Package 'mixtools'

February 7, 2020
Version 1.2.0
Date 2020-02-05
Title Tools for Analyzing Finite Mixture Models
Depends R (>= 3.5.0)
Imports kernlab, MASS, segmented, stats, survival
Description Analyzes finite mixture models for various parametric and semiparametric settings. This includes mixtures of parametric distributions (normal, multivariate normal, multinomial, gamma), various Reliability Mixture Models (RMMs), mixtures-of-regressions settings (linear regression, logistic regression, Poisson regression, linear regression with changepoints, predictor-dependent mixing proportions, random effects regressions, hierarchical mix-tures-of-experts), and tools for selecting the number of components (bootstrapping the likelihood ratio test statistic, mixturegrams, and model selection criteria). Bayesian estimation of mix-tures-of-linear-regressions models is available as well as a novel data depth method for obtaining credible bands. This package is based upon work supported by the National Science Foundation under Grant No. SES-0518772.
License GPL (>=2)
NeedsCompilation yes
Author Derek Young [aut, cre] (https://orcid.org/0000-0002-3048-3803),
Tatiana Benaglia [aut],
Didier Chauveau [aut],
David Hunter [aut],
Ryan Elmore [ctb],
Thomas Hettmansperger [ctb],
Hoben Thomas [ctb],
Fengjuan Xuan [ctb]
Maintainer Derek Young <derek. young@uky. edu>
Repository CRAN
Date/Publication 2020-02-07 12:20:02 UTC

R topics documented:

$$
\text { boot.comp . } 3
$$

boot.se 5
CO2data 6
compCDF 7
density.npEM 8
density.spEM 10
depth 11
dmvnorm 12
ellipse 12
expRMM_EM 13
flaremixEM 15
gammamixEM 17
Habituationdata 19
hmeEM 20
ise.npEM 21
logisregmixEM 23
makemultdata 25
mixturegram 27
multmixEM 29
multmixmodel.sel 30
mvnormalmixEM 31
mvnpEM 33
NOdata 35
normalmixEM 36
normalmixEM2comp 39
normalmixMMlc 40
npEM 43
npMSL 46
plot.mixEM 48
plot.mixMCMC 50
plot.mvnpEM 52
plot.npEM 53
plot.spEMN01 54
plotexpRMM 55
plotFDR 57
plotseq.npEM 58
plotspRMM 59
plotweibullRMM 60
poisregmixEM 61
print.mvnpEM 63
print.npEM 64
RanEffdata 65
regcr 65
regmixEM 67
regmixEM.lambda 69
regmixEM.loc 70
regmixEM.mixed 72
regmixMH 75
regmixmodel.sel 77
repnormmixEM 78
repnormmixmodel.sel 79
rexpmix 80
rmvnorm 81
rmvnormmix 82
rnormmix 83
RodFramedata 84
RTdata 85
RTdata2 85
rweibullmix 86
segregmixEM 87
spEM 90
spEMsymloc 93
spEMsymlocN01 95
spregmix 97
spRMM_SEM 99
summary.mixEM 101
summary.mvnpEM 103
summary.npEM 104
summary.spRMM 106
tauequivnormalmixEM 107
test.equality 110
test.equality.mixed 111
tonedata 113
Waterdata 114
weibullRMM_SEM 115
wkde 117
wquantile 118
Index 120
boot.comp Performs Parametric Bootstrap for Sequentially Testing the Number of Components in Various Mixture Models

Description

Performs a parametric bootstrap by producing B bootstrap realizations of the likelihood ratio statistic for testing the null hypothesis of a k-component fit versus the alternative hypothesis of a $(k+1)$ component fit to various mixture models. This is performed for up to a specified number of maximum components, k. A p-value is calculated for each test and once the p-value is above a specified significance level, the testing terminates. An optional histogram showing the distribution of the likelihood ratio statistic along with the observed statistic can also be produced.

Usage

$$
\begin{aligned}
& \text { boot.comp (y, } x=\text { NULL, } N=\text { NULL, max. comp }=2, B=100, \\
& \text { sig }=0.05, \text { arbmean }=\text { TRUE, arbvar }=\text { TRUE, } \\
& \text { mix.type }=c(" l o g i s r e g m i x ", ~ " m u l t m i x ", ~ " m v n o r m a l m i x ", ~ \\
& \\
& \text { "normalmix", "poisregmix", "regmix", "regmix.mixed", } \\
& \text { "repnormmix"), hist = TRUE, } . . .)
\end{aligned}
$$

Arguments

y
x
$\mathrm{N} \quad$ An n-vector of number of trials for the logistic regression type logisregmix. If NULL, then N is an n -vector of 1 s for binary logistic regression.
max.comp The maximum number of components to test for. The default is 2 . This function will perform a test of k-components versus $(k+1)$-components sequentially until we fail to reject the null hypothesis. This decision rule is governed by the calculated p-value and sig.
B The number of bootstrap realizations of the likelihood ratio statistic to produce. The default is 100 , but ideally, values of 1000 or more would be more acceptable.
sig The significance level for which to compare the p-value against when performing the test of k -components versus $(\mathrm{k}+1)$-components.
arbmean If FALSE, then a scale mixture analysis can be performed for mvnormalmix, normalmix, regmix, or repnormmix. The default is TRUE.
arbvar If FALSE, then a location mixture analysis can be performed for mvnormalmix, normalmix, regmix, or repnormmix. The default is TRUE.
mix.type The type of mixture analysis you wish to perform. The data inputted for y and x depend on which type of mixture is selected. logisregmix corresponds to a mixture of logistic regressions. multmix corresponds to a mixture of multinomials with data determined by the cut-point method. mvnormalmix corresponds to a mixture of multivariate normals. normalmix corresponds to a mixture of univariate normals. poisregmix corresponds to a mixture of Poisson regressions. regmix corresponds to a mixture of regressions with normal components. regmix.mixed corresponds to a mixture of regressions with random or mixed effects. repnormmix corresponds to a mixture of normals with repeated measurements.
hist An argument to provide a matrix plot of histograms for the boostrapped likelihood ratio statistic.

Additional arguments passed to the various EM algorithms for the mixture of interest.

Value

boot comp returns a list with items:
p.values The p-values for each test of k-components versus $(k+1)$-components.
log.lik The B bootstrap realizations of the likelihood ratio statistic.
obs.log.lik The observed likelihood ratio statistic for each test which is used in determining the p-values.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.

See Also

```
logisregmixEM, multmixEM, mvnormalmixEM, normalmixEM, poisregmixEM, regmixEM, regmixEM.mixed,
```

repnormmixEM

Examples

```
## Bootstrapping to test the number of components on the RTdata.
data(RTdata)
set.seed(100)
x <- as.matrix(RTdata[, 1:3])
y <- makemultdata(x, cuts = quantile(x, (1:9)/10))$y
a <- boot.comp(y = y, max.comp = 1, B = 5, mix.type = "multmix",
            epsilon = 1e-3)
a$p.values
```

boot.se

Performs Parametric Bootstrap for Standard Error Approximation

Description

Performs a parametric bootstrap by producing B bootstrap samples for the parameters in the specified mixture model.

Usage

boot.se(em.fit, $B=100$, arbmean $=$ TRUE, arbvar $=$ TRUE, $\mathrm{N}=\mathrm{NULL}, \ldots$)

Arguments

em.fit An object of class mixEM. The estimates produced in em.fit will be used as the parameters for the distribution from which we generate the bootstrap data.

B
The number of bootstrap samples to produce. The default is 100, but ideally, values of 1000 or more would be more acceptable.
arbmean If FALSE, then a scale mixture analysis can be performed for mvnormalmix, normalmix, regmix, or repnormmix. The default is TRUE.
arbvar If FALSE, then a location mixture analysis can be performed for mvnormalmix, normalmix, regmix, or repnormmix. The default is TRUE.
$N \quad$ An n-vector of number of trials for the logistic regression type logisregmix. If NULL, then N is an n -vector of 1 s for binary logistic regression.
... Additional arguments passed to the various EM algorithms for the mixture of interest.

Value

boot. se returns a list with the bootstrap samples and standard errors for the mixture of interest.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.

Examples

```
## Bootstrapping standard errors for a regression mixture case.
data(NOdata)
attach(NOdata)
set.seed(100)
em.out <- regmixEM(Equivalence, NO, arbvar = FALSE)
out.bs <- boot.se(em.out, B = 10, arbvar = FALSE)
out.bs
```

C02data GNP and CO2 Data Set

Description

This data set gives the gross national product (GNP) per capita in 1996 for various countries as well as their estimated carbon dioxide (CO2) emission per capita for the same year.

Usage

data(CO2data)

Format

This data frame consists of 28 countries and the following columns:

- GNPThe gross national product per capita in 1996.
- CO2The estimated carbon dioxide emission per capita in 1996.
- countryAn abbreviation pertaining to the country measured (e.g., "GRC" = Greece and " CH " = Switzerland).

References

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating Mixtures of Regressions, Journal of Computational and Graphical Statistics 12(1), 55-79.
compCDF Plot the Component CDF

Description

Plot the components' CDF via the posterior probabilities.

Usage

compCDF (data, weights,
x=seq(min(data, na.rm=TRUE), max(data, na.rm=TRUE), len=250),
comp=1:NCOL(weights), makeplot=TRUE, ...)

Arguments

data A matrix containing the raw data. Rows are subjects and columns are repeated measurements.
weights The weights to compute the empirical CDF; however, most of time they are the posterior probabilities.
x
The points at which the CDFs are to be evaluated.
comp The mixture components for which CDFs are desired.
makeplot Logical: Should a plot be produced as a side effect?
... Additional arguments (other than lty and type, which are already used) to be passed directly to plot and lines functions.

Details

When makeplot is TRUE, a line plot is produced of the CDFs evaluated at x . The plot is not a step function plot; the points $(x, C D F(x))$ are simply joined by line segments.

Value

A matrix with length(comp) rows and length(x) columns in which each row gives the CDF evaluated at each point of x.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.
Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2004) The Sign Statistic, One-Way Layouts and Mixture Models, Statistical Science 19(4), 579-587.

See Also

makemultdata, multmixmodel.sel, multmixEM.

Examples

```
## The sulfur content of the coal seams in Texas
    set.seed(100)
    A <- c(1.51, 1.92, 1.08, 2.04, 2.14, 1.76, 1.17)
    B <- c(1.69, 0.64, .9, 1.41, 1.01, .84, 1.28, 1.59)
    C <- c(1.56, 1.22, 1.32, 1.39, 1.33, 1.54, 1.04, 2.25, 1.49)
    D <- c(1.3, .75, 1.26, .69, .62, .9, 1.2, .32)
    E <- c(.73, .8, .9, 1.24, .82, .72, .57, 1.18, .54, 1.3)
    dis.coal <- makemultdata(A, B, C, D, E,
            cuts = median(c(A, B, C, D, E)))
    temp <- multmixEM(dis.coal)
    ## Now plot the components' CDF via the posterior probabilities
    compCDF(dis.coal$x, temp$posterior, xlab="Sulfur", ylab="", main="empirical CDFs")
```

 density.npEM Normal kernel density estimate for nonparametric EM output

Description

Takes an object of class npEM and returns an object of class density giving the kernel density estimate for the selected component and, if applicable, the selected block.

Usage

\#\# S3 method for class 'npEM'
density (x, u=NULL, component=1, block=1, scale=FALSE, ...)

Arguments

x
u
component Mixture component number; should be an integer from 1 to the number of columns of $x \$$ posteriors.
$\left.\begin{array}{ll}\text { block } & \begin{array}{l}\text { Block of repeated measures. Only applicable in repeated measures case, for } \\ \text { which } \times \$ b l o c k i d ~ e x i s t s ; ~ s h o u l d ~ b e ~ a n ~ i n t e g e r ~ f r o m ~\end{array} \text { to max }(x \$ b l o c k i d) .\end{array} \quad \begin{array}{l}\text { Logical: If TRUE, multiply the density values by the corresponding mixing } \\ \text { proportions found in } \times \$ \text { lambdahat }\end{array}\right\}$

Details

The bandwidth is taken to be the same as that used to produce the npEM object, which is given by x\$bandwidth.

Value

density.npEM returns a list of type "density". See density for details. In particular, the output of density. npEM may be used directly by functions such as plot or lines.

See Also

npEM, spEMsymloc, plot.npEM

Examples

```
## Look at histogram of Old Faithful waiting times
data(faithful)
Minutes <- faithful$waiting
hist(Minutes, freq=FALSE)
## Superimpose equal-variance normal mixture fit:
set.seed(100)
nm <- normalmixEM(Minutes, mu=c(50,80), sigma=5, arbvar=FALSE, fast=TRUE)
x <- seq(min(Minutes), max(Minutes), len=200)
for (j in 1:2)
    lines(x, nm$lambda[j]*dnorm(x, mean=nm$mu[j], sd=nm$sigma), lwd=3, lty=2)
## Superimpose several semiparametric fits with different bandwidths:
bw <- c(1, 3, 5)
for (i in 1:3) {
    sp <- spEMsymloc(Minutes, c(50,80), bw=bw[i], eps=1e-3)
    for (j in 1:2)
        lines(density(sp, component=j, scale=TRUE), col=1+i, lwd=2)
}
legend("topleft", legend=paste("Bandwidth =",bw), fill=2:4)
```


Description

Takes an object of class spEM and returns an object of class density giving the kernel density estimate.

Usage

\#\# S3 method for class 'spEM'
density ($\mathrm{x}, \mathrm{u}=$ NULL, component=1, block=1, scale=FALSE, ...)

Arguments

x
u
component
block Block of repeated measures. Only applicable in repeated measures case, for which $\mathrm{x} \$ \mathrm{blockid}$ exists; should be an integer from 1 to max ($\mathrm{x} \$$ blockid).
scale Logical: If TRUE, multiply the density values by the corresponding mixing proportions found in $\times \$$ lambdahat
... Additional arguments; not used by this method.

Details

The bandwidth is taken to be the same as that used to produce the npEM object, which is given by x\$bandwidth.

Value

density.spEM returns a list of type "density". See density for details. In particular, the output of density.spEM may be used directly by functions such as plot or lines.

See Also

```
spEM, spEMsymloc, plot.spEM
```


Examples

```
set.seed(100)
mu <- matrix(c(0, 15), 2, 3)
sigma <- matrix(c(1, 5), 2, 3)
x <- rmvnormmix(300, lambda = c(.4,.6), mu = mu, sigma = sigma)
```

```
    d <- spEM(x, mu0 = 2, blockid = rep(1,3), constbw = TRUE)
    plot(d, xlim=c(-10, 40), ylim = c(0, .16), xlab = "", breaks = 30,
        cex.lab=1.5, cex.axis=1.5) # plot.spEM calls density.spEM here
```

 depth Elliptical and Spherical Depth

Description

Computation of spherical or elliptical depth.

Usage

```
depth(pts, x, Cx = var(x))
```


Arguments

pts A kxd matrix containing the k points that one wants to compute the depth. Each row is a point.
$x \quad$ A nxd matrix containing the reference data. Each row is an observation.
Cx A dxd scatter matrix for the data x where the default is $\operatorname{var}(\mathrm{x})$. When $\mathrm{Cx}=\mathrm{I}(\mathrm{d})$, it returns the sphercial depth.

Value
depth returns a k-vector where each entry is the elliptical depth of a point in pts.

Note

depth is used in regcr.

References

Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2000) Spherical Data Depth and a Multivariate Median, Proceedings of Data Depth: Robust Multivariate Statistical Analysis, Computational Geometry and Applications.

See Also

```
regcr
```


Examples

```
    set.seed(100)
    x <- matrix(rnorm(200),nc = 2)
    depth(x[1:3, ], x)
```

dmvnorm The Multivariate Normal Density

Description

Density and log-density for the multivariate normal distribution with mean equal to mu and variance matrix equal to sigma.

Usage

dmvnorm(y, mu=NULL, sigma=NULL)
logdmvnorm(y, mu=NULL, sigma=NULL)

Arguments

y \quad Either a d - vector or an $n \times d$ matrix, where d is the dimension of the normal distribution and n is the number of points at which the density is to be evaluated.
mu $\quad d$ - vector: Mean of the normal distribution (or NULL uses the origin as default)
sigma \quad This $d \times d$ matrix is the variance matrix of the normal distribution (or NULL uses the identity matrix as default)

Details

This code is written to be efficient, using the qr-decomposition of the covariance matrix (and using it only once, rather than recalculating it for both the determinant and the inverse of sigma).

Value

dmvnorm gives the densities, while logdmvnorm gives the logarithm of the densities.

See Also

qr, qr.solve, dnorm, rmvnorm

$$
\text { ellipse } \quad \text { Draw Two-Dimensional Ellipse Based on Mean and Covariance }
$$

Description

Draw a two-dimensional ellipse that traces a bivariate normal density contour for a given mean vector, covariance matrix, and probability content.

Usage

ellipse(mu, sigma, alpha $=.05$, npoints $=250$, newplot $=$ FALSE, draw = TRUE, ...)

Arguments

mu	A 2-vector giving the mean.
sigma	A 2x2 matrix giving the covariance matrix.
alpha	Probability to be excluded from the ellipse. The default value is alpha $=.05$, which results in a 95\% ellipse.
npoints	Number of points comprising the border of the ellipse. newplot
If newplot = TRUE and draw = TRUE, plot the ellipse on a new plot. If newplot = FALSE and draw = TRUE, add the ellipse to an existing plot.	
draw	If TRUE, draw the ellipse.
\ldots	Graphical parameters passed to lines or plot command.

Value

ellipse returns an npointsx2 matrix of the points forming the border of the ellipse.

References

Johnson, R. A. and Wichern, D. W. (2002) Applied Multivariate Statistical Analysis, Fifth Edition, Prentice Hall.

See Also

regcr

Examples

```
## Produce a 95% ellipse with the specified mean and covariance structure.
mu <- c(1, 3)
sigma <- matrix(c(1, .3, .3, 1.5), 2, 2)
ellipse(mu, sigma, npoints = 200, newplot = TRUE)
```

expRMM_EM EM algorithm for Reliability Mixture Models (RMM) with right Cen-
soring

Description

Parametric EM algorithm for univariate finite mixture of exponentials distributions with randomly right censored data.

Usage

expRMM_EM (x, d=NULL, lambda $=$ NULL, rate $=$ NULL, $k=2$, complete = "tdz", epsilon = 1e-08, maxit $=1000$, verb $=$ FALSE)

Arguments

d The vector of censoring indication, where 1 means observed lifetime data, and
lambda Initial value of mixing proportions. If NULL, then lambda is set to rep $(1 / k, k)$.
rate Initial value of component exponential rates, all set to 1 if NULL.
complete Nature of complete data involved within the EM machinery, can be "tdz" for
epsilon Tolerance limit for declaring algorithm convergence based on the change be-
maxit The maximum number of iterations allowed, convergence may be declared be-
x
k
verb

A vector of n real positive lifetime (possibly censored) durations. If d is not NULL then a vector of random censoring times c occurred, so that $x=\min (x, c)$ and $d=I(x<=c)$. 0 means censored lifetime data.
k Number of components of the mixture. ($\mathrm{t}, \mathrm{d}, \mathrm{z}$) (the default), or "xz" for (x, z) (see Bordes L. and Chauveau D. (2016) reference below). tween two consecutive iterations. fore maxit iterations (see epsilon above).

Value

expRMM_EM returns a list of class "mixEM" with the following items:
$x \quad$ The input data.
$\mathrm{d} \quad$ The input censoring indicator.
lambda The estimates for the mixing proportions.
rate The estimates for the component rates.
loglik The log-likelihood value at convergence of the algorithm.
posterior An $n \times k$ matrix of posterior probabilities for observation, after convergence of the algorithm.
all.loglik The sequence of log-likelihoods over iterations.
all. lambda The sequence of mixing proportions over iterations.
all.rate The sequence of component rates over iterations.
ft
A character vector giving the name of the function.

Author(s)

Didier Chauveau

References

- Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. http://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: plotexpRMM, summary.mixEM.
Other models and algorithms for censored lifetime data: weibullRMM_SEM, spRMM_SEM.

Examples

```
n <- 300 # sample size
m <- 2 # number of mixture components
lambda <- c(1/3,1-1/3); rate <- c(1,1/10) # mixture parameters
set.seed(1234)
x <- rexpmix(n, lambda, rate) # iid ~ exponential mixture
cs <- runif(n,0,max(x)) # Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min) # observed or censored data
d <- 1*(x <= cs) # censoring indicator
###### EM for RMM, exponential lifetimes
l0 <- rep(1/m,m); r0 <- c(1, 0.5) # "arbitrary" initial values
a <- expRMM_EM(t, d, lambda = l0, rate = r0, k = m)
summary(a) # EM estimates etc
plotexpRMM(a, lwd=2) # default plot of EM sequences
plot(a, which=2) # or equivalently, S3 method for "mixEM" object
```


flaremixEM

EM Algorithm for Mixtures of Regressions with Flare

Description

Returns output for 2-component mixture of regressions with flaring using an EM algorithm with one step of Newton-Raphson requiring an adaptive barrier for maximization of the objective function. A mixture of regressions with flare occurs when there appears to be a common regression relationship for the data, but the error terms have a mixture structure of one normal component and one exponential component.

Usage

```
flaremixEM(y, x, lambda = NULL, beta = NULL, sigma = NULL,
    alpha = NULL, nu = NULL, epsilon = 1e-04,
    maxit = 10000, verb = FALSE, restart = 50)
```


Arguments

$y \quad$ An n-vector of response values.
x
An n-vector of predictor values. An intercept term will be added by default.
lambda
Initial value of mixing proportions. Entries should sum to 1 .

beta	Initial value of beta parameters. Should be a 2×2 matrix where the columns correspond to the component.
sigma	A vector of standard deviations.
alpha	A scalar for the exponential component's rate.
nu	A vector specifying the barrier constants to use. The first barrier constant where the algorithm converges is used.
epsilon	The convergence criterion.
maxit	The maximum number of iterations.
verb	If TRUE, then various updates are printed during each iteration of the algorithm.
restart	The number of times to restart the algorithm in case convergence is not attained.

Value

flaremixEM returns a list of class mixEM with items:

x	The set of predictors (which includes a column of 1's).
y	The response values.
posterior	An nx2 matrix of posterior probabilities for observations.
lambda	The final mixing proportions.
beta	The final regression coefficients.
sigma	The final standard deviations.
alpha	The final exponential rate.
loglik	The final log-likelihood.
all.loglik	A vector of each iteration's log-likelihood.
$f t$	A character vector giving the name of the function.

See Also

regmixEM

Examples

```
## Simulation output.
set.seed(100)
j=1
while(j == 1){
    x1 <- runif(30, 0, 10)
    x2 <- runif(20, 10, 20)
    x3 <- runif(30, 20, 30)
    y1 <- 3+4*x1+rnorm(30, sd = 1)
    y2 <- 3+4*x2+rexp(20, rate = .05)
    y3 <- 3+4*x3+rnorm(30, sd = 1)
    x <- c(x1, x2, x3)
    y <- c(y1, y2, y3)
```

```
    nu <- (1:30)/2
    out <- try(flaremixEM(y, x, beta = c(3, 4), nu = nu,
            lambda =c(.75, .25), sigma = 1), silent = TRUE)
    if(any(class(out) == "try-error")){
        j <- 1
    } else j <- 2
}
out[4:7]
plot(x, y, pch = 19)
abline(out$beta)
```

gammamixEM
EM Algorithm for Mixtures of Gamma Distributions

Description

Return EM algorithm output for mixtures of gamma distributions.

Usage

```
gammamixEM(x, lambda = NULL, alpha = NULL, beta = NULL, k = 2,
mom.start = TRUE, fix.alpha = FALSE, epsilon = 1e-08,
    maxit = 1000, maxrestarts = 20, verb = FALSE)
```


Arguments

x	A vector of length n consisting of the data.
lambda	Initial value of mixing proportions. If NULL, then lambda is random from a uniform Dirichlet distribution (i.e., its entries are uniform random and then it is normalized to sum to 1).
alpha	Starting value of vector of component shape parameters. If non-NULL, alpha must be of length k if allowing different component shape parameters, or a sin- gle value if fix.alpha = TRUE. If NULL, then the initial value is estimated by partitioning the data into k regions (with lambda determining the proportion of values in each region) and then calculating the method of moments estimates.
beta	Starting value of vector of component scale parameters. If non-NULL and a vector, k is set to length (beta). If NULL, then the initial value is estimated the same method described for alpha.
k	Number of components. Initial value ignored unless alpha and beta are both
mom. start	NULL. Logical to indicate if a method of moments starting value strategy should be implemented. If TRUE, then only unspecified starting values will be generated according to this strategy.

epsilon	The convergence criterion. Convergence is declared when the change in the observed data log-likelihood increases by less than epsilon.
fix.alpha	Logical to indicate if the components should have a common shape parameter alpha estimated. The default is FALSE.
maxit	The maximum number of iterations.
maxrestarts	The maximum number of restarts allowed in case of a problem with the partic- ular starting values chosen (each restart uses randomly chosen starting values).
verb	If TRUE, then various updates are printed during each iteration of the algorithm.

Value

gammamixEM returns a list of class mixEM with items:
$x \quad$ The raw data.
lambda The final mixing proportions.
gamma.pars A 2 xk matrix where each column provides the component estimates of alpha and beta.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration's log-likelihood. This vector includes both the initial and the final values; thus, the number of iterations is one less than its length.
$\mathrm{ft} \quad$ A character vector giving the name of the function.

References

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) Maximum Likelihood From Incomplete Data Via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 39(1), 1-38.

Young, D. S., Chen, X., Hewage, D., and Nilo-Poyanco, R. (2019) Finite Mixture-of-Gamma Distributions: Estimation, Inference, and Model-Based Clustering, Advances in Data Analysis and Classification, 13(4), 1053-1082.

Examples

```
##Analyzing a 3-component mixture of gammas.
set.seed(100)
x <- c(rgamma(200, shape = 0.2, scale = 14), rgamma(200,
    shape = 32, scale = 10), rgamma(200, shape = 5, scale = 6))
out <- gammamixEM(x, lambda = c(1, 1, 1)/3, verb = TRUE)
out[2:4]
```


Description

From Thomas et al (2011):
"Habituation is a standard method of studying infant behaviors. Indeed, much of what is known about infant memory and perception rests on habituation methods. Six-month infants $(\mathrm{n}=51)$ were habituated to a checker-board pattern on two occasions, one week apart. On each occasion, the infant was presented with the checkerboard pattern and the length of time the infant viewed the pattern before disengaging was recorded; this denoted the end of a trial. After disengagement, another trial was presented. The procedure was implemented for eleven trials. The conventional index of habituation performance is the summed observed fixation to the checkerboard pattern over the eleven trials. Thus, an index of reliability focuses on how these fixation times, in seconds, on the two assessment occasions correlate: $r=.29 . "$

Usage

data(Habituationdata)

Format

A data frame with two variables, m 1 and m 2 , and 51 cases. The two variables are the summed observations times for the two occasions described above.

Author(s)

Hoben Thomas

Source

Original source: Thomas et al. (2011). See references section.

References

Thomas, H., Lohaus, A., and Domsch, H. (2011), Extensions of Reliability Theory, in Nonparametric Statistics and Mixture Models: A Festschrift in Honor of Thomas Hettmansperger (Singapore: World Scientific), pp. 309-316.
hmeEM EM Algorithm for Mixtures-of-Experts

Description

Returns EM algorithm output for a mixture-of-experts model. Currently, this code only handles a 2 -component mixture-of-experts, but will be extended to the general k-component hierarchical mixture-of-experts.

Usage

hmeEM (y, x, lambda $=$ NULL, beta $=$ NULL, sigma $=$ NULL, $w=$ NULL, $\mathrm{k}=2$, addintercept $=$ TRUE, epsilon $=1 \mathrm{e}-08$, maxit $=10000$, verb $=$ FALSE)

Arguments

y
An n-vector of response values.
x
An nxp matrix of predictors. See addintercept below.
lambda
beta Initial value of beta parameters. Should be a pxk matrix, where p is the number of columns of x and k is number of components. If NULL, then beta has standard normal entries according to a binning method done on the data.
sigma A vector of standard deviations. If NULL, then $1 /$ sigma 2 has random standard exponential entries according to a binning method done on the data.
w A p-vector of coefficients for the way the mixing proportions are modeled. See lambda.
k Number of components. Currently, only $k=2$ is accepted.
addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is calculated.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value

hmeEM returns a list of class mixEM with items:
$x \quad$ The set of predictors (which includes a column of 1 's if addintercept $=$ TRUE).
$y \quad$ The response values.
w
The final coefficients for the functional form of the mixing proportions.
\(\left.$$
\begin{array}{ll}\text { lambda } & \text { An nxk matrix of the final mixing proportions. } \\
\text { beta } & \begin{array}{l}\text { The final regression coefficients. } \\
\text { sigma }\end{array}
$$

The final standard deviations. If arbmean = FALSE, then only the smallest stan-

dard deviation is returned. See scale below.\end{array}\right]\)| The final log-likelihood. |
| :--- |
| posterior |\quad| An nxk matrix of posterior probabilities for observations. |
| :--- |
| all.loglik |\quad| A vector of each iteration's log-likelihood. |
| :--- |
| restarts |\quad| The number of times the algorithm restarted due to unacceptable choice of initial |
| :--- |
| values. |\quad| A character vector giving the name of the function. |
| :--- | :--- |

References

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. (1991) Adaptive Mixtures of Local Experts, Neural Computation 3(1), 79-87.
McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.

See Also

regmixEM

Examples

```
## EM output for NOdata.
data(NOdata)
attach(NOdata)
set.seed(100)
em.out <- regmixEM(Equivalence, NO)
hme.out <- hmeEM(Equivalence, NO, beta = em.out$beta)
hme.out[3:7]
```

ise.npEM Integrated Squared Error for a selected density from npEM output

Description

Computes the integrated squared error for a selected estimated density from npEM output (selected by specifying the component and block number), relative to a true pdf that must be specified by the user. The range for the numerical integration must be specified. This function also returns (by default) a plot of the true and estimated densities.

Usage

ise.npEM(npEMout, component=1, block=1, truepdf, lower=-Inf, upper=Inf, plots = TRUE, ...)

Arguments

npEMout component, block	An object of class npEM such as the output of the npEM function
truepdf	Component and block of particular density to analyze from npEMout. an R function taking a numeric first argument and returning a numeric vector of the same length. Returning a non-finite element will generate an error.
lower, upper	the limits of integration. Can be infinite.
plots	logical: Should plots be produced? additional arguments to be passed to truepdf (and that may be mandatory like,, e.g., the df = argument of dt). Remember to use argument names not matching those of ise. npRM.

Details

This function calls the wkde (weighted kernel density estimate) function.

Value

Just as for the integrate function, a list of class "integrate" with components

value	the final estimate of the integral.
abs.error	estimate of the modulus of the absolute error.
subdivisions	the number of subintervals produced in the subdivision process.
message	"OK" or a character string giving the error message.
call	the matched call.

References

- Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18, 505-526.
- Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. (2009), mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29.

See Also

npEM, wkde, integrate

Examples

```
# Mixture with mv gaussian model
set.seed(100)
m <- 2 # no. of components
r <- 3 # no. of repeated measures (coordinates)
lambda <- c(0.4, 0.6)
# Note: Need first 2 coordinates conditionally iid due to block structure
mu <- matrix(c(0, 0, 0, 3, 3, 5), m, r, byrow=TRUE) # means
```

```
sigma <- matrix(rep(1, 6), m, r, byrow=TRUE) # stdevs
blockid = c(1,1,2) # block structure of coordinates
n <- 200
x <- rmvnormmix(n, lambda, mu, sigma) # simulated data
# fit the model with "arbitrary" initial centers
centers <- matrix(c(0, 0, 0, 4, 4, 4), 2, 3, byrow=TRUE)
a <- npEM(x, centers, blockid, eps=1e-8, verb=FALSE)
# Calculate integrated squared error for j=2, b=1:
j <- 2 # component
b <- 1 # block
coords <- a$blockid == b
ise.npEM(a, j, b, dnorm, lower=0, upper=10, plots=TRUE,
    mean=mu[j,coords][1], sd=sigma[j, coords][1])
# The following (lengthy) example recreates the normal multivariate
# mixture model simulation from Benaglia et al (2009).
mu <- matrix(c(0, 0, 0, 3, 4, 5), m, r, byrow=TRUE)
nbrep <- 5 # Benaglia et al use 300 replications
# matrix for storing sums of Integrated Squared Errors
ISE <- matrix(0,m,r,dimnames=list(Components=1:m, Blocks=1:r))
nblabsw <- 0 # no. of label switches
for (mc in 1:nbrep) {
    print(paste("REPETITION", mc))
x <- rmvnormmix(n,lambda,mu,sigma) # simulated data
    a <- npEM(x, centers, verb=FALSE) #default:
if (a$lambda[1] > a$lambda[2]) nblabsw <- nblabsw + 1
for (j in 1:m) { # for each component
for (k in 1:r) { # for each coordinate; not assuming iid!
            # dnorm with correct mean, sd is the true density:
            ISE[j,k] <- ISE[j,k] + ise.npEM(a, j, k, dnorm, lower=mu[j,k]-5,
                    upper=mu[j,k]+5, plots=FALSE, mean=mu[j,k],
                        sd=sigma[j,k])$value
        }
    }
MISE <- ISE/nbrep # Mean ISE
sqMISE <- sqrt(MISE) # root-mean-integrated-squared error
}
sqMISE
```

logisregmixEM EM Algorithm for Mixtures of Logistic Regressions

Description

Returns EM algorithm output for mixtures of logistic regressions with arbitrarily many components.

Usage

logisregmixEM(y, x, $N=$ NULL, lambda = NULL, beta $=$ NULL, $k=2$, addintercept $=$ TRUE, epsilon $=1 \mathrm{e}-08$, maxit $=10000$, verb $=$ FALSE)

Arguments

$y \quad$ An n-vector of successes out of N trials.
$x \quad$ An nxp matrix of predictors. See addintercept below.
$\mathrm{N} \quad$ An n-vector of number of trials for the logistic regression. If NULL, then N is an n-vector of 1 s for binary logistic regression.
lambda Initial value of mixing proportions. Entries should sum to 1. This determines number of components. If NULL, then lambda is random from uniform Dirichlet and number of components is determined by beta.
beta Initial value of beta parameters. Should be a pxk matrix, where p is the number of columns of x and k is number of components. If NULL, then beta is generated by binning the data into k bins and using glm on the values in each of the bins. If both lambda and beta are NULL, then number of components is determined by k.
k Number of components. Ignored unless lambda and beta are both NULL.
addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is calculated.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value

logisregmixEM returns a list of class mixEM with items:

x	The predictor values.
y	The response values.
lambda	The final mixing proportions.
beta	The final logistic regression coefficients.
loglik	The final log-likelihood.
posterior	An nxk matrix of posterior probabilities for observations.
all.loglik	A vector of each iteration's log-likelihood.
restarts	The number of times the algorithm restarted due to unacceptable choice of initial values.
ft	A character vector giving the name of the function.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.

See Also

```
poisregmixEM
```


Examples

```
## EM output for data generated from a 2-component logistic regression model.
set.seed(100)
beta <- matrix(c(1, .5, 2, -. 8), 2, 2)
x <- runif(50, 0, 10)
x1 <- cbind(1, x)
xbeta <- x1%*%beta
N <- ceiling(runif(50, 50, 75))
w <- rbinom(50, 1, .3)
y <- w*rbinom(50, size = N, prob = (1/(1+exp(-xbeta[, 1]))))+
    (1-w)*rbinom(50, size = N, prob =
    (1/(1+exp(-xbeta[, 2]))))
out.1 <- logisregmixEM(y, x, N, verb = TRUE, epsilon = 1e-01)
out.1
## EM output for data generated from a 2-component binary logistic regression model.
beta <- matrix(c(-10, .1, 20, -.1), 2, 2)
x <- runif(500, 50, 250)
x1 <- cbind(1, x)
xbeta <- x1%*%beta
w <- rbinom(500, 1, .3)
y <- w*rbinom(500, size = 1, prob = (1/(1+exp(-xbeta[, 1]))))+
    (1-w)*rbinom(500, size = 1, prob =
    (1/(1+exp(-xbeta[, 2]))))
out.2 <- logisregmixEM(y, x, beta = beta, lambda = c(.3, .7),
        verb = TRUE, epsilon = 1e-01)
    out. }
```

makemultdata
Produce Cutpoint Multinomial Data

Description

Change data into a matrix of multinomial counts using the cutpoint method and generate EM algorithm starting values for a k -component mixture of multinomials.

Usage

makemultdata(..., cuts)

Arguments

.. Either vectors (possibly of different lengths) of raw data or an nxm matrix (or data frame) of data. If . . . are vectors of varying length, then makemultdata will create a matrix of size $n x m$ where n is the sample size and m is the length of the vector with maximum length. Those vectors with length less than m will have NAs to make the corresponding row in the matrix of length m. If . . . is a matrix (or data frame), then the rows must correspond to the sample and the columns the repeated measures.
cuts A vector of cutpoints. This vector is sorted by the algorithm.

Details

The (i, j)th entry of the matrix $\mathrm{y}($ for $\mathrm{j}<\mathrm{p}$) is equal to the number of entries in the ith column of x that are less than or equal to cuts[j]. The (i, p)th entry is equal to the number of entries greater than cuts[j].

Value

makemultdata returns an object which is a list with components:
$x \quad$ An nxm matrix of the raw data.
$y \quad$ An nxp matrix of the discretized data where p is one more than the number of cutpoints. Each row is a multinomial vector of counts. In particular, each row should sum to the number of repeated measures for that sample.

References

Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2004) The Sign Statistic, One-Way Layouts and Mixture Models, Statistical Science 19(4), 579-587.

See Also

```
compCDF,multmixmodel.sel,multmixEM
```


Examples

\#\# Randomly generated data.

```
set.seed(100)
```

y <- matrix (rpois(70, 6), 10, 7)
cuts <- c(2, 5, 7)
out1 <- makemultdata(y, cuts = cuts)
out1
\#\# The sulfur content of the coal seams in Texas.
$A<-c(1.51,1.92,1.08,2.04,2.14,1.76,1.17)$
$B<-c(1.69,0.64, .9,1.41,1.01, .84,1.28,1.59)$
$C<-c(1.56,1.22,1.32,1.39,1.33,1.54,1.04,2.25,1.49)$
D <- c(1.3, .75, 1.26, .69, .62, .9, 1.2, .32)

```
    E <- c(.73, .8, .9, 1.24, .82, .72, .57, 1.18, .54, 1.3)
    out2 <- makemultdata(A, B, C, D, E,
        cuts = median(c(A, B, C, D, E)))
    out2
    ## The reaction time data.
    data(RTdata)
    out3 <- makemultdata(RTdata, cuts =
            100*c(5, 10, 12, 14, 16, 20, 25, 30, 40, 50))
dim(out3$y)
out3$y[1:10,]
```


mixturegram Mixturegrams

Description

Construct a mixturegram for determining an apporpriate number of components.

Usage

mixturegram(data, pmbs, method = c("pca", "kpca", "lda"), all.n = FALSE, id.con $=$ NULL, score $=1$, iter.max $=50$, nstart $=25, \ldots$)

Arguments

data The data, which must either be a vector or a matrix. If a matrix, then the rows correspond to the observations.
pmbs A list of length (K-1) such that each element is an nxk matrix of the posterior membership probabilities. These are obtained from each of the "best" estimated k -component mixture models, $\mathrm{k}=2, \ldots, \mathrm{~K}$.
method The dimension reduction method used. method = "pca" implements principal components analysis. method $=$ "kpca" implements kernel principal components analysis. method = "lda" implements reduced rank linear discriminant analysis.
all.n A logical specifying whether the mixturegram should plot the profiles of all observations (TRUE) or just the K-profile summaries (FALSE). The default is FALSE.
id.con An argument that allows one to impose some sort of (meaningful) identifiability constraint so that the mixture components are in some sort of comparable order between mixture models with different numbers of components. If NULL, then the components are ordered by the component means for univariate data or ordered by the first dimension of the component means for multivariate data.

$$
\begin{aligned}
& \text { score } \begin{array}{l}
\text { The value for the specified dimension reduction technique's score, which is used } \\
\text { for constructing the mixturegram. By default, this value is } 1 \text {, which is the value } \\
\text { that will typically be used. Larger values will result in more variability displayed } \\
\text { on the mixturegram. Note that the largest value that can be calculated at each } \\
\text { value of } \mathrm{k}>1 \text { on the mixturegram is p+k-1, where p is the number of columns of } \\
\text { data. }
\end{array} \\
& \text { iter.max } \\
& \text { nstart }
\end{aligned} \begin{aligned}
& \text { The maximum number of iterations allowed for the k-means clustering algo- } \\
& \text { rithm, which is passed to the kmeans function. The default is } 50 .
\end{aligned} \quad \begin{aligned}
& \text { The number of random sets chosen based on } \mathrm{k} \text { centers, which is passed to the } \\
& \text { kmeans function. The default is } 25 .
\end{aligned} \quad \begin{aligned}
& \text { Additional arguments that can be passed to the underlying plot function. }
\end{aligned}
$$

Value

mixturegram returns a mixturegram where the profiles are plotted over component values of $\mathrm{k}=$ $1, \ldots, \mathrm{~K}$.

References

Young, D. S., Ke, C., and Zeng, X. (2018) The Mixturegram: A Visualization Tool for Assessing the Number of Components in Finite Mixture Models, Journal of Computational and Graphical Statistics, 27(3), 564-575.

See Also

```
boot.comp
```


Examples

```
##Data generated from a 2-component mixture of normals.
```

```
set.seed(100)
n <- 100
w <- rmultinom(n,1,c(.3,.7))
y <- sapply(1:n,function(i) w[1,i]*rnorm(1, -6,1) +
            w[2,i]*rnorm(1,0,1))
selection <- function(i,data,rep=30){
    out <- replicate(rep,normalmixEM(data,epsilon=1e-06,
            k=i,maxit=5000),simplify=FALSE)
    counts <- lapply(1:rep,function(j)
                                    table(apply(out[[j]]$posterior,1,
                                    which.max)))
    counts.length <- sapply(counts, length)
    counts.min <- sapply(counts, min)
    counts.test <- (counts.length != i)|(counts.min < 5)
    if(sum(counts.test) > 0 & sum(counts.test) < rep)
        out <- out[!counts.test]
    l <- unlist(lapply(out, function(x) x$loglik))
```

```
    tmp <- out[[which.max(l)]]
}
all.out <- lapply(2:5, selection, data = y, rep = 2)
pmbs <- lapply(1:length(all.out), function(i)
    all.out[[i]]$post)
mixturegram(y, pmbs, method = "pca", all.n = FALSE,
    id.con = NULL, score = 1,
    main = "Mixturegram (Well-Separated Data)")
```

multmixEM EM Algorithm for Mixtures of Multinomials

Description

Return EM algorithm output for mixtures of multinomial distributions.

Usage

multmixEM(y, lambda $=$ NULL, theta $=$ NULL, $k=2$, maxit $=10000$, epsilon $=1 \mathrm{e}-08$, verb $=$ FALSE)

Arguments

y Either An nxp matrix of data (multinomial counts), where n is the sample size and p is the number of multinomial bins, or the output of the makemultdata function. It is not necessary that all of the rows contain the same number of multinomial trials (i.e., the row sums of y need not be identical).
lambda Initial value of mixing proportions. Entries should sum to 1. This determines number of components. If NULL, then lambda is random from uniform Dirichlet and number of components is determined by theta.
theta Initial value of theta parameters. Should be a kxp matrix, where p is the number of columns of y and k is number of components. Each row of theta should sum to 1. If NULL, then each row is random from uniform Dirichlet. If both lambda and theta are NULL, then number of components is determined by k .
k Number of components. Ignored unless lambda and theta are NULL.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value

multmixEM returns a list of class mixEM with items:
$\begin{array}{ll}y & \text { The raw data. } \\ \text { lambda } & \text { The final mixing proportions. }\end{array}$

theta	The final multinomial parameters.
loglik	The final log-likelihood.
posterior	An nxk matrix of posterior probabilities for observations.
all.loglik	A vector of each iteration's log-likelihood.
restarts	The number of times the algorithm restarted due to unacceptable choice of initial values.
ft	A character vector giving the name of the function.

References

- McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.
- Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2004) The Sign Statistic, One-Way Layouts and Mixture Models, Statistical Science 19(4), 579-587.

See Also

```
compCDF, makemultdata, multmixmodel.sel
```


Examples

```
## The sulfur content of the coal seams in Texas
set.seed(100)
A <- c(1.51, 1.92, 1.08, 2.04, 2.14, 1.76, 1.17)
B <- c(1.69, 0.64, .9, 1.41, 1.01, .84, 1.28, 1.59)
C <- c(1.56, 1.22, 1.32, 1.39, 1.33, 1.54, 1.04, 2.25, 1.49)
D <- c(1.3, .75, 1.26, .69, .62, .9, 1.2, .32)
E <- c(.73, .8, .9, 1.24, .82, .72, .57, 1.18, .54, 1.3)
dis.coal <- makemultdata(A, B, C, D, E,
            cuts = median(c(A, B, C, D, E)))
em.out <- multmixEM(dis.coal)
em.out[1:4]
```

multmixmodel.sel Model Selection Mixtures of Multinomials

Description

Assess the number of components in a mixture of multinomials model using the Akaike's information criterion (AIC), Schwartz's Bayesian information criterion (BIC), Bozdogan's consistent AIC (CAIC), and Integrated Completed Likelihood (ICL).

Usage

multmixmodel.sel (y, comps = NULL, ...)

Arguments

y Either An nxp matrix of data (multinomial counts), where n is the sample size and p is the number of multinomial bins, or the output of the makemultdata function. It is not necessary that all of the rows contain the same number of multinomial trials (i.e., the row sums of y need not be identical).
comps Vector containing the numbers of components to consider. If NULL, this is set to be 1:(max possible), where (max possible) is floor $((\mathrm{m}+1) / 2)$ and m is the minimum row sum of y.
$\ldots \quad$... Arguments passed to multmixEM that control convergence of the underlying EM algorithm.

Value

multmixmodel. sel returns a table summarizing the AIC, BIC, CAIC, ICL, and log-likelihood values along with the winner (the number with the lowest aforementioned values).

See Also

compCDF, makemultdata, multmixEM

Examples

\#\#Data generated using the multinomial cutpoint method.

```
set.seed(100)
```

$x<-\operatorname{matrix}(r \operatorname{pois}(70,6), 10,7)$
x.new <- makemultdata(x, cuts = 5)
multmixmodel.sel(x.new\$y, comps $=c(1,2)$, epsilon $=1 \mathrm{e}-03)$
mvnormalmixEM EM Algorithm for Mixtures of Multivariate Normals

Description

Return EM algorithm output for mixtures of multivariate normal distributions.

Usage

```
mvnormalmixEM(x, lambda = NULL, mu = NULL, sigma = NULL, k = 2,
    arbmean = TRUE, arbvar = TRUE, epsilon = 1e-08,
    maxit = 10000, verb = FALSE)
```


Arguments

\(\left.\begin{array}{ll}\mathrm{x} \& A matrix of size nxp consisting of the data.

lambda

Initial value of mixing proportions. Entries should sum to 1. This determines

number of components. If NULL, then lambda is random from uniform Dirich-

let and number of components is determined by mu.\end{array}\right\}\)| A list of size k consisting of initial values for the p-vector mean parameters. |
| :--- |
| If NULL, then the vectors are generated from a normal distribution with mean |
| and standard deviation according to a binning method done on the data. If both |
| lambda and mu are NULL, then number of components is determined by sigma. |

Value
normalmixEM returns a list of class mixEM with items:
$x \quad$ The raw data.
lambda The final mixing proportions.
$\mathrm{mu} \quad$ A list of with the final mean vectors.
sigma A list with the final variance-covariance matrices.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all. loglik A vector of each iteration's log-likelihood.
restarts The number of times the algorithm restarted due to unacceptable choice of initial values.
$\mathrm{ft} \quad$ A character vector giving the name of the function.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.

See Also

normalmixEM

Examples

```
##Fitting randomly generated data with a 2-component location mixture of bivariate normals.
set.seed(100)
x.1 <- rmvnorm(40, c(0, 0))
x.2 <- rmvnorm(60, c(3, 4))
X.1 <- rbind(x.1, x.2)
mu <- list(c(0, 0), c(3, 4))
out.1 <- mvnormalmixEM(X.1, arbvar = FALSE, mu = mu,
    epsilon = 1e-02)
out.1[2:5]
##Fitting randomly generated data with a 2-component scale mixture of bivariate normals.
x.3 <- rmvnorm(40, c(0, 0), sigma =
    matrix(c(200, 1, 1, 150), 2, 2))
x.4 <- rmvnorm(60, c(0, 0))
X.2 <- rbind(x.3, x.4)
lambda <- c(0.40, 0.60)
sigma <- list(diag(1, 2), matrix(c(200, 1, 1, 150), 2, 2))
out.2 <- mvnormalmixEM(X.2, arbmean = FALSE,
                                    sigma = sigma, lambda = lambda,
                                    epsilon = 1e-02)
```

out. 2[2:5]
mvnpEM

EM-like Algorithm for Nonparametric Mixture Models with Conditionally Independent Multivariate Component Densities

Description

An extension of the original npEM algorithm, for mixtures of multivariate data where the coordinates of a row (case) in the data matrix are assumed to be made of independent but multivariate blocks (instead of just coordinates), conditional on the mixture component (subpopulation) from which they are drawn (Chauveau and Hoang 2015).

Usage

mvnpEM(x, mu0, blockid = 1:ncol(x), samebw = TRUE,
bwdefault $=$ apply (x, 2, bw.nrd0), init $=$ NULL,
eps $=1 \mathrm{e}-8$, maxiter $=500$, verb $=$ TRUE)

Arguments

X
An $n \times r$ matrix of data. Each of the n rows is a case, and each case has r repeated measurements. These measurements are assumed to be conditionally independent, conditional on the mixture component (subpopulation) from which the case is drawn.

mu0	Either an $m \times r$ matrix specifying the initial centers for the kmeans function, or an integer m specifying the number of initial centers, which are then chosen randomly in kmeans
A vector of length r identifying coordinates (columns of x) that are in the same	
block. The default has all distinct elements, indicating that the model has r	
blocks of dimension 1, in which case the model is handled directly by the npEM	
algorithm. See example below for actual multivariate blocks example.	
Logical: If TRUE, use the same bandwidth per coordinate for all iteration and	
all components. If FALSE, use a separate bandwidth for each component and	
coordinate, and update this bandwidth at each iteration of the algorithm using	
a suitably modified bw. nrd0 method as described in Benaglia et al (2011) and	
Chauveau and Hoang (2015).	

Value

mvnpEM returns a list of class mvnpEM with the following items:
data \quad The raw data (an $n \times r$ matrix).
posteriors An $n \times m$ matrix of posterior probabilities for each observation (row).
lambda The sequence of mixing proportions over iterations.
blockid The blockid input argument. Needed by any method that produces density estimates from the output, like plot.mvnpEM.
samebw The samebw input argument. Needed by any method that produces density estimates from the output, like plot.mvnpEM.
bandwidth The final bandwidth matrix after convergence of the algorithm. Its shape depends on the samebw input argument. If samebw = TRUE, a vectors with the bandwidth value for each of the r coordinates (same for all components and iterations). If samebw $=$ FALSE, a $m \times r$ matrix, where each row is associated to one component and gives the r bandwidth values, one for each coordinate. Needed by any method that produces density estimates from the output, like plot.mvnpEM.
lambdahat The final mixing proportions.
loglik

References

- Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18, 505-526.
- Benaglia, T., Chauveau, D. and Hunter, D.R. (2011), Bandwidth Selection in an EM-like algorithm for nonparametric multivariate mixtures. Nonparametric Statistics and Mixture Models: A Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages 15-27.
- Chauveau, D., and Hoang, V. T. L. (2015), Nonparametric mixture models with conditionally independent multivariate component densities, Preprint under revision. https://hal. archives-ouvertes.fr/hal-01094837

See Also

plot.mvnpEM, npEM

Examples

```
# Example as in Chauveau and Hoang (2015) with 6 coordinates
## Not run:
m=2; r=6; blockid <-c(1,1,2,2,3,3) # 3 bivariate blocks
# generate some data x ...
a <- mvnpEM(x, mu0=2, blockid, samebw=F) # adaptive bandwidth
plot(a) # this S3 method produces 6 plots of univariate marginals
summary(a)
## End(Not run)
```


NOdata

Ethanol Fuel Data Set

Description

This data set gives the equivalence ratios and peak nitrogen oxide emissions in a study using pure ethanol as a spark-ignition engine fuel.

Usage

data(NOdata)

Format

This data frame consists of:

- NOThe peak nitrogen oxide emission levels.
- EquivalenceThe equivalence ratios for the engine at compression ratios from 7.5 to 18 .

Source

Brinkman, N. D. (1981) Ethanol Fuel - A Single-Cylinder Engine Study of Efficiency and Exhaust Emissions, S.A.E. Transactions, 68.

References

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating Mixtures of Regressions, Journal of Computational and Graphical Statistics 12(1), 55-79.

```
normalmixEM EM Algorithm for Mixtures of Univariate Normals
```


Description

Return EM algorithm output for mixtures of normal distributions.

Usage

normalmixEM(x, lambda $=$ NULL, mu $=$ NULL, sigma $=$ NULL, $k=2$, mean.constr $=$ NULL, sd.constr $=$ NULL, epsilon $=1 \mathrm{e}-08$, maxit $=1000$, maxrestarts=20, verb $=$ FALSE, fast=FALSE, ECM = FALSE, arbmean $=$ TRUE, arbvar $=$ TRUE)

Arguments

$x \quad$ A vector of length n consisting of the data.
lambda Initial value of mixing proportions. Automatically repeated as necessary to produce a vector of length k, then normalized to sum to 1 . If NULL, then lambda is random from a uniform Dirichlet distribution (i.e., its entries are uniform random and then it is normalized to sum to 1).
mu
sigma Starting value of vector of component standard deviations for algorithm. If nonNULL and a scalar, arbvar is set to FALSE. If non-NULL and a vector, arbvar is set to TRUE and k is set to length(sigma). If NULL, then the initial value is the reciprocal of the square root of a vector of random exponential-distribution values whose means are determined according to a binning method done on the data.
$\mathrm{k} \quad$ Number of components. Initial value ignored unless mu and sigma are both NULL.

mean. constr	Equality constraints on the mean parameters, given as a vector of length k . Each
vector entry helps specify the constraints, if any, on the corresponding mean	
parameter: If NA, the corresponding parameter is unconstrained. If numeric, the	
corresponding parameter is fixed at that value. If a character string consisting	
of a single character preceded by a coefficient, such as "0.5a" or "-b", all	
parameters using the same single character in their constraints will fix these	
parameters equal to the coefficient times some the same free parameter. For	
instance, if mean. constr = c(NA, 0, "a", "-a"), then the first mean parameter is	
unconstrained, the second is fixed at zero, and the third and forth are constrained	
to be equal and opposite in sign.	
Equality constraints on the standard deviation parameters. See mean. constr.	
sd.constr	The convergence criterion. Convergence is declared when the change in the
epsilon	observed data log-likelihood increases by less than epsilon.
maxit	The maximum number of iterations.
maxrestarts	The maximum number of restarts allowed in case of a problem with the particu-
lar starting values chosen due to one of the variance estimates getting too small	
(each restart uses randomly chosen starting values). It is well-known that when	

Details

This is the standard EM algorithm for normal mixtures that maximizes the conditional expected complete-data log-likelihood at each M-step of the algorithm. If desired, the EM algorithm may be replaced by an ECM algorithm (see ECM argument) that alternates between maximizing with respect to the mu and lambda while holding sigma fixed, and maximizing with respect to sigma and lambda while holding mu fixed. In the case where arbmean is FALSE and arbvar is TRUE, there is no closed-form EM algorithm, so the ECM option is forced in this case.

Value

normalmixEM returns a list of class mixEM with items:
$x \quad$ The raw data.
lambda The final mixing proportions.
mu The final mean parameters.
sigma The final standard deviations. If arbmean $=$ FALSE, then only the smallest standard deviation is returned. See scale below.
scale If arbmean = FALSE, then the scale factor for the component standard deviations is returned. Otherwise, this is omitted from the output.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all. loglik A vector of each iteration's log-likelihood. This vector includes both the initial and the final values; thus, the number of iterations is one less than its length.
restarts The number of times the algorithm restarted due to unacceptable choice of initial values.
ft A character vector giving the name of the function.

References

- McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.
- Meng, X.-L. and Rubin, D. B. (1993) Maximum Likelihood Estimation Via the ECM Algorithm: A General Framework, Biometrika 80(2): 267-278.
- Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29, 2009.

See Also

mvnormalmixEM, normalmixEM2comp, normalmixMMlc, spEMsymloc

Examples

```
##Analyzing the Old Faithful geyser data with a 2-component mixture of normals.
data(faithful)
attach(faithful)
set.seed(100)
system.time(out<-normalmixEM(waiting, arbvar = FALSE, epsilon = 1e-03))
out
system.time(out2<-normalmixEM(waiting, arbvar = FALSE, epsilon = 1e-03, fast=TRUE))
out2 # same thing but much faster
```


Description

Return EM algorithm output for mixtures of univariate normal distributions for the special case of 2 components, exploiting the simple structure of the problem to speed up the code.

Usage

normalmixEM2comp(x, lambda, mu, sigsqrd, eps= 1e-8, maxit = 1000, verb=FALSE)

Arguments

$x \quad$ A vector of length n consisting of the data.
lambda Initial value of first-component mixing proportion.
mu A 2-vector of initial values for the mean parameters.
sigsqrd Either a scalar or a 2-vector with initial value(s) for the variance parameters. If a scalar, the algorithm assumes that the two components have equal variances; if a 2 -vector, it assumes that the two components do not have equal variances.
eps The convergence criterion. Convergence is declared when the change in the observed data log-likelihood increases by less than epsilon.
maxit The maximum possible number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Details

This code is written to be very fast, sometimes more than an order of magnitude faster than normalmixEM for the same problem. It is less numerically stable that normalmixEM in the sense that it does not safeguard against underflow as carefully.
Note that when the two components are assumed to have unequal variances, the loglikelihood is unbounded. However, in practice this is rarely a problem and quite often the algorithm converges to a "nice" local maximum.

Value

normalmixEM2comp returns a list of class mixEM with items:

x	The raw data.
lambda	The final mixing proportions (lambda and 1-lambda).
mu	The final two mean parameters.
sigma	The final one or two standard deviations.
loglik	The final log-likelihood.
posterior	An nx2 matrix of posterior probabilities for observations.

all.loglik	A vector of each iteration's log-likelihood. This vector includes both the initial and the final values; thus, the number of iterations is one less than its length.
restarts	The number of times the algorithm restarted due to unacceptable choice of initial values (always zero).
ft	A character vector giving the name of the function.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley
\& Sons, Inc.

See Also

mvnormalmixEM, normalmixEM

Examples

```
##Analyzing the Old Faithful geyser data with a 2-component mixture of normals.
data(faithful)
attach(faithful)
set.seed(100)
system.time(out <- normalmixEM2comp(waiting, lambda=.5,
    mu=c(50,80), sigsqrd=100))
out$all.loglik # Note: must be monotone increasing
# Compare elapsed time with more general version
system.time(out2 <- normalmixEM(waiting, lambda=c(.5,.5),
    mu=c(50,80), sigma=c(10,10), arbvar=FALSE))
out2$all.loglik # Values should be identical to above
```

normalmixMMlc EC-MM Algorithm for Mixtures of Univariate Normals with linear
constraints

Description

Return EC-MM (see below) algorithm output for mixtures of normal distributions with linear constraints on the means and variances parameters, as in Chauveau and Hunter (2013). The linear constraint for the means is of the form $\mu=M \beta+C$, where M and C are matrix and vector specified as parameters. The linear constraints for the variances are actually specified on the inverse variances, by $\pi=A \gamma$, where π is the vector of inverse variances, and A is a matrix specified as a parameter (see below).

Usage

normalmixMMlc (x, lambda $=$ NULL, mu $=$ NULL, sigma $=$ NULL, $k=2$, mean.constr $=$ NULL, mean.lincstr $=$ NULL, mean.constant $=$ NULL, var.lincstr $=$ NULL, gparam $=$ NULL, epsilon $=1 \mathrm{e}-08$, maxit $=1000$, maxrestarts=20, verb = FALSE)

Arguments

x	A vector of length n consisting of the data.
lambda	Initial value of mixing proportions. Automatically repeated as necessary to produce a vector of length k, then normalized to sum to 1 . If NULL, then lambda is random from a uniform Dirichlet distribution (i.e., its entries are uniform random and then it is normalized to sum to 1).
mu	Starting value of vector of component means. If non-NULL and a vector, k is set to length(mu). If NULL, then the initial value is randomly generated from a normal distribution with center(s) determined by binning the data.
sigma	Starting value of vector of component standard deviations for algorithm. Obsolete for linear constraints on the inverse variances; use gparam instead to specify a starting value.
k	Number of components. Initial value ignored unless mu and sigma are both NULL.
mean.constr	First, simplest way to define equality constraints on the mean parameters, given as a vector of length k, as in normalmixEM. Each vector entry specifies the constraints, if any, on the corresponding mean parameter: If NA, the corresponding parameter is unconstrained. If numeric, the corresponding parameter is fixed at that value. If a character string consisting of a single character preceded by a coefficient, such as " 0.5 a " or "-b", all parameters using the same single character in their constraints will fix these parameters equal to the coefficient times some the same free parameter. For instance, if mean. constr $=c(N A, 0, " a ", "-a ")$, then the first mean parameter is unconstrained, the second is fixed at zero, and the third and forth are constrained to be equal and opposite in sign. Note: if there are no linear constraints for the means, it is more efficient to use directly normalmixEM.
mean.lincstr	Matrix $M(k, p)$ in the linear constraint for the means equation $\mu=M \beta+C$, with $p \leq k$.
mean.constant	Vector of k constants C in the linear constraint for the means equation $\mu=$ $M \beta+C$.
var.lincstr	Matrix $A(k, q)$ in the linear constraint for the inverse variances equation $\pi=$ $A \gamma$, with $q \leq k$.
gparam	Vector of q starting values for the γ parameter in the linear constraint for the inverse variances; see var. lincstr. If NULL, a vector of randomly generated standard exponential variables is used.
epsilon	The convergence criterion. Convergence is declared when the change in the observed data log-likelihood increases by less than epsilon.
maxit	The maximum allowed number of iterations.
maxrestarts	The maximum number of restarts allowed in case of a problem with the particular starting values chosen due to one of the variance estimates getting too small (each restart uses randomly chosen starting values). It is well-known that when each component of a normal mixture may have its own mean and variance, the likelihood has no maximizer; in such cases, we hope to find a "nice" local maximum with this algorithm instead, but occasionally the algorithm finds a "not

nice" solution and one of the variances goes to zero, driving the likelihood to infinity.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Details

This is a specific "EC-MM" algorithm for normal mixtures with linear constraints on the means and variances parameters. EC-MM here means that this algorithm is similar to an ECM algorithm as in Meng and Rubin (1993), except that it uses conditional MM (Minorization-Maximization)-steps instead of simple M-steps. Conditional means that it alternates between maximizing with respect to the mu and lambda while holding sigma fixed, and maximizing with respect to sigma and lambda while holding mu fixed. This ECM generalization of EM is forced in the case of linear constraints because there is no closed-form EM algorithm.

Value

normalmixMMlc returns a list of class mixEM with items:
$x \quad$ The raw data.
lambda The final mixing proportions.
mu The final mean parameters.
sigma The final standard deviation(s)
scale Scale factor for the component standard deviations, if applicable.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration's log-likelihood. This vector includes both the initial and the final values; thus, the number of iterations is one less than its length.
restarts The number of times the algorithm restarted due to unacceptable choice of initial values.
beta \quad The final β parameter estimate.
gamma The final γ parameter estimate.
$\mathrm{ft} \quad$ A character vector giving the name of the function.

Author(s)

Didier Chauveau

References

- McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley \& Sons, Inc.
- Meng, X.-L. and Rubin, D. B. (1993) Maximum Likelihood Estimation Via the ECM Algorithm: A General Framework, Biometrika 80(2): 267-278.
- Chauveau, D. and Hunter, D.R. (2013) ECM and MM algorithms for mixtures with constrained parameters, preprint http://hal.archives-ouvertes.fr/hal-00625285.
- Thomas, H., Lohaus, A., and Domsch, H. (2011) Stable Unstable Reliability Theory, British Journal of Mathematical and Statistical Psychology 65(2): 201-221.

See Also

normalmixEM, mvnormalmixEM, normalmixEM2comp, tauequivnormalmixEM

Examples

```
## Analyzing synthetic data as in the tau equivalent model
## From Thomas et al (2011), see also Chauveau and Hunter (2013)
## a 3-component mixture of normals with linear constraints.
lbd <- c(0.6,0.3,0.1); m <- length(lbd)
sigma <- sig0 <- sqrt (c(1,9,9))
# means constaints mu = M beta
M<- matrix(c(1, 1, 1,0,-1,1), 3, 2)
beta <- c(1,5) # unknown constrained mean
mu0 <- mu <- as.vector(M %*% beta)
# linear constraint on the inverse variances pi = A.g
A <- matrix(c(1, 1,1,0,1,0), m, 2, byrow=TRUE)
iv0 <- 1/(sig0^2)
g0 <- c(iv0[2],iv0[1] - iv0[2]) # gamma^0 init
# simulation and EM fits
set.seed(50); n=100; x <- rnormmix(n,lbd,mu,sigma)
s <- normalmixEM(x,mu=mu0,sigma=sig0,maxit=2000) # plain EM
# EM with var and mean linear constraints
sc <- normalmixMMlc(x, lambda=lbd, mu=mu0, sigma=sig0,
mean.lincstr=M, var.lincstr=A, gparam=g0)
# plot and compare both estimates
dnormmixt <- function(t, lam, mu, sig){
m <- length(lam); f <- 0
for (j in 1:m) f <- f + lam[j]*dnorm(t,mean=mu[j],sd=sig[j])
f}
t <- seq(min(x)-2, max(x)+2, len=200)
hist(x, freq=FALSE, col="lightgrey",
ylim=c(0,0.3), ylab="density",main="")
lines(t, dnormmixt(t, lbd, mu, sigma), col="darkgrey", lwd=2) # true
lines(t, dnormmixt(t, s$lambda, s$mu, s$sigma), lty=2)
lines(t, dnormmixt(t, sc$lambda, sc$mu, sc$sigma), col=1, lty=3)
legend("topleft", c("true","plain EM","constr EM"),
col=c("darkgrey",1,1), lty=c(1,2,3), lwd=c(2,1,1))
``` peated Measurements

\section*{Description}

Returns nonparametric EM algorithm output (Benaglia et al, 2009) for mixtures of multivariate (repeated measures) data where the coordinates of a row (case) in the data matrix are assumed to be independent, conditional on the mixture component (subpopulation) from which they are drawn.

\section*{Usage}
```

npEM(x, mu0, blockid = 1:ncol(x),
bw = bw.nrd0(as.vector(as.matrix(x))), samebw = TRUE,
$h=b w, ~ e p s=1 e-8$,
maxiter = 500, stochastic = FALSE, verb = TRUE)

```

\section*{Arguments}
x
blockid A vector of length \(r\) identifying coordinates (columns of x) that are assumed to be identically distributed (i.e., in the same block). For instance, the default has all distinct elements, indicating that no two coordinates are assumed identically distributed and thus a separate set of \(m\) density estimates is produced for each column of \(x\). On the other hand, if blockid=rep(\(1, \mathrm{ncol}(\mathrm{x})\)), then the coordinates in each row are assumed conditionally i.i.d.
bw Bandwidth for density estimation, equal to the standard deviation of the kernel density. By default, a simplistic application of the default bw.nrd0 bandwidth used by density to the entire dataset.
samebw Logical: If TRUE, use the same bandwidth for each iteration and for each component and block. If FALSE, use a separate bandwidth for each component and block, and update this bandwidth at each iteration of the algorithm using a suitably modified bw. nrd0 method as described in Benaglia et al (2011).
h Alternative way to specify the bandwidth, to provide backward compatibility.
eps Tolerance limit for declaring algorithm convergence. Convergence is declared whenever the maximum change in any coordinate of the lambda vector (of mixing proportion estimates) does not exceed eps.
maxiter The maximum number of iterations allowed, for both stochastic and non-stochastic versions; for non-stochastic algorithms (stochastic = FALSE), convergence may be declared before maxiter iterations (see eps above).
stochastic Flag, if FALSE (the default), runs the non-stochastic version of the npEM algorithm, as in Benaglia et al (2009). Set to TRUE to run a stochastic version which simulates the posteriors at each iteration, and runs for maxiter iterations.
verb If TRUE, print updates for every iteration of the algorithm as it runs

\section*{Value}
npEM returns a list of class npEM with the following items:
data \(\quad\) The raw data (an \(n \times r\) matrix).
\begin{tabular}{ll}
posteriors & \begin{tabular}{l}
An \(n \times m\) matrix of posterior probabilities for observation. If stochastic \(=\) \\
TRUE, this matrix is computed from an average over the maxiter iterations.
\end{tabular} \\
bandwidth & \begin{tabular}{l}
If samebw==TRUE, same as the bw input argument; otherwise, value of bw ma- \\
trix at final iteration. This information is needed by any method that produces \\
density estimates from the output.
\end{tabular} \\
blockid & \begin{tabular}{l}
Same as the blockid input argument, but recoded to have positive integer val- \\
ues. Also needed by any method that produces density estimates from the out- \\
put.
\end{tabular} \\
lambda & \begin{tabular}{l}
The sequence of mixing proportions over iterations.
\end{tabular} \\
lambdahat & \begin{tabular}{l}
The final mixing proportions if stochastic \(=\) FALSE, or the average mixing pro- \\
portions if stochastic = TRUE.
\end{tabular} \\
loglik & The sequence of log-likelihoods over iterations.
\end{tabular}

\section*{References}
- Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18, 505-526.
- Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. (2009), mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29.
- Benaglia, T., Chauveau, D. and Hunter, D.R. (2011), Bandwidth Selection in an EM-like algorithm for nonparametric multivariate mixtures. Nonparametric Statistics and Mixture Models: A Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages 15-27.
- Bordes, L., Chauveau, D., and Vandekerkhove, P. (2007), An EM algorithm for a semiparametric mixture model, Computational Statistics and Data Analysis, 51: 5429-5443.

\section*{See Also}
plot.npEM, normmixrm.sim, spEMsymloc, spEM, plotseq.npEM

\section*{Examples}
```


## Examine and plot water-level task data set.

## First, try a 3-component solution where no two coordinates are

## assumed i.d.

data(Waterdata)
set.seed(100)

## Not run:

a <- npEM(Waterdata[,3:10], mu0=3, bw=4) \# Assume indep but not iid
plot(a) \# This produces 8 plots, one for each coordinate

## End(Not run)

## Next, same thing but pairing clock angles that are directly opposite one

## another (1:00 with 7:00, 2:00 with 8:00, etc.)

## Not run:

```
```

b <- npEM(Waterdata[,3:10], mu0=3, blockid=c(4,3,2,1,3,4,1,2), bw=4) \# iid in pairs
plot(b) \# Now only 4 plots, one for each block

## End(Not run)

```
npMSL

Nonparametric EM-like Algorithm for Mixtures of Independent Repeated Measurements - Maximum Smoothed Likelihood version

\section*{Description}

Returns nonparametric Smoothed Likelihood algorithm output (Levine et al, 2011) for mixtures of multivariate (repeated measures) data where the coordinates of a row (case) in the data matrix are assumed to be independent, conditional on the mixture component (subpopulation) from which they are drawn.

\section*{Usage}
\(n p M S L(x, m u 0, b l o c k i d=1: n c o l(x)\), bw = bw.nrd0(as.vector(as.matrix(x))), samebw = TRUE, bwmethod = "S", h = bw, eps = 1e-8, maxiter \(=500\), bwiter \(=\) maxiter, nbfold \(=\) NULL, ngrid=200, post=NULL, verb = TRUE)

\section*{Arguments}
x
blockid A vector of length \(r\) identifying coordinates (columns of x) that are assumed to be identically distributed (i.e., in the same block). For instance, the default has all distinct elements, indicating that no two coordinates are assumed identically distributed and thus a separate set of \(m\) density estimates is produced for each column of \(x\). On the other hand, if blockid=rep \((1, \mathrm{ncol}(\mathrm{x}))\), then the coordinates in each row are assumed conditionally i.i.d.
bw Bandwidth for density estimation, equal to the standard deviation of the kernel density. By default, a simplistic application of the default bw.nrd0 bandwidth used by density to the entire dataset.
samebw Logical: If TRUE, use the same bandwidth for each iteration and for each component and block. If FALSE, use a separate bandwidth for each component and block, and update this bandwidth at each iteration of the algorithm until bwiter is reached (see below). Two adaptation methods are provided, see bwmethod below.
\begin{tabular}{ll}
bwmethod & \begin{tabular}{l}
Define the adaptive bandwidth strategy when samebw = FALSE, in which case the \\
bandwidth depends on each component, block, and iteration of the algorithm. If \\
set to "S" (the default), adaptation is done using a suitably modified bw. nrdo \\
method as described in Benaglia et al (2011). If set to "CV", an adaptive \(k\)-fold \\
Cross Validation method is applied, as described in Chauveau et al (2014), where \\
nbfold is the number of subsamples. This corresponds to a Leave- \(n / n b f o l d]\) - \\
Out CV.
\end{tabular} \\
Alternative way to specify the bandwidth, to provide backward compatibility. \\
h & \begin{tabular}{l}
Tolerance limit for declaring algorithm convergence. Convergence is declared \\
whenever the maximum change in any coordinate of the lambda vector (of mix- \\
ing proportion estimates) does not exceed eps.
\end{tabular} \\
eps & \begin{tabular}{l}
The maximum number of iterations allowed, convergence may be declared be- \\
fore maxiter iterations (see eps above).
\end{tabular} \\
bwiter & \begin{tabular}{l}
The maximum number of iterations allowed for adaptive bandwidth stage, when \\
samebw = FALSE. If set to 0, then the initial bandwidth matrix is used without \\
adaptation.
\end{tabular} \\
nbfold & \begin{tabular}{l}
A parameter passed to the internal function wbs. kCV, which controls the weighted \\
bandwidth selection by k-fold cross-validation.
\end{tabular} \\
ngrid & \begin{tabular}{l}
Number of points in the discretization of the intervals over which are approxi- \\
mated the (univariate) integrals for non linear smoothing of the log-densities, as
\end{tabular} \\
required in the E step of the npMSL algorithm, see Levine et al (2011). \\
post & \begin{tabular}{l}
If non-NULL, an \(n \times m\) matrix specifying the initial posterior probability vectors \\
for each of the observations, i.e., the initial values to start the EM-like algorithm.
\end{tabular} \\
If TRUE, print updates for every iteration of the algorithm as it runs
\end{tabular}

\section*{Value}
npMSL returns a list of class npEM with the following items:
data \(\quad\) The raw data (an \(n \times r\) matrix).
posteriors An \(n \times m\) matrix of posterior probabilities for observation.
bandwidth If samebw==TRUE, same as the bw input argument; otherwise, value of bw matrix at final iteration. This information is needed by any method that produces density estimates from the output.
blockid Same as the blockid input argument, but recoded to have positive integer values. Also needed by any method that produces density estimates from the output.
lambda The sequence of mixing proportions over iterations.
lambdahat The final mixing proportions.
loglik
f
meanNaN Average number of NaN that occured over iterations (for internal testing and control purpose).
meanUdfl Average number of "underflow" that occured over iterations (for internal testing and control purpose).

\section*{References}
- Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18, 505-526.
- Benaglia, T., Chauveau, D. and Hunter, D.R. (2011), Bandwidth Selection in an EM-like algorithm for nonparametric multivariate mixtures. Nonparametric Statistics and Mixture Models: A Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages 15-27.
- Chauveau D., Hunter D. R. and Levine M. (2014), Semi-Parametric Estimation for Conditional Independence Multivariate Finite Mixture Models. Preprint (under revision).
- Levine, M., Hunter, D. and Chauveau, D. (2011), Maximum Smoothed Likelihood for Multivariate Mixtures, Biometrika 98(2): 403-416.

\section*{See Also}
```

npEM, plot.npEM, normmixrm.sim, spEMsymloc, spEM, plotseq.npEM

```

\section*{Examples}
```


## Examine and plot water-level task data set.

## Block structure pairing clock angles that are directly opposite one

## another (1:00 with 7:00, 2:00 with 8:00, etc.)

set.seed(111) \# Ensure that results are exactly reproducible
data(Waterdata)
blockid <- c(4, 3, 2, 1, 3,4,1,2) \# see Benaglia et al (2009a)

## Not run:

a <- npEM(Waterdata[,3:10], mu0=3, blockid=blockid, bw=4) \# npEM solution
b <- npMSL(Waterdata[,3:10], mu0=3, blockid=blockid, bw=4) \# smoothed version

# Comparisons on the 4 default plots, one for each block

par(mfrow=c (2,2))
for (l in 1:4){
plot(a, blocks=l, breaks=5*(0:37)-92.5,
xlim=c(-90,90), xaxt="n",ylim=c(0,.035), xlab="")
plot(b, blocks=l, hist=FALSE, newplot=FALSE, addlegend=FALSE, lty=2,
dens.col=1)
axis(1, at=30*(1:7)-120, cex.axis=1)
legend("topleft",c("npMSL"),lty=2, lwd=2)}

## End(Not run)

```

\section*{Description}

Takes an object of class mixEM and returns various graphical output for select mixture models.
```

Usage
\#\# S3 method for class 'mixEM'
plot(x, whichplots = 1,
loglik = 1 %in% whichplots,
density = 2 %in% whichplots,
xlab1="Iteration", ylab1="Log-Likelihood",
main1="Observed Data Log-Likelihood", col1=1, lwd1=2,
xlab2=NULL, ylab2=NULL, main2=NULL, col2=NULL,
lwd2=2, alpha = 0.05, marginal = FALSE, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline X & An object of class mixEM. \\
\hline whichplot & vector telling which plots to produce: \(1=\log\) likelihood plot, \(2=\) density plot. Irrelevant if loglik and density are specified. \\
\hline loglik & If TRUE, a plot of the log-likelihood versus the EM iterations is given. \\
\hline density & Graphics pertaining to certain mixture models. The details are given below. \\
\hline \multicolumn{2}{|l|}{xlab1, ylab1, main1, col1, lwd1} \\
\hline & Graphical parameters \(\times l \mathrm{ab}, \ldots, 1\) wd to be passed to the loglikelihood plot. Trying to change these parameters using \(x l a b, \ldots\), lwd will result in an error, but all other graphical parameters are passed directly to the plotting functions via ... \\
\hline \multicolumn{2}{|l|}{xlab2, ylab2, main2, col2, lwd2} \\
\hline & Same as xlab1 etc. but for the density plot \\
\hline alpha & A vector of significance levels when constructing confidence ellipses and confidence bands for the mixture of multivariate normals and mixture of regressions cases, respectively. The default is 0.05 . \\
\hline marginal & For the mixture of bivariate normals, should optional marginal histograms be included? \\
\hline & Graphical parameters passed to plot command. \\
\hline
\end{tabular}

\section*{Value}
plot.mixEM returns a plot of the log-likelihood versus the EM iterations by default for all objects of class mixEM. In addition, other plots may be produced for the following k-component mixture model functions:
\[
\begin{array}{ll}
\text { normalmixEM } & \begin{array}{l}
\text { A histogram of the raw data is produced along with } \mathrm{k} \text { density curves determined } \\
\text { by normalmixEM. }
\end{array} \\
\text { repnormmixEM } & \begin{array}{l}
\text { A histogram of the raw data produced in a similar manner as for normalmixEM. }
\end{array} \\
\text { mvnormalmixEM } & \begin{array}{l}
\text { A 2-dimensional plot with each point color-coded to denote its most probable } \\
\text { component membership. In addition, the estimated component means are plot- } \\
\text { ted along with }(1-a l p h a) \% \text { bivariate normal density contours. These ellipses }
\end{array}
\end{array}
\]
are constructed by assigning each value to their component of most probable membership and then using normal theory. Optional marginal histograms may also be produced.
regmixEM A plot of the response versus the predictor with each point color-coded to denote its most probable component membership. In addition, the estimated component regression lines are plotted along with (\(1-\) alpha) \% Working-Hotelling confidence bands. These bands are constructed by assigning each value to their component of most probable membership and then performing least squares estimation.
logisregmixEM A plot of the binary response versus the predictor with each point color-coded to denote its most probable compopnent membership. In addition, the estimate component logistic regression lines are plotted.
regmixEM.mixed Provides a \(2 \times 2\) matrix of plots summarizing the posterior slope and posterior intercept terms from a mixture of random effects regression. See post. beta for a more detailed description.

\section*{See Also}
```

post.beta

```

\section*{Examples}
```

\#\#Analyzing the Old Faithful geyser data with a 2-component mixture of normals.
data(faithful)
attach(faithful)
set.seed(100)
out <- normalmixEM(waiting, arbvar = FALSE, verb = TRUE,
epsilon = 1e-04)
plot(out, density = TRUE, w = 1.1)
\#\#Fitting randomly generated data with a 2-component location mixture of bivariate normals.
x.1 <- rmvnorm(40, c(0, 0))
x.2 <- rmvnorm(60, c(3, 4))
X.1 <- rbind(x.1, x.2)
out.1 <- mvnormalmixEM(X.1, arbvar = FALSE, verb = TRUE,
epsilon = 1e-03)
plot(out.1, density = TRUE, alpha = c(0.01, 0.05, 0.10),
marginal = TRUE)

```

\section*{Description}

Takes an object of class mixMCMC and returns various graphical output for select mixture models.

\section*{Usage}
```


## S3 method for class 'mixMCMC'

```
plot (x, trace.plots = TRUE,
 summary.plots \(=\) FALSE, burnin \(=2000, \ldots\))

\section*{Arguments}
x
trace.plots

An object of class mixMCMC.
If TRUE, trace plots of the various parameters estimated by the MCMC methods is given.
summary.plots Graphics pertaining to certain mixture models. The details are given below.
burnin The values 1 to burnin are dropped when producing the plots in summary.plots.
Graphical parameters passed to reger function.

\section*{Value}
plot.mixMCMC returns trace plots of the various parameters estimated by the MCMC methods for all objects of class mixMCMC. In addition, other plots may be produced for the following k-component mixture model functions:
regmixMH Credible bands for the regression lines in a mixture of linear regressions. See regcr for more details.

\section*{See Also}
regcr

\section*{Examples}
```


## M-H algorithm for NOdata with acceptance rate about 40%.

data(NOdata)
attach(NOdata)
set.seed(100)
beta <- matrix(c(1.3, -0.1, 0.6, 0.1), 2, 2)
sigma <- c(.02, .05)
MH.out <- regmixMH(Equivalence, NO, beta = beta, s = sigma,
sampsize = 2500, omega = .0013)
plot(MH.out, summary.plots = TRUE, burnin = 2450,
alpha = 0.01)

```
plot.mvnpEM Plots of Marginal Density Estimates from the mvnpEM Algorithm Output

\section*{Description}

Takes an object of class mvnpEM, as the one returned by the mvnpEM algorithm, and returns a set of plots of the density estimates for each coordinate within each multivariate block. All the components are displayed on each plot so it is possible to see the mixture structure for each coordinate and block. The final bandwidth values are also displayed, in a format depending on the bandwidth strategy .

\section*{Usage}
```


## S3 method for class 'mvnpEM'

plot(x, truenorm = FALSE, lambda = NULL, mu = NULL, v = NULL,
lgdcex = 1, ...)

```

\section*{Arguments}
\begin{tabular}{ll}
x & An object of class mvnpEM such as the output of the mvnpEM function \\
truenorm & \begin{tabular}{l}
Mostly for checking purpose, if the nonparametric model is to be compared with \\
a multivariate Gaussian mixture as the true model.
\end{tabular} \\
lambda & \begin{tabular}{l}
true weight parameters, for Gaussian models only (see above) \\
mu
\end{tabular} \\
true mean parameters, for Gaussian models only (see above) \\
lgdcex & true covariance matrices, for Gaussian models only (see above) \\
\(\ldots\) & Character expansion factor for legend.
\end{tabular}

\section*{Value}
plot.mvnpEM currently just plots the figure.

\section*{See Also}
mvnpEM, npEM, density.npEM

\section*{Examples}
```


# example as in Chauveau and Hoang (2015) with 6 coordinates

## Not run:

m=2; r=6; blockid <-c(1,1,2,2,3,3) \# 3 bivariate blocks

# generate some data x ...

a <- mvnpEM(x, mu0=2, blockid, samebw=F) \# adaptive bandwidth
plot(a) \# this S3 method produces 6 plots of univariate marginals
summary(a)

## End(Not run)

```
```

plot.npEM

```

Plot Nonparametric or Semiparametric EM Output

\section*{Description}

Takes an object of class npEM and returns a set of plots of the density estimates for each block and each component. There is one plot per block, with all the components displayed on each block so it is possible to see the mixture structure for each block.

\section*{Usage}
```


## S3 method for class 'npEM'

plot(x, blocks = NULL, hist=TRUE, addlegend = TRUE,
scale=TRUE, title=NULL, breaks="Sturges", ylim=NULL, dens.col,
newplot = TRUE, pos.legend = "topright", cex.legend = 1, ...)

## S3 method for class 'spEM'

plot(x, blocks = NULL, hist=TRUE, addlegend = TRUE,
scale=TRUE, title=NULL, breaks="Sturges", ylim=NULL, dens.col,
newplot = TRUE, pos.legend = "topright", cex.legend = 1, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline x & An object of class npEM such as the output of the npEM function \\
\hline blocks & Blocks (of repeated measures coordinates) to plot; not relevant for univariate case. Default is to plot all blocks. \\
\hline hist & If TRUE, superimpose density estimate plots on a histogram of the data \\
\hline addlegend & If TRUE, adds legend to the plot. \\
\hline scale & If TRUE, scale each density estimate by its corresponding estimated mixing proportion, so that the total area under all densities equals 1 and the densities plotted may be added to produce an estimate of the mixture density. When FALSE, each density curve has area 1 in the plot. \\
\hline title & Alternative vector of main titles for plots (recycled as many times as needed) \\
\hline breaks & Passed directly to the hist function \\
\hline ylim & ylim parameter to use for all plots, if desired. If not given, each plot uses its own ylim that ensures that no part of the plot will go past the top of the plotting area. \\
\hline dens.col & Color values to use for the individual component density functions, repeated as necessary. Default value is \(2:(\mathrm{m}+1)\). \\
\hline newplot & If TRUE, creates a new plot. \\
\hline pos.legend & Single argument specifying the position of the legend. See 'Details' section of legend. \\
\hline cex.legend & Character expansion factor for legend. \\
\hline & Any remaining arguments are passed to the hist and lines functions. \\
\hline
\end{tabular}

\section*{Value}
plot. npEM returns a list with two elements:
\(x \quad\) List of matrices. The \(j\) th column of the \(i\) th matrix is the vector of \(x\)-values for the \(j\) th density in the \(i\) th plot.
y \(y\)-values, given in the same form as the \(x\)-values.

\section*{See Also}
npEM, density.npEM, spEMsymloc, plotseq.npEM

\section*{Examples}
```


## Examine and plot water-level task data set.

## First, try a 3-component solution where no two coordinates are

## assumed i.d.

data(Waterdata)
set.seed(100)

## Not run:

a <- npEM(Waterdata[,3:10], 3, bw=4)
par(mfrow=c (2,4))
plot(a) \# This produces 8 plots, one for each coordinate

## End(Not run)

## Not run:

## Next, same thing but pairing clock angles that are directly opposite one

## another (1:00 with 7:00, 2:00 with 8:00, etc.)

b <- npEM(Waterdata[,3:10], 3, blockid=c(4,3,2,1,3,4,1,2), bw=4)
par(mfrow=c (2,2))
plot(b) \# Now only 4 plots, one for each block

## End(Not run)

```
```

plot.spEMN01

```

Plot mixture pdf for the semiparametric mixture model output by spEMsymlocN01

\section*{Description}

Plot mixture density for the semiparametric mixture model output by spEMsymlocN01, with one component known and set to normal \((0,1)\), and a symmetric nonparametric density with location parameter.

\section*{Usage}
```


## S3 method for class 'spEMN01'

plot(x, bw = x\$bandwidth, knownpdf = dnorm, add.plot = FALSE, ...)

```

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & An object of class "spEMN01" as returned by spEMsymlocN01 \\
bw & Bandwidth for weighted kernel density estimation. \\
knownpdf & The known density of component 1, default to dnorm. \\
add.plot & Set to TRUE to add to an existing plot. \\
\(\ldots\) & \begin{tabular}{l}
further arguments passed to plot if add. plot = FALSE, and to lines if add. plot \\
\\
\end{tabular} \\
& TRUE.
\end{tabular}

Value
A plot of the density of the mixture

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale simultaneous hypothesis testing in soil monitoring: A semi-parametric mixture approach, preprint (2013).

See Also
spEMsymlocN01
\begin{tabular}{ll}
plotexpRMM & \begin{tabular}{l}
Plot sequences from the EM algorithm for censored mixture of expo- \\
nentials
\end{tabular}
\end{tabular}

\section*{Description}

Function for plotting sequences of estimates along iterations, from an object returned by the expRMM_EM, an EM algorithm for mixture of exponential distributions with randomly right censored data (see reference below).

\section*{Usage}
plotexpRMM(a, title=NULL, rowstyle=TRUE, subtitle=NULL, ...)

\section*{Arguments}
a An object returned by expRMM_EM.
title The title of the plot, set to some default value if NULL.
rowstyle Window organization, for plots in rows (the default) or columns.
subtitle A subtitle for the plot, set to some default value if NULL.
Other parameters (such as lwd) passed to plot, lines, and legend commands.

\section*{Value}

The plot returned

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. http://link.springer.com/article/10.1007/s00180-016-0661-7

\section*{See Also}

Related functions: expRMM_EM, summary.mixEM, plot.mixEM.
Other models and algorithms for censored lifetime data (name convention is model_algorithm): weibullRMM_SEM, spRMM_SEM.

\section*{Examples}
```

n=300 \# sample size
m=2 \# number of mixture components
lambda <- c(1/3,1-1/3); rate <- c(1,1/10) \# mixture parameters
set.seed(1234)
x <- rexpmix(n, lambda, rate) \# iid ~ exponential mixture
cs=runif(n,0,max(x)) \# Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min) \# observed or censored data
d <- 1*(x <= cs) \# censoring indicator

###### EM for RMM, exponential lifetimes

l0 <- rep(1/m,m); r0 <- c(1, 0.5) \# "arbitrary" initial values
a <- expRMM_EM(t, d, lambda=l0, rate=r0, k = m)
summary(a) \# EM estimates etc
plotexpRMM(a, lwd=2) \# plot of EM sequences

```

\section*{Description}

Plot \(\operatorname{FDR}\left(p_{i}\right)\) estimates against index of sorted p-values from, e.g., normalmixEM or the semiparametric mixture model posterior probabilities output by spEMsymlocN01, or any EM-algorithm like normalmixEM which returns posterior probabilities. The function can simultaneously plot FDR estimates from two strategies for comparison. Plot of the true FDR can be added if complete data are available (typically in simulation studies).

\section*{Usage}
```

plotFDR(post1, post2 = NULL, lg1 = "FDR 1", lg2 = NULL, title = NULL,
compH0 = 1, alpha = 0.1, complete.data = NULL, pctfdr = 0.3)

```

\section*{Arguments}
post1 The matrix of posterior probabilities from objects such as the output from spEMsymlocN01. The rows need to be sorted by increasing pvalues.
post2 A second object like post1 if comparison is desired, also sorted by increasing pvalues.
\(\lg 1 \quad\) Text describing the FDR estimate in post1.
\(\lg 2 \quad\) Text describing the FDR estimate in post2 if provided.
title Plot title, a default is provided if NULL.
compH0 The component indicator associated to the null hypothesis H0, normally 1 since it is defined in this way in spEMsymlocN01, but in case of label switching in other algorithms it can be set to 2 .
alpha The target FDR level; the index at which the FDR estimate crosses the horizontal line for level alpha gives the maximum number of cases to reject.
complete.data An array with \(n\) lines and 2 columns, with the component indicator in column 1 and the p -values in column 2 , sorted by p -values.
pctfdr The level up to which the FDR is plotted, i.e. the scale of the vertical axis.

\section*{Value}

A plot of one or two FDR estimates, with the true FDR if available

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale simultaneous hypothesis testing in monitoring carbon content from French soil database - A semi-parametric mixture approach, Geoderma 219-220 (2014), 117-124.

See Also
spEMsymlocN01
\[
\text { plotseq.npEM } \quad \text { Plotting sequences of estimates from non- or semiparametric EM-like }
\] Algorithm

\section*{Description}

Returns plots of the sequences of scalar parameter estimates along iterations from an object of class npEM.

\section*{Usage}
```

    ## S3 method for class 'npEM'
    ```
plotseq(x, ...)

\section*{Arguments}
\(x \quad\) an object of class npEM, as output by npEM or spEMsymloc
... further parameters that are passed to plot

\section*{Details}
plotseq. npEM returns a figure with one plot for each component proportion, and, in the case of spEMsymloc, one plot for each component mean.

\section*{References}
- Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics (to appear).
- Bordes, L., Chauveau, D., and Vandekerkhove, P. (2007), An EM algorithm for a semiparametric mixture model, Computational Statistics and Data Analysis, 51: 5429-5443.

\section*{See Also}
plot.npEM, rnormmix, npEM, spEMsymloc

\section*{Examples}
```


## Example from a normal location mixture

n <- 200
set.seed(100)
lambda <- c(1/3,2/3)
mu <- c(0, 4); sigma<-rep (1, 2)
x <- rnormmix(n, lambda, mu, sigma)
b <- spEMsymloc(x, mu0=c(-1, 2), stochastic=FALSE)
plotseq(b)
bst <- spEMsymloc(x, mu0=c(-1, 2), stochastic=TRUE)
plotseq(bst)

```
plotspRMM Plot output from Stochastic EM algorithm for semiparametric scaled mixture of censored data

\section*{Description}

Function for plotting various results from an object returned by spRMM_SEM, a Stochastic EM algorithm for semiparametric scaled mixture of randomly right censored lifetime data. Four plots of sequences of estimates along iterations, survival and density estimates (see reference below).

\section*{Usage}
plotspRMM(sem, tmax = NULL)

\section*{Arguments}
\[
\begin{array}{ll}
\text { sem } & \text { An object returned by spRMM_SEM. } \\
\text { tmax } & \text { The max time for } x \text { axis, set to some default value if NULL. }
\end{array}
\]

\section*{Value}

The four plots returned

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. http://link.springer.com/article/10.1007/s00180-016-0661-7

\section*{See Also}

Related functions: spRMM_SEM.
Other models and algorithms for censored lifetime data (name convention is model_algorithm): expRMM_EM, weibullRMM_SEM.

\section*{Examples}
\# See example(spRMM_SEM)
plotweibullRMM \(\quad\)\begin{tabular}{l}
Plot sequences from the Stochastic EM algorithm for mixture of \\
Weibull
\end{tabular} Weibull

\section*{Description}

Function for plotting sequences of estimates along iterations, from an object returned by weibullRMM_SEM, a Stochastic EM algorithm for mixture of Weibull distributions with randomly right censored data (see reference below).

\section*{Usage}
plotweibullRMM(a, title = NULL, rowstyle = TRUE, subtitle = NULL, ...)

\section*{Arguments}
a
An object returned by weibullRMM_SEM.
title
rowstyle Window organization, for plots in rows (the default) or columns.
subtitle A subtitle for the plot, set to some default value if NULL.
Other parameters (such as lwd) passed to plot, lines, and legend commands.

\section*{Value}

The plot returned

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. http://link.springer.com/article/10.1007/s00180-016-0661-7

\section*{See Also}

Related functions: weibullRMM_SEM, summary.mixEM.
Other models and algorithms for censored lifetime data (name convention is model_algorithm): expRMM_EM, spRMM_SEM.

\section*{Examples}
```

n = 500 \# sample size
m = 2 \# nb components
lambda=c(0.4, 0.6)
shape <- c(0.5,5); scale <- c(1,20) \# model parameters
set.seed(321)
x <- rweibullmix(n, lambda, shape, scale) \# iid ~ weibull mixture
cs=runif(n,0,max(x)+10) \# iid censoring times
t <- apply(cbind(x,cs),1,min) \# censored observations
d <- 1*(x <= cs) \# censoring indicator

## set arbitrary or "reasonable" (e.g., data-driven) initial values

l0 <- rep(1/m,m); sh0 <- c(1, 2); sc0 <- c(2,10)

# Stochastic EM algorithm

a <- weibullRMM_SEM(t, d, lambda = l0, shape = sh0, scale = sc0, maxit = 200)
summary(a) \# Parameters estimates etc
plotweibullRMM(a) \# default plot of St-EM sequences

```
poisregmixEM EM Algorithm for Mixtures of Poisson Regressions

\section*{Description}

Returns EM algorithm output for mixtures of Poisson regressions with arbitrarily many components.

\section*{Usage}
```

poisregmixEM(y, x, lambda = NULL, beta = NULL, k = 2,
addintercept = TRUE, epsilon = 1e-08,
maxit = 10000, verb = FALSE)

```

\section*{Arguments}
\begin{tabular}{ll}
y & An n-vector of response values. \\
x & An nxp matrix of predictors. See addintercept below. \\
lambda & Initial value of mixing proportions. Entries should sum to 1. This determines \\
number of components. If NULL, then lambda is random from uniform Dirich- \\
let and number of components is determined by beta.
\end{tabular}
\begin{tabular}{ll}
beta & \begin{tabular}{l}
Initial value of beta parameters. Should be a pxk matrix, where \(p\) is the num- \\
ber of columns of \(x\) and \(k\) is number of components. If NULL, then beta is \\
generated by binning the data into \(k\) bins and using glm on the values in each \\
of the bins. If both lambda and beta are NULL, then number of components is \\
determined by \(k\).
\end{tabular} \\
\(k\) & \begin{tabular}{l}
Number of components. Ignored unless lambda and beta are both NULL.
\end{tabular} \\
addintercept & \begin{tabular}{l}
If TRUE, a column of ones is appended to the \(x\) matrix before the value of \(p\) is \\
calculated.
\end{tabular} \\
epsilon & \begin{tabular}{l}
The convergence criterion.
\end{tabular} \\
maxit & \begin{tabular}{l}
The maximum number of iterations. \\
verb
\end{tabular}
\end{tabular}

\section*{Value}
poisregmixEM returns a list of class mixEM with items:
\(x \quad\) The predictor values.
\(y \quad\) The response values.
lambda The final mixing proportions.
beta The final Poisson regression coefficients.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration's log-likelihood.
restarts The number of times the algorithm restarted due to unacceptable choice of initial values.
ft A character vector giving the name of the function.

\section*{References}

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley \\& Sons, Inc.
Wang, P., Puterman, M. L., Cockburn, I. and Le, N. (1996) Mixed Poisson Regression Models with Covariate Dependent Rates, Biometrics, 52(2), 381-400.

\section*{See Also}
logisregmixEM

\section*{Examples}
```


## EM output for data generated from a 2-component model.

set.seed(100)
beta <- matrix(c(1, .5, .7, -.8), 2, 2)
x <- runif(50, 0, 10)
xbeta <- cbind(1, x)%*%beta
w <- rbinom(50, 1, .5)

```
```

y <- w*rpois(50, exp(xbeta[, 1]))+(1-w)*rpois(50, exp(xbeta[, 2]))
out <- poisregmixEM(y, x, verb = TRUE, epsilon = 1e-03)
out

```
print.mvnpEM Printing of Results from the mvnpEM Algorithm Output

\section*{Description}
print method for class mvnpEM.

\section*{Usage}
\#\# S3 method for class 'mvnpEM'
print(x, ...)

\section*{Arguments}
\(x \quad\) an object of class mvnpEM such as a result of a call to mvnpEM
... Additional arguments to print

\section*{Details}
print.mvnpEM prints the elements of an mvnpEM object without printing the data or the posterior probabilities. (These may still be accessed as \(\times \$\) data and \(\times \$\) posteriors.)

\section*{Value}
print.mvnpEM returns (invisibly) the full value of \(x\) itself, including the data and posteriors elements.

\section*{See Also}
mvnpEM, plot.mvnpEM summary.mvnpEM

\section*{Examples}
```


# Example as in Chauveau and Hoang (2015) with 6 coordinates

## Not run:

m=2; r=6; blockid <-c(1,1,2,2,3,3) \# 3 bivariate blocks

# generate some data x ...

a <- mvnpEM(x, mu0=2, blockid, samebw=F) \# adaptive bandwidth
print(a)

## End(Not run)

```

Printing non- and semi-parametric multivariate mixture model fits

\section*{Description}
print method for class npEM.

\section*{Usage}
\#\# S3 method for class 'npEM'
print(x, ...)

\section*{Arguments}
\(\begin{array}{ll}x & \text { an object of class npEM such as a result of a call to npEM } \\ \ldots & \text { Additional arguments to print }\end{array}\)

\section*{Details}
print. npEM prints the elements of an npEM object without printing the data or the posterior probabilities. (These may still be accessed as \(\times \$ d a t a\) and \(\times \$\) posteriors.)

\section*{Value}
print. npEM returns (invisibly) the full value of \(x\) itself, including the data and posteriors elements.

\section*{See Also}
```

    npEM, plot.npEM summary.npEM
    ```

\section*{Examples}
```

data(Waterdata)
set.seed(100)

## Not run: npEM(Waterdata[,3:10], 3, bw=4, verb=FALSE) \# Assume indep but not iid

```
RanEffdata \begin{tabular}{l}
Simulated Data from 2-Component Mixture of Regressions with Ran- \\
dom Effects
\end{tabular}

\section*{Description}

This data set was generated from a 2-component mixture of regressions with random effects.

\section*{Usage}
data(RanEffdata)

\section*{Format}

This data set consists of a list with \(10025 \times 3\) matrices. The first column is the response variable, the second column is a column of 1 's and the last column is the predictor variable.

\section*{See Also}
regmixEM.mixed
\begin{tabular}{ll}
regcr & Add a Confidence Region or Bayesian Credible Region for Regression \\
Lines to a Scatterplot
\end{tabular}

\section*{Description}

Produce a confidence or credible region for regression lines based on a sample of bootstrap beta values or posterior beta values. The beta parameters are the intercept and slope from a simple linear regression.

\section*{Usage}
regcr(beta, x, em.beta \(=\) NULL, em. sigma \(=\) NULL, alpha \(=.05\), nonparametric \(=\) FALSE, plot \(=\) FALSE, xyaxes \(=\) TRUE, ...)

\section*{Arguments}
beta An nx2 matrix of regression parameters. The first column gives the intercepts and the second column gives the slopes.
x
An n-vector of the predictor variable which is necessary when nonparametric \(=\) TRUE.
em.beta
The estimates for beta required when obtaining confidence regions. This is required for performing the standardization necessary when obtaining nonparametric confidence regions.
\begin{tabular}{ll}
em.sigma & \begin{tabular}{l}
The estimates for the regression standard deviation required when obtaining \\
confidence regions. This is required for performing the standardization nec- \\
essary when obtaining nonparametric confidence regions.
\end{tabular} \\
alpha & \begin{tabular}{l}
The proportion of the beta sample to remove. In other words, 1-alpha is the level \\
of the credible region.
\end{tabular} \\
nonparametric \\
If nonparametric = TRUE, then the region is based on the convex hull of the \\
remaining beta after trimming, which is accomplished using a data depth tech- \\
nique. If nonparametric = FALSE, then the region is based on the asymptotic \\
normal approximation.
\end{tabular}

\section*{Value}
reger returns a list containing the following items:
\begin{tabular}{ll}
boundary & \begin{tabular}{l}
A matrix of points in beta, or intercept-slope, space arrayed along the boundary \\
of the confidence or credible region.
\end{tabular} \\
upper & \begin{tabular}{l}
A matrix of points in x-y space arrayed along the upper confidence or credible \\
limit for the regression line.
\end{tabular} \\
lower & \begin{tabular}{l}
A matrix of points in x-y space arrayed along the lower confidence or credible \\
limit for the regression line.
\end{tabular}
\end{tabular}

\section*{See Also}
```

regmixEM, regmixMH

```

\section*{Examples}
```


## Nonparametric credible regions fit to NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
beta <- matrix(c(1.3, -0.1, 0.6, 0.1), 2, 2)
sigma <- c(.02, .05)
MH.out <- regmixMH(Equivalence, NO, beta = beta, s = sigma,
sampsize = 2500, omega = .0013)
attach(data.frame(MH.out\$theta))
beta.c1 <- cbind(beta0.1[2400:2499], beta1.1[2400:2499])
beta.c2 <- cbind(beta0.2[2400:2499], beta1.2[2400:2499])
plot(NO, Equivalence)
regcr(beta.c1, x = NO, nonparametric = TRUE, plot = TRUE,

```
col = 2)
regcr(beta.c2, x = NO, nonparametric = TRUE, plot = TRUE, col = 3)
regmixEM EM Algorithm for Mixtures of Regressions

\section*{Description}

Returns EM algorithm output for mixtures of multiple regressions with arbitrarily many components.

\section*{Usage}
\[
\begin{aligned}
& \text { regmixEM(y, } x \text {, lambda }=\text { NULL, beta }=\text { NULL, sigma }=\text { NULL, } k=2, \\
& \text { addintercept }=\text { TRUE, arbmean }=\text { TRUE, arbvar }=\text { TRUE, } \\
& \text { epsilon }=1 e-08 \text {, maxit }=10000, \text { verb }=\text { FALSE })
\end{aligned}
\]

\section*{Arguments}
\begin{tabular}{ll}
y & An n-vector of response values. \\
x & An nxp matrix of predictors. See addintercept below. \\
lambda & \begin{tabular}{l}
Initial value of mixing proportions. Entries should sum to 1. This determines \\
number of components. If NULL, then lambda is random from uniform Dirich- \\
let and number of components is determined by beta.
\end{tabular} \\
beta & \begin{tabular}{l}
Initial value of beta parameters. Should be a pxk matrix, where p is the num- \\
ber of columns of x and k is number of components. If NULL, then beta has \\
standard normal entries according to a binning method done on the data. If \\
both lambda and beta are NULL, then number of components is determined by \\
sigma.
\end{tabular} \\
A vector of standard deviations. If NULL, then 1/sigma^2 has random standard \\
exponential entries according to a binning method done on the data. If lambda, \\
beta, and sigma are NULL, then number of components is determined by k.
\end{tabular}

\section*{Value}
regmixEM returns a list of class mixEM with items:
x
\(y \quad\) The response values.
lambda
beta
sigma
scale If arbmean \(=\) FALSE, then the scale factor for the component standard deviations is returned. Otherwise, this is omitted from the output.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration's log-likelihood.
restarts The number of times the algorithm restarted due to unacceptable choice of initial values.
ft A character vector giving the name of the function.

\section*{References}
de Veaux, R. D. (1989), Mixtures of Linear Regressions, Computational Statistics and Data Analysis 8, 227-245.

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating Mixtures of Regressions, Journal of Computational and Graphical Statistics 12(1), 55-79.

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley \\& Sons, Inc.

\section*{See Also}
regcr, regmixMH

\section*{Examples}
```


## EM output for NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
em.out <- regmixEM(Equivalence, NO, verb = TRUE, epsilon = 1e-04)
em.out[3:6]

```

\section*{Description}

Returns output for one step of an EM algorithm output for mixtures of multiple regressions where the mixing proportions are estimated locally.

\section*{Usage}
\[
\begin{aligned}
& \text { regmixEM. lambda }(\mathrm{y}, \mathrm{x}, \text { lambda }=\text { NULL, beta }=\text { NULL, sigma }=\text { NULL, }, \\
& \\
& \mathrm{k}=2 \text {, addintercept }=\text { TRUE, arbmean }=\text { TRUE, } \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
\]

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline y & An n-vector of response values. \\
\hline x & An nxp matrix of predictors. See addintercept below. \\
\hline lambda & An nxk matrix of initial local values of mixing proportions. Entries should sum to 1 . This determines number of components. If NULL, then lambda is simply one over the number of components. \\
\hline beta & Initial value of beta parameters. Should be a pxk matrix, where \(p\) is the number of columns of \(x\) and \(k\) is number of components. If NULL, then beta has uniform standard normal entries. If both lambda and beta are NULL, then number of components is determined by sigma. \\
\hline sigma & k -vector of initial global values of standard deviations. If NULL, then \(1 /\) sigma \(^{2}\) has random standard exponential entries. If lambda, beta, and sigma are NULL, then number of components is determined by k . \\
\hline k & The number of components. Ignored unless all of lambda, beta, and sigma are NULL. \\
\hline addintercept & If TRUE, a column of ones is appended to the \(x\) matrix before the value of \(p\) is calculated. \\
\hline arbmean & If TRUE, each mixture component is assumed to have a different set of regression coefficients (i.e., the betas). \\
\hline arbvar & If TRUE, each mixture component is assumed to have a different sigma. \\
\hline epsilon & The convergence criterion. \\
\hline maxit & The maximum number of iterations. \\
\hline verb & If TRUE, then various updates are printed during each iteration of the algorithm. \\
\hline
\end{tabular}

\section*{Details}

Primarily used within regmixEM.loc.

\section*{Value}
regmixEM. lambda returns a list of class mixEM with items:
\(x \quad\) The set of predictors (which includes a column of 1 's if addintercept = TRUE).
\(y \quad\) The response values.
lambda The inputted mixing proportions.
beta The final regression coefficients.
sigma The final standard deviations. If arbmean = FALSE, then only the smallest standard deviation is returned. See scale below.
scale If arbmean = FALSE, then the scale factor for the component standard deviations is returned. Otherwise, this is omitted from the output.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration's log-likelihood.
restarts The number of times the algorithm restarted due to unacceptable choice of initial values.
\(\mathrm{ft} \quad\) A character vector giving the name of the function.

\section*{See Also}
```

regmixEM.loc

```

\section*{Examples}
```


## Compare a 2-component and 3-component fit to NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
out1 <- regmixEM.lambda(Equivalence, NO)
out2 <- regmixEM.lambda(Equivalence, NO, k = 3)
c(out1$loglik, out2$loglik)

```

Iterative Algorithm Using EM Algorithm for Mixtures of Regressions with Local Lambda Estimates

\section*{Description}

Iterative algorithm returning EM algorithm output for mixtures of multiple regressions where the mixing proportions are estimated locally.

\section*{Usage}
```

regmixEM.loc(y, x, lambda = NULL, beta = NULL, sigma = NULL,
k = 2, addintercept = TRUE, kern.l = c("Gaussian",
"Beta", "Triangle", "Cosinus", "Optcosinus"),
epsilon = 1e-08, maxit = 10000, kernl.g = 0,
kernl.h = 1, verb = FALSE)

```
Arguments
 \(y \quad\) An n-vector of response values.
 \(x \quad\) An nxp matrix of predictors. See addintercept below.
 lambda An nxk matrix of initial local values of mixing proportions. Entries should sum
 to 1 . This determines number of components. If NULL, then lambda is simply
 one over the number of components.
 beta Initial global values of beta parameters. Should be a pxk matrix, where \(p\) is the
 number of columns of \(x\) and \(k\) is number of components. If NULL, then beta
 has uniform standard normal entries. If both lambda and beta are NULL, then
 number of components is determined by sigma.
 sigma A k-vector of initial global values of standard deviations. If NULL, then \(1 /\) sigma \(^{2}\)
 has random standard exponential entries. If lambda, beta, and sigma are NULL,
 then number of components determined by \(k\).
 \(\mathrm{k} \quad\) Number of components. Ignored unless all of lambda, beta, and sigma are
 NULL.
 addintercept If TRUE, a column of ones is appended to the \(x\) matrix before the value of \(p\) is
 calculated.
 kern. 1 The type of kernel to use in the local estimation of lambda.
 epsilon The convergence criterion.
 maxit The maximum number of iterations.
 kernl.g A shape parameter required for the symmetric beta kernel for local estimation
 of lambda. The default is \(\mathrm{g}=0\) which yields the uniform kernel. Some common
 values are \(g=1\) for the Epanechnikov kernel, \(g=2\) for the biweight kernel, and
 \(\mathrm{g}=3\) for the triweight kernel.
 kernl.h The bandwidth controlling the size of the window used in the local estimation
 of lambda around \(x\).
 verb If TRUE, then various updates are printed during each iteration of the algorithm.

\section*{Value}
regmixEM. loc returns a list of class mixEM with items:
\(x \quad\) The set of predictors (which includes a column of 1 's if addintercept \(=\) TRUE).
\(y \quad\) The response values.
lambda.x The final local mixing proportions.
beta The final global regression coefficients.
\begin{tabular}{ll}
sigma & The final global standard deviations. \\
loglik & The final log-likelihood. \\
posterior & An nxk matrix of posterior probabilities for observations. \\
all.loglik & A vector of each iteration's log-likelihood. \\
restarts & \begin{tabular}{l}
The number of times the algorithm restarted due to unacceptable choice of initial \\
values.
\end{tabular} \\
ft & A character vector giving the name of the function.
\end{tabular}

\section*{See Also}
regmixEM.lambda

\section*{Examples}
```


## Compare a 2-component and 3-component fit to NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
out1 <- regmixEM.loc(Equivalence, NO, kernl.h = 2,
epsilon = 1e-02, verb = TRUE)
out2 <- regmixEM.loc(Equivalence, NO, kernl.h = 2, k = 3,
epsilon = 1e-02, verb = TRUE)
c(out1$loglik, out2$loglik)

```
regmixEM.mixed EM Algorithm for Mixtures of Regressions with Random Effects

\section*{Description}

Returns EM algorithm output for mixtures of multiple regressions with random effects and an option to incorporate fixed effects and/or \(\operatorname{AR}(1)\) errors.

\section*{Usage}

\section*{Arguments}
\(\mathrm{y} \quad\) A list of N response trajectories with (possibly) varying dimensions of length \(n_{i}\).
\(\mathrm{x} \quad\) A list of N design matrices of dimensions \(\left(n_{i}\right) \times p\). Each trajectory in y has its own design matrix.
\(\mathrm{w} \quad \mathrm{A}\) list of N known explanatory variables having dimensions \(\left(n_{i}\right) \times q\). If mixed \(=\) FALSE, then w is replaced by a list of N zeros.
sigma A vector of standard deviations. If NULL, then \(1 / s^{2}\) has random standard exponential entries according to a binning method done on the data.
arb.sigma If TRUE, then sigma is k-dimensional. Else a common standard deviation is assumed.
alpha A q-vector of unknown regression parameters for the fixed effects. If NULL and mixed = TRUE, then alpha is random from a normal distribution with mean and variance according to a binning method done on the data. If mixed \(=\) FALSE, then alpha \(=0\).
lambda Initial value of mixing proportions for the assumed mixture structure on the regression coefficients. Entries should sum to 1. This determines number of components. If NULL, then lambda is random from uniform Dirichlet and the number of components is determined by mu.
mu A pxk matrix of the mean for the mixture components of the random regression coefficients. If NULL, then the columns of mu are random from a multivariate normal distribution with mean and variance determined by a binning method done on the data.
rho An Nxk matrix giving initial values for the correlation term in an AR(1) process. If NULL, then these values are simulated from a uniform distribution on the interval \((-1,1)\).
\(\mathrm{R} \quad\) A list of N pxp covariance matrices for the mixture components of the random regression coefficients. If NULL, then each matrix is random from a standard Wishart distribution according to a binning method done on the data.
arb.R If TRUE, then \(R\) is a list of \(N\) pxp covariance matrices. Else, one common covariance matrix is assumed.
k Number of components. Ignored unless lambda is NULL.
ar. 1 If TRUE, then an \(\operatorname{AR}(1)\) process on the error terms is included. The default is FALSE.
addintercept.fixed
If TRUE, a column of ones is appended to the matrices in w .
addintercept.random
If TRUE, a column of ones is appended to the matrices in \(x\) before \(p\) is calculated.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value
regmixEM returns a list of class mixEM with items:
\(x \quad\) The predictor values corresponding to the random effects.
\(y \quad\) The response values.
w The predictor values corresponding to the (optional) fixed effects.
lambda The final mixing proportions.
mu The final mean vectors.
R The final covariance matrices.
sigma The final component error standard deviations.
alpha The final regression coefficients for the fixed effects.
rho The final error correlation values if an \(\operatorname{AR}(1)\) process is included.
loglik The final log-likelihood.
posterior.z An Nxk matrix of posterior membership probabilities.
posterior.beta A list of N pxk matrices giving the posterior regression coefficient values.
all.loglik
A vector of each iteration's log-likelihood.
restarts The number of times the algorithm restarted due to unacceptable choice of initial values.
ft A character vector giving the name of the function.

\section*{References}

Xu, W. and Hedeker, D. (2001) A Random-Effects Mixture Model for Classifying Treatment Response in Longitudinal Clinical Trials, Journal of Biopharmaceutical Statistics, 11(4), 253-273.

Young, D. S. and Hunter, D. R. (2015) Random Effects Regression Mixtures for Analyzing Infant Habituation, Journal of Applied Statistics, 42(7), 1421-1441.

\section*{See Also \\ regmixEM, post.beta}

\section*{Examples}
```


## EM output for simulated data from 2-component mixture of random effects.

data(RanEffdata)
set.seed(100)
x <- lapply(1:length(RanEffdata), function(i)
matrix(RanEffdata[[i]][, 2:3], ncol = 2))
x <- x[1:20]
y <- lapply(1:length(RanEffdata), function(i)
matrix(RanEffdata[[i]][, 1], ncol = 1))
y <- y[1:20]
lambda <- c(0.45, 0.55)
mu <- matrix(c(0, 4, 100, 12), 2, 2)

```

\section*{sigma <- 2}

R <- list(diag(1, 2), diag(1, 2))
em. out <- regmixEM.mixed(y, x, sigma = sigma, arb. sigma = FALSE,
lambda \(=\) lambda, \(m u=m u, R=R\),
addintercept.random \(=\) FALSE,
epsilon \(=1 \mathrm{e}-02\), verb \(=\) TRUE)
em.out[4:10]
regmixMH Metropolis-Hastings Algorithm for Mixtures of Regressions

\section*{Description}

Return Metropolis-Hastings (\(\mathrm{M}-\mathrm{H}\)) algorithm output for mixtures of multiple regressions with arbitrarily many components.

\section*{Usage}
regmixMH (y, x, lambda \(=\) NULL, beta \(=\) NULL, \(s=\) NULL, \(k=2\), addintercept \(=\) TRUE, mu = NULL, sig = NULL, lam.hyp = NULL,
sampsize \(=1000\), omega \(=0.01\), thin \(=1\))

\section*{Arguments}
\(y \quad\) An n-vector of response values.
\(x \quad\) An nxp matrix of predictors. See addintercept below.
lambda Initial value of mixing proportions. Entries should sum to 1. This determines number of components. If NULL, then lambda is random from uniform Dirichlet and number of components is determined by beta.
beta Initial value of beta parameters. Should be a pxk matrix, where \(p\) is the number of columns of x and k is number of components. If NULL, then beta has uniform standard normal entries. If both lambda and beta are NULL, then number of components is determined by s.

S
k -vector of standard deviations. If NULL, then \(1 / \mathrm{s}^{2}\) has random standard exponential entries. If lambda, beta, and \(s\) are NULL, then number of components determined by k .
k Number of components. Ignored unless all of lambda, beta, and s are NULL.
addintercept If TRUE, a column of ones is appended to the \(x\) matrix before the value of \(p\) is calculated.
mu The prior hyperparameter of same size as beta; the means of beta components. If NULL, these are set to zero.
sig The prior hyperparameter of same size as beta; the standard deviations of beta components. If NULL, these are all set to five times the overall standard deviation of \(y\).
\begin{tabular}{ll}
lam.hyp & \begin{tabular}{l}
The prior hyperparameter of length k for the mixing proportions (i.e., these are \\
hyperparameters for the Dirichlet distribution). If NULL, these are generated \\
from a standard uniform distribution and then scaled to sum to 1.
\end{tabular} \\
sampsize & \begin{tabular}{l}
Size of posterior sample returned.
\end{tabular} \\
omega & \begin{tabular}{l}
Multiplier of step size to control M-H acceptance rate. Values closer to zero \\
result in higher acceptance rates, generally.
\end{tabular} \\
thin & Lag between parameter vectors that will be kept.
\end{tabular}

\section*{Value}
regmixMH returns a list of class mixMCMC with items:
\(x \quad\) A nxp matrix of the predictors.
\(y \quad\) A vector of the responses.
theta A (sampsize/thin) x q matrix of MCMC-sampled \(q\)-vectors, where \(q\) is the total number of parameters in beta, \(s\), and lambda.
\(k \quad\) The number of components.

\section*{References}

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating Mixtures of Regressions, Journal of Computational and Graphical Statistics 12(1), 55-79.

\section*{See Also}
regcr

\section*{Examples}
```


## M-H algorithm for NOdata with acceptance rate about 40%.

data(NOdata)
attach(NOdata)
set.seed(100)
beta <- matrix(c(1.3, -0.1, 0.6, 0.1), 2, 2)
sigma <- c(.02, .05)
MH.out <- regmixMH(Equivalence, NO, beta = beta, s = sigma,
sampsize = 2500, omega = .0013)
MH.out\$theta[2400:2499,]

```

\section*{Description}

Assess the number of components in a mixture of regressions model using the Akaike's information criterion (AIC), Schwartz's Bayesian information criterion (BIC), Bozdogan's consistent AIC (CAIC), and Integrated Completed Likelihood (ICL).

\section*{Usage}
```

regmixmodel.sel(x, y, w = NULL, k = 2, type = c("fixed",
"random", "mixed"), ...)

```

\section*{Arguments}

X
y
W
k
type
An nxp matrix (or list) of predictors. If an intercept is required, then \(x\) must NOT include a column of 1's! Requiring an intercept may be controlled through arguments specified in . . .

An n-vector (or list) of response values.
w An optional list of fixed effects predictors for type "mixed" or "random".
k The maximum number of components to assess.
The type of regression mixture to use. If "fixed", then a mixture of regressions with fixed effects will be used. If "random", then a mixture of regressions where the random effects regression coefficients are assumed to come from a mixture will be used. If "mixed", the mixture structure used is the same as "random", except a coefficient of fixed effects is also assumed.
... Additional arguments passed to the EM algorithm used for calculating the type of regression mixture specified in type.

\section*{Value}
regmixmodel.sel returns a matrix of the AIC, BIC, CAIC, and ICL values along with the winner (i.e., the highest value given by the model selection criterion) for various types of regression mixtures.

\section*{References}

Biernacki, C., Celeux, G. and Govaert, G. (2000) Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence 22(7), 719-725.

Bozdogan, H. (1987) Model Selection and Akaike's Information Criterion (AIC): The General Theory and its Analytical Extensions, Psychometrika 52, 345-370.
```

See Also
regmixEM, regmixEM.mixed

```

\section*{Examples}
```


## Assessing the number of components for NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
regmixmodel.sel(x = NO, y = Equivalence, k = 3, type = "fixed")

```
repnormmixEM
EM Algorithm for Mixtures of Normals with Repeated Measurements

\section*{Description}

Returns EM algorithm output for mixtures of normals with repeated measurements and arbitrarily many components.

\section*{Usage}
```

repnormmixEM(x, lambda = NULL, mu = NULL, sigma = NULL, k = 2,
arbmean = TRUE, arbvar = TRUE, epsilon = 1e-08,
maxit = 10000, verb = FALSE)

```

\section*{Arguments}
x
lambda Initial value of mixing proportions. Entries should sum to 1. This determines number of components. If NULL, then lambda is random from uniform Dirichlet and number of components is determined by mu.
A k-vector of component means. If NULL, then mu is determined by a normal distribution according to a binning method done on the data. If both lambda and mu are NULL, then number of components is determined by sigma.
sigma A vector of standard deviations. If NULL, then \(1 /\) sigma \(^{2}\) has random standard exponential entries according to a binning method done on the data. If lambda, mu , and sigma are NULL, then number of components is determined by k .
\(k \quad\) Number of components. Ignored unless all of lambda, mu, and sigma are NULL.
arbmean If TRUE, then the component densities are allowed to have different mus. If FALSE, then a scale mixture will be fit.
arbvar If TRUE, then the component densities are allowed to have different sigmas. If FALSE, then a location mixture will be fit.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

\section*{Value}
repnormmixEM returns a list of class mixEM with items:
\(x \quad\) The raw data.
lambda The final mixing proportions.
mu The final mean parameters.
sigma The final standard deviations. If arbmean = FALSE, then only the smallest standard deviation is returned. See scale below.
scale If arbmean = FALSE, then the scale factor for the component standard deviations is returned. Otherwise, this is omitted from the output.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration's log-likelihood.
restarts The number of times the algorithm restarted due to unacceptable choice of initial values.
ft A character vector giving the name of the function.

\section*{References}

Hettmansperger, T. P. and Thomas, H. (2000) Almost Nonparametric Inference for Repeated Measures in Mixture Models, Journal of the Royals Statistical Society, Series B 62(4) 811-825.

\section*{See Also}
normalmixEM

\section*{Examples}
```


## EM output for the water-level task data set.

data(Waterdata)
set.seed(100)
water <- t(as.matrix(Waterdata[, 3:10]))
em.out <- repnormmixEM(water, k = 2, verb = TRUE, epsilon = 1e-03)
em.out

```
repnormmixmodel.sel Model Selection in Mixtures of Normals with Repeated Measures

\section*{Description}

Assess the number of components in a mixture model with normal components and repeated measures using the Akaike's information criterion (AIC), Schwartz's Bayesian information criterion (BIC), Bozdogan's consistent AIC (CAIC), and Integrated Completed Likelihood (ICL).

\section*{Usage}
repnormmixmodel.sel(x, k = 2, ...)

\section*{Arguments}
\(x \quad\) An mxn matrix of observations. The rows correspond to the repeated measures and the columns correspond to the subject.
\(k \quad\) The maximum number of components to assess.
... Additional arguments passed to repnormmixEM.

\section*{Value}
repnormmixmodel.sel returns a matrix of the AIC, BIC, CAIC, and ICL values along with the winner (i.e., the highest value given by the model selection criterion) for a mixture of normals with repeated measures.

\section*{References}

Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7):719-725.
Bozdogan, H. (1987). Model Selection and Akaike's Information Criterion (AIC): The General Theory and its Analytical Extensions. Psychometrika, 52:345-370.

\section*{See Also}
repnormmixEM

\section*{Examples}
```


## Assessing the number of components for the water-level task data set.

data(Waterdata)
water<-t(as.matrix(Waterdata[,3:10]))
set.seed(100)
out <- repnormmixmodel.sel(water, k = 3, epsilon = 5e-01)
out

```
rexpmix

Simulate from Mixtures of Exponentials

\section*{Description}

Simulate from a mixture of univariate exponential distributions.

\section*{Usage}
rexpmix (n, lambda \(=1\), rate \(=1\))

\section*{Arguments}
n
lambda
rate

\section*{Value}
rexpmix returns an \(n\)-vector sampled from an \(m\)-component mixture of univariate exponential distributions.

\section*{See Also}
rnormmix, rmvnormmix for Gaussian mixtures, rweibullmix for mixture of Weibull distributions.

\section*{Examples}
```


## Generate data from a 2-component mixture of exponentials.

n=300 \# sample size
m=2 \# nb components
lambda=c(1/3, 2/3); rate = c(1,1/10) \# parameters
set.seed(1234)
x <- rexpmix(n, lambda, rate) \# iid ~ exp mixture

## histogram of the simulated data.

hist(x, col=8)

```

\section*{rmvnorm \\ Simulate from a Multivariate Normal Distribution}

\section*{Description}

Simulate from a multiviate normal distribution

\section*{Usage}
rmvnorm(n, mu=NULL, sigma=NULL)

\section*{Arguments}
n
mu
sigma

Number of vectors to simulate mean vector covariance matrix, assumed symmetric and nonnegative definite

\section*{Details}

This function uses an eigen decomposition assuming sigma is symmetric. In particular, the upper triangle of sigma is ignored.

\section*{Value}

An \(n \times d\) matrix in which each row is an independently generated realization from the desired multivariate normal distribution

\section*{See Also}
eigen, dnorm, dmvnorm

\section*{Description}

Simulate from a mixture of multivariate zero-correlation normal distributions

\section*{Usage}
rmvnormmix (n, lambda=1, mu=0, sigma=1)

\section*{Arguments}
n
lambda
mu
sigma

Number of cases to simulate.
Vector of mixture probabilities with length equal to \(m\), the desired number of components. This is assumed to sum to 1 ; if not, it is normalized.
Matrix of means of dimensions \(m \times r\), where \(m\) is the number of components (subpopulations) and \(r\) is the number of coordinates (repeated measurements) per case. Note: mu is automatically coerced to a matrix with \(m\) rows even if it is not given in this form, which can lead to unexpected behavior in some cases.
,
Matrix of standard deviations, same dimensions as mu. The coordinates within a case are independent, conditional on the mixture component. (There is marginal correlation among the coordinates, but this is due to the mixture structure only.) Note: sigma is automatically coerced to a matrix with \(m\) rows even if it is not given in this form, which can lead to unexpected behavior in some cases.

\section*{Details}

It is possible to generate univariate standard normal random variables using the default values (but why bother?). The case of conditionally iid coordinates is covered by the situation in which all columns in mu and sigma are identical.

\section*{Value}
rmvnormmix returns an \(n \times r\) matrix in which each row is a sample from one of the components of a mixture of zero-correlation multivariate normals. The mixture structure induces nonzero correlations among the coordinates.

\section*{See Also}
rnormmix

\section*{Examples}
```

\#\#Generate data from a 2-component mixture of trivariate normals.
set.seed(100)
n <- 200
lambda <- rep(1, 2)/2
mu <- matrix(2*(1:6), 2, 3)
sigma <- matrix(1,2,3)
mydata<-rmvnormmix(n, lambda, mu, sigma)

## Now check to see if we can estimate mixture densities well:

title <- paste("Does this resemble N(", mu[1,], ",1) and N(", mu[2,],",1)?",
sep="")
plot(npEM(mydata, 2), title=title)

```

\section*{rnormmix}

Simulate from Mixtures of Normals

\section*{Description}

Simulate from a mixture of univariate normal distributions.

\section*{Usage}
rnormmix (n, lambda=1, mu=0, sigma=1)

\section*{Arguments}
\begin{tabular}{ll}
n & Number of cases to simulate. \\
lambda & \begin{tabular}{l}
Vector of mixture probabilities, with length equal to \(m\), the desired number of \\
components (subpopulations). This is assumed to sum to \(1 ;\) if not, it is normal- \\
ized.
\end{tabular} \\
mu & Vector of means. \\
sigma & Vector of standard deviations.
\end{tabular}

\section*{Details}

This function simply calls rmvnormmix.

\section*{Value}
rnormmix returns an \(n\)-vector sampled from an \(m\)-component mixture of univariate normal distributions.
```

See Also
makemultdata, rmvnormmix

```

\section*{Examples}
```

    ##Generate data from a 2-component mixture of normals.
    set.seed(100)
    n <- 500
    lambda <- rep(1, 2)/2
    mu <- c(0, 5)
    sigma <- rep(1, 2)
    mixnorm.data <- rnormmix(n, lambda, mu, sigma)
    ##A histogram of the simulated data.
    hist(mixnorm.data)
    ```

\section*{Description}

This data set involves assessing children longitudinally at 6 age points from ages 4 through 18 years for the rod and frame task. This task sits the child in a darkened room in front of a luminous square frame tilted at 28 degrees on its axis to the left or right. Centered inside the frame was a luminous rod also tilted 28 degrees to the left or right. The child's task was to adjust the rod to the vertical position and the absolute deviation from the vertical (in degrees) was the measured response.

\section*{Usage}
data(RodFramedata)

\section*{Format}

This data frame consists of 140 children (the rows). Column 1 is the subject number and column 2 is the sex \((0=\) MALE and \(1=\) FEMALE \()\). Columns 3 through 26 give the 8 responses at each of the ages 4,5 , and 7 . Columns 27 through 56 give the 10 responses at each of the ages 11,14 , and 18 . A value of 99 denotes missing data.

\section*{Source}

Thomas, H. and Dahlin, M. P. (2005) Individual Development and Latent Groups: Analytical Tools for Interpreting Heterogeneity, Developmental Review 25(2), 133-154.
RTdata Reaction Time (RT) Data Set

\section*{Description}

This data set involves normally developing children 9 years of age presented with two visual simuli on a computer monitor. The left image is the target stimuli and on the right is either an exact copy or a mirror image of the target stimuli. The child must press one key if it is a copy or another key if it is a mirror image. The data consists of the reaction times (RT) of the 197 children who provided correct responses for all 6 task trials.

\section*{Usage}
data(RTdata)

\section*{Format}

This data frame consists of 197 children (the rows) and their 6 responses (the columns) to the stimulus presented. The response (RT) is recorded in milliseconds.

\section*{References}

Cruz-Medina, I. R., Hettmansperger, T. P. and Thomas, H. (2004) Semiparametric Mixture Models and Repeated Measures: The Multinomial Cut Point Model, Applied Statistics 53(3), 463-474.
Miller, C. A., Kail, R., Leonard, L. B. and Tomblin, J. B. (2001) Speed of Processing in Children with Specific Language Impairment, Journal of Speech, Language, and Hearing Research 44(2), 416-433.
```

See Also
RTdata2

```

RTdata2 Reaction Time (RT) Data Set \(\backslash \# 2\)

\section*{Description}

This data set involves normally developing children 9 years of age presented visual simuli on a computer monitor. There are three different experimental conditions, according to the length of the delay after which the stimulus was displayed on the screen. Each subject experienced each condition eight times, and these 24 trials were given in random order. These data give the 82 children for whom there are complete measurements among over 200 total subjects.

\section*{Usage \\ data(RTdata2)}

\section*{Format}

This data frame consists of 82 children (the rows) and their 24 responses (the columns) to the stimulus presented. The response is recorded in milliseconds. The columns are not in the order in which the stimuli were presented to the children; rather, they are arranged into three blocks of eight columns each so that each eight-column block contains only trials from one of the three conditions.

\section*{References}

Miller, C. A., Kail, R., Leonard, L. B. and Tomblin, J. B. (2001) Speed of Processing in Children with Specific Language Impairment, Journal of Speech, Language, and Hearing Research 44(2), 416-433.

\section*{See Also}

RTdata
rweibullmix
Simulate from Mixtures of Weibull distributions

\section*{Description}

Simulate from a mixture of univariate Weibull distributions.

\section*{Usage}
rweibullmix(n, lambda = 1, shape = 1, scale = 1)

\section*{Arguments}
\begin{tabular}{ll}
n & Number of cases to simulate. \\
lambda & \begin{tabular}{l}
Vector of mixture probabilities, with length equal to \(m\), the desired number of \\
components (subpopulations). This is assumed to sum to 1.
\end{tabular} \\
shape & Vector of component shapes. \\
scale & Vector of component scales.
\end{tabular}

\section*{Value}
rexpmix returns an \(n\)-vector sampled from an \(m\)-component mixture of univariate Weibull distributions.

\section*{See Also}
rnormmix and rmvnormmix for Gaussian mixtures, rexpmix for mixture of exponentials.

\section*{Examples}
```

n = 500 \# sample size
m = 2 \# nb components
lambda=c(0.4, 0.6)
shape <- c(0.5,5); scale <- c(1,20) \# model parameters
set.seed(321)
x <- rweibullmix(n, lambda, shape, scale) \# iid ~ weibull mixture

## histogram of the simulated data.

hist(x, col=8)

```

\section*{Description}

Returns ECM algorithm output for mixtures of multiple regressions with changepoints and arbitrarily many components.

\section*{Usage}
```

segregmixEM(y, x, lambda = NULL, beta = NULL, sigma = NULL,
k = 2, seg.Z, psi, psi.locs = NULL, delta = NULL,
epsilon = 1e-08, maxit = 10000, verb = FALSE,
max.restarts = 15)

```

\section*{Arguments}
\(y \quad\) An n-vector of response values.
\(x \quad\) An nxp matrix of predictors. Note that this model assumes the presence of an intercept.
lambda Initial value of mixing proportions. Entries should sum to 1. This determines number of components. If NULL, then lambda is random from uniform Dirichlet and the number of components is determined by beta.
beta Initial value of beta parameters. This is a list of length \(k\) such that each element must contain a vector having length consistent with the defined changepoint structure. See seg.Z, psi, and psi.loc below. If NULL, then beta has standard normal entries according to a binning method done on the data. If both lambda and beta are NULL, then number of components is determined by sigma.
sigma A vector of standard deviations. If NULL, then \(1 /\) sigma^2 has random standard exponential entries according to a binning method done on the data. If lambda, beta, and sigma are NULL, then number of components is determined by \(k\).
k Number of components. Ignored unless all of lambda, beta, and sigma are NULL.
```

seg. Z A list of length $k$ whose elements are right-hand side formulas, which are ad- ditive linear models of the predictors that have changepoints in their respective components. See below for more details.
psi A kxp matrix specifying the number of changepoints for each predictor in each component. See below for more details.
psi.locs A list of length $k$ that has initial estimates for the changepoint locations. Each element of the list must have length equal to the number of chanegpoints specified in the corresponding row of the psi matrix. For components with no changepoints, simply set that element equal to NULL. See below for more details.
delta An optional list of values quantifying the amount of separation at each changepoint if assuming discontinuities at the changepoints. This has the same dimensions as psi.locs.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.
max.restarts The number of times to try restarting the ECM algorithm if estimation problems occur - such as choice of poor initial values or a poorly chosen changepoint structure.

```

\section*{Details}
seg. \(Z\) is defined as a list of right-hand side linear model formulas that are used to identify which predictors have changepoints in each component. For example, suppose you have a dataframe with three predictors: V1, V2, V3. Suppose now that you wish to model a 3-component mixture of regressions with changepoints structure such that the first component has changepoints in V1 and V2, the second component has changepoints in V3, and the third component has no changepoints. Then you would define seg. \(\mathrm{Z}=\) list \((\sim \mathrm{V} 1+\mathrm{V} 2, \sim \mathrm{~V} 3, N U L L)\). Note that you MUST place the variables in order with respect to how they appear in the predictor matrix \(x\).
psi is a kxp matrix specifying the number of changepoints for each predictor in each component. For the example given above, suppose there are three changepoints for V 1 , two changepoints for V 2 , and four changepoints for \(V 3\). Then you would define \(p s i=\operatorname{rbind}(c(3,2,0), c(0,0,4), c(0,0,0))\).
psi. locs is a list of length k whose elements give the initial locations of the changepoints for each component. Each element of the list must have length equal to the total number of changepoints for that component's regression equation. For the example given above, in component 1, assume that the three changepoints for V 1 are at 3,7 , and 10 and the two changepoints for V 1 are at 5,20 , and 30 . In component 2 , assume that the four changepoints for \(\vee 3\) are at \(2,4,6\), and 8 . Then you would define psi.locs \(=\operatorname{list}(c(3,7,10,5,20,30), c(2,4,6,8), N U L L)\). Note that the order of the changepoints is determined by first sorting the predictors by how they appear in the formulas in seg. \(Z\) and then sorting in increasing order within each predictor.

\section*{Value}
segregmixEM returns a list of class segregmixEM with items:
\(x \quad\) The set of predictors.
\(y \quad\) The response values.
\begin{tabular}{ll}
lambda & The final mixing proportions. \\
beta & The final regression coefficients. \\
sigma & The final standard deviations. \\
seg. \(Z\) & The list of right-hand side formulas as defined by the user. \\
psi.locs & A list of length \(k\) with the final estimates for the changepoint locations. \\
delta & A list of the delta values that were optionally specified by the user. \\
loglik & The final log-likelihood. \\
posterior & An nxk matrix of posterior probabilities for observations. \\
all.loglik & A vector of each iteration's log-likelihood. \\
restarts & \begin{tabular}{l}
The number of times the algorithm restarted due to unacceptable choice of initial \\
values.
\end{tabular} \\
ft & A character vector giving the name of the function.
\end{tabular}

\section*{Note}

As of version 0.4.6, this more general function has replaced the now defunct regmixEM. chgpt and associated internal functions.

\section*{References}

Young, D. S. (2014) Mixtures of Regressions with Changepoints, Statistics and Computing, 24(2), 265-281.

\section*{See Also}
regmixEM

\section*{Examples}
```


## Not run:

## Simulated example.

set.seed(100)
x <- 1:20
y1 <- 3 + x + rnorm(20)
y2 <- 3 - x - 5*(x - 15)*(x > 15) + rnorm(20)
y <- c(y1, y2)
x <- c(x, x)
set.seed(100)
be <- list(c(3, -1, -5), c(3, 1))
s <- c(1, 1)
psi.locs <- list(comp.1 = list(x = 15), comp. 2 = NULL)
out <- segregmixEM(y, cbind(1,x), verb = TRUE, k = 2,
beta = be, sigma = s, lambda = c(1, 1)/2,
seg.Z = list(~x, NULL), psi = rbind(1, 0),
psi.locs = psi.locs, epsilon = 0.9)

```
```

z <- seq(0, 21, len = 40)
plot(x, y, col = apply(out$post, 1, which.max) + 1, pch = 19,
    cex.lab = 1.4, cex = 1.4)
b <- out$beta
d <- out$psi.locs
lines(z, b[[1]][1] + b[[1]][2] * z + b[[1]][3] *
            (z - d[[1]][[1]]) * (z > d[[1]][[1]]) , col = 2, lwd = 2)
lines(z, b[[2]][1] + b[[2]][2] * z, col = 3, lwd = 2)
abline(v = out$psi.locs[[1]][1], col = 2, lty = 2)

## End(Not run)

## Not run:

## Example using the NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
be <- list(c(1.30, -0.13, 0.08), c(0.56, 0.09))
s <- c(0.02, 0.04)
psi.locs <- list(comp.1 = list(NO = 1.57), comp.2 = NULL)
out <- segregmixEM(Equivalence, cbind(NO), verb = TRUE, k = 2,
beta = be, sigma = s, lambda = c(1, 1)/2,
seg.Z = list(~NO, NULL), psi = rbind(1, 0),
psi.locs = psi.locs, epsilon = 0.1)
z <- seq(0, 5, len = 1000)
plot(NOdata, col = apply(out$post, 1, which.max) + 1, pch = 19,
    cex.lab = 1.4, cex = 1.4, ylab = "Equivalence Ratio")
b <- out$beta
d <- out$psi.locs
lines(z, b[[1]][1] + b[[1]][2] * z + b[[1]][3] *
    (z - d[[1]][[1]]) * (z > d[[1]][[1]]) , col = 2, lwd = 2)
lines(z, b[[2]][1] + b[[2]][2] * z, col = 3, lwd = 2)
abline(v = out$psi.locs[[1]][1], col = 2, lty = 2)
detach(NOdata)

## End(Not run)

```
spEM

Semiparametric EM-like Algorithm for Mixtures of Independent Repeated Measurements

\section*{Description}

Returns semiparametric EM algorithm output (Benaglia et al, 2009) for mixtures of multivariate (repeated measures) data where the coordinates of a row (case) in the data matrix are assumed to be independent, conditional on the mixture component (subpopulation) from which they are drawn.

For now, this algorithm only implements model (4.7) in Benaglia et al, in which each component and block has exactly the same (nonparametric) shape and they differ only by location and scale.
```

Usage
spEM(x, mu0, blockid = 1:ncol(x),
bw = bw.nrd0(as.vector(as.matrix(x))), constbw = TRUE,
h = bw, eps = 1e-8,
maxiter = 500, stochastic = FALSE, verb = TRUE)

```

\section*{Arguments}

X
mu0
blockid A vector of length \(r\) identifying coordinates (columns of \(x\)) that are assumed
An \(n \times r\) matrix of data. Each of the \(n\) rows is a case, and each case has \(r\) repeated measurements. These measurements are assumed to be conditionally independent, conditional on the mixture component (subpopulation) from which the case is drawn.

Either an \(m \times r\) matrix specifying the initial centers for the kmeans function, or an integer \(m\) specifying the number of initial centers, which are then choosen randomly in kmeans
to be identically distributed (i.e., in the same block). For instance, the default has all distinct elements, indicating that no two coordinates are assumed identically distributed and thus a separate set of \(m\) density estimates is produced for each column of \(x\). On the other hand, if blockid=rep(\(1, \mathrm{ncol}(\mathrm{x})\)), then the coordinates in each row are assumed conditionally i.i.d.
bw Bandwidth for density estimation, equal to the standard deviation of the kernel density. By default, a simplistic application of the default bw.nrd0 bandwidth used by density to the entire dataset.
constbw Logical: If TRUE, use the same bandwidth for each iteration and for each component and block. If FALSE, use a separate bandwidth for each component and block, and update this bandwidth at each iteration of the algorithm using a suitably modified bw. nrd0 method as described in Benaglia et al (2011).
h
eps Tolerance limit for declaring algorithm convergence. Convergence is declared whenever the maximum change in any coordinate of the lambda vector (of mixing proportion estimates) does not exceed eps.
maxiter The maximum number of iterations allowed, for both stochastic and non-stochastic versions; for non-stochastic algorithms (stochastic = FALSE), convergence may be declared before maxiter iterations (see eps above).
stochastic Flag, if FALSE (the default), runs the non-stochastic version of the npEM algorithm, as in Benaglia et al (2009). Set to TRUE to run a stochastic version which simulates the posteriors at each iteration, and runs for maxiter iterations.
verb
If TRUE, print updates for every iteration of the algorithm as it runs

\section*{Value}
spEM returns a list of class spEM with the following items:
data \(\quad\) The raw data (an \(n \times r\) matrix).
posteriors An \(n \times m\) matrix of posterior probabilities for observation. If stochastic \(=\) TRUE, this matrix is computed from an average over the maxiter iterations.
bandwidth If constbw==TRUE, same as the bw input argument; otherwise, value of bw matrix at final iteration (since for now this algorithm only implements model (4.7) in Benaglia et al, the bandwidth matrix is reduced to a single bandwith scalar). This information is needed by any method that produces density estimates from the output.
blockid Same as the blockid input argument, but recoded to have positive integer values. Also needed by any method that produces density estimates from the output.
lambda The sequence of mixing proportions over iterations.
lambdahat The final mixing proportions if stochastic = FALSE, or the average mixing proportions if stochastic \(=\) TRUE .
\(\mathrm{mu} \quad\) The sequence of location parameters over iterations.
muhat The final location parameters if stochastic \(=\) FALSE, or the average location parameters if stochastic \(=\) TRUE.
sigma The sequence of scale parameters over iterations.
sigmahat \(\quad\) The final scale parameters if stochastic \(=\) FALSE, or the average scale parameters if stochastic \(=\) TRUE.
loglik The sequence of log-likelihoods over iterations.

\section*{References}
- Benaglia, T., Chauveau, D., and Hunter, D. R., An EM-like algorithm for semi- and nonparametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18, 505-526, 2009.
- Benaglia, T., Chauveau, D. and Hunter, D.R. Bandwidth Selection in an EM-like algorithm for nonparametric multivariate mixtures. Nonparametric Statistics and Mixture Models: A Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages 15-27, 2011.
- Bordes, L., Chauveau, D., and Vandekerkhove, P., An EM algorithm for a semiparametric mixture model, Computational Statistics and Data Analysis, 51: 5429-5443, 2007.

\section*{See Also}
plot.spEM, normmixrm.sim, spEMsymloc, npEM, plotseq.npEM

\section*{Examples}
```


## Not run:

## simulate a 2-component gaussian mixture with 3 iid repeated measures

set.seed(100)
mu <- matrix(c(0, 15), 2, 3)
sigma <- matrix(c(1, 5), 2, 3)
x <- rmvnormmix(300, lambda = c(.4,.6), mu = mu, sigma = sigma)

## apply spEM with or without an iterative bandwidth selection

d <- spEM(x, mu0 = 2, blockid = rep (1,3), constbw = FALSE)
d2 <- spEM(x, mu0 = 2, blockid = rep (1,3), constbw = TRUE)
plot(d, xlim=c(-10, 40), ylim = c(0, . 16), xlab = "", breaks = 30,
cex.lab=1.5, cex.axis=1.5, addlegend=FALSE)
plot(d2, newplot=FALSE, addlegend=FALSE, lty=2)

## End(Not run)

```
spEMsymloc Semiparametric EM-like Algorithm for univariate symmetric location
 mixture

\section*{Description}

Returns semiparametric EM algorithm output (Bordes et al, 2007, and Benaglia et al, 2009) for location mixtures of univariate data and symmetric component density.

\section*{Usage}
spEMsymloc(x, mu0, bw = bw.nrd0(x), h=bw, eps = 1e-8, maxiter = 100, stochastic \(=\) FALSE, verbose \(=\) FALSE)

\section*{Arguments}
\(x \quad\) A vector of length \(n\) consisting of the data.
mu0 \(\quad\) Either a vector specifying the initial centers for the kmeans function, and from which the number of component is obtained, or an integer \(m\) specifying the number of initial centers, which are then choosen randomly in kmeans.
bw Bandwidth for density estimation, equal to the standard deviation of the kernel density.
h Alternative way to specify the bandwidth, to provide backward compatibility.
eps Tolerance limit for declaring algorithm convergence. Convergence is declared before maxiter iterations whenever the maximum change in any coordinate of the lambda (mixing proportion estimates) and mu (means) vector does not exceed eps.
maxiter The maximum number of iterations allowed, for both stochastic and non-stochastic versions; for non-stochastic algorithms (stochastic = FALSE), convergence may be declared before maxiter iterations (see eps above).
\begin{tabular}{ll}
stochastic & Flag, if FALSE (the default), runs the non-stochastic version of the algorithm, \\
as in Benaglia et al (2009). Set to TRUE to run a stochastic version which \\
simulates the posteriors at each iteration (as in Bordes et al, 2007), and runs for \\
maxiter iterations.
\end{tabular}

\section*{Value}
spEMsymloc returns a list of class npEM with the following items:
data \(\quad\) The raw data (an \(n \times r\) matrix).
posteriors An \(n \times m\) matrix of posterior probabilities for observations. If stochastic \(=\) TRUE, this matrix is computed from an average over the maxiter iterations.
bandwidth Same as the bw input argument, returned because this information is needed by any method that produces density estimates from the output.
lambda The sequence of mixing proportions over iterations.
lambdahat The final estimate for mixing proportions if stochastic = FALSE, the average over the sequence if stochastic \(=\) TRUE.
mu the sequence of component means over iterations.
muhat the final estimate of component means if stochastic = FALSE, the average over the sequence if stochastic \(=\) TRUE.
symmetric Flag indicating that the kernel density estimate is using a symmetry assumption.

\section*{References}
- Benaglia, T., Chauveau, D., and Hunter, D. R., An EM-like algorithm for semi- and nonparametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18, 505-526, 2009.
- Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29, 2009.
- Bordes, L., Chauveau, D., and Vandekerkhove, P. (2007), An EM algorithm for a semiparametric mixture model, Computational Statistics and Data Analysis, 51: 5429-5443.

\section*{See Also}
plot.npEM, rnormmix, npEM, spEMsymlocN01, plotseq.npEM

\section*{Examples}
```


## Example from a normal location mixture

set.seed(100)
n <- 200
lambda <- c(1/3,2/3)
mu <- c(0, 4); sigma<-rep(1, 2)
x <- rnormmix(n, lambda, mu, sigma)
out.stoc <- spEMsymloc(x, mu0=c(-1, 2), stochastic=TRUE)
out.nonstoc <- spEMsymloc(x, mu0=c(-1, 2))

```
```

spEMsymlocN01

```
semiparametric EM-like algorithm for univariate mixture in False Discovery Rate (FDR) estimation

\section*{Description}

Return semiparametric EM-like algorithm output for a 2-components mixture model with one component set to \(\operatorname{Normal}(0,1)\), and the other component being a unspecified but symmetric density with a location parameter. This model is tailored to FDR estimation on probit transform (qnorm) of p -values arising from multiple testing.

\section*{Usage}
spEMsymlocN01(x, mu0 = 2, bw = bw.nrd0(x), h=bw, eps = 1e-8,
maxiter \(=100\), verbose \(=\) FALSE, plotf \(=\) FALSE)

\section*{Arguments}
\(x \quad\) A vector of length \(n\) consisting of the data, probit transform of pvalues, preferably sorted.
mu0 Starting value of vector of component means. If not set then the initial value is randomly generated by a kmeans of the data in two bins. Since component 1 is theoretically normal \((0,1)\), mu[1] must be 0 and mu[2] some negative value (see details).
bw Bandwidth for weighted kernel density estimation.
\(\mathrm{h} \quad\) Alternative way to specify the bandwidth, to provide backward compatibility.
eps Tolerance limit for declaring algorithm convergence. Convergence is declared before maxiter iterations whenever the maximum change in any coordinate of the lambda (mixing proportion estimates) and mu (mean of the semiparametric component) vector does not exceed eps
maxiter The maximum number of iterations allowed; convergence may be declared before maxiter iterations (see eps above).
verbose If TRUE, print updates for every iteration of the algorithm as it runs.
plotf If TRUE, plots successive updates of the nonparametric density estimate over iterations. Mostly for testing purpose.

\section*{Details}

This algorithm is a specific version of semiparametric EM-like algorithm similar in spirit to spEMsymloc, but specialized for FDR estimation on probit transform (qnorm) of p-values in multiple testing framework. In this model, component 1 corresponds to the individuals under the null hypothesis, i.e. theoretically normal \((0,1)\) distributed, whereas component 2 corresponds to individuals in the alternative hypothesis, with typically very small p-values and consequently negative values for probit(p) data. This model only assumes that these individuals come from an unspecified but symmetric density with a location parameter, as in Bordes and Vandekerkhove (2010) and Chauveau et al. (2014).

\section*{Value}
spEMsymlocN01 returns a list of class spEMN01 with the following items:
data \(\quad\) The raw data (an \(n \times r\) matrix).
posteriors An \(n \times 2\) matrix of posterior probabilities for observations. This can be used in, e.g., plotFDR to plot False Discovery Rate estimates.
bandwidth Same as the bw input argument, returned because this information is needed by any method that produces density estimates from the output.
lambda The sequence of mixing proportions over iterations.
lambdahat The final estimate for mixing proportions.
mu the sequence of second component mean over iterations.
muhat the final estimate of second component mean.
symmetric Flag indicating that the kernel density estimate is using a symmetry assumption.

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Bordes, L. and Vandekerkhove, P. (2010). Semiparametric two-component mixture model with a known component: an asymptotically normal estimator. Mathematical Methods of Statistics, 19(1):22-41
- Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. (2014) Largescale simultaneous hypothesis testing in monitoring carbon content from french soil database: A semi-parametric mixture approach. Geoderma 219-220 (2014): 117-124.

\section*{See Also}
spEMsymloc, normalmixEM, npEM, plot.spEMN01, plotFDR

\section*{Examples}
```


## Probit transform of p-values

## from a Beta-Uniform mixture model

## comparion of parametric and semiparametric EM fit

## Note: in actual situations n=thousands

set.seed(50)
n=300 \# nb of multiple tests
m=2 \# 2 mixture components
a=c(1,0.1); b=c(1,1); lambda=c(0.6,0.4) \# parameters
z=sample(1:m, n, rep=TRUE, prob = lambda)
p <- rbeta(n, shape1 = a[z], shape2 = b[z]) \# p-values
o <- order(p)
cpd <- cbind(z,p)[o,] \# sorted complete data, z=1 if H0, 2 if H1
p <- cpd[,2] \# sorted p-values
y <- qnorm(p) \# probit transform of the pvalues

```
```


# gaussian EM fit with component 1 constrained to N(0,1)

s1 <- normalmixEM(y, mu=c(0,-4),
mean.constr = c(0,NA), sd.constr = c(1,NA))
s2 <- spEMsymlocN01(y, mu0 = c(0,-3)) \# spEM with N(0,1) fit
hist(y, freq = FALSE, col = 8, main = "histogram of probit(pvalues)")
plot(s2, add.plot = TRUE, lwd = 2)

# Exemples of plot capabilities

# Note: posteriors must be ordered by p for plot.FDR

# plotFDR(s1\$post) \# when true complete data not observed

# plotFDR(s1$post, s2$post) \# comparing 2 strategies

plotFDR(s1$post, s2$post, lg1 = "normalmixEM", lg2 = "spEMsymlocN01",
complete.data = cpd) \# with true FDR computed from z

```
spregmix EM-like Algorithm for Semiparametric Mixtures of Regressions

\section*{Description}

Returns parameter estimates for finite mixtures of linear regressions with unspecified error structure. Based on Hunter and Young (2012).

\section*{Usage}
```

spregmix(lmformula, bw = NULL, constbw = FALSE,
bwmult $=0.9$, z.hat $=$ NULL, symm $=$ TRUE, betamethod $=$ "LS",
$m=$ ifelse(is.null(z.hat), 2, ncol(z.hat)),
epsilon $=1 \mathrm{e}-04$, maxit $=1000$, verbose $=$ FALSE,
...)

```

\section*{Arguments}
lmformula Formula for a linear model, in the same format used by lm. Additional parameters may be passed to 1 m via the . . . argument.
bw Initial bandwidth value. If NULL, this will be chosen automatically by the algorithm.
constbw Logical: If TRUE, the bandwidth is held constant throughout the algorithm; if FALSE, it adapts at each iteration according to the rules given in Hunter and Young (2012).
bwmult Whenever it is updated automatically, the bandwidth is equal to bwmult divided by the fifth root of \(n\) times the smaller of \(s\) and IQR/1.34, where \(s\) and IQR are estimates of the standard deviation and interquartile range of the residuals, as explained in Hunter and Young (2012). The value of 0.9 gives the rule of Silverman (1986) and the value of 1.06 gives the rule of Scott (1992). Larger values lead to greater smoothing, whereas smaller values lead to less smoothing.
\(\left.\begin{array}{ll}\text { z. hat } & \begin{array}{l}\text { Initial nxm matrix of posterior probabilities. If NULL, this is initialized ran- } \\
\text { domly. As long as a parametric estimation method like least squares is used to } \\
\text { estimate beta in each M-step, the } z \text {. hat values are the only values necessary to } \\
\text { begin the EM iterations. }\end{array} \\
\text { Logical: If TRUE, the error density is assumed symmetric about zero. If FALSE, } \\
\text { it is not. WARNING: If FALSE, the intercept parameter is not uniquely identi- } \\
\text { fiable if it is included in the linear model. } \\
\text { Method of calculating beta coefficients in the M-step. Current possible val- } \\
\text { ues are "LS" for least-squares; "L1" for least absolute deviation; "NP" for fully } \\
\text { nonparametric; and "transition" for a transition from least squares to fully non- } \\
\text { parametric. If something other than these four possibilities is used, then "NP" is } \\
\text { assumed. For details of these methods, see Hunter and Young (2012). }\end{array}\right\}\)\begin{tabular}{l}
Number of components in the mixture. \\
betamethod \begin{tabular}{l}
Convergence is declared if the largest change in any lambda or beta coordinate \\
is smaller than epsilon.
\end{tabular} \\
epsilon \\
maxit \\
The maximum number of iterations; if convergence is never declared based on \\
comparison with epsilon, then the algorithm stops after maxit iterations.
\end{tabular}

\section*{Value}
regmixEM returns a list of class npEM with items:
\(x \quad\) The set of predictors (which includes a column of 1's if addintercept = TRUE).
\(y \quad\) The response values.
lambda The mixing proportions for every iteration in the form of a matrix with m columns and (\#iterations) rows
beta The final regression coefficients.
posterior An nxm matrix of posterior probabilities for observations.
np.stdev Nonparametric estimate of the standard deviation, as given in Hunter and Young (2012)
bandwidth Final value of the bandwidth
density.x Points at which the error density is estimated
density.y Values of the error density at the points density.x
symmetric Logical: Was the error density assumed symmetric?
loglik A quantity similar to a log-likelihood, computed just like a standard loglikelihood would be, conditional on the component density functions being equal to the final density estimates.
ft A character vector giving the name of the function.

\section*{References}

Hunter, D. R. and Young, D. S. (2012) Semi-parametric Mixtures of Regressions, Journal of Nonparametric Statistics 24(1): 19-38.
Scott, D. W. (1992) Multivariate Density Estimation, John Wiley \& Sons Inc., New York.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman \& Hall, London.

\section*{See Also}
regmixEM, spEMsymloc, lm

\section*{Examples}
```

data(tonedata)

## By default, the bandwidth will adapt and the error density is assumed symmetric

set.seed(100)
a=spregmix(tuned~stretchratio, bw=.2, data=tonedata, verb=TRUE)

## Look at the sp mixreg solution:

plot(tonedata)
abline(a=a$beta[1,1],b=a$beta[2,1], col=2)
abline(a=a$beta[1,2],b=a$beta[2, 2], col=3)

## Look at the nonparametric KD-based estimate of the error density,

## constrained to be zero-symmetric:

plot(xx<-a$density.x, yy<-a$density.y, type="l")

## Compare to a normal density with mean 0 and NP-estimated stdev:

z <- seq(min(xx), max(xx), len=200)
lines(z, dnorm(z, sd=sqrt((a$np.stdev)^2+a$bandwidth^2)), col=2, lty=2)

# Add bandwidth^2 to variance estimate to get estimated var of KDE

## Now add the sp mixreg estimate without assuming symmetric errors:

b=spregmix(tuned~stretchratio, bw=.2, , symm=FALSE, data=tonedata, verb=TRUE)
lines(b$density.x, b$density.y, col=3)

```
```

spRMM_SEM Stochastic EM algorithm for semiparametric scaled mixture of cen-

``` sored data

\section*{Description}

Stochastic EM algorithm for semiparametric scaled mixture for randomly right censored data.

\section*{Usage}
```

spRMM_SEM(t, d = NULL, lambda = NULL, scaling = NULL,
centers = 2, kernelft = triang_wkde,
bw = rep(bw.nrd0(t),length(t)), averaged = TRUE,
epsilon = 1e-08, maxit = 100, batchsize = 1, verb = FALSE)

```

\section*{Arguments}
t
d
lambda Initial value of mixing proportions. If NULL, then lambda is set to rep (\(1 / k, k\)).
scaling Initial value of scaling between components, set to 1 if NULL.
centers initial centers for initial call to kmeans for initialization.
kernelft
bw Bandwidth in the kernel hazard estimates.
averaged averaged.
epsilon Tolerance limit.
maxit The number of iterations allowed.
batchsize The batchsize (see reference below).
verb If TRUE, print updates for every iteration of the algorithm as it runs

Value
spRMM_SEM returns a list of class "spRMM" with the following items:
\(\mathrm{t} \quad\) The input data.
\(\mathrm{d} \quad\) The input censoring indicator.
lambda
The estimates for the mixing proportions.
scaling The estimates for the components scaling.
posterior An \(n \times k\) matrix of posterior probabilities for observation, after convergence of the algorithm.
loglik The (pseudo) log-likelihood value at convergence of the algorithm.
all.loglik The sequence of log-likelihood values over iterations.
all.lambda The sequence of mixing proportions over iterations.
all.scaling The sequence of scaling parameter over iterations.
meanpost Posterior probabilities averaged over iterations.
survival Kaplan-Meier last iteration estimate (a stepfun object).
hazard Hazard rate last iteration estimate evaluated at final.t.
final.t Last iteration unscaled sample (see reference).
s.hat Kaplan-Meier average estimate.
\(t\).hat Ordered unscaled sample, for testing purpose.
avg.od For testing purpose only.
hazard.hat Hazard rate average estimate on \(t\).hat.
batch.t Batch sample (not ordered), see reference.
batch.d Associated event indicators just rep(d, batchsize), for testing purpose.
sumNaNs Internal control of numerical stability.
\(\mathrm{ft} \quad\) A character vector giving the name of the function.

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. http://link.springer.com/article/10.1007/s00180-016-0661-7

\section*{See Also}

Related functions: plotspRMM, summary.spRMM.
Other models and algorithms for censored lifetime data (name convention is model_algorithm): expRMM_EM, weibullRMM_SEM.

\section*{Examples}
```


## Not run:

n=500 \# sample size
m=2 \# nb components
lambda=c(0.4, 0.6) \# parameters
meanlog=3; sdlog=0.5; scale=0.1
set.seed(12)

# simulate a scaled mixture of lognormals

x <- rlnormscalemix(n, lambda, meanlog, sdlog, scale)
cs=runif(n, 20,max(x)+400) \# Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min)
d <- 1*(x <= cs)
tauxc <- 100*round( 1-mean(d),3)
cat(tauxc, "percents of data censored.\n")
c0 <- c(25, 180) \# data-driven initial centers (visible modes)
sc0 <- 25/180 \# and scaling
s <- spRMM_SEM(t, d, scaling = sc0, centers = c0, bw = 15, maxit = 100)
plotspRMM(s) \# default
summary(s) \# S3 method for class "spRMM"

## End(Not run)

```

\section*{Description}
summary method for class mixEM.
```

Usage
\#\# S3 method for class 'mixEM'
summary(object, digits=6, ...)

```

\section*{Arguments}
\[
\begin{array}{ll}
\text { object } & \text { an object of class mixEM such as a result of a call to normalmixEM } \\
\text { digits } & \text { Significant digits for printing values } \\
\ldots & \text { further arguments passed to print method. }
\end{array}
\]

\section*{Details}
summary.mixEM prints parameter estimates for each component of a fitted mixture model. The estimates printed vary with the type of model.

\section*{Value}

The function summary.mixEM prints the final loglikelihood value at the solution as well as a matrix of values for each component that could include:
\begin{tabular}{ll}
lambda & The estimated mixing weights \\
mu & The estimated mean parameters \\
sigma & The estimated standard deviations \\
theta & The estimated multinomial parameters \\
beta & The estimated regression parameters
\end{tabular}

\section*{See Also}
normalmixEM, logisregmixEM, multmixEM, mvnormalmixEM, poisregmixEM, regmixEM, regmixEM.lambda, regmixEM.loc, regmixEM.mixed, regmixEM.chgpt, repnormmixEM, expRMM_EM, weibullRMM_SEM

\section*{Examples}
```

data(faithful)
attach(faithful)
set.seed(100)
out <- normalmixEM(waiting, mu=c(50,80), sigma=c(5,5), lambda=c(.5,.5))
summary(out)

```

Summarizing Fits for Nonparametric Mixture Models with Conditionally Independent Multivariate Component Densities

\section*{Description}
summary method for class mvnpEM.

\section*{Usage}
\#\# S3 method for class 'mvnpEM'
summary (object, ...)
\#\# S3 method for class 'summary.mvnpEM'
print(x, digits=3, ...)

\section*{Arguments}
object, \(x \quad\) an object of class mvnpEM such as a result of a call to mvnpEM
digits Significant digits for printing values
... further arguments passed to or from other methods.

\section*{Details}
summary.mvnpEM prints means and variances of each block for each component. These quantities might not be part of the model, but they are estimated nonparametrically based on the posterior probabilities and the data.

\section*{Value}

The function summary.mvnpEM returns a list of type summary .mvnpEM with the following components:
\(\mathrm{n} \quad\) The number of observations
\(m \quad\) The number of mixture components
B The number of blocks
blockid The block ID (from 1 through B) for each of the coordinates of the multivariate observations. The blockid component is of length \(r\), the dimension of each observation.
means A \(B \times m\) matrix giving the estimated mean of each block in each component.
variances \(\quad\) Same as means but giving the estimated variances instead.

\section*{References}

Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and nonparametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18(2), 505-526.

Chauveau, D., and Hoang, V. T. L. (2015), Nonparametric mixture models with conditionally independent multivariate component densities, Preprint under revision. https://hal. archives-ouvertes. fr/hal-01094837

\section*{See Also}
mvnpEM, plot.mvnpEM

\section*{Examples}
```


# Example as in Chauveau and Hoang (2015) with 6 coordinates

## Not run:

m=2; r=6; blockid <-c(1,1,2,2,3,3) \# 3 bivariate blocks

# generate some data x ...

a <- mvnpEM(x, mu0=2, blockid, samebw=F) \# adaptive bandwidth
plot(a) \# this S3 method produces 6 plots of univariate marginals
summary(a)

## End(Not run)

```
\begin{tabular}{ll}
summary.npEM & \begin{tabular}{l}
Summarizing non- and semi-parametric multivariate mixture model \\
fits
\end{tabular}
\end{tabular}

\section*{Description}
summary method for class npEM.

\section*{Usage}
\#\# S3 method for class 'npEM'
summary (object, ...)
\#\# S3 method for class 'summary.npEM'
print(x, digits=3, ...)

\section*{Arguments}
object \(x\) an object of class npEM such as a result of a call to npEM
digits \(\quad\) Significant digits for printing values
... further arguments passed to or from other methods.

\section*{Details}
summary.npEM prints means and variances of each block for each component. These quantities might not be part of the model, but they are estimated nonparametrically based on the posterior probabilities and the data.

\section*{Value}

The function summary. npEM returns a list of type summary. npEM with the following components:
\(\mathrm{n} \quad\) The number of observations
\(m \quad\) The number of mixture components
B The number of blocks
blockid The block ID (from 1 through B) for each of the coordinates of the multivariate observations. The blockid component is of length \(r\), the dimension of each observation.
means A \(B \times m\) matrix giving the estimated mean of each block in each component.
variances \(\quad\) Same as means but giving the estimated variances instead.

\section*{References}

Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and nonparametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18(2), 505-526.

\section*{See Also}
```

npEM, plot.npEM

```

\section*{Examples}
```

data(Waterdata)
set.seed(100)

## Not run:

a <- npEM(Waterdata[,3:10], 3, bw=4) \# Assume indep but not iid
summary(a)
b <- npEM(Waterdata[,3:10], 3, bw=4, blockid=rep(1,8)) \# Now assume iid
summary (b)

## End(Not run)

```
summary.spRMM \begin{tabular}{l}
Summarizing fits from Stochastic EM algorithm for semiparametric \\
scaled mixture of censored data
\end{tabular}

\section*{Description}
summary method for class spRMM.

\section*{Usage}
\#\# S3 method for class 'spRMM'
summary (object, digits = 6, ...)

\section*{Arguments}
object an object of class spRMM such as a result of a call to spRMM_SEM
digits Significant digits for printing values
... Additional parameters passed to print.

\section*{Details}
summary.spRMM prints scalar parameter estimates for a fitted mixture model: each component weight and the scaling factor, see reference below. The functional (nonparametric) estimates of survival and hazard rate funcions can be obtained using plotspRMM.

\section*{Value}

The function summary.spRMM prints the final loglikelihood value at the solution as well as The estimated mixing weights and the scaling parameter.

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. http://link.springer.com/article/10.1007/s00180-016-0661-7

\section*{See Also}

Function for plotting functional (nonparametric) estimates: plotspRMM.
Other models and algorithms for censored lifetime data (name convention is model_algorithm): expRMM_EM, weibullRMM_SEM.

\section*{Examples}
\# See example(spRMM_SEM)

\section*{Description}

Return ECM algorithm output for a specific case of a three-component tau equivalence model

\section*{Usage}
tauequivnormalmixEM (\(x\), lambda \(=\) NULL, mu \(=\) NULL, sigma \(=\) NULL, \(k=3\), mean.constr \(=\) NULL, sd.constr \(=\) NULL, gparam \(=\) NULL, epsilon \(=1 \mathrm{e}-08\), maxit \(=10000\), maxrestarts \(=20\), verb = FALSE, fast=FALSE, ECM = TRUE, arbmean \(=\) TRUE, arbvar \(=\) TRUE)

\section*{Arguments}
x

\section*{lambda}
mu
sigma Starting value of vector of component standard deviations for algorithm, passed directly to normalmixMMlc. Obsolete for linear constraint on the inverse variances, use gparam instead to specify a starting value. Note: This needs more precision
k
Number of components, passed directly to normalmixMMlc. Initial value ignored unless mu and sigma are both NULL. Also, initial value is ignored if mean. constr is NULL, since in that case we presume \(\mathrm{k}=3\).
mean.constr If non-NULL, this parameter is passed directly to normalmixMMlc and both mean.lincstr and var.lincstr are passed as NULL to normalmixMMlc. If NULL, then it is assumed that \(\mathrm{k}=3\) and the means must take the form \(\alpha, \alpha-\delta\), and \(\alpha+\delta\) for unknown parameters \(\alpha\) and \(\delta\). Furthermore, the reciprocal variances are assumed to be \(\gamma_{1}+\gamma_{2}, \gamma_{1}\), and \(\gamma_{1}\) for unknown positive parameters \(\gamma_{1}\) and \(\gamma_{2}\). These constraints are passed to the normalmixMMlc function using the mean. lincstr and var. lincstr arguments as shown in the examples for the normalmixMMlc help file.
\(\left.\begin{array}{ll}\text { sd.constr } & \text { Deprecated. } \\ \text { gparam } \\ \text { epsilon } & \text { This argument is passed directly to normalmixMMlc. } \\ \text { The convergence criterion. Convergence is declared when the change in the } \\ \text { observed data log-likelihood increases by less than epsilon. }\end{array}\right\}\)

\section*{Details}

The tauequivnormalmixEM function is merely a wrapper for the normalmixMMlc function. \# This is the standard EM algorithm for normal mixtures that maximizes \# the conditional expected complete-data \# log-likelihood at each M-step of the algorithm. \# If desired, the \# EM algorithm may be replaced by an ECM algorithm (see ECM argument) \# that alternates between maximizing with respect to the mu \# and lambda while holding sigma fixed, and maximizing with \# respect to sigma and lambda while holding mu \# fixed. In the case where arbmean is FALSE \# and arbvar is TRUE, there is no closed-form EM algorithm, \# so the ECM option is forced in this case.

\section*{Value}
normalmixEM returns a list of class mixEM with items:
\(x \quad\) The raw data.
lambda The final mixing proportions.
mu The final mean parameters.
sigma The final standard deviation(s)
scale Scale factor for the component standard deviations, if applicable.
\begin{tabular}{ll}
loglik & The final log-likelihood. \\
posterior & An nxk matrix of posterior probabilities for observations. \\
all.loglik & \begin{tabular}{l}
A vector of each iteration's log-likelihood. This vector includes both the initial \\
and the final values; thus, the number of iterations is one less than its length.
\end{tabular} \\
restarts & \begin{tabular}{l}
The number of times the algorithm restarted due to unacceptable choice of initial \\
values.
\end{tabular} \\
ft & A character vector giving the name of the function.
\end{tabular}

\section*{References}
- Thomas, H., Lohaus, A., and Domsch, H. (2011) Stable Unstable Reliability Theory, British Journal of Mathematical and Statistical Psychology 65(2): 201-221.
- Meng, X.-L. and Rubin, D. B. (1993) Maximum Likelihood Estimation Via the ECM Algorithm: A General Framework, Biometrika 80(2): 267-278.

\section*{See Also}
normalmixMMlc, normalmixEM, mvnormalmixEM, normalmixEM2comp

\section*{Examples}
```


## Analyzing synthetic data as in the tau equivalent model

## From Thomas et al (2011), see also Chauveau and Hunter (2013)

## a 3-component mixture of normals with linear constraints.

lbd <- c(0.6,0.3,0.1); m <- length(lbd)
sigma <- sig0 <- sqrt(c(1,9,9))

# means constaints mu = M beta

M <- matrix(c(1,1,1,0,1,-1), 3, 2)
beta <- c(1,5) \# unknown constained mean
mu0 <- mu <- as.vector(M %*% beta)

# linear constraint on the inverse variances pi = A.g

A <- matrix(c(1,1,1,0,1,0), m, 2, byrow=TRUE)
iv0 <- 1/(sig0^2)
g0 <- c(iv0[2],iv0[1] - iv0[2]) \# gamma^0 init

# simulation and EM fits

set.seed(40); n=100; x <- rnormmix(n,lbd,mu,sigma)
s <- normalmixEM(x,mu=mu0,sigma=sig0,maxit=2000) \# plain EM

# EM with var and mean linear constraints

sc <- normalmixMMlc(x, lambda=lbd, mu=mu0, sigma=sig0,
mean.lincstr=M, var.lincstr=A, gparam=g0)

# Using tauequivnormalmixEM function to call normalmixMMlc

tau <- tauequivnormalmixEM (x, lambda=lbd, mu=mu0, gparam=g0)

# plot and compare both estimates

dnormmixt <- function(t, lam, mu, sig){
m <- length(lam); f <- 0
for (j in 1:m) f <- f + lam[j]*dnorm(t,mean=mu[j],sd=sig[j])
f}
t <- seq(min(x)-2, max(x)+2, len=200)
hist(x, freq=FALSE, col="lightgrey",

```
```

ylim=c(0,0.3), ylab="density",main="")
lines(t, dnormmixt(t, lbd, mu, sigma), col="darkgrey", lwd=2) \# true
lines(t, dnormmixt(t, s$lambda, s$mu, s$sigma), lty=2)
lines(t, dnormmixt(t, sc$lambda, sc$mu, sc$sigma), col=1, lty=3)
lines(t, dnormmixt(t, tau$lambda, tau$mu, tau\$sigma), col=2, lty=4)
legend("topleft", c("true","plain EM","constr EM", "Tau Equiv"),
col=c("darkgrey",1,1,2), lty=c(1,2,3,4), lwd=c(2,1,1,1))

```
```

test.equality Performs Chi-Square Tests for Scale and Location Mixtures

```

\section*{Description}

Performs a likelihood ratio test of a location (or scale) normal or regression mixture versus the more general model. For a normal mixture, the alternative hypothesis is that each component has its own mean and variance, whereas the null is that all means (in the case of a scale mixture) or all variances (in the case of a location mixture) are equal. This test is asymptotically chi-square with degrees of freedom equal to \(\mathrm{k}-1\), where k is the number of components.

\section*{Usage}
test.equality(y, \(x=\) NULL, arbmean \(=\) TRUE, arbvar \(=\) FALSE, mu \(=\) NULL, sigma \(=\) NULL, beta \(=\) NULL, lambda = NULL, ...)

\section*{Arguments}
\(y \quad\) The responses for regmixEM or the data for normalmixEM.

X
arbmean If FALSE, then a scale mixture analysis is performed for normalmixEM or regmixEM.
arbvar If FALSE, then a location mixture analysis is performed for normalmixEM or regmixEM.
mu An optional vector for starting values (under the null hypothesis) for mu in normalmixEM.
sigma An optional vector for starting values (under the null hypothesis) for sigma in normalmixEM or regmixEM.
beta An optional matrix for starting values (under the null hypothesis) for beta in regmixEM.
lambda An otional vector for starting values (under the null hypothesis) for lambda in normalmixEM or regmixEM.
... Additional arguments passed to the various EM algorithms for the mixture of interest.

\section*{Value}
test.equality returns a list with the following items:
chi.sq The chi-squared test statistic.
df The degrees of freedom for the chi-squared test statistic.
p.value The p-value corresponding to this likelihood ratio test.

\section*{See Also}
```

test.equality.mixed

```

\section*{Examples}
```


## Should a location mixture be used for the Old Faithful data?

data(faithful)
attach(faithful)
set.seed(100)
test.equality(y = waiting, arbmean = FALSE, arbvar = TRUE)

```
```

test.equality.mixed Performs Chi-Square Test for Mixed Effects Mixtures

```

\section*{Description}

Performs a likelihood ratio test of either common variance terms between the response trajectories in a mixture of random (or mixed) effects regressions or for common variance-covariance matrices for the random effects mixture distribution.

\section*{Usage}
test.equality.mixed(y, \(x, w=N U L L, ~ a r b . R=T R U E\),
arb.sigma \(=\) FALSE, lambda \(=\) NULL, mu \(=\) NULL, sigma \(=\) NULL, \(R=N U L L\), alpha = NULL, ...)

\section*{Arguments}
\begin{tabular}{ll}
\(y\) & The responses for regmixEM.mixed. \\
\(x\) & The predictors for the random effects in regmixEM.mixed. \\
\(w\) & The predictors for the (optional) fixed effects in regmixEM.mixed. \\
arb.R & \begin{tabular}{l}
If FALSE, then a test for different variance-covariance matrices for the random \\
effects mixture is performed.
\end{tabular} \\
arb.sigma & \begin{tabular}{l}
If FALSE, then a test for different variance terms between the response trajecto- \\
ries is performed.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
lambda & \begin{tabular}{l}
A vector of mixing proportions (under the null hypothesis) with same purpose \\
as outlined in regmixEM.mixed.
\end{tabular} \\
mu & \begin{tabular}{l}
A matrix of the means (under the null hypothesis) with same purpose as outlined \\
in regmixEM.mixed.
\end{tabular} \\
sigma & \begin{tabular}{l}
A vector of standard deviations (under the null hypothesis) with same purpose \\
as outlined in regmixEM.mixed.
\end{tabular} \\
R & \begin{tabular}{l}
A list of covariance matrices (under the null hypothesis) with same purpose as \\
outlined in regmixEM.mixed.
\end{tabular} \\
alpha & \begin{tabular}{l}
An optional vector of fixed effects regression coefficients (under the null hy- \\
pothesis) with same purpose as outlined in regmixEM.mixed.
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l}
Additional arguments passed to regmixEM.mixed.
\end{tabular}
\end{tabular}

\section*{Value}
test.equality.mixed returns a list with the following items:
chi.sq The chi-squared test statistic.
df The degrees of freedom for the chi-squared test statistic.
p .value \(\quad\) The p-value corresponding to this likelihood ratio test.

\section*{See Also}
test.equality

\section*{Examples}
```

\#\#Test of equal variances in the simulated data set.
data(RanEffdata)
set.seed(100)
x<-lapply(1:length(RanEffdata), function(i)
matrix(RanEffdata[[i]][, 2:3], ncol = 2))
x<-x[1:15]
y<-lapply(1:length(RanEffdata), function(i)
matrix(RanEffdata[[i]][, 1], ncol = 1))
y<-y[1:15]
out<-test.equality.mixed(y, x, arb.R = TRUE, arb.sigma = FALSE,
epsilon = 1e-1, verb = TRUE,
maxit = 50,
addintercept.random = FALSE)
out

```
```

tonedata Tone perception data

```

\section*{Description}

The tone perception data stem from an experiment of Cohen (1980) and have been analyzed in de Veaux (1989) and Viele and Tong (2002). The dataset and this documentation file were copied from the fpc package by Christian Hennig. A pure fundamental tone was played to a trained musician. Electronically generated overtones were added, determined by a stretching ratio of stretchratio. stretchratio \(=2.0\) corresponds to the harmonic pattern usually heard in traditional definite pitched instruments. The musician was asked to tune an adjustable tone to the octave above the fundamental tone. tuned gives the ratio of the adjusted tone to the fundamental, i.e. tuned=2.0 would be the correct tuning for all stretchratio-values. The data analyzed here belong to 150 trials with the same musician. In the original study, there were four further musicians.

\section*{Usage}
data(tonedata)

\section*{Format}

A data frame with 2 variables, stretchratio and tuned, and 150 cases.

\section*{Author(s)}

Christian Hennig

\section*{Source}

Original source: Cohen, E. A. (1980), Inharmonic tone perception. Unpublished Ph.D. dissertation, Stanford University

R source: Hennig, Christian (2010), fpc: Flexible procedures for clustering, R package version 2.0-2. https://cran.r-project.org/package=fpc

\section*{References}
de Veaux, R. D. (1989), Mixtures of Linear Regressions, Computational Statistics and Data Analysis 8, 227-245.

Viele, K. and Tong, B. (2002), Modeling with Mixtures of Linear Regressions, Statistics and Computing 12, 315-330.

\section*{Description}

This data set arises from the water-level task proposed by the Swiss psychologist Jean Piaget to assess children's understanding of the physical world. This involves presenting a child with a rectangular vessel with a cap, affixed to a wall, that can be tilted (like the minute hand of a clock) to point in any direction. A separate disk with a water line indicated on it, which can similarly be spun so that the water line may assume any desired angle with the horizontal, is positioned so that by spinning this disk, the child subject may make the hypothetical surface of water inside the vessel assume any desired orientation. For each of eight different orientations of the vessel, corresponding to the clock angles at 1:00, 2:00, 4:00, 5:00, 7:00, 8:00, 10:00, and 11:00, the child subject is asked to position the water level as it would appear in reality if water were in the vessel. The measurement is the acute angle with the horizontal, in degrees, assumed by the water line after it is positioned by the child. A sign is attached to the measurement to indicate whether the line slopes up (positive) or down (negative) from left to right. Thus, each child has 8 repeated measurements, one for each vessel angle, and the range of possible values are from -90 to 90 .
The setup of the experiment, along with a photograph of the testing apparatus, is given by Thomas and Jamison (1975). A more detailed analysis using a subset of 405 of the original 579 subjects is given by Thomas and Lohaus (1993); further analyses using the functions in mixtools are given by Benaglia et al (2008) and Levine et al (2011), among others.
There are two versions of the dataset included in mixtools. The full dataset, called WaterdataFull, has 579 individuals. The dataset called Waterdata is a subset of 405 individuals, comprising all children aged 11 years or more and omitting any individuals with any observations equal to 100 , which in this context indicates a missing value (since all of the degree measurements should be in the range from -90 to \(+90,100\) is not a possible value).

\section*{Usage \\ data(Waterdata)}

\section*{Format}

These data frames consist of 405 or 579 rows, one row for each child. There are ten columns: The age (in years) and sex (where \(1=\) male and \(0=\) female) are given for each individual along with the degree of deviation from the horizontal for 8 specified clock-hour orientations (\(11,4,2,7,10,5,1\), and 8 o'clock, in order).

\section*{Source}

Benaglia, T., Chauveau, D., and Hunter, D.R. (2009), An EM-Like Algorithm for Semi- and NonParametric Estimation in Multivariate Mixtures, Journal of Computational and Graphical Statistics, 18: 505-526.
Levine, M., Hunter, D.R., and Chauveau, D. (2011), Maximum Smoothed Likelihood for Multivariate Mixtures, Biometrika, 98(2): 403-416.

Thomas, H. and Jamison, W. (1975), On the Acquisition of Understanding that Still Water is Horizontal, Merrill-Palmer Quarterly of Behavior and Development, 21(1): 31-44.
Thomas, H. and Lohaus, A. (1993), Modeling Growth and Individual Differences in Spatial Tasks, University of Chicago Press, Chicago, available on JSTOR.

\section*{Description}

Parametric Stochastic EM (St-EM) algorithm for univariate finite mixture of Weibull distributions with randomly right censored data.

\section*{Usage}
```

weibullRMM_SEM(x, d = NULL, lambda = NULL, shape = NULL, scale = NULL,
k = 2, maxit = 200, maxit.survreg = 200, epsilon = 1e-03,
averaged = TRUE, verb = FALSE)

```

\section*{Arguments}
x
d
lambda Initial value of mixing proportions. If NULL, then lambda is set to rep \((1 / k, k)\).
shape Initial value of Weibull component shapes, all set to 1 if NULL.
scale Initial value of Weibull component scales, all set to 1 if NULL.
\(k \quad\) Number of components of the mixture.
maxit The number of iterations allowed, since for St-EM algorithms convergence is not based on stabilization, exactly maxit iterations are performed (see Bordes L. and Chauveau D. (2016) reference below).
maxit.survreg The number of iterations allowed in the computations of the MLE for censored weibull data from the survival package (see Bordes L. and Chauveau D. (2016) reference below).
epsilon Tolerance parameter used in the numerical computations of the MLE for censored weibull data by survreg from the survival package (see Bordes L. and Chauveau D. (2016) reference below).
averaged The way of updating parameters at each iteration: if TRUE, current values of the parameters are obtained by averaging the sequence (see Bordes L. and Chauveau D. (2016) reference below).
verb If TRUE, print updates for every iteration of the algorithm as it runs

\section*{Details}

This St-EM algorithm calls functions from the survival package to compute parametric MLE for censored weibull data.

\section*{Value}
weibullRMM_SEM returns a list of class "mixEM" with the following items:
\begin{tabular}{ll}
x & The input data. \\
d & The input censoring indicator. \\
lambda & The estimates for the mixing proportions. \\
scale & The estimates for the Weibull component scales. \\
shape & The estimates for the Weibull component shapes. \\
loglik & The log-likelihood value at convergence of the algorithm. \\
posterior & An \(n \times k\) matrix of posterior probabilities for observation, after convergence of \\
the algorithm. \\
all.loglik & The sequence of log-likelihoods over iterations. \\
all.lambda & The sequence of mixing proportions over iterations. \\
all.scale & The sequence of component scales over iterations. \\
all.shape & The sequence of component shapes over iterations. \\
ft & A character vector giving the name of the function called.
\end{tabular}

\section*{Author(s)}

Didier Chauveau

\section*{References}
- Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. http://link.springer.com/article/10.1007/s00180-016-0661-7

\section*{See Also}

Related functions: plotweibullRMM, summary.mixEM.
Other models and algorithms for censored lifetime data (name convention is model_algorithm): expRMM_EM, spRMM_SEM.

\section*{Examples}
```

n = 500 \# sample size
m = 2 \# nb components
lambda=c(0.4, 0.6)
shape <- c(0.5,5); scale <- c(1,20) \# model parameters
set.seed(321)
x <- rweibullmix(n, lambda, shape, scale) \# iid ~ weibull mixture

```
wkde
```

cs=runif(n,0,max(x)+10) \# iid censoring times
t <- apply(cbind(x,cs),1,min) \# censored observations
d <- 1*(x <= cs) \# censoring indicator

## set arbitrary or "reasonable" (e.g., data-driven) initial values

l0 <- rep(1/m,m); sh0 <- c(1, 2) ; sc0 <- c(2,10)

# Stochastic EM algorithm

a <- weibullRMM_SEM(t, d, lambda = 10, shape = sh0, scale = sc0, maxit = 200)
summary(a) \# Parameters estimates etc
plotweibullRMM(a) \# plot of St-EM sequences
plot(a, which=2) \# or equivalently, S3 method for "mixEM" object

```

\section*{wkde}

Weighted Univariate (Normal) Kernel Density Estimate

\section*{Description}

Evaluates a weighted kernel density estimate, using a Gaussian kernel, at a specified vector of points.

\section*{Usage}
wkde(\(\mathrm{x}, \mathrm{u}=\mathrm{x}, \mathrm{w}=\mathrm{rep}(1\), length(x\()\)), bw=bw.nrd0(as.vector(x\()\)), sym=FALSE)

\section*{Arguments}
\begin{tabular}{ll}
x & Data \\
u & Points at which density is to be estimated \\
w & Weights (same length as x) \\
bw & Bandwidth \\
sym & Logical: Symmetrize about zero?
\end{tabular}

\section*{Value}

A vector of the same length as \(u\)

\section*{References}
- Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics, 18, 505-526.
- Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. (2009), mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29.

\section*{See Also}
```

npEM, ise.npEM

```

\section*{Examples}
```


# Mixture with mv gaussian model

set.seed(100)
m <- 2 \# no. of components
r <- 3 \# no. of repeated measures (coordinates)
lambda <- c(0.4, 0.6)
mu <- matrix(c(0, 0, 0, 4, 4, 6), m, r, byrow=TRUE) \# means
sigma <- matrix(rep(1, 6), m, r, byrow=TRUE) \# stdevs
centers <- matrix(c(0, 0, 0, 4, 4, 4), 2, 3, byrow=TRUE) \# initial centers for est
blockid = c(1,1,2) \# block structure of coordinates
n = 100
x <- rmvnormmix(n, lambda, mu, sigma) \# simulated data
a <- npEM(x, centers, blockid, eps=1e-8, verb=FALSE)
par(mfrow=c (2,2))
u <- seq(min(x), max(x), len=200)
for(j in 1:2) {
for(b in 1:2) {
xx <- as.vector(x[,a$blockid==b])
            wts <- rep(a$post[,j], length.out=length(xx))
bw <- a\$bandwidth
title <- paste("j =", j, "and b =", b)
plot(u, wkde(xx, u, wts, bw), type="l", main=title)
}
}

```
 wquantile Weighted quantiles

\section*{Description}

Functions to compute weighted quantiles and the weighted interquartile range.

\section*{Usage}
wquantile(wt \(=\operatorname{rep}(1\), length \((x)), x\), probs, already.sorted \(=\) FALSE, already.normalized = FALSE)
wIQR(wt \(=\operatorname{rep}(1\), length \((x)), x\), already.sorted \(=\) FALSE,
already.normalized = FALSE)

\section*{Arguments}
wt
Vector of weights
X
Vector of data, same length as wt
probs Numeric vector of probabilities with values in [0,1].
already. sorted If FALSE, sort wt and \(x\) in increasing order of \(x\). If TRUE, it is assumed that wt and \(x\) are already sorted.
already.normalized
If FALSE, normalize wt by diving each entry by the sum of all entries. If TRUE, it is assumed that sum(wt)==1

\section*{Details}
wquantile uses the findInterval function. wIQR calls the wquantile function.

\section*{Value}

Returns the sample quantiles or interquartile range of a discrete distribution with support points \(x\) and corresponding probability masses wt

\section*{See Also}
npEM

\section*{Examples}
```

IQR(1:10)
wIQR(x=1:10) \# Note: Different algorithm than IQR function
wIQR(1:10,1:10) \# Weighted quartiles are now 4 and 8

```

\section*{Index}
*Topic datasets
CO2data, 6
Habituationdata, 19
NOdata, 35
RanEffdata, 65
RodFramedata, 84
RTdata, 85
RTdata2, 85
tonedata, 113
Waterdata, 114
*Topic distribution
dmvnorm, 12
rmvnorm, 81
\(*\) Topic file
boot. comp, 3
boot.se, 5
compCDF, 7
density.npEM, 8
density.spEM, 10
depth, 11
ellipse, 12
expRMM_EM, 13
flaremixEM, 15
gammamixEM, 17
hmeEM, 20
ise.npEM, 21
logisregmixEM, 23
makemultdata, 25
mixturegram, 27
multmixEM, 29
multmixmodel.sel, 30
mvnormalmixEM, 31
mvnpEM, 33
normalmixEM, 36
normalmixEM2comp, 39
normalmixMMlc, 40
npEM, 43
npMSL, 46
plot.mixEM, 48
plot.mixMCMC, 50
plot.mvnpEM, 52
plot.npEM, 53
plot.spEMN01, 54
plotexpRMM, 55
plotFDR, 57
plotseq.npEM, 58
plotspRMM, 59
plotweibullRMM, 60
poisregmixEM, 61
print.mvnpEM, 63
print.npEM, 64
regcr, 65
regmixEM, 67
regmixEM. lambda, 69
regmixEM.loc, 70
regmixEM.mixed, 72
regmixMH, 75
regmixmodel.sel, 77
repnormmixEM, 78
repnormmixmodel.sel, 79
rexpmix, 80
rmvnormmix, 82
rnormmix, 83
rweibullmix, 86
segregmixEM, 87
spEM, 90
spEMsymloc, 93
spEMsymlocN01, 95
spregmix, 97
spRMM_SEM, 99
summary.mixEM, 101
summary.mvnpEM, 103
summary.npEM, 104
summary.spRMM, 106
tauequivnormalmixEM, 107
test.equality, 110
test.equality.mixed, 111
weibullRMM_SEM, 115

\section*{INDEX}
wkde, 117
*Topic robust
wquantile, 118
boot. comp, 3, 28
boot.se, 5
bw.nrd0, 34, 44, 46, 47, 91
C02data, 6
compCDF, 7, 26, 30, 31
density, 8-10, 44, 46, 91
density.npEM, 8, 52, 54
density.spEM, 10
depth, 11
dmvnorm, 12, 82
dnorm, 12, 82
eigen, 81,82
ellipse, 12
expRMM_EM, 13, 55, 56, 60, 61, 101, 102, 106, 116
findInterval, 119
flaremixEM, 15
gammamixEM, 17
Habituationdata, 19
hist, 52, 53
hmeEM, 20
integrate, 22
ise.npEM, 21, 118
kmeans, 28, 34, 44, 46, 91, 93
legend, 52, 53
lines, 9, 10, 53
lm, 97, 99
logdmvnorm (dmvnorm), 12
logisregmixEM, 5, 23, 62, 102
makemultdata, \(8,25,29-31,84\)
mixturegram, 27
model.frame, 98
model.matrix, 98
multmixEM, 5, 8, 26, 29, 31, 102
multmixmodel.sel, \(8,26,30,30\)
mvnormalmixEM, 5, 31, 38, 40, 43, 102, 109
mvnpEM, 33, 52, 63, 103, 104

NOdata, 35
normalmixEM, 5, 32, 36, 39-41, 43, 57, 79, 96, 102, 109
normalmixEM2comp, 37, 38, 39, 43, 108, 109
normalmixMMlc, 38, 40, 107-109
normmix.sim(rnormmix), 83
normmixrm.sim, 45, 48, 92
normmixrm.sim (rmvnormmix), 82
npEM, \(8-10,21,22,33-35,43,48,52-54,58\), 64, 92, 94, 96, 104, 105, 118, 119
npEMindrep (npEM), 43
npEMindrepbw (npEM), 43
npMSL, 46
plot, 9, 10, 28, 58
plot.mixEM, 48, 56
plot.mixMCMC, 50
plot.mvnpEM, 34, 35, 52, 63, 104
plot.npEM, 9, 45, 48, 53, 58, 64, 94, 105
plot.spEM, 10, 92
plot.spEM (plot.npEM), 53
plot.spEMN01, 54, 96
plotexpRMM, 15, 55
plotFDR, 57, 96
plotseq.npEM, 45, 48, 54, 58, 92, 94
plotspRMM, 59, 101, 106
plotweibullRMM, 60, 116
poisregmixEM, 5, 25, 61, 102
post.beta, 50, 74
print, 63, 64
print.mvnpEM, 63
print.npEM, 64
print. summary.mvnpEM (summary.mvnpEM), 103
print.summary.npEM (summary.npEM), 104
qr, 12
qr.solve, 12
RanEffdata, 65
regcr, \(11,13,51,65,68,76\)
regmixEM, 5, 16, 21, 66, 67, 74, 78, 89, 99, 102
regmixEM.chgpt, 102
regmixEM. chgpt (segregmixEM), 87
regmixEM. lambda, 69, 72, 102
regmixEM.loc, 70, 70, 102
regmixEM.mixed, 5, 65, 72, 78, 102
regmixMH, 66, 68, 75
regmixmodel.sel, 77
repnormmixEM, 5, 78, 80, 102
repnormmixmodel.sel, 79
rexpmix, 80, 86
rmvnorm, 12, 81
rmvnormmix, 81, 82, 83, 84, 86
rnormmix, 58, 81, 83, 83, 86, 94
RodFramedata, 84
RTdata, 85, 86
RTdata2, 85, 85
rweibullmix, 81, 86
segregmixEM, 87
spEM, \(10,45,48,90\)
spEMsymloc, \(8-10,38,45,48,54,58,92,93\), 95, 96, 99
spEMsymlocN01, 55, 57, 58, 94, 95
spregmix, 97
spRMM_SEM, 15, 56, 59-61, 99, 106, 116
summary, 101, 103, 104, 106
summary.mixEM, \(15,56,61,101,102,116\)
summary.mvnpEM, 63, 103, 103
summary.npEM, 64, 104, 105
summary.spRMM, 101, 106, 106
tauequivnormalmixEM, 43, 107
test.equality, 110, 112
test.equality.mixed, 111, 111
tonedata, 113
Waterdata, 114
WaterdataFull (Waterdata), 114
weibullRMM_SEM, \(15,56,60,61,101,102\), 106, 115
wIQR (wquantile), 118
wkde, 22, 117
wquantile, 118```

