
The Mysteries of Mixtures of Regressions

Rolf Turner

38 Cunnegonda, 2084

1 Introduction

Back in the late 1990s I developed a package mixreg to accompany a paper that I

had written (Turner 2000). This package wasn’t actually called a “package” as such,
since at that time I was working with Splus which used different terminology. In
2004 I converted the code to R code and created a genuine R package. Until a short
time ago the Splus origins of the package were revealed by comment lines at the end
of the help files:

% Converted by Sd2Rd version 1.21.

Recently I have undertaken a substantial revision of the mixreg package, clean-
ing up the code and adding various enhancements. The old code was very kludgy in
many respects; my R-coding skills have improved substantially since the inception of
the package. It might be said that my R-coding skills are still nothing to write home
about. However they are a lot better than they were. The package has also been
improved by the addition of some new and interesting data sets (the kiln data)
which were kindly made available to me by Petr Pikal (Prerov, Czech Republic).

In this vignette I discuss the changes that I have made and provide some guidance
in coping with these changes. I also discuss some problems that I encountered in
fitting models to the new data sets and suggest an approach to solving such problems.

2 Some of the changes in the package

The most important change is that the “old” mixreg() function had a syntax

mixreg(x,y,...) that involved specifying the variable names x and y (the pre-
dictor and the response, the former being allowed to be a matrix thus allowing for

1

multiple predictors.) I have designed the new mixreg() function so that the old syn-

tax still works (“backward compatibility”) but the preferred syntax is now formula
based: mixreg(y ∼ x, ...)

The function determines which syntax is to be used on the basis of the presence
of the y argument of the function. If y is missing, then x must be a formula;
if isn’t then an error is thrown. Likewise an error will be thrown if you supply a
formula as the value of x , and also perversely supply a value of the y argument.

Another important change is the addition of a function visualFit() which
permits the user to obtain starting values for the EM algorithm in an interactive
manner. The function plots the data and then invites the user to “click” on pairs
of points judged to lie on lines corresponding to the various components. Good
starting values are very important and visualFit() provides a convenient means
of obtaining pretty good ones. This function only works with models that involve a
single predictor. The mixreg() package allows for an arbitrary number of predic-

tors, and there exist examples in which multiple predictors occur (see the references
in Turner 2000). However determining good starting values mixtures of regressions
with multiple predictors remains a very challenging problem. Designing a visually
based method that would be applicable in the multiple predictor context does not
appear to be feasible.

The package now handles models in which there are no predictors, so it is capable
of fitting scalar mixtures (Gaussian only) in a rudimentary manner. Users would
however be better advised to avail themselves of, for example, the mixdist package,
Macdonald (2018).

A plot method for plotting the results of a fit has been added. The existing
functions for plotting confidence and prediction bands (cband() , plot.cband())
have been tidied up and slightly enhanced. The procedure for handling residuals
has been tidied up a bit. A generic function rmixreg with a "default" method

and a "mixreg" method, for simulating data from mixtures of regressions models
has been added. A Monte Carlo procedure for estimating the covariance matrix of
the parameter estimates has been added. A function stepPlot() has been added.
This function fits a mixtures of regressions model, one EM step at a time, plotting
the result after each step. It might be useful for giving insight into the reasons for
convergence problems or for unexpected characteristics of the fits.

The names of some function arguments have changed and the names of the vari-
ables in the aphids data set have been changed from “n.aphids” (the number of

aphids released) and “n.inf” (the number of plants, out of a possible 69, that were
infected) to “aphRel” and “plntsInf” respectively. When the unexpected occurs,
read the help!!!

2

3 The new data sets

The data in the kiln data sets are very clearly “arranged” in distinct lines (three in
the case of kiln A, two in the case of kiln B), whence one might expect it to be very
easy to fit mixtures of regressions models to these data. Easy or not, starting values
are required, and a good way to produce these starting values is by using the function
visualFit() mentioned in Section 2. However this function requires “interactive
input” from the user so it cannot be used in the knitr context with which this
vignette is being produced. Consequently I deployed visualFit() outside of the
knitr context and saved the result. The code used looked like this:

Note that eval=FALSE was set in this code chunk.

vfit <- visualFit(y ~ x,data=kilnAoneOut,ncomp=3)

saveRDS(vfit,file="vfit.rds")

In the code used to create Figure 1, the previously created value of vfit is read in.

vfit <- readRDS("vfit.rds")

fit <- mixreg(y~x,data=kilnAoneOut,thetaStart=vfit$theta,

verb=FALSE)

plot(fit)

3

0.012 0.014 0.016 0.018

20
0

40
0

60
0

80
0

x

y
Component 1
Component 2
Component 3

Figure 1: Fit of the kilnAoneOut data

A similar procedure (reading in previously saved fits that were created by
visualFit()) will be used throughout the remainder of this vignette, without fur-
ther comment, and the “reading in” step will not be shown.

The fit to the kilnAoneOut data, shown in Figure 1, looks excellent as seems
to be often the case when the starting values are obtained from visualFit() .
However if one uses random starting values, as could conceivably be necessary in
some circumstances, fits can sometimes look just awful:

fitBad <- mixreg(y~x,data=kilnAoneOut,verb=FALSE,ncomp=3,

seed=42)

plot(fitBad) # Looks atrocious!

4

0.012 0.014 0.016 0.018

20
0

40
0

60
0

80
0

x

y
Component 1
Component 2
Component 3

Figure 2: A bad fit to the kilnAoneOut data

With a different seed we get a much better looking fit,

fitNotSoBad <- mixreg(y~x,data=kilnAoneOut,verb=FALSE,ncomp=3,

seed=43)

plot(fitNotSoBad) # Looks better.

5

0.012 0.014 0.016 0.018

20
0

40
0

60
0

80
0

x

y
Component 1
Component 2
Component 3

Figure 3: A better (random-start) fit to the kilnAoneOut data

The result is far from perfect however; the slope of the second component is too
small. One can get a substantial improvement by starting off with a model in which
the error variances are taken to be equal:

fit1 <- mixreg(y~x,data=kilnAoneOut,verb=FALSE,ncomp=3,

seed=42,eqVar=TRUE)

fit2 <- mixreg(y~x,data=kilnAoneOut,verb=FALSE,

thetaStart=fit1$theta)

plot(fit2) # Looks good.

6

0.012 0.014 0.016 0.018

20
0

40
0

60
0

80
0

x

y
Component 1
Component 2
Component 3

Figure 4: A refit to the kilnAoneOut data, using “equal variance” starting values
(these having in turn been formed using random starting values).

3.1 A little exploration of the bad fits

When one looks at the plot shown in Figure 3, it seems strange that the second
component is skewed off of the line of points that one’s eyes tell one that it should
be tracking. What is going on? The plot.mixreg() function has a capability that
provides a bit of insight. This plot method can classify the points according to the
component with which they are assessed to be associated. The assessment can be
done on the basis of either of two criteria: probability or Euclidean distance; which
criterion is used is determined by the argument cMeth (“classification method”). If
this argument is left at its default value "none" then no classification is done.

If the points are classified then they are plotted in colours determined by the
component to which they are assigned. If we apply the Euclidean distance criterion

7

to the fitNotSoBad object, the points are all classified to the components that our
eyes tell us are the correct ones.

plot(fitNotSoBad,cMeth="dist",col=c("red","green","blue"))

0.012 0.014 0.016 0.018

20
0

40
0

60
0

80
0

x

y

Component 1
Component 2
Component 3

Figure 5: Points classified according to Euclidean distance

However if the probability criterion (which is in effect what the fitting algorithm
uses) is applied, the result is very different.

8

plot(fitNotSoBad,cMeth="prob",col=c("red","green","blue"))

0.012 0.014 0.016 0.018

20
0

40
0

60
0

80
0

x

y

Component 1
Component 2
Component 3

Figure 6: Points classified according to probability

In Figure 6 we see that many of the points that look like they should be associated
with components 1 or 3, are coloured green, the colour for component 2. Why is this
happening? The explanation is found in the error variances of the components:

sigsq

1 2.535050e-02

2 1.648205e+04

3 1.136377e-05

The error variance for component 2 is six orders of magnitude larger than that for
component 1 and nine orders of magnitude larger than that for component 3. The

9

corresponding standard deviations are roughly 0.160, 128, and 0.003. The algo-
rithm has found nearly perfect fits to subsets of the points that our eyes tell us
are associated with components 1 and 3. It then assumes that points which are
not almost exactly on those nearly perfectly fitting lines must belong to the messy
component 2. Once points start getting “misclassified” by the fitting algorithm, the
“obviously bad” fit becomes stable, and the algorithm gets stuck with that solution.
Setting eqVar=TRUE prevents component 2 from becoming “messy”.

Similar phenomena occur, so I understand, in the context of scalar mixtures.
There too, constraining the variances of the components to be equal can often prevent
spurious fits from being produced.

3.2 The full kilnA data set

The data set kilnAoneOut differs from the kilnAfull data set only in respect of
a single point which was removed from the latter to create the former. That one
point, which is highlighted in red in the left hand panel of Figure 7, and is clearly
apparent anyway, constitutes in some sense an outlier. The impact of this one outlier
is to induce a distortion in the fit of the model.

par(mfrow=c(1,2))

plot(kilnAfull,main="Full data set",cex.main=0.9)

with(kilnAfull,points(x[1171],y[1171],pch=20,col="red"))

plot(kilnAoneOut,main="One point omitted",cex.main=0.9)

That fit, shown in Figure 8, looks, somewhat mysteriously, like the fit to the
kilnAoneOut data, obtained with random starting values with seed=43 . (See
Figure 4). We might try the strategy of fitting with eqVar=TRUE and then re-fitting

with eqVar=FALSE and starting values taken from the previous fit.

However in this instance there is no improvement; the plot of the “new” fitFull

looks exactly the same as the fit of the “old” one. As Old Lodge Skins said in
Little Big Man “Sometimes the magic works, and sometimes it doesn’t.” A plot
of the “equal variance fit” looks just fine. (As, it must be said, does a plot of the
fit produced by visualFit() . Perhaps we should just stick with the interactive
visual fitting approach and dispense with sophisticated computer-intensive analytic
methods?)

The bottom line is that the outlier in kilnAfull seems to induce genuine prob-
lems and that it is better to use kilnAoneOut .

10

0.012 0.016

30
0

40
0

50
0

60
0

70
0

Full data set

x

y

0.012 0.016
30

0
40

0
50

0
60

0
70

0

One point omitted

x

y

Figure 7: The full kilnA data set together with this data set with the outlier omitted.

vfitFull <- visualFit(y ~ x, ncomp=3, data=kilnAfull)

fitFull <- mixreg(y ~ x, data=kilnAfull,

thetaStart=vfitFull$theta,

verb=FALSE)

plot(fitFull)

11

0.012 0.014 0.016 0.018

20
0

40
0

60
0

80
0

x

y
Component 1
Component 2
Component 3

Figure 8: Fit of the full kilnA data set.

3.3 Residual plots

It is always a good idea to plot, in some manner, the residuals from the fit of a
model. It is not completely clear what such a plot should consist of, in the mixtures
of regressions setting, since each data point has a number of residuals associated
with it (one for each component). The mixreg package solves this dilemma, using

an idea due to Adrian Baddeley (pers. comm.) according to which each residual
is plotted as a point the size of which increases with the probability that the point
in question is associated with the component from which that residual is formed.
(See Turner 2000 and the package help for the plot.mixresid() function for more

detail.) This strategy has the effect of diminishing the visual impact of residuals of
lesser importance.

12

Under the procedure described above, the points are plotted as polygons (whose
shape is determined by the shape argument of the plotting function which is used.)

Since there are a fairly large number of points in the kilnAoneOut data, the plotting
process takes rather a long while. It can be speeded up by setting shape="none"

which causes the points to be plotted in the usual manner. However the points are
then all plotted with symbols of the same size, which in general makes the residual
plot hard to interpret.

It turns out that the residual plots from the fit to the kilnAoneOut data are
rather bizarre looking irrespective of how they are plotted. The fact that the com-
ponents are so clearly defined and that the error variance is relatively small, causes a
plot of the unweighted residuals against the predictor x to take the form of a number
of lines that diverge from each other, from left to right. A plot of the unweighted
residuals against the fitted values (Figure 9) is even more strange; it appears to
roughly take the form of a number of line segments which lie at strange angles to
each other.

It is difficult to interpret Figure 9. However the results from the down-weighting
strategy are also rather unsatisfactory here. The down-weighted points are very hard
to see in a pdf file. (They are more easily discernible on-screen, on my laptop.) The
result is that the weighted residual plot (shown in Figure 18, in Appendix I) simply
looks, upon cursory inspection, like a row of more-or-less horizontal dots at the zero
level, with a large amount of white space above and below (where the invisible or
nearly invisible down-weighted points are plotted).

If we trim away the white space, by restricting the y-axis limits, we get a plot
(Figure 10) that is a little more perspicuous, with a few apparent outliers being
revealed.

13

rkA <- residuals(fit,std=TRUE)

plot(rkA,vsFit=TRUE,shape="none")

200 300 400 500 600 700 800 900

−
40

0
0

20
0

40
0

60
0

80
0

fitted values

re
si

du
al

s

Figure 9: Unweighted residual plot for the kilnAoneOut data

14

plot(rkA,vsFit=TRUE,size=0.8,ylim=c(-50,50))

200 300 400 500 600 700 800 900

−
40

−
20

0
20

40

fitted values

re
si

du
al

s

Figure 10: Weighted residual plot for the kilnAoneOut data, y limits restricted.

3.4 Zero intercept models

If one plots the fit of the kilnAoneOut , with the axes extended to include the origin,
one sees that the three regression line all “almost” pass through the origin.

15

plot(fit,xlim=c(0,0.02),ylim=c(0,900))

0.000 0.005 0.010 0.015 0.020

0
20

0
40

0
60

0
80

0

x

y

Component 1
Component 2
Component 3

Figure 11: Fit of the kilnAoneOut data, showing the origin.

This suggests that a zero intercept model might be appropriate.

vfitzi <- visualFit(y ~ x - 1, ncomp=3, data=kilnAoneOut)

fitzi <- mixreg(y~x-1,data=kilnAoneOut,

thetaStart=vfitzi$theta,

verb=FALSE,eqVar=TRUE)

plot(fitzi,xlim=c(0,0.02),ylim=c(0,900))

16

0.000 0.005 0.010 0.015 0.020

0
20

0
40

0
60

0
80

0

x

y
Component 1
Component 2
Component 3

Figure 12: Zero-origin fit to the kilnAoneOut data set.

Note that it was necessary to set eqVar=TRUE in order to get a decent fit. As
in previous examples, unless the error variances are forced to be equal, the fitting
process gets the second (“middle”) component wrong. Here if we try to refit without
the eqVar=TRUE restriction but using fitzi$theta as starting values, the result
still gets the second component wrong. Again we find that “Sometimes the magic
works, and sometimes it doesn’t.”

The plot of the zero-origin fit (Figure 12) is visually very similar to the plot of
the full fit (Figure 11). However the linear parameter estimates are vastly different,
as are the log likelihoods: -9635.981 and -6641.876 respectively. A likelihood ratio
test, of the full model against the zero-origin model, of course yields a p-value of 0.
A residual plot for the zero-origin fit (Figure 13) does not look materially different
from the corresponding plot for the full fit (Figure 10).

17

rkAzi<-residuals(fitzi,std=TRUE)

plot(rkAzi,vsFit=TRUE,size=0.8,ylim=c(-50,50))

200 400 600 800

−
40

−
20

0
20

40

fitted values

re
si

du
al

s

Figure 13: Weighted residual plot for the kilnAoneOut data, zero-origin model, y
limits restricted.

4 Revisiting the aphids data

These data were thoroughly discussed in Turner (2000) so I shall not say very much
here. These data look a lot more “messy” than the kiln data; the components are
not nearly as clearly defined. Nevertheless they appear to be much more tractable in
respect of the fitting process and random starting values (almost?) always seem to
work without difficulty. (The fact that the error variances are relatively large might
actually be an advantage; see the discussion in Section 5.) Four different fits (using

18

four different seeds for the random number generator) yielded results in which the
parameter estimates differed from each other by a maximum of 2.56× 10−7.

Since visualFit() was not available when Turner (2000) was written, it is of
some interest to look at the application of this function to the aphids data. Figure 14
shows a plot of the visually obtained fit which may be compared with the analytic
fit, shown in Figure 15. The latter was obtained using the visually obtained fit
to provide starting values. The plots of the visual and analytic fits are effectively
indistinguishable. However it should be noted that the AIC from the analytic fit is
270.1302 which is appreciably smaller than that from the visual fit, 279.1757.

4.1 Residual plots for the aphids data

It is interesting to compare the unweighted and weighted residual plots for the aphids
data. We see (Figure 16) that the plot of the unweighted residuals gives an impres-
sion that the error variance increases as aphRel increases, whereas the plot of the

weighted residuals (Figure 17) gives no such impression.

vfitAph <- visualFit(plntsInf ~ aphRel,ncomp=2,data=aphids)

afitAph <- mixreg(plntsInf ~ aphRel,ncomp=2,data=aphids,

verb=FALSE,thetaStart=vfitAph$theta)

plot(vfitAph,main="Visual fit")

plot(afitAph,main="Analytic fit")

rAph <- residuals(afitAph,std=TRUE)

plot(rAph,shape="n")

plot(rAph)

19

0 50 100 150 200 250 300

0
5

10
15

20
25

aphRel

pl
nt

sI
nf

Component 1
Component 2

Figure 14: Visual fit for the aphids data.

0 50 100 150 200 250 300

0
5

10
15

20
25

aphRel

pl
nt

sI
nf

Component 1
Component 2

Figure 15: Analytic fit for the aphids data.

20

0 50 100 150 200 250 300

−
5

0
5

10
15

20

aphRel

re
si

du
al

s

Figure 16: Unweighted residual plots for the aphids data.

0 50 100 150 200 250 300

−
5

0
5

10
15

20

aphRel

re
si

du
al

s

Figure 17: Weighted residual plots for the aphids data.

21

5 Concluding remarks

I am confident that the mixreg package provides a satisfactory collection of tools
for analysing mixtures of regressions. However it must be emphasised that it is a
collection of tools and that it is up to the user to apply the tools correctly. The
functions in the mixreg package should not be used blindly nor should all results
be taken at face value. Mixtures are tricky concepts, even in the scalar context,
and are probably even trickier in the regression context. It is important that you
think about what you are doing and at the very least examine the results visually
(using the plot.mixreg() , plot.cband() and plot.mixresid() plot methods,

and possibly qqMix()).
At this point I have a confession to make: I am not an expert on mixtures of

regressions. I have successfully fitted a mixtures of regressions model in the context
of an interesting application (Turner 2000). I have written what is, in my humble
opinion, a damned good package for analysing mixtures of regressions. However I am
not qualified to give more than the most basic advice on what to watch out for when
fitting mixtures of regressions, how to detect lurking problems or how such problems
might be revealed by graphical means. All I can really say is “Be on your guard”
(or as was said in Carmen and as I might have said when I lived in Canada,“Prends
gard à toi.”) The details of how to maintain effective vigilance are beyond me.

As I said above, mixtures can be tricky even in the scalar context. Judicious
reading of the literature on mixture models might provide some insight into what to
look out for. The classic work by McLachlan and Peel (2000) is the obvious place to
start. It may also be worth the user’s while to look into the handbook Mengersen
et al. (2011).

One point worthy of note is that variance considerations can be subtle and are
often worthy of attention. Petr Pikal, who provided the kiln data sets, has observed
(pers. comm.) that in respect of the kiln data, the fact that the error variance is
relatively small appears to be problematic. He reports getting more reliable results
by jittering the data so as to increase the error variance.

It should also be borne in mind that forcing the components all to have the same
error variance can have a stabilising effect and improve the fit, at least in some
settings. This was seen in the examples, involving the kiln data, given above. If the
user does not want to fit a model in which the error variances are equal, a possible
approach is to fit a model with equal variances and then re-fit, without the equal
variance constraint, using the parameter estimates from the previous fit as starting
values. As we have seen above this approach sometimes works but does not always
give satisfactory results.

22

In closing I would like to draw the reader’s attention to the paper, Tsai (2019), in
which it is shown that for small samples (including samples of the size of the aphids

data, i.e. 51) the covariance matrices for the parameter estimates, as produced by
the methods used in the mixreg package, underestimate the true variability of the
estimates. The consequence is that confidence intervals for the parameters are too
narrow whence the empirical coverage rate is lower than the specified theoretical cov-
erage rate. The covMat() function in the mixreg package calculates the covariance
matrix as the inverse of the observed Fisher information matrix. This calculation is
not straightforward inasmuch as parameter estimation is effected by means of the
EM algorithm. The covMat() function employs the technique from Louis (1982) to
carry out the required calculation.

Surprisingly (to me) the use of Monte Carlo methods (as effected, e.g., by the
covMatMC() function in the mixreg package) is of no help here. Covariance matri-
ces produced by Monte Carlo methods underestimate the variability of the parameter
estimates to the same extent as do those produced by inverting the observed Fisher
information. Tsai solves the problem by using fiducial inference based on “gener-
alized pivotal quantities”. (See Tsai 2019 for references.) The technique appears
to produce satisfactory results, but the underlying theory is difficult and the im-
plementation (which requires the use of a Markov Chain Monte Carlo procedure) is
computationally expensive. It would be desirable to find a less demanding technique
for calculating variance estimates that is accurate for small samples.

Acknowledgements

I would like to express my appreciation to Peter Macdonald (Emeritus Professor,
McMaster University) for a useful conversation about the subtleties of dealing with
mixtures.

I would also like to express my thanks to Duncan Murdoch (Emeritus Professor,
Western University) for pointing out to me a problem induced by the approach
that I had been using in trying to accommodate both the “old” and “new” syntax
for the mixreg() function. Duncan suggested the approach that is now used to
accommodate both syntaxes.

23

References

T. A. Louis. Finding the observed information matrix when using the EM algorithm.
Journal of the Royal Statistical Society, Series B, 44:226 – 233, 1982.

Peter Macdonald. mixdist: Finite Mixture Distribution Models, 2018. URL
https://CRAN.R-project.org/package=mixdist. R package version
0.5-5; contributions from Juan Du.

Geoffrey J. McLachlan and David Peel. Finite Mixture Models. John Wiley & Sons,
Hoboken, NJ, 2000.

Kerrie L. Mengersen, Christian P. Robert, and D. Michael Titterington, editors.
Mixtures: Estimation and Applications. John Wiley & Sons, Chichester, 2011.
Wiley Series in Probability and Statistics.

Shin-Fu Tsai. Comparing coefficients across subpopulations in Gaussian mixture re-
gression models. Journal of Agricultural, Biological, and Environmental Statistics,
24(4):610 – 633, 2019.

T. Rolf Turner. Estimating the rate of spread of a viral infection of potato plants
via mixtures of regressions. Applied Statistics, Part 3, 49:371 – 384, 2000.

24

Appendix I

200 300 400 500 600 700 800 900

−
40

0
0

20
0

40
0

60
0

80
0

fitted values

re
si

du
al

s

Figure 18: Weighted residual plot for the kilnAoneOut data

25

Appendix II

The estimates of the error variances produced by mixreg() merit some discussion.
The estimates of the linear parameters for the kth component are taken directly from
the output of lm() applied to the kth component with weights equal to {γik}ni=1

where γij is the probability, given the observations, that the ith observation was
generated by component j. The estimates of the error variances are not taken from
the output of lm() but rather are calculated as

σ̂2
k =

1∑n
i=1 γik

n∑

i=1

(yi − x>i β̂k)2γik (1)

The model assumed by lm() is that the ith weight is equal to 1/τ 2i where the error
variance associated with the ith observation is τ 2i τ

2. That is, the weights are so-
called “precision” weights. When lm() is applied to the kth component, the role of
τ 2 is played by σ2

k and 1/τ 2i is equal to γik.
Under the precision weights model, the estimate of τ 2 is

τ̂ 2 =
1

n− p
n∑

i=1

(yi − x>i β̂k)2

τ 2i
=

1

n− p
n∑

i=1

γik(yi − x>i β̂k)2 (2)

where p is the number of linear parameters, and this estimate is unbiased for τ 2.
However in the mixtures of regression context the precision weights model makes

no sense. The weights are more of the nature of sampling weights, and the appropri-
ate estimate of σ2

k is given by (1) and not by (2). Note that the estimates of the linear
coefficients under the precision weights model are the appropriate estimates. They
are exactly the same as what is obtained from the mixtures of regressions model.

The question then arises: Is the estimate of σ2
k given by (1) unbiased, and in any

case, what is the expected value of this estimate? Answering this latter question, to
quote Bill Venables (fortunes::fortune(211)) “looks difficult, but on closer in-
spection turns out to be impossible.” Part of the reason for the impossibility is that
the probabilities γik that appear in (1) are conditional upon the observations. Cal-
culating expected values conditionally (even in part) upon the observations, makes
no sense. To obtain an expected value of σ̂2

k one would have to somehow re-express
(1) in such a way that it did not depend upon the γik and this is not feasible.

In order to investigate a little bit further, I did a perfunctory simulation experi-
ment:

library(mixreg)

26

Nsim <- 1000

theta <- vector("list",3)

theta[[1]] <- list(beta=c(2,3),sigsq=4,lambda=0.5)

theta[[2]] <- list(beta=c(1,2),sigsq=16/9,lambda=0.3)

theta[[3]] <- list(beta=c(0,1),sigsq=1,lambda=0.2)

x <- (1:100)/10

rslt <- matrix(nrow=Nsim,ncol=3)

set.seed(42)

for(i in 1:Nsim) {

simdat <- rmixreg(x,theta)

fit <- mixreg(y~x,ncomp=3,data=simdat,

thetaStart=theta,verb=FALSE)

rslt[i,] <- fit$parmat[,"sigsq"]

cat(i,"")

if(i%%10 == 0) cat("\n")

}

if(i%%10 != 0) cat("\n")

Applying Hotelling’s T 2 test to rslt , with µ = (4, 16/9, 1)>, produced a p-value of 0,
so it can be said incontrovertibly that the estimates are indeed biased. In this instance
the mean of the estimates (given by apply(rslt,2,mean) is c(3.8895,1.5723,0.8855)

to four decimal places, so (in this instance) the estimates appear to be biased low.

27

