
Package ‘mitml’
October 5, 2021

Type Package

Title Tools for Multiple Imputation in Multilevel Modeling

Version 0.4-3

Date 2021-10-05

Author Simon Grund [aut,cre], Alexander Robitzsch [aut], Oliver Luedtke [aut]

Maintainer Simon Grund <grund@ipn.uni-kiel.de>

BugReports https://github.com/simongrund1/mitml/issues

Imports pan, jomo, haven, grDevices, graphics, stats, methods, utils

Suggests mice, miceadds, Amelia, lme4, nlme, lavaan, geepack,
survival, knitr, rmarkdown

LazyData true

LazyLoad true

Description Provides tools for multiple imputation of missing data in multilevel
modeling. Includes a user-friendly interface to the packages 'pan' and 'jomo',
and several functions for visualization, data management and the analysis
of multiply imputed data sets.

License GPL (>= 2)

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-10-05 12:30:07 UTC

R topics documented:
mitml-package . 2
amelia2mitml.list . 3
anova.mitml.result . 4
as.mitml.list . 6
c.mitml.list . 7
clusterMeans . 8

1

https://github.com/simongrund1/mitml/issues

2 mitml-package

confint.mitml.testEstimates . 10
is.mitml.list . 11
jomoImpute . 12
justice . 17
leadership . 18
long2mitml.list . 19
mids2mitml.list . 20
mitml.list2mids . 21
mitmlComplete . 22
multilevelR2 . 23
panImpute . 25
plot.mitml . 29
read.mitml . 32
sort.mitml.list . 33
studentratings . 34
subset.mitml.list . 35
summary.mitml . 36
testConstraints . 37
testEstimates . 40
testModels . 42
with.mitml.list . 45
write.mitml . 48
write.mitmlMplus . 49
write.mitmlSAV . 50
write.mitmlSPSS . 51

Index 54

mitml-package mitml: Tools for multiple imputation in multilevel modeling

Description

Provides tools for multiple imputation of missing data in multilevel modeling. This package in-
cludes a user-friendly interface to the algorithms implemented in the R packages pan and jomo as
well as several functions for visualizing, managing, and analyzing multiply imputed data sets.

The main interface to pan is the function panImpute, which allows specifying imputation models
for continuous variables with missing data at level 1. In addition, the function jomoImpute provides
an interface to jomo, which allows specifying imputation models for both continuous and categorical
variables with missing data at levels 1 and 2 as well as single-level data. The imputations and
parameter values are stored in objects of class mitml. To obtain the completed (i.e., imputed) data
sets, mitmlComplete is used, producing a list of imputed data sets of class mitml.list that can be
used in further analyses.

Several additional functions allow for convenient analysis of multiply imputed data sets including
(bot not limited to) multilevel analyses with lme4 or nlme and structural equation modeling with
lavaan. The functions within, sort, and subset can be used to manage and manipulate multiply
imputed data sets. Statistical models are fitted using with. Pooled parameter estimates can be

amelia2mitml.list 3

extracted with testEstimates, and model comparisons as well as single- and multi-parameter
hypotheses tests can be performed using the functions testModels and testConstraints. In
addition, the anova method provides a simple interface to model comparisons.

Data sets can be imported and exported from or to different statistical software packages. Currently,
mids2mitml.list, amelia2mitml.list, jomo2mitml.list, and long2mitml.list can be used
for importing imputations for other packages in R. In addition, write.mitmlMplus, write.mitmlSAV,
and write.mitmlSPSS export data sets to Mplus and SPSS, respectively.

Finally, the package provides tools for summarizing and visualizing imputation models, which is
useful for the assessment of convergence and the reporting of results.

The data sets contained in this package are published under the same license as the package itself.
They contain simulated data and may be used by anyone free of charge as long as reference to this
package is given.

Author(s)

Authors: Simon Grund, Alexander Robitzsch, Oliver Luedtke

Maintainer: Simon Grund <grund@ipn.uni-kiel.de>

amelia2mitml.list Convert objects of class amelia to mitml.list

Description

This function converts a amelia class object (as produced by the Amelia package) to mitml.list.
The resulting object may be used in further analyses.

Usage

amelia2mitml.list(x)

Arguments

x An object of class amelia as produced by amelia (see the Amelia package).

Value

A list of imputed data sets with an additional class attribute mitml.list.

Author(s)

Simon Grund

See Also

mitmlComplete

4 anova.mitml.result

Examples

data(studentratings)

require(Amelia)
imp <- amelia(x = studentratings[, c("ID", "MathAchiev", "ReadAchiev")], cs = "ID")

implist <- amelia2mitml.list(imp)

anova.mitml.result Compare several nested models

Description

Performs model comparisons for a series of nested statistical models fitted using with.mitml.list.

Usage

S3 method for class 'mitml.result'
anova(object, ..., method = c("D3", "D4", "D2"),
ariv = c("default", "positive", "robust"),
data = NULL)

Arguments

object An object of class mitml.result as produced by with.mitml.list.
... Additional objects of class mitml.result to be compared.
method A character string denoting the method used for the model comparison. Can be

"D3", "D4" or "D2" (see ’Details’). Default is "D3".
ariv A character string denoting how the ARIV is calculated. Can be "default",

"positive", or "robust" (see ’Details’).
data (optional) A list of imputed data sets (see ’Details’).

Details

This function performs likelihood-based comparisons between multiple statistical models fitted with
with.mitml.list. If possible, the models are compared using the D3 statistic (Meng & Rubin,
1992). If this method is unavailable, the D4 or D2 statistic is used instead (Chan & Meng, 2019;
Li, Meng, Raghunathan, & Rubin, 1991).

This function is essentially a wrapper for testModels with the advantage that several models can
be compared simultaneously. For a list of supported models and further options for more specific
model comparisons, see testModels.

The ariv argument affects how the average relative increase in variance is calculated (see also
testModels). Note that the D4 method can fail if the data to which the model was fitted cannot be
found. In such a case, the data argument can be used to specify the list of imputed data sets directly
(see also testModels).

anova.mitml.result 5

Value

A list containing the results of each model comparison. A print method is used for more readable
output.

Author(s)

Simon Grund

References

Meng, X.-L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed data
sets. Biometrika, 79, 103-111.

Laird, N., Lange, N., & Stram, D. (1987). Maximum likelihood computations with repeated mea-
sures: Application of the em algorithm. Journal of the American Statistical Association, 82, 97-105.

Li, K. H., Raghunathan, T. E., & Rubin, D. B. (1991). Large-sample significance levels from
multiply imputed data using moment-based statistics and an F reference distribution. Journal of the
American Statistical Association, 86, 1065-1073.

See Also

with.mitml.list, testModels

Examples

require(lme4)
data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

simple comparison (same as testModels)
fit0 <- with(implist, lmer(ReadAchiev ~ (1|ID), REML = FALSE))
fit1 <- with(implist, lmer(ReadAchiev ~ ReadDis + (1|ID), REML = FALSE))
anova(fit1, fit0)

Not run:
multiple comparisons
fit2 <- with(implist, lmer(ReadAchiev ~ ReadDis + (1 + ReadDis|ID), REML = FALSE))
anova(fit2, fit1, fit0)

End(Not run)

6 as.mitml.list

as.mitml.list Convert a list of data sets to mitml.list

Description

This function adds a mitml.list class attribute to a list of data frames. The resulting object can be
used in further analyses.

Usage

as.mitml.list(x)

Arguments

x A list of data frames.

Value

The original list with an additional class attribute mitml.list. The list entries are converted into a
data.frame if necessary, in which case a note is printed.

Author(s)

Simon Grund

See Also

is.mitml.list, long2mitml.list

Examples

data frame with 'imputation' indicator
dat <- data.frame(imputation = rep(1:10, each = 20), x = rnorm(200))

split into a list and convert to 'mitml.list'
l <- split(dat, dat$imputation)
l <- as.mitml.list(l)

is.mitml.list(l)
TRUE

c.mitml.list 7

c.mitml.list Concatenate lists of imputed data sets

Description

These functions allow concatenating lists of imputed data sets by data set, row, or column.

Usage

S3 method for class 'mitml.list'
c(...)
S3 method for class 'mitml.list'
rbind(...)
S3 method for class 'mitml.list'
cbind(...)

Arguments

... One or several lists of imputed data sets with class mitml.list as produced by
mitmlComplete (or similar).

Details

The c, cbind, and rbind functions allow combining multiple lists of imputed data sets in different
ways. The c method concatenates by data set (i.e., by appending additional data sets to the list),
rbind concatenates by row (i.e., appending additional rows to each data set), and cbind concate-
nates by column (i.e., by appending additional columns to each data set).

These functions are intended for experienced users and should be used with caution. Appending
rows or columns from multiple imputation procedures is usually unsafe unless in special applica-
tions (see ’Examples’).

Value

A list of imputed data sets with an additional class attribute mitml.list.

Author(s)

Simon Grund

Examples

Example 1: manual imputation by grouping variable

data(studentratings)
fml <- ReadDis + SES ~ ReadAchiev + (1|ID)

8 clusterMeans

imp1 <- panImpute(subset(studentratings, FedState == "SH"), formula = fml,
n.burn = 1000, n.iter = 100, m = 5)

imp2 <- panImpute(subset(studentratings, FedState == "B"), formula = fml,
n.burn = 1000, n.iter = 100, m = 5)

implist1 <- mitmlComplete(imp1)
implist2 <- mitmlComplete(imp2)

rbind(implist1, implist2)

Example 2: predicted values from linear model

imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)
implist <- mitmlComplete(imp)

pred <- with(implist1, predict(lm(ReadDis ~ ReadAchiev)))
cbind(implist, pred.ReadDis = pred)

clusterMeans Calculate cluster means

Description

Calculates the mean of a given variable within each cluster, possibly conditioning on an additional
grouping variable.

Usage

clusterMeans(x, cluster, adj = FALSE, group = NULL)

Arguments

x A numeric vector for which cluster means should be calculated. Can also be
supplied as a character string denoting a variable in the current environment
(see ’Details’).

cluster A numeric vector or a factor denoting the cluster membership of each unit in x.
Can also be supplied as a character string (see ’Details’).

adj Logical flag indicating if person-adjusted group means should be calculated. If
TRUE, cluster means are calculated for each unit by excluding that unit from
calculating the cluster mean. Default is FALSE.

group (optional) A grouping factor or a variable that can be interpreted as such. If
specified, cluster means are calculated separately within the sub-groups defined
by group. Can also be supplied as a character string (see ’Details’).

clusterMeans 9

Details

This function calculates the mean of a variable within each level of a cluster variable. Any NA are
omitted during calculation.

The three main arguments of the function can also be supplied as (single) character strings, denoting
the name of the respective variables in the current environment. This is especially useful for calcu-
lating several cluster means simultaneously, for example using within.mitml.list (see ’Example
2’ below).

Value

A numeric vector with the same length as x containing the cluster mean for all units.

Author(s)

Simon Grund, Alexander Robitzsch

See Also

within.mitml.list

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

* Example 1: single cluster means

calculate cluster means (for each data set)
with(implist, clusterMeans(ReadAchiev, ID))

... person-adjusted cluster means
with(implist, clusterMeans(ReadAchiev, ID, adj = TRUE))

... groupwise cluster means
with(implist, clusterMeans(ReadAchiev, ID, group = Sex))

* Example 2: automated cluster means using 'for' and 'assign'

calculate multiple cluster means within multiply imputed data sets
within(implist,{

vars <- c("ReadAchiev", "MathAchiev", "CognAbility")
for(i in vars) assign(paste(i, "Mean", sep = "."), clusterMeans(i, ID))
rm(i, vars)

})

10 confint.mitml.testEstimates

confint.mitml.testEstimates

Compute confidence intervals

Description

Computes confidence intervals on the basis of the final parameter estimates and inferences given by
testEstimates.

Usage

S3 method for class 'mitml.testEstimates'
confint(object, parm, level = 0.95, ...)

Arguments

object An object of class mitml.testEstimates as produced by testEstimates.

parm (optional) A reference to the parameters for which to calculate confidence inter-
vals. Can be a character or integer vector denoting names or position of param-
eters, respectively. If missing, all parameters are considered (the default).

level The confidence level. Default is to 0.95 (i.e., 95%).

... Not being used.

Details

This function computes confidence intervals with the given confidence level for the pooled param-
eters on the basis of a t-distribution, with estimates, standard errors, and degrees of freedom as
returned by testEstimates.

Value

A matrix containing the lower and upper bounds of the confidence intervals.

Author(s)

Simon Grund

See Also

testEstimates

is.mitml.list 11

Examples

data(studentratings)

fml <- ReadDis ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 500, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

fit regression model
fit <- with(implist, lm(ReadDis ~ 1 + ReadAchiev))
est <- testEstimates(fit)

compute confidence intervals
confint(est)

... with different confidence levels
confint(est, level = 0.90)
confint(est, level = 0.999)

is.mitml.list Check if an object is of class mitml.list

Description

This function checks if its argument is a list of class mitml.list.

Usage

is.mitml.list(x)

Arguments

x An R object.

Value

TRUE or FALSE. A warning message is displayed if the contents of x do not appear to be data frames.

Author(s)

Simon Grund

See Also

as.mitml.list

12 jomoImpute

Examples

l <- list(data.frame(x = rnorm(20)))
l <- as.mitml.list(l)
is.mitml.list(l)
TRUE

l <- as.list(1:10)
is.mitml.list(l)
FALSE

class(l) <- "mitml.list"
is.mitml.list(l)
TRUE, with a warning

jomoImpute Impute single-level and multilevel missing data using jomo

Description

Performs single- and multilevel imputation for (mixed) continuous and categorical data using the
jomo package Supports imputation of missing data at level 1 and 2 as well as imputation using
random (residual) covariance matrices. See ’Details’ for further information.

Usage

jomoImpute(data, type, formula, random.L1 = c("none", "mean", "full"),
n.burn = 5000, n.iter = 100, m = 10, group = NULL, prior = NULL,
seed = NULL, save.pred = FALSE, keep.chains = c("full", "diagonal"),
silent = FALSE)

Arguments

data A data frame containing the incomplete data, the auxiliary variables, the cluster
indicator variable, and any other variables that should be included in the imputed
datasets.

type An integer vector specifying the role of each variable in the imputation model
or a list of two vectors specifying a two-level model (see ’Details’).

formula A formula specifying the role of each variable in the imputation model or a list
of two formulas specifying a two-level model. The basic model is constructed
by model.matrix, which allows including derived variables in the imputation
model using I() (see ’Details’ and ’Examples’).

random.L1 A character string denoting if the covariance matrix of residuals should vary
across groups and how the values of these matrices are stored (see ’Details’).
Can be "none" (common covariance matrix), "mean" (random covariance ma-
trix, storing only mean values), or "full" (random covariance matrix, storing
all values). Default is "none".

jomoImpute 13

n.burn The number of burn-in iterations before any imputations are drawn. Default is
5,000.

n.iter The number of iterations between imputations. Default is 100.

m The number of imputed data sets to generate. Default is 10.

group (optional) A character string denoting the name of an additional grouping vari-
able to be used with the formula argument. If specified, the imputation is run
separately within each of these groups.

prior (optional) A list with components Binv, Dinv, and a for specifying prior distri-
butions for the covariance matrix of random effects and the covariance matrix
of residuals (see ’Details’). Default is to use least-informative priors.

seed (optional) An integer value initializing R’s random number generator for repro-
ducible results. Default is to use the global seed.

save.pred (optional) Logical flag indicating if variables derived using formula should be
included in the imputed data sets. Default is FALSE.

keep.chains (optional) A character string denoting which chains of the MCMC algorithm to
store. Can be "full" (stores chains for all parameters) or "diagonal" (stores
chains for fixed effects and diagonal entries of the covariance matrices). Default
is "full" (see ’Details’).

silent (optional) Logical flag indicating if console output should be suppressed. De-
fault is FALSE.

Details

This function serves as an interface to the jomo package and supports imputation of single-level and
multilevel continuous and categorical data at both level 1 and 2 (see Carpenter & Kenward, 2013;
Goldstein et al., 2009). In order for categorical variables to be detected correctly, these must be
formatted as a factor variables (see ’Examples’). The imputation model can be specified using
either the type or the formula argument.

The type interface is designed to provide quick-and-easy imputations using jomo. The type argu-
ment must be an integer vector denoting the role of each variable in the imputation model:

• 1: target variables containing missing data

• 2: predictors with fixed effect on all targets (completely observed)

• 3: predictors with random effect on all targets (completely observed)

• -1: grouping variable within which the imputation is run separately

• -2: cluster indicator variable

• 0: variables not featured in the model

At least one target variable and, for multilevel imputation, the cluster indicator must be specified.
If the cluster indicator is omitted, single-level imputation will be performed. The intercept is auto-
matically included as both a fixed and (for multilevel models) a random effect. If a variable of type
-1 is found, then separate imputations are performed within each level of that variable.

The formula argument is intended as a more flexible and feature-rich interface to jomo. Specifying
the formula argument is similar to specifying other formulae in R. Given below is a list of operators
that jomoImpute currently understands:

14 jomoImpute

• ~: separates the target (left-hand) and predictor (right-hand) side of the model

• +: adds target or predictor variables to the model

• *: adds an interaction term of two or more predictors

• |: denotes cluster-specific random effects and specifies the cluster indicator (e.g., 1|ID)

• I(): defines functions to be interpreted by model.matrix

If the cluster indicator is omitted, single-level imputation will be performed. For multilevel imputa-
tion, predictors are allowed to have fixed effects, random effects, or both on all target variables. The
intercept is automatically included as both a fixed and (for multilevel models) a random effect. Both
can be suppressed if needed (see panImpute). Note that, when specifying random effects other than
the intercept, these will not be automatically added as fixed effects and must be included explicitly.
Any predictors defined by I() will be used for imputation but not included in the data set unless
save.pred = TRUE.

If missing data occur at both level 1 and 2, the imputation model is specified as a list of two
formulas or types, respectively. The first element of this list denotes the model specification for
variables at level 1. The second element denotes the model specification for variables at level 2.
Missing data are imputed jointly at both levels (see ’Examples’, see also Carpenter and Kenward,
2013; Goldstein et al., 2009).

It is possible to model the covariance matrix of residuals at level 1 as random across clusters (Yucel,
2011; Carpenter & Kenward, 2013). The random.L1 argument determines this behavior and how
the values of these matrices are stored. If set to "none", a common covariance matrix is assumed
across groups (similar to panImpute). If set to "mean", the covariance matrices are random, but
only the average covariance matrix is stored at each iteration. If set to "full", the covariance
matrices are random, and all variances and covariances from all clusters are stored.

In order to run separate imputations for each level of an additional grouping variable, the group
argument can be used. The name of the grouping variable must be given as a character string (i.e.,
in quotation marks).

The default prior distribution for the covariance matrices in jomoImpute are "least informative"
inverse-Wishart priors with minimum positive degrees of freedom (largest dispersion) and the iden-
tity matrix for scale. The prior argument can be used to specify alternative prior distributions.
These must be supplied as a list containing the following components:

• Binv: scale matrix for the covariance matrix of residuals at level 1

• Dinv: scale matrix for the covariance matrix of random effects and residuals at level 2

• a: starting value for the degrees of freedom of random covariance matrices of residuals (only
used with random.L1 = "mean" or random.L1 = "full")

Note that jomo does not allow for the degrees of freedom for the inverse-Wishart prior to be specified
by the user. These are always set to the lowest value possible (largest dispersion) or determined
iteratively if the residuals at level 1 are modeled as random (see above). For single-level imputation,
only Binv is relevant.

In imputation models with many parameters, the number of chains in the MCMC algorithm being
stored can be reduced with the keep.chains argument (see also panImpute). This setting influ-
ences the storage mode of parameters (e.g., dimensions and indices of arrays) and should be used
with caution.

jomoImpute 15

Value

An object of class mitml, containing the following components:

data The original (incomplete) data set, sorted according to the cluster variable and
(if given) the grouping variable, with several attributes describing the original
order ("sort"), grouping ("group") and factor levels of categorical variables.

replacement.mat

A matrix containing the multiple replacements (i.e., imputations) for each miss-
ing value. The replacement matrix contains one row for each missing value and
one one column for each imputed data set.

index.mat A matrix containing the row and column index for each missing value. The index
matrix is used to link the missing values in the data set with their corresponding
rows in the replacement matrix.

call The matched function call.

model A list containing the names of the cluster variable, the target variables, and the
predictor variables with fixed and random effects, at level 1 and level 2, respec-
tively.

random.L1 A character string denoting the handling of the (random) covariance matrix of
residuals at level 1 (see ’Details’).

prior The prior parameters used in the imputation model.

iter A list containing the number of burn-in iterations, the number of iterations be-
tween imputations, and the number of imputed data sets.

par.burnin A multi-dimensional array containing the parameters of the imputation model
from the burn-in phase.

par.imputation A multi-dimensional array containing the parameters of the imputation model
from the imputation phase.

Note

For objects of class mitml, methods for the generic functions print, summary, and plot are avail-
able to inspect the fitted imputation model. mitmlComplete is used for extracting the imputed data
sets.

Author(s)

Simon Grund, Alexander Robitzsch, Oliver Luedtke

References

Carpenter, J. R., & Kenward, M. G. (2013). Multiple imputation and its application. Hoboken, NJ:
Wiley.

Goldstein, H., Carpenter, J., Kenward, M. G., & Levin, K. A. (2009). Multilevel models with
multivariate mixed response types. Statistical Modelling, 9, 173-197.

Yucel, R. M. (2011). Random covariances and mixed-effects models for imputing multivariate
multilevel continuous data. Statistical Modelling, 11, 351-370.

16 jomoImpute

See Also

panImpute, mitmlComplete, summary.mitml, plot.mitml

Examples

NOTE: The number of iterations in these examples is much lower than it
should be. This is done in order to comply with CRAN policies, and more
iterations are recommended for applications in practice!

data(studentratings)
data(leadership)

for further examples, see "panImpute"
#

?panImpute

***
the 'type' interface
#

* Example 1.1 (studentratings): 'ReadDis' and 'SES', predicted by 'ReadAchiev'
(random slope)

type <- c(-2, 0, 0, 0, 0, 1, 3, 1, 0, 0)
names(type) <- colnames(studentratings)
type

imp <- jomoImpute(studentratings, type = type, n.burn = 100, n.iter = 10, m = 5)

* Example 1.2 (leadership): all variables (mixed continuous and categorical
data with missing values at level 1 and level 2)

type.L1 <- c(-2, 1, 0, 1, 1) # imputation model at level 1
type.L2 <- c(-2, 0, 1, 0, 0) # imputation model at level 2
names(type.L1) <- names(type.L2) <- colnames(leadership)

type <- list(type.L1, type.L2)
type

imp <- jomoImpute(leadership, type = type, n.burn = 100, n.iter = 10, m = 5)

* Example 1.3 (studentratings): 'ReadDis', 'ReadAchiev', and 'SES' predicted
with empty model, groupwise for 'FedState' (single-level imputation)

type <- c(0, -1, 0, 0, 0, 1, 1, 1, 0, 0)
names(type) <- colnames(studentratings)
type

imp <- jomoImpute(studentratings, type = type, group = "FedState", n.burn = 100,
n.iter = 10, m = 5)

justice 17

***
the 'formula' interface
#

* Example 2.1 (studentratings): 'ReadDis' and 'SES' predicted by 'ReadAchiev'
(random slope)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- jomoImpute(studentratings, formula = fml, n.burn = 100, n.iter = 10, m = 5)

* Example 2.2 (studentratings): 'ReadDis' predicted by 'ReadAchiev' and the
the cluster mean of 'ReadAchiev'

fml <- ReadDis ~ ReadAchiev + I(clusterMeans(ReadAchiev, ID)) + (1|ID)
imp <- jomoImpute(studentratings, formula = fml, n.burn = 100, n.iter = 10, m = 5)

* Example 2.3 (studentratings): 'ReadDis' predicted by 'ReadAchiev', groupwise
for 'FedState'

fml <- ReadDis ~ ReadAchiev + (1|ID)
imp <- jomoImpute(studentratings, formula = fml, group = "FedState", n.burn = 100,

n.iter = 10, m = 5)

* Example 2.4 (leadership): all variables (mixed continuous and categorical
data with missing values at level 1 and level 2)

fml <- list(JOBSAT + NEGLEAD + WLOAD ~ 1 + (1|GRPID) , COHES ~ 1)
imp <- jomoImpute(leadership, formula = fml, n.burn = 100, n.iter = 10, m = 5)

* Example 2.5 (studentratings): 'ReadDis', 'ReadAchiev', and 'SES' predicted
with empty model, groupwise for 'FedState' (single-level imputation)

fml <- ReadDis + ReadAchiev + SES ~ 1
imp <- jomoImpute(studentratings, formula = fml, group = "FedState", n.burn = 100,

n.iter = 10, m = 5)

justice Example data set on employees’ justice perceptions and satisfaction

Description

Data set containing simulated data for employees nested within organizations, featuring employ-
ees’ sex, ratings on individual justice orientation and ratings on job satisfaction. The data set also
includes scores for justice climate in each organization (defined at the level of organizations, level
2). Different organizations are denoted by the variable id.

The data were simulated based on the results by Liao and Rupp (2005), as well as the secondary
analyses of the same data given in Mathieu, Aguinis, Culpepper, and Chen, (2012).

18 leadership

Usage

data(justice)

Format

A data frame containing 1400 observations on 4 variables.

References

Liao, H., & Rupp, D. E. (2005). The impact of justice climate and justice orientation on work
outcomes: A cross-level multifoci framework. Journal of Applied Psychology, 90, 242.256.

Mathieu, J. E., Aguinis, H., Culpepper, S. A., & Chen, G. (2012). Understanding and estimat-
ing the power to detect cross-level interaction effects in multilevel modeling. Journal of Applied
Psychology, 97, 951-966.

leadership Example data set on leadership style and job satisfaction

Description

Data set based on the data simulated by Paul D. Bliese as described in Klein et al. (2000) with slight
modifications. The data set consists of 750 employees, nested within 50 work groups, and includes
employees’ ratings on negative leadership style, job satisfaction, and workload as well as a measure
for each work group’s cohesion.

The original data set is available in the multilevel package and was modified by (a) transforming
workload into a categorical variable, (b) transforming cohesion into a group-level variable, and (c)
by inducing missing values.

Usage

data(leadership)

Format

A data frame containing 750 observations on 5 variables.

References

Bliese, P. D. (2013). multilevel: Multilevel functions (Version 2.5) [Computer software]. Retrieved
from http://CRAN.R-project.org/package=multilevel

Klein, K. J., Bliese, P. D., Kozlowski, S. W. J., Dansereau, F., Gavin, M. B., Griffin, M. A., ...
Bligh, M. C. (2000). Multilevel analytical techniques: Commonalities, differences, and continuing
questions. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods
in organizations: Foundations, extensions, and new directions (pp. 512-553). San Francisco, CA:
Jossey-Bass.

long2mitml.list 19

long2mitml.list Convert imputations from long format to mitml.list

Description

These functions convert data sets containing multiple imputations in long format to objects of class
mitml.list. The resulting object can be used in further analyses.

Usage

long2mitml.list(x, split, exclude = NULL)

jomo2mitml.list(x)

Arguments

x A data frame in long format containing multiple imputations (see ’Details’).

split A character string denoting the column in x that identifies different imputations
(see ’Details’).

exclude A vector denoting the values of split that should be excluded.

Details

The function long2mitml.list converts data frames from the long format to mitml.list (i.e., a
list of imputed data sets). In long format, all imputations are contained in a single data frame, where
different imputations are denoted by split. This function splits the data frame into a list of imputed
data sets according to split, excluding the values specified by exclude (see the ’Examples’).

The jomo2mitml.list function is a special case of long2mitml.list which converts imputations
that have been generated with jomo (see the jomo package)).

Value

A list of imputed data sets with class mitml.list.

Author(s)

Simon Grund

See Also

mitmlComplete

20 mids2mitml.list

Examples

data(studentratings)
require(jomo)

impute data using jomo (native functions)
clus <- studentratings[, "ID"]
Y <- studentratings[, c("ReadAchiev", "ReadDis")]
imp <- jomo(Y = Y, clus = clus, nburn = 1000, nbetween = 100, nimp = 5)

split imputations
impList <- long2mitml.list(imp, split = "Imputation", exclude = 0)
impList <- jomo2mitml.list(imp)

mids2mitml.list Convert objects of class mids to mitml.list

Description

This function converts a mids class object (as produced by the mice package) to mitml.list. The
resulting object may be used in further analyses.

Usage

mids2mitml.list(x)

Arguments

x An object of class mids as produced by mice (see the mice package).

Value

A list of imputed data sets with class mitml.list.

Author(s)

Simon Grund

See Also

mitmlComplete

mitml.list2mids 21

Examples

data(studentratings)

imputation using mice
require(mice)
imp <- mice(studentratings)

implist <- mids2mitml.list(imp)

mitml.list2mids Convert objects of class mitml.list to mids

Description

This function converts a mitml.list class object to mids (as used in the mice package).

Usage

mitml.list2mids(x, data, fill = FALSE, where = NULL)

Arguments

x A list of imputed data sets with class mitml.list (as produced by mitmlComplete,
mids2mitml.list, or similar).

data A data frame containing to original (incomplete) data (see ’Details’).

fill A logical flag indicating whether variables in the imputed data that are not in the
original data should be added and filled with NA (default is FALSE).

where (optional) A data frame or matrix of logicals indicating the location of missing
values (see ’Details’).

Details

This function converts objects of class mitml.list into mids objects (as used in the mice package).
The conversion requires a list of imputed data sets and the original (incomplete) data set. If the
imputed data sets have been appended with new variables (e.g., by within.mitml.list), the new
variables can be added to the original data set by setting fill = TRUE.

This function is essentially a wrapper around as.mids that sets the case and imputation identifiers
automatically and and passes the where argument as is (see also the documentation of as.mids).

Value

An object of class mids.

Author(s)

Simon Grund

22 mitmlComplete

See Also

mitmlComplete, mids2mitml.list, within.mitml.list

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

* Example 1: simple conversion

convert to 'mids'
impmids <- mitml.list2mids(implist, data = studentratings)

* Example 2: conversion with additional variables

compute new variables
implist <- within(implist, {

M.ReadAchiev <- clusterMeans(ReadAchiev, ID)
C.ReadAchiev <- ReadAchiev - M.ReadAchiev

})

convert to 'mids'
impmids <- mitml.list2mids(implist, data = studentratings, fill = TRUE)

mitmlComplete Extract imputed data sets

Description

This function extracts imputed data sets from mitml class objects as produced by panImpute and
jomoImpute.

Usage

mitmlComplete(x, print = "all", force.list = FALSE)

Arguments

x An object of class mitml as produced by panImpute or jomoImpute.
print Either an integer vector, "list", or "all" denoting which data sets to extract. If

set to "list" or "all", all imputed data sets will be returned as a list. Negative
values and zero return the original (incomplete) data set. Default is "all".

force.list (optional) Logical flag indicating if single data sets should be enclosed in a list.
Default is FALSE.

multilevelR2 23

Value

Usually a list of imputed data with class mitml.list If only one data set is extracted: a data frame
unless force.list = TRUE.

Author(s)

Simon Grund

See Also

panImpute, jomoImpute

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

extract original (incomplete) data set
mitmlComplete(imp, print = 0)

extract first imputed data set (returned as mitml.list)
mitmlComplete(imp, print = 1, force.list = TRUE)

extract all imputed data sets at once
implist <- mitmlComplete(imp, print = "all")

Not run:
... alternatives with same results
implist <- mitmlComplete(imp, print = 1:5)
implist <- mitmlComplete(imp, print = "list")

End(Not run)

multilevelR2 Calculate R-squared measures for multilevel models

Description

Calculates several measures for the proportion of explained variance in a fitted linear mixed-effects
or multilevel model (or a list of fitted models).

Usage

multilevelR2(model, print = c("RB1", "RB2", "SB", "MVP"))

24 multilevelR2

Arguments

model Either a fitted linear mixed-effects model as produced by lme4 or nlme, or a list
of fitted models as produced by with.mitml.list.

print A character vector denoting which measures should be calculated (see details).
Default is to printing all measures.

Details

This function calculates several measures of explained variance (R2) for linear-mixed effects mod-
els. It can be used with a single model, as produced by the packages lme4 or nlme, or a list of
fitted models produced by with.mitml.list. In the latter case, the R2 measures are calculated
separately for each imputed data set and then averaged across data sets.

Different R2 measures can be requested using the print argument. Specifying RB1 and RB2 returns
the explained variance at level 1 and level 2, respectively, according to Raudenbush and Bryk (2002,
pp. 74 and 79). Specifying SB returns the total variance explained according to Snijders and Bosker
(2012, p. 112). Specifying MVP returns the total variance explained based on “multilevel variance
partitioning” as proposed by LaHuis, Hartman, Hakoyama, and Clark (2014).

Value

A numeric vector containing the R2 measures requested in print.

Note

Calculating R2 measures is currently only supported for two-level models with a single cluster
variable.

Author(s)

Simon Grund

References

LaHuis, D. M., Hartman, M. J., Hakoyama, S., & Clark, P. C. (2014). Explained variance measures
for multilevel models. Organizational Research Methods, 17, 433-451.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data
analysis methods (2nd ed.). Thousand Oaks, CA: Sage.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling. Thousand Oaks, CA: Sage.

Examples

require(lme4)
data(studentratings)

fml <- MathAchiev + ReadAchiev + CognAbility ~ 1 + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

panImpute 25

implist <- mitmlComplete(imp)

fit <- with(implist, lmer(MathAchiev ~ 1 + CognAbility + (1|ID)))
multilevelR2(fit)

panImpute Impute multilevel missing data using pan

Description

Performs multiple imputation of multilevel data using the pan package (Schafer & Yucel, 2002).
Supports imputation of continuous multilevel data with missing values at level 1. See ’Details’ for
further information.

Usage

panImpute(data, type, formula, n.burn = 5000, n.iter = 100, m = 10, group = NULL,
prior = NULL, seed = NULL, save.pred = FALSE, keep.chains = c("full", "diagonal"),
silent = FALSE)

Arguments

data A data frame containing the incomplete data, the auxiliary variables, the cluster
indicator variable, and any other variables that should be included in the imputed
datasets.

type An integer vector specifying the role of each variable in the imputation model
(see ’Details’).

formula A formula specifying the role of each variable in the imputation model. The
basic model is constructed by model.matrix, thus allowing to include derived
variables in the imputation model using I() (see ’Details’ and ’Examples’).

n.burn The number of burn-in iterations before any imputations are drawn. Default is
5,000.

n.iter The number of iterations between imputations. Default is 100.

m The number of imputed data sets to generate.

group (optional) A character string denoting the name of an additional grouping vari-
able to be used with the formula argument. If specified, the imputation model
is run separately within each of these groups.

prior (optional) A list with components a, Binv, c, and Dinv for specifying prior dis-
tributions for the covariance matrix of random effects and the covariance matrix
of residuals (see ’Details’). Default is to use least-informative priors.

seed (optional) An integer value initializing pan’s random number generator for re-
producible results. Default is to using a random seed.

26 panImpute

save.pred (optional) Logical flag indicating if variables derived using formula should be
included in the imputed data sets. Default is FALSE.

keep.chains (optional) A character string denoting which chains of the MCMC algorithm to
store. Can be "full" (stores chains for all parameters) or "diagonal" (stores
chains for fixed effects and diagonal entries of the covariance matrices). Default
is "full" (see ’Details’).

silent (optional) Logical flag indicating if console output should be suppressed. De-
fault is to FALSE.

Details

This function serves as an interface to the pan package and supports imputation of continuous
multilevel data at level 1 (Schafer & Yucel, 2002). The imputation model can be specified using
either the type or the formula argument.

The type interface is designed to provide quick-and-easy imputations using pan. The type argu-
ment must be an integer vector denoting the role of each variable in the imputation model:

• 1: target variables containing missing data

• 2: predictors with fixed effect on all targets (completely observed)

• 3: predictors with random effect on all targets (completely observed)

• -1: grouping variable within which the imputation is run separately

• -2: cluster indicator variable

• 0: variables not featured in the model

At least one target variable and the cluster indicator must be specified. The intercept is automatically
included as both a fixed and a random effect. If a variable of type -1 is found, then separate
imputations are performed within each level of that variable.

The formula argument is intended as a more flexible and feature-rich interface to pan. Specifying
the formula argument is similar to specifying other formulae in R. Given below is a list of operators
that panImpute understands:

• ~: separates the target (left-hand) and predictor (right-hand) side of the model

• +: adds target or predictor variables to the model

• *: adds an interaction term of two or more predictors

• |: denotes cluster-specific random effects and specifies the cluster indicator (e.g., 1|ID)

• I(): defines functions to be interpreted by model.matrix

Predictors are allowed to have fixed effects, random effects, or both on all target variables. The
intercept is automatically included as both a fixed and a random effect, but it can be suppressed if
needed (see ’Examples’). Note that, when specifying random effects other than the intercept, these
will not be automatically added as fixed effects and must be included explicitly. Any predictors
defined by I() will be used for imputation but not included in the data set unless save.pred =
TRUE.

In order to run separate imputations for each level of an additional grouping variable, the group
argument can be used. The name of the grouping variable must be given as a character string (i.e.,
in quotation marks).

panImpute 27

The default prior distributions for the covariance matrices in panImpute are "least informative"
inverse-Wishart priors with minimum positive degrees of freedom (largest dispersion) and the iden-
tity matrix for scale. The prior argument can be used to specify alternative prior distributions.
These must be supplied as a list containing the following components:

• a: degrees of freedom for the covariance matrix of residuals

• Binv: scale matrix for the covariance matrix of residuals

• c: degrees of freedom for the covariance matrix of random effects

• Dinv: scale matrix for the covariance matrix of random effects

A sensible choice for a diffuse non-default prior is to set the degrees of freedom to the lowest value
possible, and the scale matrices according to a prior guess of the corresponding covariance matrices
(see Schafer & Yucel, 2002).

In imputation models with many parameters, the number of chains in the MCMC algorithm being
stored can be reduced with the keep.chains argument. If set to "full" (the default), all chains
are saved. If set to "diagonal", only chains pertaining to fixed effects and the diagonal entries
of the covariance matrices are saved. This setting influences the storage mode of parameters (e.g.,
dimensions and indices of arrays) and should be used with caution.

Value

An object of class mitml, containing the following components:

data The original (incomplete) data set, sorted according to the cluster variable and
(if given) the grouping variable, with several attributes describing the original
row order ("sort") and grouping ("group".

replacement.mat

A matrix containing the multiple replacements (i.e., imputations) for each miss-
ing value. The replacement matrix contains one row for each missing value and
one one column for each imputed data set.

index.mat A matrix containing the row and column index for each missing value. The index
matrix is used to link the missing values in the data set with their corresponding
rows in the replacement matrix.

call The matched function call.

model A list containing the names of the cluster variable, the target variables, and the
predictor variables with fixed and random effects, respectively.

random.L1 A character string denoting the handling of random residual covariance matrices
(not used here; see jomoImpute).

prior The prior parameters used in the imputation model.

iter A list containing the number of burn-in iterations, the number of iterations be-
tween imputations, and the number of imputed data sets.

par.burnin A multi-dimensional array containing the parameters of the imputation model
from the burn-in phase.

par.imputation A multi-dimensional array containing the parameters of the imputation model
from the imputation phase.

28 panImpute

Note

For objects of class mitml, methods for the generic functions print, summary, and plot are avail-
able to inspect the fitted imputation model. mitmlComplete is used for extracting the imputed data
sets.

Author(s)

Simon Grund, Alexander Robitzsch, Oliver Luedtke

References

Schafer, J. L., and Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-
effects models with missing values. Journal of Computational and Graphical Statistics, 11, 437-
457.

See Also

jomoImpute, mitmlComplete, summary.mitml, plot.mitml

Examples

NOTE: The number of iterations in these examples is much lower than it
should be! This is done in order to comply with CRAN policies, and more
iterations are recommended for applications in practice!

data(studentratings)

***
the 'type' interface
#

* Example 1.1: 'ReadDis' and 'SES', predicted by 'ReadAchiev' and
'CognAbility', with random slope for 'ReadAchiev'

type <- c(-2, 0, 0, 0, 0, 0, 3, 1, 2, 0)
names(type) <- colnames(studentratings)
type

imp <- panImpute(studentratings, type = type, n.burn = 1000, n.iter = 100, m = 5)

* Example 1.2: 'ReadDis' and 'SES' groupwise for 'FedState',
and predicted by 'ReadAchiev'

type <- c(-2, -1, 0, 0, 0, 0, 2, 1, 0, 0)
names(type) <- colnames(studentratings)
type

imp <- panImpute(studentratings, type = type, n.burn = 1000, n.iter = 100, m = 5)

***
the 'formula' interface

plot.mitml 29

#

* Example 2.1: imputation of 'ReadDis', predicted by 'ReadAchiev'
(random intercept)

fml <- ReadDis ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

... the intercept can be suppressed using '0' or '-1' (here for fixed intercept)
fml <- ReadDis ~ 0 + ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

* Example 2.2: imputation of 'ReadDis', predicted by 'ReadAchiev'
(random slope)

fml <- ReadDis ~ ReadAchiev + (1+ReadAchiev|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

* Example 2.3: imputation of 'ReadDis', predicted by 'ReadAchiev',
groupwise for 'FedState'

fml <- ReadDis ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, group = "FedState", n.burn = 1000,

n.iter = 100, m = 5)

* Example 2.4: imputation of 'ReadDis', predicted by 'ReadAchiev'
including the cluster mean of 'ReadAchiev' as an additional predictor

fml <- ReadDis ~ ReadAchiev + I(clusterMeans(ReadAchiev, ID)) + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

... using 'save.pred' to save the calculated cluster means in the data set
fml <- ReadDis ~ ReadAchiev + I(clusterMeans(ReadAchiev, ID)) + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5,

save.pred = TRUE)

head(mitmlComplete(imp, print = 1))

plot.mitml Print diagnostic plots

Description

Generates diagnostic plots for assessing the convergence and autocorrelation behavior of pan’s and
jomo’s MCMC algorithms.

Usage

S3 method for class 'mitml'

30 plot.mitml

plot(x, print = c("beta", "beta2", "psi", "sigma"), pos = NULL, group = "all",
trace = c("imputation", "burnin", "all"), thin = 1, smooth = 3, n.Rhat = 3,
export = c("none", "png", "pdf"), dev.args = list(), ...)

Arguments

x An object of class mitml as produced by panImpute or jomoImpute.

print A character vector containing one or several of "beta", "beta2", "psi" or
"sigma" denoting which parameters should be plotted. Default is to plot all
parameters.

pos Either NULL or an integer vector denoting a specific entry in "beta", "beta2",
"psi" or "sigma". Default is NULL, which plots all entries.

group Either "all" or an integer denoting for which group the plots should be gener-
ated. Used only when groupwise imputation was used. Default is "all".

trace One of "imputation", "burnin" or "all" denoting which part of the chain
should be used for the trace plot. Default is "imputation", which plots only
the iterations after burn-in.

thin An integer denoting the thinning factor that is applied before plotting. Default
is 1, which corresponds to no thinning.

smooth A numeric value denoting the smoothing factor for the trend line in trace plots.
Higher values correspond to less smoothing. Default is 3. If set to 0 or NULL, the
trend line is suppressed.

n.Rhat An integer denoting the number of segments of each chain used for calculating
the potential scale reduction factor. Default is 3.

export (optional) A character string specifying if plots should be exported to a file. If
"png" or "pdf", then plots are printed into a folder named "mitmlPlots" in the
current directory using either the png or the pdf device. Default is "none",
which does not export files.

dev.args (optional) A named list containing additional arguments that are passed to the
graphics device.

... Parameters passed to the plotting functions.

Details

The plot method generates a series of plots for the parameters of the imputation model which can
be used for diagnostic purposes. In addition, a short summary of the parameter chain is displayed.

Setting print to "beta", "beta2", "psi" and "sigma" will plot the fixed effects, the variances and
covariances of the random effects, and the variances and covariances of the residuals, respectively.
In this context, "beta2" refers to the fixed effects for target variables at level 2 and is only used
when a two-part model was specified in (jomoImpute). Each plotting window contains a trace plot
(upper left), an autocorrelation plot (lower left), a kernel density approximation of the posterior dis-
tribution (upper right), and a posterior summary (lower right). The summary includes the following
quantities:

EAP: Expected value a posteriori (i.e., the mean of the parameter chain)

plot.mitml 31

MAP: Mode a posteriori (i.e., the mode of the parameter chain)

SD: Standard deviation of the parameter chain

2.5%: The 2.5% quantile of parameter values

97.5%: The 97.5% quantile of parameter values

Rhat: Estimated potential scale reduction factor (R̂)

ACF-k: Smoothed autocorrelation at lag k, where k is the number of iterations between imputations
(see summary.mitml)

The trace and smooth arguments can be used to influence how the trace plot is drawn and what part
of the chain should be used for it. The thin argument can be used for thinning the chain before plot-
ting, in which case the number of data points is reduced in the trace plot, and the autocorrelation is
calculated up to lag k/thin (see above). The n.Rhat argument controls the number of segments that
are used for calculating the potential scale reduction factor (R̂) in each plot (see summary.mitml).
Further aguments to the graphics device are supplied using the dev.args argument.

The plot function computes and displays diagnostic information primarily for the imputation phase
(i.e., for iterations after burn-in). This is the default in the plot function and the recommended
method for most users. If trace = "all", the full chain is displayed with emphasis on the im-
putation phase, and the posterior summary is calculated based on only the iterations after burn-in
(as recommended). If trace = "burnin", the posterior summary and the trace plots are calculated
based on only the burn-on interations, which is generally not sufficient to establish convergence and
should be used with caution.

Value

None (invisible NULL).

Note

The plots are presented on-screen one at a time. To proceed with the next plot, the user may left-
click in the plotting window or press the "enter" key while in the R console, depending on the
operating system. No plots are displayed when exporting to file.

Author(s)

Simon Grund

See Also

panImpute, jomoImpute, summary.mitml

Examples

Not run:
data(studentratings)

* Example 1: simple imputation

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

32 read.mitml

plot all parameters (default)
plot(imp)

plot fixed effects only
plot(imp, print = "beta")

export plots to file (using pdf device)
plot(imp, export = "pdf", dev.args = list(width = 9, height = 4, pointsize = 12))

* Example 2: groupwise imputation

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, group = FedState, n.burn = 1000,

n.iter = 100, m = 5)

plot fixed effects for all groups (default for 'group')
plot(imp, print = "beta", group = "all")

plot fixed effects for first group only
plot(imp, print = "beta", group = 1)

End(Not run)

read.mitml Read mitml objects from file

Description

This function loads mitml class objects from R binary formats (similar to ?load), usually produced
by write.mitml.

Usage

read.mitml(filename)

Arguments

filename Name of the file to read, to be specified with file extension (e.g., .R, .Rdata).

Value

An object of class mitml.

Author(s)

Simon Grund

sort.mitml.list 33

See Also

panImpute, jomoImpute, write.mitml

Examples

Not run:
data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

write 'mitml' object
write.mitml(imp, filename = "imputation.R")

read previously saved 'mitml' object
old.imp <- read.mitml("imputation.R")

class(old.imp)
old.imp

End(Not run)

sort.mitml.list Sort a list of imputed data sets

Description

Sorts a list of multiply imputed data sets according to an R expression.

Usage

S3 method for class 'mitml.list'
sort(x, decreasing = FALSE, by, ...)

Arguments

x A list of imputed data sets with class mitml.list as produced by mitmlComplete
(or similar).

decreasing Logical flag indicating if data sets should be sorted in decreasing (i.e., reversed)
order. Default is ‘FALSE‘.

by An R expression or a list of multiple expressions by which to sort the imputed
data sets (see ’Examples’).

... Further arguments to ‘order’ (see ’Details’).

34 studentratings

Details

This function sorts a list of imputed data sets according to the R expression given in the by argument.
The function is based on order and works in a similar manner. Note that sorting is performed
individually for each data set. For this reason, the order of cases may differ across data sets if the
variables used for sorting contain different values.

Value

A list of imputed data sets with class mitml.list.

Author(s)

Simon Grund

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

* Example 1: sort by ID
sort(implist, by = ID)

* Example 2: sort by combination of variables
sort(implist, by = list(FedState, ID, -SES))

studentratings Example data set on student ratings and achievement

Description

Contains simulated data for students nested within schools, featuring students’ ratings of their
teachers’ behavior (i.e., disciplinary problems in mathematics and reading class) and their gen-
eral learning environment (school climate) as well as mathematics and reading achievement scores,
and scores for socio-economic status and cognitive ability.

In addition, the data set features the ID of 50 different schools (i.e., clusters), the biological sex of
all students, and a broad, additional grouping factor. Different amounts of missing data have been
inserted into the data set in a completely random fashion.

Usage

data(studentratings)

Format

A data frame containing 750 observations on 10 variables.

subset.mitml.list 35

subset.mitml.list Subset a list of imputed data sets

Description

Creates data subsets for a list of multiply imputed data sets.

Usage

S3 method for class 'mitml.list'
subset(x, subset, select, ...)

Arguments

x A list of imputed data sets with class mitml.list as produced by mitmlComplete
(or similar).

subset An R expression by which to subset each data set.

select An R expression by which to select columns.

... Not used.

Details

This function can be used to create subsets and select variables for a list of multiply imputed data
sets according to the R expressions given in the subset and select arguments. The function
is based on the subset function for regular data sets and works in a similar manner. Note that
subsetting is performed individually for each data set. For this reason, the cases included may differ
across data sets if the variables used for subsetting contain different values.

Value

A list of imputed data sets with class mitml.list.

Author(s)

Simon Grund

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

36 summary.mitml

* Example 1: subset by SES, select variables by name
subset(implist, SES < 25, select = c(ID, FedState, Sex, SES, ReadAchiev, ReadDis))

* Example 2: subset by FedState, select variables by column number
subset(implist, FedState == "SH", select = -c(6:7, 9:10))

Not run:
* Example 3: subset by ID and Sex
subset(implist, ID

* Example 4: select variables by name range
subset(implist, select = ID:Sex)

End(Not run)

summary.mitml Summary measures for imputation models

Description

Provides summary statistics and additional information on imputations in objects of class mitml.

Usage

S3 method for class 'mitml'
summary(object, n.Rhat = 3, goodness.of.appr = FALSE, autocorrelation = FALSE, ...)

Arguments

object An object of class mitml as produced by panImpute or jomoImpute.

n.Rhat (optional) An integer denoting the number of segments used for calculating the
potential scale reduction factor. Default is 3.

goodness.of.appr

(optional) A logical flag indicating if the goodness of approximation should be
printed. Default is FALSE (see ’Details’).

autocorrelation

(optional) A logical flag indicating if the autocorrelation should be printed. De-
fault is FALSE (see ’Details’).

... Not used.

Details

The summary method calculates summary statistics for objects of class mitml as produced by
panImpute or jomoImpute. The output includes the potential scale reduction factor (PSRF, or
R̂) and (optionally) the goodness of approximation and autocorrelation.

testConstraints 37

The PSRF is calculated for each parameter of the imputation model and can be used as a conver-
gence diagnostic (Gelman and Rubin, 1992). Calculation of the PSRFs can be suppressed by setting
n.Rhat = NULL. The PSRFs are not computed from different chains but by dividing each chain from
the imputation phase into a number of segments as denoted by n.Rhat. This is slightly different
from the original method proposed by Gelman and Rubin.

The goodness of approximation measure indicates what proportion of the posterior standard devia-
tion is due to simulation error. This is useful for assessing the accuracy of the posterior summaries
(e.g., the EAP). The autocorrelation includes estimates of the autocorrelation in the chains at lag
1 (i.e., for consecutive draws) and for lags k and 2k, where k is the number of iterations between
imputations. For lag k and 2k, the autocorrelation is slightly smoothed to reduce the influence of
noise on the estimates (see plot.mitml).

Value

An object of class summary.mitml. A print method is used for more readable output.

Author(s)

Simon Grund

References

Gelman, A., and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.
Statistical Science, 7, 457-472.

Hoff, P. D. (2009). A first course in Bayesian statistical methods. New York, NY: Springer.

See Also

panImpute, jomoImpute, plot.mitml

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

print summary
summary(imp)

testConstraints Test functions and constraints of model parameters

Description

Performs hypothesis tests for arbitrary functions of the model parameters using the Delta method.

38 testConstraints

Usage

testConstraints(model, qhat, uhat, constraints, method = c("D1", "D2"),
ariv = c("default", "positive"), df.com = NULL)

Arguments

model A list of fitted statistical models as produced by with.mitml.list or similar.

qhat A matrix or list containing the point estimates of the parameters for each im-
puted data set (see ’Details’).

uhat An array or list containing the variance-covariance matrix of the parameters for
each imputed data set (see ’Details’).

constraints A character vector specifying constraints or functions of the vector of model
parameters to be tested (see ’Details’).

method A character string denoting the method by which the test is performed. Can be
"D1" or "D2" (see ’Details’). Default is "D1".

ariv A character string denoting how the ARIV is calculated. Can be "default" or
"positive" (see ’Details’).

df.com (optional) A single number or a numeric vector denoting the complete-data de-
grees of freedom for the hypothesis test (see ’Details’). Only used if method =
"D1".

Details

This function performs tests of arbitrary functions (or constraints) of the model parameters using
similar methods as testModels. The function relies on the Delta method (e.g., Casella & Berger,
2002) for testing functions of the parameters and assumes that their sampling distribution is ap-
proximately normal. The parameters can either be extracted automatically from the fitted statistical
models (model) or provided manually as matrices, arrays, or lists (qhat and uhat, see ’Examples’).

Constraints and other functions of the model parameters are specified in the constraints argument.
The constraints must be supplied as a character vector, where each string denotes a function or a
constraint to be tested (see ’Examples’).

The Wald-like tests that are carried out by testConstraints are pooled across the imputed data
sets with the D1 (Li, Raghunathan & Rubin, 1991) or D2 (Li, Meng, Raghunathan & Rubin, 1991)
method, whereD1 operates on the constrained point and variance estimates, andD2 operates on the
Wald-statistics (for additional details, see testModels). The pooled estimates and standard errors
reported in the output are always based on D1.

For D1, the complete-data degrees of freedom can be adjusted for smaller samples by specifying
df.com (see testModels).

This function supports general statistical models that define coef and vcov methods (e.g., lm, glm,
lavaan and others) as well as multilevel models estimated with lme4 or nlme and GEEs estimated
with geepack. The arguments qhat and uhat provide a general method for pooling parameter
estimates regardless of model type (see ’Examples’). Support for further models may be added in
future releases.

testConstraints 39

The ariv argument determines how the average relative increase in variance (ARIV) is calculated
(see testModels). If ariv = "default", the default estimators are used. If ariv = "positive",
the default estimators are used but constrained to take on strictly positive values.

Value

A list containing the results of the model comparison. A print method is used for more readable
output.

Author(s)

Simon Grund

References

Casella, G., & Berger, R. L. (2002). Statistical inference (2nd. Ed.). Pacific Grove, CA: Duxbury.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1, 65-92.

Li, K. H., Raghunathan, T. E., & Rubin, D. B. (1991). Large-sample significance levels from
multiply imputed data using moment-based statistics and an F reference distribution. Journal of the
American Statistical Association, 86, 1065-1073.

See Also

testModels, with.mitml.list

Examples

data(studentratings)

fml <- MathDis + ReadDis + SchClimate ~ (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

fit simple regression model
fit.lm <- with(implist, lm(SchClimate ~ ReadDis + MathDis))

apply Rubin's rules
testEstimates(fit.lm)

* Example 1: test 'identity' function of two parameters (automatic)
test equivalent to model comparison with a restricted model (without 'ReadDis'
and 'MathDis')

cons <- c("ReadDis", "MathDis")
testConstraints(fit.lm, constraints = cons)

... adjusting for finite samples
testConstraints(fit.lm, constraints = cons, df.com = 749)

40 testEstimates

... using D2
testConstraints(fit.lm, constraints = cons, method = "D2")

* Example 2: test for equality of two parameters
tests the hypothesis that the coefficients pertaining to 'ReadDis' and 'MathDis'
are equal (ReadDis = MathDis)

cons <- c("ReadDis-MathDis")
testConstraints(fit.lm, constraints = cons)

* Example 3: test against a fixed value
tests the hypothesis that the coefficient of "ReadDis" is equal to one
(i.e., 'ReadDis' - 1 == 0)

cons <- c("ReadDis-1")
testConstraints(fit.lm, constraints = cons)

* Example 4: test 'identity' function of two parameters (qhat, uhat)

fit.lm <- with(implist, lm(SchClimate ~ ReadDis + MathDis))

qhat <- sapply(fit.lm, coef)
uhat <- sapply(fit.lm, function(x) vcov(x), simplify = "array")

cons <- c("ReadDis", "MathDis")
testConstraints(qhat = qhat, uhat = uhat, constraints = cons)

testEstimates Compute final estimates and inferences

Description

Computes final parameter estimates and inferences from multiply imputed data sets.

Usage

testEstimates(model, qhat, uhat, extra.pars = FALSE, df.com = NULL, ...)

Arguments

model A list of fitted statistical models as produced by with.mitml.list or similar.

qhat A matrix or list containing the point estimates of the parameters for each im-
puted data set (see ’Details’).

uhat An array, matrix, or list containing the variance estimates (i.e., squared standard
errors) of the parameters for each imputed data set (see ’Details’).

extra.pars A logical flag indicating if estimates of additional parameters (e.g., variance
components) should be calculated. Default is FALSE.

testEstimates 41

df.com (optional) A numeric vector denoting the complete-data degrees of freedom for
the hypothesis tests (see ’Details’).

... Not used.

Details

This function calculates pooled parameter estimates and inferences as suggested by Rubin (1987,
"Rubin’s rules") for each parameter of the fitted model. The parameters can either be extracted
automatically from the fitted statistical models (model) or provided manually as matrices, arrays, or
lists (qhat and uhat, see ’Examples’).

Rubin’s original method assumes that the complete-data degrees of freedom are infinite, which is
reasonable in larger samples. Alternatively, the degrees of freedom can be adjusted for smaller
samples by specifying df.com (Barnard & Rubin, 1999). The df.com argument can either be a
single number if the degrees of freedom are equal for all parameters being tested, or a numeric
vector with one element per parameter.

Using the extra.pars argument, pooled estimates for additional parameters can be requested (e.g.,
variance components). This option is available for a number of models but may not provide es-
timates for all parameters in all model types. In such a case, users may extract the estimates of
additional parameters by hand and pool them with the qhat argument (see ’Examples’). No infer-
ences are calculated for pooled additional parameters.

Currently, the procedure supports automatic extraction of model parameters from models that define
coef and vcov methods (e.g., lm, glm, lavaan and others) as well as multilevel models estimated
with lme4 or nlme and GEEs estimated with geepack. The arguments qhat and uhat provide a
general method for pooling parameter estimates regardless of model type (see ’Examples’). Support
for further models may be added in future releases.

Value

A list containing the pooled parameter and inferences. A print method is used for more readable
output.

Author(s)

Simon Grund

References

Barnard, J., & Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation.
Biometrika, 86, 948-955.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Hoboken, NJ: Wiley.

See Also

with.mitml.list, confint.mitml.testEstimates

42 testModels

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

fit multilevel model using lme4
require(lme4)
fit.lmer <- with(implist, lmer(SES ~ (1|ID)))

* Example 1: pool estimates of fitted models (automatic)
pooled estimates and inferences separately for each parameter (Rubin's rules)
testEstimates(fit.lmer)

... adjusted df for finite samples
testEstimates(fit.lmer, df.com = 49)

... with additional table for variance components and ICCs
testEstimates(fit.lmer, extra.pars = TRUE)

* Example 2: pool estimates using matrices or lists (qhat, uhat)
fit.lmer <- with(implist, lmer(SES ~ ReadAchiev + (1|ID)))

qhat <- sapply(fit.lmer, fixef)
uhat <- sapply(fit.lmer, function(x) diag(vcov(x)))

testEstimates(qhat = qhat, uhat = uhat)

testModels Test multiple parameters and compare nested models

Description

Performs multi-parameter hypothesis tests for a vector of statistical parameters and compares nested
statistical models obtained from multiply imputed data sets.

Usage

testModels(model, null.model, method = c("D1", "D2", "D3", "D4"),
use = c("wald", "likelihood"), ariv = c("default", "positive", "robust"),
df.com = NULL, data = NULL)

testModels 43

Arguments

model A list of fitted statistical models (“full” model) as produced by with.mitml.list
or similar.

null.model A list of fitted statistical models (“restricted” model) as produced by with.mitml.list
or similar.

method A character string denoting the method by which the test is performed. Can be
"D1", "D2", "D3", or "D4" (see ’Details’). Default is "D1".

use A character string denoting Wald- or likelihood-based based tests. Can be either
"wald" or "likelihood". Only used if method = "D2".

ariv A character string denoting how the ARIV is calculated. Can be "default",
"positive", or "robust" (see ’Details’).

df.com (optional) A number denoting the complete-data degrees of freedom for the hy-
pothesis test. Only used if method = "D1".

data (optional) A list of imputed data sets (see ’Details’). Only used if method =
"D4"

Details

This function compares two nested statistical models fitted to multiply imputed data sets by pooling
Wald-like or likelihood-ratio tests.

Pooling methods for Wald-like tests of multiple parameters were introduced by Rubin (1987) and
further developed by Li, Raghunathan and Rubin (1991). The pooled Wald test is referred to as D1

and can be used by setting method = "D1". D1 is the multi-parameter equivalent of testEstimates,
that is, it tests multiple parameters simultaneously. For D1, the complete-data degrees of freedom
are assumed to be infinite, but they can be adjusted for smaller samples by supplying df.com (Reiter,
2007).

An alternative method for Wald-like hypothesis tests was suggested by Li, Meng, Raghunathan and
Rubin (1991). The procedure is calledD2 and can be used by setting method = "D2". D2 calculates
the Wald-test directly for each data set and then pools the resulting χ2 values. The source of these
values is specified by the use argument. If use = "wald" (the default), then a Wald test similar to
D1 is performed. If use = "likelihood", then the two models are compared with a likelihood-ratio
test instead.

Pooling methods for likelihood-ration tests were suggested by Meng and Rubin (1992). This proce-
dure is referred to as D3 and can be used by setting method = "D3". D3 compares the two models
by pooling the likelihood-ratio test across multiply imputed data sets.

Finally, an improved method for pooling likelihood-ratio tests was recommended by Chan & Meng
(2019). This method is referred to as D4 and can be used by setting method = "D4". D4 also
compares models by pooling the likelihood-ratio test but does so in a more general and efficient
manner.

The function supports different classes of statistical models depending on which method is chosen.
D1 supports models that define coef and vcov methods (or similar) for extracting the parameter
estimates and their estimated covariance matrix. D2 can be used for the same models (if use =
"wald" and models that define a logLik method (if use = "likelihood"). D3 supports linear
models, linear mixed-effects models (see Laird, Lange, & Stram, 1987) with an arbitrary cluster
structed if estimated with lme4 or a single cluster if estimated by nlme, and structural equation

44 testModels

models estimated with lavaan (requires ML estimator, see ’Note’). Finally, D4 supports models
that define a logLik method but can fail if the data to which the model was fitted cannot be found. In
such a case, users can provide the list of imputed data sets directly by specifying the data argument
or refit with the include.data argument in with.mitml.list. Support for other statistical models
may be added in future releases.

The D4, D3, and D2 methods support different estimators of the relative increase in variance
(ARIV), which can be specified with the ariv argument. If ariv = "default", the default esti-
mators are used. If ariv = "positive", the default estimators are used but constrained to take
on strictly positive values. This is useful if the estimated ARIV is negative. If ariv = "robust",
which is available only for D4, the "robust" estimator proposed by Chan & Meng (2019) is used.
This method should be used with caution, because it requires much stronger assumptions and may
result in liberal inferences if these assumptions are violated.

Value

A list containing the results of the model comparison. A print method is used for more readable
output.

Note

The methods D4, D3, and the likelihood-based D2 assume that models were fit using maximum
likelihood (ML). Models fit using REML are automatically refit using ML. Models fit in 'lavaan'
using the MLR estimator or similar techniques that require scaled chi2 difference tests are currently
not supported.

Author(s)

Simon Grund

References

Chan, K. W., & Meng, X.-L. (2019). Multiple improvements of multiple imputation likelihood ratio
tests. ArXiv:1711.08822 [Math, Stat]. https://arxiv.org/abs/1711.08822

Laird, N., Lange, N., & Stram, D. (1987). Maximum likelihood computations with repeated mea-
sures: Application of the em algorithm. Journal of the American Statistical Association, 82, 97-105.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1, 65-92.

Li, K. H., Raghunathan, T. E., & Rubin, D. B. (1991). Large-sample significance levels from
multiply imputed data using moment-based statistics and an F reference distribution. Journal of the
American Statistical Association, 86, 1065-1073.

Meng, X.-L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed data
sets. Biometrika, 79, 103-111.

Reiter, J. P. (2007). Small-sample degrees of freedom for multi-component significance tests with
multiple imputation for missing data. Biometrika, 94, 502-508.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Hoboken, NJ: Wiley.

https://arxiv.org/abs/1711.08822

with.mitml.list 45

See Also

testEstimates, testConstraints, with.mitml.list, anova.mitml.result

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

* Example 1: multiparameter hypothesis test for 'ReadDis' and 'SES'
This tests the hypothesis that both effects are zero.

require(lme4)
fit0 <- with(implist, lmer(ReadAchiev ~ (1|ID), REML = FALSE))
fit1 <- with(implist, lmer(ReadAchiev ~ ReadDis + (1|ID), REML = FALSE))

apply Rubin's rules
testEstimates(fit1)

multiparameter hypothesis test using D1 (default)
testModels(fit1, fit0)

... adjusting for finite samples
testModels(fit1, fit0, df.com = 47)

... using D2 ("wald", using estimates and covariance-matrix)
testModels(fit1, fit0, method = "D2")

... using D2 ("likelihood", using likelihood-ratio test)
testModels(fit1, fit0, method = "D2", use = "likelihood")

... using D3 (likelihood-ratio test, requires ML fit)
testModels(fit1, fit0, method = "D3")

... using D4 (likelihood-ratio test, requires ML fit)
testModels(fit1, fit0, method = "D4")

with.mitml.list Evaluate an expression in a list of imputed data sets

Description

The with and within methods evaluate R expressions in a list of multiply imputed data sets.

46 with.mitml.list

Usage

S3 method for class 'mitml.list'
with(data, expr, include.data = FALSE, ...)
S3 method for class 'mitml.list'
within(data, expr, ignore = NULL, ...)

Arguments

data A list of imputed data sets with class mitml.list as produced by mitmlComplete
or as.mitml.list.

expr An R expression to be evaluated for each data set.

include.data Either a logical flag or a character string denoting how the data are included
when expr is evaluated (see ’Details’). If FALSE, an environment is created
from data, and expr is evaluated therein. If TRUE, a call is constructed from
expr and evaluated with the imputed data in the "data" slot. If character, a call
is constructed from expr and evaluated with the imputed data in the slot named
by include.data. Default is FALSE.

ignore A character vector naming objects that are created but should not be saved (see
’Details’).

... Not used.

Details

The two functions provide with and within methods for objects of class mitml.list. They eval-
uate an R expression repeatedly for each of the imputed data sets but return different values: with
returns the result of the evaluated expression; within returns the resulting data sets.

The within function is useful for transforming and computing variables in the imputed data (e.g.,
centering, calculating cluster means, etc.). The with function is useful, for example, for fitting
statistical models. The list of fitted models can be analyzed using testEstimates, testModels,
testConstraints, or anova.

The include.data argument can be used to include the imputed data sets in the call to fit sta-
tistical models (expr) using with. This is useful for fitting models that require that the fitting
function be called with a proper data argument (e.g., lavaan or nlme; see ’Examples’). Setting
include.data = TRUE will fit the model with the imputed data sets used as the data argument.
Setting include.data = "df" (or similar) will fit the model with the imputed data sets as the df
argument (useful if the function refers to the data by a nonstandard name, such as "df").

The ignore argument can be used to declare objects that are not to be saved in the data sets created
by within.

Value

with: A list of class mitml.results containing the evaluated expression for each data set.

within: A list of class mitml.list containing the imputed data modified by the evaluated expres-
sion.

with.mitml.list 47

Author(s)

Simon Grund

See Also

mitmlComplete, anova.mitml.result, testEstimates, testModels, testConstraints

Examples

data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

implist <- mitmlComplete(imp)

* Example 1: data transformation

calculate and save cluster means
new1.implist <- within(implist, Means.ReadAchiev <- clusterMeans(ReadAchiev, ID))

center variables, calculate interaction terms, ignore byproducts
new2.implist <- within(implist, {

M.SES <- mean(SES)
M.CognAbility <- mean(CognAbility)
C.SES <- SES - M.SES
C.CognAbility <- CognAbility - M.CognAbility
SES.CognAbility <- C.SES * C.CognAbility

}, ignore = c("M.SES", "M.CognAbility"))

* Example 2: fitting statistical models

fit regression model
fit.lm <- with(implist, lm(ReadAchiev ~ ReadDis))

fit multilevel model with lme4
require(lme4)
fit.lmer <- with(implist, lmer(ReadAchiev ~ ReadDis + (1|ID)))

Not run:
fit structural equation model with lavaan (with include.data = TRUE)
require(lavaan)
mod <- "ReadAchiev ~ ReadDis"
fit.sem <- with(implist,

sem(model = mod, cluster = "ID", estimator = "MLR"),
include.data = TRUE)

End(Not run)

48 write.mitml

write.mitml Write mitml objects to file

Description

Saves objects of class mitml in R binary formats (similar to ?save).

Usage

write.mitml(x, filename, drop = FALSE)

Arguments

x An object of class mitml as produced by panImpute or jomoImpute.

filename Name of the destination file, specified with file extension (e.g., .R, .Rdata).

drop Logical flag indicating if the parameters of the imputation model should be
dropped to reduce file size. Default is FALSE.

Value

None (invisible NULL).

Author(s)

Simon Grund

See Also

panImpute, jomoImpute, read.mitml

Examples

Not run:
data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

write full 'mitml' object (default)
write.mitml(imp, filename = "imputation.Rdata")

drop parameters of the imputation model
write.mitml(imp, filename = "imputation.Rdata", drop = TRUE)

End(Not run)

write.mitmlMplus 49

write.mitmlMplus Write mitml objects to Mplus format

Description

Saves objects of class mitml as a series of text files which can be processed by the statistical software
Mplus (Muthen & Muthen, 2012).

Usage

write.mitmlMplus(x, filename, suffix = "list", sep = "\t", dec = ".",
na.value = -999)

Arguments

x An object of class mitml or mitml.list as produced by panImpute, jomoImpute,
mitmlComplete, or similar).

filename File base name for the text files containing the imputed data sets, specified with-
out file extension.

suffix File name suffix for the index file.

sep The field separator.

dec The decimal separator.

na.value A numeric value coding the missing data in the resulting data files.

Details

The Mplus format for multiply imputed data sets comprises a set of text files, each containing one
imputed data set, and an index file containing the names of all data files. During export, factors and
character variables are converted to numeric. To make this more transparent, write.mitmlMplus
produces a log file which contains information about the data set and the factors that have been
converted.

In addition, a basic Mplus input file is generated that can be used for setting up subsequent analysis
models.

Value

None (invisible NULL).

Author(s)

Simon Grund

50 write.mitmlSAV

References

Muthen, L. K., & Muthen, B. O. (2012). Mplus User’s Guide. Seventh Edition. Los Angeles, CA:
Muthen & Muthen.

See Also

panImpute, jomoImpute, mitmlComplete

Examples

Not run:
data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

write imputation files, index file, and log file
write.mitmlMplus(imp, filename = "imputation", suffix = "list", na.value = -999)

End(Not run)

write.mitmlSAV Write mitml objects to native SPSS format

Description

Saves objects of class mitml in the .sav format used by the statistical software SPSS (IBM Corp.,
2013). The function serves as a front-end for write_sav from the haven package.

Usage

write.mitmlSAV(x, filename)

Arguments

x An object of class mitml or mitml.list as produced by panImpute, jomoImpute,
mitmlComplete, or similar).

filename Name of the destination file. The file extension (.sav) is appended if needed.

Details

This function exports multiply imputed data sets to a single .sav file, in which an Imputation_
variable separates the original data and the various imputed data sets. This allows exporting imputed
data directly to the native SPSS format.

Alternatively, write.mitmlSPSS may be used for creating separate text and SPSS syntax files,
which offers more control over the data format.

write.mitmlSPSS 51

Value

None (invisible NULL).

Author(s)

Simon Grund

References

IBM Corp. (2013). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp

See Also

panImpute, jomoImpute, mitmlComplete, write.mitmlSPSS

Examples

Not run:
data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)
imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

write data file and SPSS syntax
write.mitmlSAV(imp, filename = "imputation")

End(Not run)

write.mitmlSPSS Write mitml objects to SPSS compatible format

Description

Saves objects of class mitml as a text and a syntax file which can be processed by the statistical
software SPSS (IBM Corp., 2013).

Usage

write.mitmlSPSS(x, filename, sep = "\t", dec = ".", na.value = -999, syntax = TRUE,
locale = NULL)

52 write.mitmlSPSS

Arguments

x An object of class mitml or mitml.list as produced by panImpute, jomoImpute,
mitmlComplete, or similar).

filename File base name of the data and syntax files, specified without file extension.

sep The field separator.

dec The decimal separator.

na.value A numeric value coding the missing data in the resulting data file.

syntax A logical flag indicating if an SPSS syntax file should be generated. This file
contains instructions for SPSS for reading in the data file. Default is TRUE.

locale (optional) A character string specifying the localization to be used in SPSS (e.g.,
"en_US", "de_DE"; see ’Details’).

Details

In SPSS, multiply imputed data are contained in a single file, in which an Imputation_ variable
separates the original data and the various imputed data sets. During export, factors are converted
to numeric, whereas character variables are left “as is”.

By default, write.mitmlSPSS generates a raw text file containing the data, along with a syntax file
containing instructions for SPSS. This syntax file mimics SPSS’s functionality to read text files with
sensible settings. In order to read in the data, the syntax file must be opened and executed using
SPSS, or open using the GUI. Manual changes to the syntax file can be required, for example, if
the file path of the data file is not correctly represented in the syntax. The locale argument can be
used to ensure that SPSS reads the data in the correct locale.

Alternatively, write.mitmlSAV may be used for exporting directly to the SPSS native .sav format.

Value

None (invisible NULL).

Author(s)

Simon Grund

References

IBM Corp. IBM SPSS Statistics for Windows. Armonk, NY: IBM Corp

See Also

panImpute, jomoImpute, mitmlComplete, write.mitmlSAV

Examples

Not run:
data(studentratings)

fml <- ReadDis + SES ~ ReadAchiev + (1|ID)

write.mitmlSPSS 53

imp <- panImpute(studentratings, formula = fml, n.burn = 1000, n.iter = 100, m = 5)

write data file and SPSS syntax
write.mitmlSPSS(imp, filename = "imputation", sep = "\t", dec = ".",

na.value = -999, locale = "en_US")

End(Not run)

Index

∗ datasets
justice, 17
leadership, 18
studentratings, 34

∗ methods
anova.mitml.result, 4
c.mitml.list, 7
plot.mitml, 29
sort.mitml.list, 33
subset.mitml.list, 35
summary.mitml, 36
with.mitml.list, 45

∗ models
jomoImpute, 12
panImpute, 25

∗ package
mitml-package, 2

amelia2mitml.list, 3, 3
anova, 3, 46
anova.mitml.result, 4, 45, 47
as.mids, 21
as.mitml.list, 6, 11

c.mitml.list, 7
cbind.mitml.list (c.mitml.list), 7
clusterMeans, 8
confint.mitml.testEstimates, 10, 41

is.mitml.list, 6, 11

jomo2mitml.list, 3
jomo2mitml.list (long2mitml.list), 19
jomoImpute, 2, 12, 23, 28, 30, 31, 33, 36, 37,

48, 50–52
justice, 17

leadership, 18
long2mitml.list, 3, 6, 19

mids2mitml.list, 3, 20, 21, 22

mitml-package, 2
mitml.list2mids, 21
mitmlComplete, 2, 3, 16, 19–22, 22, 28, 47,

50–52
multilevelR2, 23

panImpute, 2, 14, 16, 23, 25, 31, 33, 36, 37,
48, 50–52

plot.mitml, 16, 28, 29, 37

rbind.mitml.list (c.mitml.list), 7
read.mitml, 32, 48

sort, 2
sort.mitml.list, 33
studentratings, 34
subset, 2
subset.mitml.list, 35
summary.mitml, 16, 28, 31, 36

testConstraints, 3, 37, 45–47
testEstimates, 3, 10, 40, 43, 45–47
testModels, 3–5, 38, 39, 42, 46, 47

with, 2
with.mitml.list, 4, 5, 38–41, 43–45, 45
within, 2
within.mitml.list, 9, 21, 22
within.mitml.list (with.mitml.list), 45
write.mitml, 33, 48
write.mitmlMplus, 3, 49
write.mitmlSAV, 3, 50, 52
write.mitmlSPSS, 3, 50, 51, 51

54

	mitml-package
	amelia2mitml.list
	anova.mitml.result
	as.mitml.list
	c.mitml.list
	clusterMeans
	confint.mitml.testEstimates
	is.mitml.list
	jomoImpute
	justice
	leadership
	long2mitml.list
	mids2mitml.list
	mitml.list2mids
	mitmlComplete
	multilevelR2
	panImpute
	plot.mitml
	read.mitml
	sort.mitml.list
	studentratings
	subset.mitml.list
	summary.mitml
	testConstraints
	testEstimates
	testModels
	with.mitml.list
	write.mitml
	write.mitmlMplus
	write.mitmlSAV
	write.mitmlSPSS
	Index

