
modelObj: A Model Object Framework for
Regression Analysis

Shannon T. Holloway

July 16, 2021

Abstract

It is becoming common practice for researchers to disseminate new
statistical methods to the broader research community by develop-
ing and releasing R packages that implement their methods. Often,
methods are developed on the framework of traditional regression.
To simplify software development, researchers and developers often
make choices regarding the types of regression models that can be
used; hard-coding a specific regression method into the library and
limiting or eliminating the ability of the user to modify regression
control parameters. In many instances, there is not a fundamental
reason why a new statistical method should use a specific regression
method (e.g., linear vs. non-linear) and such choices artificially limit
the general application of new packages. In addition, if a new method
requires multiple regression steps, a developer must artificially break
the method into multiple function calls, each for a specific regression
step, or provide a cumbersome and/or confusing interface. We have
developed a new R package to facilitate the use of existing and fu-
ture R regression libraries that simplifies the development of general,
non-model-specific implementations of new statistical methods.

Keywords: Regression and classification

1

1 Introduction

IMPACT is a joint venture of the University of North Carolina at Chapel
Hill, Duke University, and North Carolina State University. The program
project aims to improve the health and longevity of people by improving the
clinical trial process. A key component of this research has been the develop-
ment of public-use software packages that implement new statistical methods
developed by the 30+ investigators. Whenever possible, these methods have
been developed in R. The modelObj library was born from the need to cre-
ate simple, general-use implementations of new statistical methods that do
not limit the underlying regression method(s) and do not require continued
upgrading as new regression methods become available.

When creating R packages for statistical methods developed on the frame-
work of traditional regression or classification methods, researchers and/or
software developers often make choices regarding the types of models that
can be specified by the user; hard-coding the regression method into the li-
brary and limiting or eliminating the ability of the user to modify regression
control parameters. However, the choice of a specific regression method may
not be fundamental constraint of the new method, and such choices can limit
the general application of an implementation.

In addition, a new method may require multiple regression steps. For exam-
ple, DynTxRegime implements the Augmented Inverse Probability Weighted
Estimators (AIPWE) for average treatment effects and requires multiple re-
gression analyses. To implement this method generally without using the
framework described herein would require that the procedure be artificially
broken into multiple function calls, each for a specific regression step, or that
the user interface to the method be cumbersome and/or confusing.

The modelObj library is built on the premise of a “model object.” A model
object contains all of the information needed to complete a standard regres-
sion analysis and subsequent prediction step: a formula object, the existing
R regression method to be used to obtain parameter estimates (the so-called
solver method), any control arguments to be passed to the regression method,
the R method to be used to obtain predictions, and any arguments to be
passed to the prediction method. This information is grouped into a single
object of class modelObj by a call to buildModelObj(...). To use a package
built on the model object framework, the user creates the modelObj prior to

2

calling the statistical method and passes the model object as input. The
modelObj library provides simple functions that developers can use to imple-
ment standard regression procedures, such as fit(...) to obtain parameter
estimates and predict(...) to obtain predictions.

2 Interacting with packages that implement

the model object framework.

Users of packages that have been developed based on the model object frame-
work will interface with the modelObj library through calls to buildMode-

lObj(...). These calls create a model object for a single regression step
and are passed as input to the method. The buildModelObj(...) function
takes as input

• model : an object of class formula. Any lhs variables provided will
be ignored. If the fitting function specified in solver.method takes
as input a model matrix rather than a formula object, model will be
used to obtain the model matrix.

• solver.method : an object of class character; the name of the R

regression method. For example, a user might commonly specify ‘lm’
or ‘glm.’ For classification, ‘rpart’ might be used. The specified
method MUST have a corresponding predict method.

• solver.args : an object of class list; additional arguments to be passed
to solver.method. The name of each element of the list must match a
formal argument of solver.method. For example, for logistic regression
using glm:

solver.method = "glm"

solver.args = list("family"=binomial).

If solver.method takes as input a formula object, it is assumed that
the function specified has formal arguments“formula”and“data.” If the
solver.method does not use “formula” and/or “data,” solver.args must
explicitly indicate the variable names used for these inputs. For exam-
ple, list(“x”=“formula”) if the formula object is passed to solver.method

3

through input argument“x”or list(“df”=“data”) if the data.frame object
is passed to solver.method through input argument “df.”

If solver.method instead takes as input a model matrix, it is as-
sumed that the function specified has formal arguments “x” and “y”
for the design matrix and response, respectively. If the solver.method
does not use “x” and/or “y,” solver.args must explicitly indicate the
variable names used for these inputs. For example, list(“X”=“x”) if
the formula object is passed to solver.method through input argument
“X” or list(“Y”=“y”) if the data.frame object is passed to solver.method
through input argument “Y.”

• predict.method : an object of class character; the function name
of the R function to be used to obtain predictions. For example, ‘pre-
dict.lm’ or ‘predict.glm.’ If no function is explicitly given, the generic
‘predict’ method is assumed. Most often, this input can be omitted.

• predict.args : an object of class list; additional arguments to be
passed to predict.method. The name of each element of the list must
match a formal argument of predict.method. For example, if a logis-
tic regression using glm was used to fit the model formula object and
predictions on the scale of the response are desired,

solver.method = "glm"

solver.args = list("family"=binomial)

predict.method = "predict"

predict.args = list("type"="response").

It is assumed that the R method specified in predict.method has for-
mal arguments “object” and “newdata.” If predict.method does not use
these formal arguments, predict.args must explicitly indicate the vari-
able names used for these inputs. For example, list(“x”=“object”) if the
object returned by solver.method is passed to predict.method through
input argument “x” or list(“ndf”=“newdata”) if the data.frame object is
passed to predict.method through input argument “ndf.”

Unless modified through solver.args and predict.args, default settings are
assumed for the methods specified in solver.method and predict.method.

As a simple example,

> library(modelObj)

4

> object1 <- buildModelObj(model=~x1, solver.method='lm')

defines a model object for a linear model, the parameter estimates of which
are to be obtained using lm, and predictions obtained using predict. The
solver and prediction methods will use default settings.

As a more complex (though contrived) example, consider the following func-
tions

> mylm <- function(X,Y){

+ obj <- list()

+ obj$lm <- lm.fit(x=X, y=Y)

+ obj$var <- "does something neat"

+ class(obj) = "mylm"

+ return(obj)

+ }

> predict.mylm <- function(obj,data=NULL){

+ if(is(data,"NULL")) {

+ obj <- exp(objlmfitted.values)

+ } else {

+ obj <- data %*% objlmcoefficients

+ obj <- exp(obj)

+ }

+ return(obj)

+ }

which, for the sake of argument, represent a “new” regression method that
a user would like to utilize. These functions are chosen to illustrate solver
methods and prediction methods that do not accept the standard formal
arguments. They provide a simple illustration of how flexible the framework
can be. In this circumstance, the user would define the following modeling
object:

> object2 <- buildModelObj(model = ~x1,

+ solver.method = mylm,

+ solver.args = list('X' = "x", 'Y' = "y"),

+ predict.method = predict.mylm,

+ predict.args = list('obj' = "object",

+ 'data' = "newdata"))

5

3 Developing packages that implement the

model object framework.

The buildModelObj() function invoked by a user returns an object of class
modelObj.

Developers that use this utility package should carefully document for users
any required settings for solver.method and predict.method. For exam-
ple, the scale of the response needed for predictions. Though the developer
can access and modify the argument lists provided by users using methods
predictorArgs() and solverArgs(), there is no strict variable naming con-
vention in R, and some methods do not adhere to the “usual” choices. Thus,
identifying the formal argument to adjust may be tricky.

Once provided an object of class modelObj, developers can **see** all of the
values contained in the object but can modify only the argument lists to be
passed to methods. Specifically:

• model Retrieves the formula object.

• solver Retrieves the character name of the regression method.

• solverArgs Retrieves the list of arguments to be passed to the regres-
sion method.

• predictor Retrieves the character name of the prediction method.

• predictorArgs Retrieves the list of arguments to be passed to the
prediction method.

• solverArgs<- Sets the list of arguments to be passed to the regression
method.

• predictorArgs<- Sets the list of arguments to be passed to the pre-
diction method.

The primary utility method available for objects of class modelObj is fit(...),
which implements the regression step. The inputs for fit(...) are:

• object an object of class modelObj.

• data an object of class data.frame; the covariates to be used to obtain
the fit.

6

• response an object of class numeric; the response

• . . . ignored

The fit(...) method constructs and executes the function call to the spec-
ified solver method using the formula object and formal arguments provided
by the user in solver.args. The fit(...) method uses an internal naming
convention for the response, and thus only the right-hand-side of the formula
object is referenced.

fit(...) returns an S4 object of class modelObjFit. Developers can access
members of this class using the following methods:

• fitObject Retrieves the value object returned by the regression method.
Through this retrieve method, developers have the ability to access any
defined methods for the regression function, such as coef, residuals,
or plot.

• predictor Retrieves the character name of the prediction method to
be used to obtain predictions.

• predictorArgs Retrieves the list of arguments to be passed to the
prediction method when making predictions.

Note that predictor and predictorArgs only give you access to **see** what
has been specified for the prediction method. Should changes need to be made
to the arguments, one must apply these changes to the defining modelObj
before creating the modelObjFit object.

Additional methods available for modelObjFit objects are

• coef(...) If defined for the regression method, returns the estimated
coefficients.

• plot(...) If defined for the regression method, generates the plot of
the model fitting class.

• predict(...) Obtains predictions from the results of the model
fitting function.

• residuals(...) If defined for the regression method, returns the resid-
uals.

• show(...) Uses the predefined show method of the regression method.

7

• summary(...) Uses the predefined summary method of the regression
method.

Again, the value object returned by the regression method can be retrieved
using fitObject; thereby providing access to any R methods developed for
the regression method. We have chosen to implement only the most common
methods (coef(), residuals(), etc.) for the modelObjFit object. Note
that not all regression methods have these functions. If these functions are
required in your implementation, additional checks must be incorporated into
your code to ensure their availability.

4 Example Implementation of modelObj

We use a standard R dataset to illustrate the implementation of the model
object framework. The ‘pressure’ data frame contains “data on the relation
between temperature in degrees Celsius and vapor pressure of mercury in
millimeters (of mercury).” The details of the datatset are not relevant for
this illustration. However, the reader is referred to ?pressure for details.

> summary(pressure)

temperature pressure

Min. : 0 Min. : 0.0002

1st Qu.: 90 1st Qu.: 0.1800

Median :180 Median : 8.8000

Mean :180 Mean :124.3367

3rd Qu.:270 3rd Qu.:126.5000

Max. :360 Max. :806.0000

It is straightforward to implement a regression step. As an example, suppose
we are developing a new package called wow. The primary function of this
package is exampleFun(). In this function, we want to obtain a fit and return
the square of the fitted response and the estimated coefficients in a list. Our
function takes the following form

> exampleFun <- function(modelObj, data, Y){

+

+ fitObj <- fit(object = modelObj, data = data, response = Y)

8

+

+ ##Test that coef() is an available method

+ cfs <- try(coef(fitObj), silent=TRUE)

+ if(class(cfs) == 'try-error'){
+ warning("Provided regression method does not have a coef method.\n")

+ cfs <- NULL

+ }

+

+ fitted <- predict(fitObj)^2

+

+ return(list("fittedSq"=fitted, "coef"=cfs))

+ }

To use this function, a user must create the object of class modelObj and
provide it as input to exampleFun(). The user can implement a linear model
as follows:

> ylog <- log(pressure$pressure)

> objlm <- buildModelObj(model = ~temperature,

+ solver.method = "lm",

+ predict.method = "predict.lm",

+ predict.args = list("type"="response"))

> fitObjlm <- exampleFun(objlm, pressure, ylog)

> print(fitObjlm$coef)

(Intercept) temperature

-6.06814354 0.03979188

Or, the non-linear least squares method nls:

> objnls <- buildModelObj(model = ~exp(a + b*temperature),

+ solver.method = "nls",

+ solver.args = list('start'=list(a=1, b=0.1)),

+ predict.method = "predict",

+ predict.args = list("type" = "response"))

> fitObjnls <- exampleFun(objnls, pressure, pressure$pressure)

> print(fitObjnls$coef)

a b

-0.67814838 0.02052001

9

Or, even the previously defined “new” method:

> objectnew <- buildModelObj(model = ~temperature,

+ solver.method = mylm,

+ solver.args = list('X' = "x", 'Y' = "y"),

+ predict.method = predict.mylm,

+ predict.args = list('obj'="object",
+ 'data'="newdata"))
> fitObjnew <- exampleFun(objectnew, pressure, ylog)

> print(fitObjnew$coef)

NULL

In the last example, the function returned NULL for the parameter estimates
because there is no available method to retrieve the estimated parameters.

The same function, exampleFun() can be used to implement each of these
models, and no development is required to extend the wow function to new
regression methods as they become available.

10

	Introduction
	Interacting with packages that implement the model object framework.
	Developing packages that implement the model object framework.
	Example Implementation of modelObj

