mlf: Machine Learning Foundations
Offers a gentle introduction to machine learning concepts for practitioners with a statistical pedigree: decomposition of model error (bias-variance trade-off), nonlinear correlations, information theory and functional permutation/bootstrap simulations. Székely GJ, Rizzo ML, Bakirov NK. (2007). <doi:10.1214/009053607000000505>. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC. (2011). <doi:10.1126/science.1205438>.
| Version: |
1.2.1 |
| Imports: |
stats, utils |
| Published: |
2018-06-25 |
| Author: |
Kyle Peterson [aut, cre] |
| Maintainer: |
Kyle Peterson <petersonkdon at gmail.com> |
| License: |
GPL-2 |
| URL: |
http://mlf-project.us/ |
| NeedsCompilation: |
no |
| CRAN checks: |
mlf results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mlf
to link to this page.