

Package ‘moderndive’

January 20, 2022

Type Package

Title Tidyverse-Friendly Introductory Linear Regression

Version 0.5.3

Maintainer Albert Y. Kim <albert.ys.kim@gmail.com>

Description Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in “Statistical Inference via Data Science: A ModernDive into R and the Tidyverse” available at <<https://moderndive.com/>>.

Depends R (>= 3.4.0)

License GPL-3

Encoding UTF-8

LazyData true

URL <https://moderndive.github.io/moderndive/>,
<https://github.com/moderndive/moderndive/>

BugReports <https://github.com/moderndive/moderndive/issues>

Imports magrittr, dplyr, ggplot2, tibble, janitor, broom (>= 0.4.3),
formula.tools, stringr, knitr, infer, rlang (>= 0.2.0), glue

RoxygenNote 7.1.1

Suggests testthat, covr, rmarkdown, vdiff, openintro, patchwork,
viridis, readr, nycflights13

VignetteBuilder knitr

NeedsCompilation no

Author Albert Y. Kim [aut, cre] (<<https://orcid.org/0000-0001-7824-306X>>),
Chester Ismay [aut] (<<https://orcid.org/0000-0003-2820-2547>>),
Andrew Bray [ctb] (<<https://orcid.org/0000-0002-4037-7414>>),
Delaney Moran [ctb],
Evgeni Chasnovski [ctb] (<<https://orcid.org/0000-0002-1617-4019>>),
Will Hopper [ctb] (<<https://orcid.org/0000-0002-7848-1946>>),
Marium Tapal [ctb] (<<https://orcid.org/0000-0001-5093-6462>>)

Repository CRAN

Date/Publication 2022-01-20 16:32:43 UTC

R topics documented:

alaska_flights	2
bowl	3
bowl_samples	4
bowl_sample_1	4
DD_vs_SB	5
evals	5
geom_categorical_model	6
geom_parallel_slopes	8
get_correlation	10
get_regression_points	11
get_regression_summaries	13
get_regression_table	14
gg_parallel_slopes	15
house_prices	16
MA_schools	17
moderndive	18
movies_sample	18
mythbusters_yawn	19
orig_pennies_sample	20
pennies	20
pennies_resamples	21
pennies_sample	21
promotions	22
promotions_shuffled	22
tactile_prop_red	23

Index

24

alaska_flights	Alaska flights data
----------------	---------------------

Description

On-time data for all Alaska Airlines flights that departed NYC (i.e. JFK, LGA or EWR) in 2013. This is a subset of the `flights` data frame from `nycflights13`.

Usage

`alaska_flights`

Format

A data frame of 714 rows representing Alaska Airlines flights and 19 variables

year, month, day Date of departure.

dep_time, arr_time Actual departure and arrival times (format HHMM or HMM), local tz.

sched_dep_time, sched_arr_time Scheduled departure and arrival times (format HHMM or HMM), local tz.

dep_delay, arr_delay Departure and arrival delays, in minutes. Negative times represent early departures/arrivals.

carrier Two letter carrier abbreviation. See [nycflights13::airlines](#) to get name.

flight Flight number.

tailnum Plane tail number. See [nycflights13::planes](#) for additional metadata.

origin, dest Origin and destination. See [nycflights13::airports](#) for additional metadata.

air_time Amount of time spent in the air, in minutes.

distance Distance between airports, in miles.

hour, minute Time of scheduled departure broken into hour and minutes.

time_hour Scheduled date and hour of the flight as a POSIXct date. Along with origin, can be used to join flights data to [nycflights13::weather](#) data.

Source

RITA, Bureau of transportation statistics

See Also

[nycflights13::flights](#).

bowl

A sampling bowl of red and white balls

Description

A sampling bowl used as the population in a simulated sampling exercise. Also known as the urn sampling framework https://en.wikipedia.org/wiki/Urn_problem.

Usage

bowl

Format

A data frame 2400 rows representing different balls in the bowl, of which 900 are red and 1500 are white.

ball_ID ID variable used to denote all balls. Note this value is not marked on the balls themselves

color color of ball: red or white

bowl_samples	<i>Sampling from a bowl of balls</i>
--------------	--------------------------------------

Description

Counting the number of red balls in 10 samples of size $n = 50$ balls from https://github.com/moderndive/moderndive/blob/master/data-raw/sampling_bowl.jpeg

Usage

bowl_samples

Format

A data frame 10 rows representing different groups of students' samples of size $n = 50$ and 5 variables

group Group name

red Number of red balls sampled

white Number of white balls sampled

green Number of green balls sampled

n Total number of balls samples

See Also

[bowl\(\)](#)

bowl_sample_1	<i>Tactile sample of size 50 from a bowl of balls</i>
---------------	---

Description

A single tactile sample of size $n = 50$ balls from https://github.com/moderndive/moderndive/blob/master/data-raw/sampling_bowl.jpeg

Usage

bowl_sample_1

Format

A data frame of 50 rows representing different balls and 1 variable.

color Color of ball sampled

See Also

[bowl\(\)](#)

DD_vs_SB*Dunkin Donuts vs Starbucks*

Description

Number of Dunkin Donuts & Starbucks, median income, and population in 1024 census tracts in eastern Massachusetts in 2016.

Usage**DD_vs_SB****Format**

A data frame of 1024 rows representing census tracts and 6 variables

county County where census tract is located. Either Bristol, Essex, Middlesex, Norfolk, Plymouth, or Suffolk county

FIPS Federal Information Processing Standards code identifying census tract

median_income Median income of census tract

population Population of census tract

shop_type Coffee shop type: Dunkin Donuts or Starbucks

shops Number of shops

Source

US Census Bureau. Code used to scrape data available at <https://github.com/DelaneyMoran/FinalProject>

evals*Teaching evaluations at the UT Austin*

Description

The data are gathered from end of semester student evaluations for a sample of 463 courses taught by 94 professors from the University of Texas at Austin. In addition, six students rate the professors' physical appearance. The result is a data frame where each row contains a different course and each column has information on either the course or the professor <https://www.openintro.org/data/index.php?data=evals>

Usage**evals**

Format

A data frame with 463 observations corresponding to courses on the following 13 variables.

ID Identification variable for course.

prof_ID Identification variable for professor. Many professors are included more than once in this dataset.

score Average professor evaluation score: (1) very unsatisfactory - (5) excellent.

age Age of professor.

bty_avg Average beauty rating of professor.

gender Gender of professor (collected as a binary variable at the time of the study): female, male.

ethnicity Ethnicity of professor: not minority, minority.

language Language of school where professor received education: English or non-English.

rank Rank of professor: teaching, tenure track, tenured.

pic_outfit Outfit of professor in picture: not formal, formal.

pic_color Color of professor's picture: color, black & white.

cls_did_eval Number of students in class who completed evaluation.

cls_students Total number of students in class.

cls_level Class level: lower, upper.

Source

Çetinkaya-Rundel M, Morgan KL, Stangl D. 2013. Looking Good on Course Evaluations. *CHANCE* 26(2).

See Also

The data in `evals` is a slight modification of [openintro::evals\(\)](#).

geom_categorical_model

Regression model with one categorical explanatory/predictor variable

Description

`geom_categorical_model()` fits a regression model using the categorical x axis as the explanatory variable, and visualizes the model's fitted values as piecewise horizontal line segments. Confidence interval bands can be included in the visualization of the model. Like [geom_parallel_slopes\(\)](#), this function has the same nature as `geom_smooth()` from the `ggplot2` package, but provides functionality that `geom_smooth()` currently doesn't have. When using a categorical predictor variable, the intercept corresponds to the mean for the baseline group, while coefficients for the non-baseline groups are offsets from this baseline. Thus in the visualization the baseline for comparison group's median is marked with a solid line, whereas all offset groups' medians are marked with dashed lines.

Usage

```
geom_categorical_model(
  mapping = NULL,
  data = NULL,
  position = "identity",
  ...,
  se = TRUE,
  level = 0.95,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

mapping	Set of aesthetic mappings created by aes() or aes_() . If specified and <code>inherit.aes</code> = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply <code>mapping</code> if there is no plot mapping.
data	The data to be displayed in this layer. There are three options: If <code>NULL</code> , the default, the data is inherited from the plot data as specified in the call to ggplot() . A <code>data.frame</code> , or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created. A function will be called with a single argument, the plot data. The return value must be a <code>data.frame</code> , and will be used as the layer data. A function can be created from a formula (e.g. <code>~ head(.x, 10)</code>).
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
...	Other arguments passed on to layer() . These are often aesthetics, used to set an aesthetic to a fixed value, like <code>colour = "red"</code> or <code>size = 3</code> . They may also be parameters to the paired geom/stat.
se	Display confidence interval around model lines? TRUE by default.
level	Level of confidence interval to use (0.95 by default).
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders() .

See Also

[geom_parallel_slopes\(\)](#)

Examples

```
library(dplyr)
library(ggplot2)

p <- ggplot(mpg, aes(x = drv, y = hwy)) +
  geom_point() +
  geom_categorical_model()
p

# In the above visualization, the solid line corresponds to the mean of 19.2
# for the baseline group "4", whereas the dashed lines correspond to the
# means of 28.19 and 21.02 for the non-baseline groups "f" and "r" respectively.
# In the corresponding regression table however the coefficients for "f" and "r"
# are presented as offsets from the mean for "4":
model <- lm(hwy ~ drv, data = mpg)
get_regression_table(model)

# You can use different colors for each categorical level
p %+% aes(color = drv)

# But mapping the color aesthetic doesn't change the model that is fit
p %+% aes(color = class)
```

geom_parallel_slopes *Parallel slopes regression model*

Description

geom_parallel_slopes() fits parallel slopes model and adds its line output(s) to a ggplot object. Basically, it fits a unified model with intercepts varying between groups (which should be supplied as standard ggplot2 grouping aesthetics: group, color, fill, etc.). This function has the same nature as geom_smooth() from ggplot2 package, but provides functionality that geom_smooth() currently doesn't have.

Usage

```
geom_parallel_slopes(
  mapping = NULL,
  data = NULL,
  position = "identity",
  ...,
  se = TRUE,
  formula = y ~ x,
  n = 100,
  fullrange = FALSE,
  level = 0.95,
  na.rm = FALSE,
  show.legend = NA,
```

```
  inherit.aes = TRUE
)
```

Arguments

mapping	Set of aesthetic mappings created by aes() or aes_() . If specified and <code>inherit.aes</code> = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply <code>mapping</code> if there is no plot mapping.
data	The data to be displayed in this layer. There are three options: If <code>NULL</code> , the default, the data is inherited from the plot data as specified in the call to ggplot() . A <code>data.frame</code> , or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created. A function will be called with a single argument, the plot data. The return value must be a <code>data.frame</code> , and will be used as the layer data. A function can be created from a <code>formula</code> (e.g. <code>~ head(.x, 10)</code>).
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
...	Other arguments passed on to layer() . These are often aesthetics, used to set an aesthetic to a fixed value, like <code>colour = "red"</code> or <code>size = 3</code> . They may also be parameters to the paired geom/stat.
se	Display confidence interval around model lines? <code>TRUE</code> by default.
formula	Formula to use per group in parallel slopes model. Basic linear $y \sim x$ by default.
n	Number of points per group at which to evaluate model.
fullrange	Should the fit span the full range of the plot, or just the data?
level	Level of confidence interval to use (0.95 by default).
na.rm	If <code>FALSE</code> , the default, missing values are removed with a warning. If <code>TRUE</code> , missing values are silently removed.
show.legend	logical. Should this layer be included in the legends? <code>NA</code> , the default, includes if any aesthetics are mapped. <code>FALSE</code> never includes, and <code>TRUE</code> always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If <code>FALSE</code> , overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders() .

See Also

[geom_categorical_model\(\)](#)

Examples

```
library(dplyr)
library(ggplot2)

ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
```

```

geom_point() +
  geom_parallel_slopes(se = FALSE)

# Basic usage
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes()
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes(se = FALSE)

# Supply custom aesthetics
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes(se = FALSE, size = 4)

# Fit non-linear model
example_df <- house_prices %>%
  slice(1:1000) %>%
  mutate(
    log10_price = log10(price),
    log10_size = log10(sqft_living)
  )
ggplot(example_df, aes(x = log10_size, y = log10_price, color = condition)) +
  geom_point(alpha = 0.1) +
  geom_parallel_slopes(formula = y ~ poly(x, 2))

# Different grouping
ggplot(example_df, aes(x = log10_size, y = log10_price)) +
  geom_point(alpha = 0.1) +
  geom_parallel_slopes(aes(fill = condition))

```

get_correlation *Get correlation value in a tidy way*

Description

Determine the Pearson correlation coefficient between two variables in a data frame using pipeable and formula-friendly syntax

Usage

```
get_correlation(data, formula, na.rm = FALSE, ...)
```

Arguments

data	a data frame object
formula	a formula with the response variable name on the left and the explanatory variable name on the right

na.rm	a logical value indicating whether NA values should be stripped before the computation proceeds.
...	further arguments passed to <code>stats::cor()</code>

Value

A 1x1 data frame storing the correlation value

Examples

```
library(moderndive)

# Compute correlation between mpg and cyl:
mtcars %>%
  get_correlation(formula = mpg ~ cyl)

# Group by one variable:
library(dplyr)
mtcars %>%
  group_by(am) %>%
  get_correlation(formula = mpg ~ cyl)

# Group by two variables:
mtcars %>%
  group_by(am, gear) %>%
  get_correlation(formula = mpg ~ cyl)
```

`get_regression_points` *Get regression points*

Description

Output information on each point/observation used in an `lm()` regression in "tidy" format. This function is a wrapper function for `broom::augment()` and renames the variables to have more intuitive names.

Usage

```
get_regression_points(
  model,
  digits = 3,
  print = FALSE,
  newdata = NULL,
  ID = NULL
)
```

Arguments

model	an <code>lm()</code> model object
digits	number of digits precision in output table
print	If TRUE, return in print format suitable for R Markdown
newdata	A new data frame of points/observations to apply <code>model</code> to obtain new fitted values and/or predicted values y-hat. Note the format of <code>newdata</code> must match the format of the original data used to fit <code>model</code> .
ID	A string indicating which variable in either the original data used to fit <code>model</code> or <code>newdata</code> should be used as an identification variable to distinguish the observational units in each row. This variable will be the left-most variable in the output data frame. If <code>ID</code> is unspecified, a column <code>ID</code> with values 1 through the number of rows is returned as the identification variable.

Value

A tibble-formatted regression table of outcome/response variable, all explanatory/predictor variables, the fitted/predicted value, and residual.

See Also

[augment\(\)](#), [get_regression_table\(\)](#), [get_regression_summaries\(\)](#)

Examples

```
library(dplyr)
library(tibble)

# Convert rownames to column
mtcars <- mtcars %>%
  rownames_to_column(var = "automobile")

# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)

# Get information on all points in regression:
get_regression_points(mpg_model, ID = "automobile")

# Create training and test set based on mtcars:
training_set <- mtcars %>%
  sample_frac(0.5)
test_set <- mtcars %>%
  anti_join(training_set, by = "automobile")

# Fit model to training set:
mpg_model_train <- lm(mpg ~ cyl, data = training_set)

# Make predictions on test set:
get_regression_points(mpg_model_train, newdata = test_set, ID = "automobile")
```

```
get_regression_summaries
  Get regression summary values
```

Description

Output scalar summary statistics for an `lm()` regression in "tidy" format. This function is a wrapper function for `broom::glance()`.

Usage

```
get_regression_summaries(model, digits = 3, print = FALSE)
```

Arguments

<code>model</code>	an <code>lm()</code> model object
<code>digits</code>	number of digits precision in output table
<code>print</code>	If <code>TRUE</code> , return in print format suitable for R Markdown

Value

A single-row tibble with regression summaries. Ex: `r_squared` and `mse`.

See Also

[glance\(\)](#), [get_regression_table\(\)](#), [get_regression_points\(\)](#)

Examples

```
library(moderndive)

# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)

# Get regression summaries:
get_regression_summaries(mpg_model)
```

get_regression_table *Get regression table*

Description

Output regression table for an `lm()` regression in "tidy" format. This function is a wrapper function for `broom::tidy()` and includes confidence intervals in the output table by default.

Usage

```
get_regression_table(
  model,
  conf.level = 0.95,
  digits = 3,
  print = FALSE,
  default_categorical_levels = FALSE
)
```

Arguments

<code>model</code>	an <code>lm()</code> model object
<code>conf.level</code>	The confidence level to use for the confidence interval if <code>conf.int = TRUE</code> . Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.
<code>digits</code>	number of digits precision in output table
<code>print</code>	If <code>TRUE</code> , return in print format suitable for R Markdown
<code>default_categorical_levels</code>	If <code>TRUE</code> , do not change the non-baseline categorical variables in the term column. Otherwise non-baseline categorical variables will be displayed in the format " <code>categorical_variable_name: level_name</code> "

Value

A tibble-formatted regression table along with lower and upper end points of all confidence intervals for all parameters `lower_ci` and `upper_ci`; the confidence levels default to 95\

See Also

[tidy\(\)](#), [get_regression_points\(\)](#), [get_regression_summaries\(\)](#)

Examples

```
library(moderndive)

# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)
```

```
# Get regression table:
get_regression_table(mpg_model)

# Vary confidence level of confidence intervals
get_regression_table(mpg_model, conf.level = 0.99)
```

gg_parallel_slopes *Plot parallel slopes model*

Description

NOTE: This function is deprecated; please use [geom_parallel_slopes\(\)](#) instead. Output a visualization of linear regression when you have one numerical and one categorical explanatory/predictor variable: a separate colored regression line for each level of the categorical variable

Usage

```
gg_parallel_slopes(y, num_x, cat_x, data, alpha = 1)
```

Arguments

y	Character string of outcome variable in data
num_x	Character string of numerical explanatory/predictor variable in data
cat_x	Character string of categorical explanatory/predictor variable in data
data	an optional data frame, list or environment (or object coercible by as.data.frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula) , typically the environment from which <code>lm</code> is called.
alpha	Transparency of points

Value

A [ggplot2::ggplot\(\)](#) object.

See Also

[geom_parallel_slopes\(\)](#)

Examples

```
## Not run:
library(ggplot2)
library(dplyr)
library(moderndive)

# log10() transformations
house_prices <- house_prices %>%
  mutate(
```

```

  log10_price = log10(price),
  log10_size = log10(sqft_living)
)

# Output parallel slopes model plot:
gg_parallel_slopes(
  y = "log10_price", num_x = "log10_size", cat_x = "condition",
  data = house_prices, alpha = 0.1
) +
  labs(
    x = "log10 square feet living space", y = "log10 price in USD",
    title = "House prices in Seattle: Parallel slopes model"
  )

# Compare with interaction model plot:
ggplot(house_prices, aes(x = log10_size, y = log10_price, col = condition)) +
  geom_point(alpha = 0.1) +
  geom_smooth(method = "lm", se = FALSE, size = 1) +
  labs(
    x = "log10 square feet living space", y = "log10 price in USD",
    title = "House prices in Seattle: Interaction model"
  )

## End(Not run)

```

house_prices

House Sales in King County, USA

Description

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015. This dataset was obtained from Kaggle.com <https://www.kaggle.com/harlfoxem/housesalesprediction/data>

Usage

house_prices

Format

A data frame with 21613 observations on the following 21 variables.

- id** a notation for a house
- date** Date house was sold
- price** Price is prediction target
- bedrooms** Number of Bedrooms/House
- bathrooms** Number of bathrooms/bedrooms
- sqft_living** square footage of the home

sqft_lot square footage of the lot
floors Total floors (levels) in house
waterfront House which has a view to a waterfront
view Has been viewed
condition How good the condition is (Overall)
grade overall grade given to the housing unit, based on King County grading system
sqft_above square footage of house apart from basement
sqft_basement square footage of the basement
yr_built Built Year
yr_renovated Year when house was renovated
zipcode zip code
lat Latitude coordinate
long Longitude coordinate
sqft_living15 Living room area in 2015 (implies— some renovations) This might or might not have affected the lotsize area
sqft_lot15 lotSize area in 2015 (implies— some renovations)

Source

Kaggle <https://www.kaggle.com/harlfoxem/housesalesprediction>. Note data is released under a CC0: Public Domain license.

MA_schools

Massachusetts Public High Schools Data

Description

Data on Massachusetts public high schools in 2017

Usage

MA_schools

Format

A data frame of 332 rows representing Massachusetts high schools and 4 variables

school_name High school name.

average_sat_math Average SAT math score. Note 58 of the original 390 values of this variable were missing; these rows were dropped from consideration.

perc_disadvan Percent of the student body that are considered economically disadvantaged.

size Size of school enrollment; small 13-341 students, medium 342-541 students, large 542-4264 students.

Source

The original source of the data are Massachusetts Department of Education reports https://profiles.doe.mass.edu/state_report/, however the data was downloaded from Kaggle at <https://www.kaggle.com/ndalziel/massachusetts-public-schools-data>

moderndive

moderndive - Tidyverse-Friendly Introductory Linear Regression

Description

Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in "Statistical Inference via Data Science: A ModernDive into R and the tidyverse" available at <https://moderndive.com/>.

Examples

```
library(moderndive)

# Fit regression model:
mpg_model <- lm(mpg ~ hp, data = mtcars)

# Regression tables:
get_regression_table(mpg_model)

# Information on each point in a regression:
get_regression_points(mpg_model)

# Regression summaries
get_regression_summaries(mpg_model)

# Plotting parallel slopes models
library(ggplot2)
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes(se = FALSE)
```

movies_sample

Random sample of 68 action and romance movies

Description

A random sample of 32 action movies and 36 romance movies from <https://www.imdb.com/> and their ratings.

Usage

movies_sample

Format

A data frame of 68 rows movies.

title Movie title

year Year released

rating IMDb rating out of 10 stars

genre Action or Romance

See Also

This data was sampled from the `movies` data frame in the `ggplot2movies` package.

mythbusters_yawn

Data from Mythbusters' study on contagiousness of yawning

Description

From a study on whether yawning is contagious <https://www.imdb.com/title/tt0768479/>. The data here was derived from the final proportions of yawns given in the show.

Usage

`mythbusters_yawn`

Format

A data frame of 50 rows representing each of the 50 participants in the study.

subj integer value corresponding to identifier variable of subject ID

group string of either "seed", participant was shown a yawner, or "control", participant was not shown a yawner

yawn string of either "yes", the participant yawned, or "no", the participant did not yawn

`orig_pennies_sample` *A random sample of 40 pennies sampled from the pennies data frame*

Description

A dataset of 40 pennies to be treated as a random sample with `pennies()` acting as the population. Data on these pennies were recorded in 2011.

Usage

`orig_pennies_sample`

Format

A data frame of 40 rows representing 40 randomly sampled pennies from `pennies()` and 2 variables

year Year of minting

age_in_2011 Age in 2011

Source

StatCrunch <https://www.statcrunch.com:443/app/index.html?dataid=301596>

See Also

[pennies\(\)](#)

`pennies` *A population of 800 pennies sampled in 2011*

Description

A dataset of 800 pennies to be treated as a sampling population. Data on these pennies were recorded in 2011.

Usage

`pennies`

Format

A data frame of 800 rows representing different pennies and 2 variables

year Year of minting

age_in_2011 Age in 2011

Source

StatCrunch <https://www.statcrunch.com:443/app/index.html?dataid=301596>

pennies_resamples *Bootstrap resamples of a sample of 50 pennies*

Description

35 bootstrap resamples with replacement of sample of 50 pennies contained in a 50 cent roll from Florence Bank on Friday February 1, 2019 in downtown Northampton, Massachusetts, USA <https://goo.gl/maps/AF88fpvVfm12>. The original sample of 50 pennies is available in [pennies_sample\(\)](#).

Usage

`pennies_resamples`

Format

A data frame of 1750 rows representing 35 students' bootstrap resamples of size 50 and 3 variables

replicate ID variable of replicate/resample number.

name Name of student

year Year on resampled penny

See Also

[pennies_sample\(\)](#)

pennies_sample *A sample of 50 pennies*

Description

A sample of 50 pennies contained in a 50 cent roll from Florence Bank on Friday February 1, 2019 in downtown Northampton, Massachusetts, USA <https://goo.gl/maps/AF88fpvVfm12>.

Usage

`pennies_sample`

Format

A data frame of 50 rows representing 50 sampled pennies and 2 variables

ID Variable used to uniquely identify each penny.

year Year of minting.

Note

The original `pennies_sample` has been renamed `orig_pennies_sample()` as of `moderndive` v0.3.0.

`promotions`*Bank manager recommendations based on (binary) gender*

Description

Data from a 1970's study on whether gender influences hiring recommendations. Originally used in OpenIntro.org.

Usage

```
promotions
```

Format

A data frame with 48 observations on the following 3 variables.

id Identification variable used to distinguish rows.

gender gender (collected as a binary variable at the time of the study): a factor with two levels
male and female

decision a factor with two levels: promoted and not

Source

Rosen B and Jerdee T. 1974. Influence of sex role stereotypes on personnel decisions. *Journal of Applied Psychology* 59(1):9-14.

See Also

The data in `promotions` is a slight modification of [openintro::gender_discrimination\(\)](#).

`promotions_shuffled`*One permutation/shuffle of promotions*

Description

Shuffled/permuted data from a 1970's study on whether gender influences hiring recommendations.

Usage

```
promotions_shuffled
```

Format

A data frame with 48 observations on the following 3 variables.

id Identification variable used to distinguish rows.

gender shuffled/permuted (binary) gender: a factor with two levels male and female

decision a factor with two levels: promoted and not

See Also

[promotions\(\)](#).

tactile_prop_red

Tactile sampling from a tub of balls

Description

Counting the number of red balls in 33 tactile samples of size $n = 50$ balls from https://github.com/moderndive/moderndive/blob/master/data-raw/sampling_bowl.jpeg

Usage

`tactile_prop_red`

Format

A data frame of 33 rows representing different groups of students' samples of size $n = 50$ and 4 variables

group Group members

replicate Replicate number

red_balls Number of red balls sampled out of 50

prop_red Proportion red balls out of 50

See Also

[bowl\(\)](#)

Index

* **datasets**

- alaska_flights, 2
- bowl, 3
- bowl_sample_1, 4
- bowl_samples, 4
- DD_vs_SB, 5
- evals, 5
- house_prices, 16
- MA_schools, 17
- movies_sample, 18
- mythbusters_yawn, 19
- orig_pennies_sample, 20
- pennies, 20
- pennies_resamples, 21
- pennies_sample, 21
- promotions, 22
- promotions_shuffled, 22
- tactile_prop_red, 23

aes(), 7, 9

aes_(), 7, 9

alaska_flights, 2

as.data.frame, 15

augment(), 12

borders(), 7, 9

bowl, 3

bowl(), 4, 23

bowl_sample_1, 4

bowl_samples, 4

DD_vs_SB, 5

evals, 5

fortify(), 7, 9

geom_categorical_model, 6

geom_categorical_model(), 9

geom_parallel_slopes, 8

geom_parallel_slopes(), 6, 7, 15

get_correlation, 10

get_regression_points, 11

get_regression_points(), 13, 14

get_regression_summaries, 13

get_regression_summaries(), 12, 14

get_regression_table, 14

get_regression_table(), 12, 13

gg_parallel_slopes, 15

ggplot(), 7, 9

ggplot2::ggplot(), 15

glance(), 13

house_prices, 16

layer(), 7, 9

MA_schools, 17

moderndive, 18

movies_sample, 18

mythbusters_yawn, 19

nycflights13::airlines, 3

nycflights13::airports, 3

nycflights13::flights, 3

nycflights13::planes, 3

nycflights13::weather, 3

openintro::evals(), 6

openintro::gender_discrimination(), 22

orig_pennies_sample, 20

orig_pennies_sample(), 21

pennies, 20

pennies(), 20

pennies_resamples, 21

pennies_sample, 21

pennies_sample(), 21

promotions, 22

promotions(), 23

promotions_shuffled, 22

stats::cor(), [11](#)

tactile_prop_red, [23](#)

tidy(), [14](#)