = "iso3c", destination = "un.region.name"),
            dest_area = countrycode(sourcevar = dest, custom_match = cm,
                                    origin = "iso3c", destination = "un.region.name")
    ) %>%
    sum_expand(flow_col = "da_pb_closed", return_matrix = FALSE)
# by group (period)
f %>%
    mutate(
        orig_area = countrycode(sourcevar = orig, custom_match = cm,
                        origin = "iso3c", destination = "un.region.name"),
        dest_area = countrycode(sourcevar = dest, custom_match = cm,
                        origin = "iso3c", destination = "un.region.name")) %>%
    group_by(year0) %>%
    sum_expand(flow_col = "da_pb_closed", return_matrix = FALSE)
## End(Not run)
```

sum_lump Sum and lump together small flows into a "other" category

Description

Lump together regions/countries if their flows are below a given threshold.

Usage

```
sum_lump(
    m,
    threshold = 1,
    lump = "flow",
    other_level = "other",
    complete \(=\) FALSE,
```

```
    fill = 0,
    return_matrix = TRUE,
    orig_col = "orig",
    dest_col = "dest",
    flow_col = "flow"
```

)

Arguments

m
A matrix or data frame of origin-destination flows. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and flow_col.
threshold Numeric value used to determine small flows, origins or destinations that will be grouped (lumped) together.
lump Character string to indicate where to apply the threshold. Choose from the flow values, in migration region and/or out migration region.
other_level Character string for the origin and/or destination label for the lumped values below the threshold. Default "other".
complete Logical value to return a tibble with complete the origin-destination combinations
fill Numeric value for to fill small cells below the threshold when complete $=$ TRUE. Default of zero.
return_matrix Logical to return a matrix. Default FALSE.
orig_col Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col Character string of the flow column name (when m is a data frame rather than a matrix)

Details

The lump argument can take values flow or bilat to apply the threshold to the data values for between region migration, in or imm to apply the threshold to the incoming region region and out or emi to apply the threshold to outgoing region region.

Value

A tibble with an additional other origins and/or destinations region based on the grouping together of small values below the threshold argument and the lump argument to indicate on where to apply the threshold.

Examples

```
    r <- LETTERS[1:4]
    m <- matrix(data = c(0, 100, 30, 10, 50, 0, 50, 5, 10, 40, 0, 40, 20, 25, 20, 0),
            nrow = 4, ncol = 4, dimnames = list(orig = r, dest = r), byrow = TRUE)
    m
    # threshold on in and out region
    sum_lump(m, threshold = 100, lump = c("in", "out"))
    # threshold on flows (default)
    sum_lump(m, threshold = 40)
    # return a matrix (only possible when input is a matrix and
    # complete = TRUE) with small values replaced by zeros
    sum_lump(m, threshold = 50, complete = TRUE)
    # return a data frame with small values replaced with zero
    sum_lump(m, threshold = 80, complete = TRUE, return_matrix = FALSE)
    ## Not run:
    # data frame (tidy) format
    library(tidyverse)
    # download Abel and Cohen (2019) estimates
    f <- read_csv("https://ndownloader.figshare.com/files/26239945")
    # large 1990-1995 flow estimates
    f %>%
        filter(year0 == 1990) %>%
        sum_lump(flow_col = "da_pb_closed", threshold = 1e5)
    # large flow estimates for each year
    f %>%
    group_by(year0) %>%
    sum_lump(flow_col = "da_pb_closed", threshold = 1e5)
## End(Not run)
```

sum_net Calculate net migration from an origin-destination migration flow matrix.

Description

Sums each regions flows to obtain net migration sums.

Usage

```
sum_net(m, region = 1:dim(m)[1])
```


Arguments

$m \quad$ Matrix of origin-destination flows, where the first and second dimensions correspond to origin and destination respectively.
region Integer value corresponding to the region that the net migration sum is desired. Will return sums for all regions by default.

Value

Returns a numeric value of the sum of a single block.

Author(s)

Guy J. Abel

Examples

```
r <- LETTERS[1:4]
m <- matrix(data = 1:16, nrow = 4, ncol = 4,
    dimnames = list(orig = r, dest = r))
m
sum_net(m)
```

 sum_od Extract a classic origin-destination migration flow matrix.

Description

Extract a classic origin-destination migration flow matrix from a more detailed dis-aggregation of flows stored in an (array) object.

Usage

sum_od(y)

Arguments

y
Array of origin-destination matrices, where the first and second dimensions correspond to origin and destination respectively. Higher dimension(s) refer to additional migrant characteristic(s).

Value

Matrix from summing over the first and second dimension. Set diagonals to zero.
Returns a matrix object of origin-destination flows

```
sum_region
```

Summary of regional in-, out-, turnover and net-migration totals from an origin-destination migration flow matrix or data frame.

Description

Summary of regional in-, out-, turnover and net-migration totals from an origin-destination migration flow matrix or data frame.

Usage

```
sum_region(
    m,
    drop_diagonal = TRUE,
    orig_col = "orig",
    dest_col = "dest",
    flow_col = "flow",
    international = FALSE,
    include_net = TRUE
)
```

 sum_turnover(
 m,
 drop_diagonal = TRUE,
 orig_col = "orig",
 dest_col = "dest",
 flow_col = "flow",
 international = FALSE,
 include_net = TRUE
)
 sum_country(
 m,
 drop_diagonal = TRUE,
 orig_col = "orig",
 dest_col = "dest",
 flow_col = "flow",
 include_net = TRUE,
 international = TRUE
)

Arguments

m
A matrix or data frame of origin-destination flows. For matrix the first and second dimensions correspond to origin and destination respectively. For a data frame ensure the correct column names are passed to orig_col, dest_col and flow_col.

drop_diagonal	Logical to indicate dropping of diagonal terms, where the origin and destination are the same, in the calculation of totals. Default TRUE.
orig_col	Character string of the origin column name (when m is a data frame rather than a matrix)
dest_col	Character string of the destination column name (when m is a data frame rather than a matrix)
flow_col	Character string of the flow column name (when m is a data frame rather than a matrix)
international	Logical to indicate if flows are international.
include_net	Logical to indicate inclusion of a net migration total column for each region, in addition to the total in- and out-flows. Default TRUE.

Value

A tibble with total in-, out- and turnover of flows for each region.

Examples

```
# matrix
r <- LETTERS[1:4]
m <- matrix(data = c(0, 100, 30, 70, 50, 0, 45, 5, 60, 35, 0, 40, 20, 25, 20, 0),
                nrow = 4, ncol = 4, dimnames = list(orig = r, dest = r), byrow = TRUE)
m
sum_region(m)
## Not run:
# data frame (tidy) format
library(tidyverse)
# download Abel and Cohen (2019) estimates
f <- read_csv("https://ndownloader.figshare.com/files/26239945")
# turnover for single period
f %>%
    filter(year0 == 1990) %>%
    sum_region(flow_col = "da_pb_closed", type = "international")
# turnover for all periods using group_by
f %>%
    group_by(year0) %>%
    sum_region(flow_col = "da_pb_closed", type = "international")
## End(Not run)
```

uar_1960 Lifetime migration data for Governorates of United Arab Republic in 1960

Description

Lifetime migration (stock) bilateral data from Governorates of the United Arab Republic

Usage

uar_1960

Format

Matrix with 11 rows and columns
orig Governorate of birth
carat Governorate of enumeration

Source

United Arab Republic, Department of Statistics and Census, 1960 Census of Population (Cairo, July 1963), vol. II, General tables, table 14, p. 50.

Published in United Nations Department of Economic and Social Affairs Population Division 1983 - Methods of measuring internal migration https://www.un.org/en/development/desa/ population/publications/manual/migration/measuring-migration.asp

```
umbrella Umbrella colour scheme
```


Description

Vector of hexadecimal codes for a umbrella rainbow colour scheme

Usage

umbrella

Format

An object of class character of length 9 . race

Description

Population data by place of birth, age, sex and race in 1950 and 1960

Usage

usa_1960

Format

Data frame with 288 rows and 7 columns:
birthplace Place of birth (US Census area)
race Race from 'white' or 'non-white'
sex Sex from 'male' or 'female'
age_1950 Age group in 1950
age_1960 Age group in 1960
pop_1950 Enumerated population in 1950
pop_1960 Enumerated population in 1960

Source

Data scraped from Table D, pp. 183-191 of Eldridge, H., \& Kim, Y. (1968). The estimation of intercensal migration from birth-residence statistics: a study of data for the United States, 1950 and 1960 (PSC Analytical and Technical Report Series, Issue 7). https://repository.upenn.edu/ psc_penn_papers/3/

Index

```
* datasets
    alabama_1970,4
    bombay_1951,7
    dict_ims,16
    indian_sub, 35
    ipumsi_age,46
    italy_area,47
    korea_dist,48
    korea_pop,48
    korea_reg, 49
    manila_1970,49
    new_england_1960,59
    rc_model_fund, 61
    rc_model_un, 61
    uar_1960,77
    umbrella,77
    usa_1960,78
alabama_1970,4
birth_mat,5
block_matrix, 5, 7, 38, 39, 41,66
block_sum,6
bombay_1951,7
cm2, 3, 8, 11, 36, 37
cm3, 3, 10
cm_net, 12
cm_net_tot, 13
death_mat, 15
dict_ims, 16
ffs,43
ffs (ffs_demo), 17
ffs_demo, 3, 17, 21, 23,45
ffs_diff, 3, 19, 20, 51, 62, 63
ffs_rates, 3, 19, 21, 22, 23
format_migration_matrix, 23
format_migration_tibble, 24
```

index_age, 25
index_age_rc, 27
index_connectivity, 27
index_distance, 30
index_impact, 31
index_intensity, 33
indian_sub, 35
ipf2, 3, 9, 36, 42
ipf2_block, 6, 7, 38
ipf2_stripe, 39, 66
ipf3, 3, 11, 18, 37, 41, 45
ipf3_qi, $3,18,42,43,51,62,63$
ipf_seed, 45
ipumsi_age, 46
italy_area, 47
korea_dist, 48
korea_pop, 48
korea_reg, 49
manila_1970, 49
match_pob_tot, 50
mig_chord, 51
migest (migest-package), 3
migest-package, 3
multi_comp, 54
multi_comp2, 55
nchars_wrap, 56
net_sr, 57
net_vs, 58
new_england_1960, 59
quadratic_eqn, 60
rc_model_fund, 61
rc_model_un, 61
rescale_integer_sum, 62
rescale_nb, 63
rescale_net, 64
str_wrap_n, 67
str_wrap_n_single, 67
stripe_matrix, 6, 7, 39-41, 66
sum_bilat (sum_bilateral), 68
sum_bilateral, 68
sum_country (sum_region), 75
sum_expand, 69
sum_lump, 71
sum_net, 73
sum_od, 74
sum_region, 75
sum_turnover (sum_region), 75
uar_1960, 77
umbrella, 77
usa_1960, 78

