missMDA: Handling Missing Values with Multivariate Data Analysis
Imputation of incomplete continuous or categorical datasets; Missing values are imputed with a principal component analysis (PCA), a multiple correspondence analysis (MCA) model or a multiple factor analysis (MFA) model; Perform multiple imputation with and in PCA or MCA.
| Version: | 
1.18 | 
| Depends: | 
R (≥ 3.3.0) | 
| Imports: | 
FactoMineR (≥
2.3), ggplot2, graphics, grDevices, mice, mvtnorm, stats, utils, doParallel, parallel, foreach | 
| Suggests: | 
knitr, markdown | 
| Published: | 
2020-12-11 | 
| Author: | 
Francois Husson, Julie Josse | 
| Maintainer: | 
Francois Husson  <husson at agrocampus-ouest.fr> | 
| License: | 
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | 
http://factominer.free.fr/missMDA/index.html | 
| NeedsCompilation: | 
no | 
| Citation: | 
missMDA citation info  | 
| Materials: | 
README  | 
| In views: | 
MissingData, Psychometrics | 
| CRAN checks: | 
missMDA results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=missMDA
to link to this page.