
Package ‘mongolite’
April 20, 2022

Type Package

Title Fast and Simple 'MongoDB' Client for R

Description High-performance MongoDB client based on 'mongo-c-driver' and 'jsonlite'.
Includes support for aggregation, indexing, map-reduce, streaming, encryption,
enterprise authentication, and GridFS. The online user manual provides an overview
of the available methods in the package: <https://jeroen.github.io/mongolite/>.

Version 2.6.1

Imports jsonlite (>= 1.4), openssl (>= 1.0), mime

License Apache License 2.0

URL https://github.com/jeroen/mongolite/ (devel)

https://jeroen.github.io/mongolite/ (user manual)

http://mongoc.org/ (upstream)

BugReports https://github.com/jeroen/mongolite/issues

SystemRequirements OpenSSL, Cyrus SASL (aka libsasl2)

RoxygenNote 7.1.2

Suggests spelling, nycflights13, ggplot2

Language en-GB

Encoding UTF-8

NeedsCompilation yes

Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>),
MongoDB, Inc [cph] (Bundled mongo-c-driver, see AUTHORS file)

Maintainer Jeroen Ooms <jeroen@berkeley.edu>

Repository CRAN

Date/Publication 2022-04-19 22:12:29 UTC

1

https://jeroen.github.io/mongolite/
https://github.com/jeroen/mongolite/
https://jeroen.github.io/mongolite/
http://mongoc.org/
https://github.com/jeroen/mongolite/issues
https://orcid.org/0000-0002-4035-0289

2 gridfs

R topics documented:
gridfs . 2
mongo . 4
mongo_options . 7
oid_to_timestamp . 8
ssl_options . 8

Index 10

gridfs GridFS API

Description

Connect to a GridFS database to search, read, write and delete files.

Usage

gridfs(
db = "test",
url = "mongodb://localhost",
prefix = "fs",
options = ssl_options()

)

Arguments

db name of database

url address of the mongodb server in mongo connection string URI format

prefix string to prefix the collection name

options additional connection options such as SSL keys/certs.

Details

We support two interfaces for sending/receiving data from/to GridFS. The fs$read() and fs$write()
methods are the most flexible and can send data from/to an R connection, such as a file, socket or
url. These methods support a progress counter and can be interrupted if needed. These methods are
recommended for reading or writing single files.

The fs$upload() and fs$download() methods on the other hand copy directly between GridFS
and your local disk. This API is vectorized so it can transfer many files at once. However individual
transfers cannot be interrupted and will block R until completed. This API is only recommended to
upload/download a large number of small files.

Modifying files in GridFS is currently unsupported: uploading a file with the same name will gen-
erate a new file.

https://docs.mongodb.com/manual/reference/connection-string

gridfs 3

Methods

find(filter = "{}", options = "{}") Search and list files in the GridFS

download(name, path = ’.’) Download one or more files from GridFS to disk. Path may be an
existing directory or vector of filenames equal to ’name’.

upload(path, name = basename(path), content_type = NULL, metadata = NULL) Upload one
or more files from disk to GridFS. Metadata is an optional JSON string.

read(name, con = NULL, progress = TRUE) Reads a single file from GridFS into a writable R
connection. If con is a string it is treated as a filepath; if it is NULL then the output is buffered
in memory and returned as a raw vector.

write(con, name, content_type = NULL, metadata = NULL, progress = TRUE) Stream write a
single file into GridFS from a readable R connection. If con is a string it is treated as a
filepath; it may also be a raw vector containing the data to upload. Metadata is an optional
JSON string.

remove(name) Remove a single file from the GridFS

drop() Removes the entire GridFS collection, including all files

Examples

Upload a file to GridFS
fs <- gridfs(url = "mongodb+srv://readwrite:test@cluster0-84vdt.mongodb.net/test")
input <- file.path(R.home('doc'), "html/logo.jpg")
fs$upload(input, name = 'logo.jpg')

Download the file back to disk
output <- file.path(tempdir(), 'logo1.jpg')
fs$download('logo.jpg', output)

Or you can also stream it
con <- file(file.path(tempdir(), 'logo2.jpg'))
fs$read('logo.jpg', con)

Delete the file on the server
fs$remove('logo.jpg')

files <- c(input, file.path(tempdir(), c('logo1.jpg', 'logo2.jpg')))
hashes <- tools::md5sum(files)
stopifnot(length(unique(hashes)) == 1)

Not run:
Insert Binary Data
fs <- gridfs()
buf <- serialize(nycflights13::flights, NULL)
fs$write(buf, 'flights')
out <- fs$read('flights')
flights <- unserialize(out$data)

tmp <- file.path(tempdir(), 'flights.rds')
fs$download('flights', tmp)
flights2 <- readRDS(tmp)

4 mongo

stopifnot(all.equal(flights, nycflights13::flights))
stopifnot(all.equal(flights2, nycflights13::flights))

Show what we have
fs$find()
fs$drop()

End(Not run)

mongo MongoDB client

Description

Connect to a MongoDB collection. Returns a mongo connection object with methods listed below.
Connections automatically get pooled between collection and gridfs objects to the same database.

Usage

mongo(
collection = "test",
db = "test",
url = "mongodb://localhost",
verbose = FALSE,
options = ssl_options()

)

Arguments

collection name of collection

db name of database

url address of the mongodb server in mongo connection string URI format

verbose emit some more output

options additional connection options such as SSL keys/certs.

Details

This manual page is deliberately minimal, see the mongolite user manual for more details and
worked examples.

Value

Upon success returns a pointer to a collection on the server. The collection can be interfaced using
the methods described below.

https://docs.mongodb.com/manual/reference/connection-string
https://jeroen.github.io/mongolite/

mongo 5

Methods

aggregate(pipeline = ’{}’, handler = NULL, pagesize = 1000, iterate = FALSE) Execute a
pipeline using the Mongo aggregation framework. Set iterate = TRUE to return an iterator
instead of data frame.

count(query = ’{}’) Count the number of records matching a given query. Default counts all
records in collection.

disconnect(gc = TRUE) Disconnect collection. The connection gets disconnected once the client
is not used by collections in the pool.

distinct(key, query = ’{}’) List unique values of a field given a particular query.

drop() Delete entire collection with all data and metadata.

export(con = stdout(), bson = FALSE, query = ’{}’, fields = ’{}’, sort = ’{"_id":1}’) Streams
all data from collection to a connection in jsonlines format (similar to mongoexport). Alter-
natively when bson = TRUE it outputs the binary bson format (similar to mongodump).

find(query = ’{}’, fields = ’{"_id" : 0}’, sort = ’{}’, skip = 0, limit = 0, handler = NULL, pagesize = 1000)
Retrieve fields from records matching query. Default handler will return all data as a single
dataframe.

import(con, bson = FALSE) Stream import data in jsonlines format from a connection, similar
to the mongoimport utility. Alternatively when bson = TRUE it assumes the binary bson format
(similar to mongorestore).

index(add = NULL, remove = NULL) List, add, or remove indexes from the collection. The add
and remove arguments can either be a field name or json object. Returns a dataframe with
current indexes.

info() Returns collection statistics and server info (if available).

insert(data, pagesize = 1000, stop_on_error = TRUE, ...) Insert rows into the collection.
Argument ’data’ must be a data-frame, named list (for single record) or character vector with
json strings (one string for each row). For lists and data frames, arguments in ... get passed
to jsonlite::toJSON

iterate(query = ’{}’, fields = ’{"_id":0}’, sort = ’{}’, skip = 0, limit = 0) Runs query
and returns iterator to read single records one-by-one.

mapreduce(map, reduce, query = ’{}’, sort = ’{}’, limit = 0, out = NULL, scope = NULL) Performs
a map reduce query. The map and reduce arguments are strings containing a JavaScript func-
tion. Set out to a string to store results in a collection instead of returning.

remove(query = "{}", just_one = FALSE) Remove record(s) matching query from the collec-
tion.

rename(name, db = NULL) Change the name or database of a collection. Changing name is cheap,
changing database is expensive.

replace(query, update = ’{}’, upsert = FALSE) Replace matching record(s) with value of the
update argument.

run(command = ’{"ping": 1}’, simplify = TRUE) Run a raw mongodb command on the database.
If the command returns data, output is simplified by default, but this can be disabled.

update(query, update = ’{"$set":{}}’, upsert = FALSE, multiple = FALSE) Modify fields of
matching record(s) with value of the update argument.

http://ndjson.org
https://docs.mongodb.com/database-tools/mongoexport/
https://bsonspec.org/faq.html
https://docs.mongodb.com/database-tools/mongodump/
http://ndjson.org
https://docs.mongodb.com/database-tools/mongoimport/
https://bsonspec.org/faq.html
https://docs.mongodb.com/database-tools/mongorestore/

6 mongo

References

Mongolite User Manual

Jeroen Ooms (2014). The jsonlite Package: A Practical and Consistent Mapping Between JSON
Data and R Objects. arXiv:1403.2805. https://arxiv.org/abs/1403.2805

Examples

Connect to demo server
con <- mongo("mtcars", url =

"mongodb+srv://readwrite:test@cluster0-84vdt.mongodb.net/test")
if(con$count() > 0) con$drop()
con$insert(mtcars)
stopifnot(con$count() == nrow(mtcars))

Query data
mydata <- con$find()
stopifnot(all.equal(mydata, mtcars))
con$drop()

Automatically disconnect when connection is removed
rm(con)
gc()

Not run:
dplyr example
library(nycflights13)

Insert some data
m <- mongo(collection = "nycflights")
m$drop()
m$insert(flights)

Basic queries
m$count('{"month":1, "day":1}')
jan1 <- m$find('{"month":1, "day":1}')

Sorting
jan1 <- m$find('{"month":1,"day":1}', sort='{"distance":-1}')
head(jan1)

Sorting on large data requires index
m$index(add = "distance")
allflights <- m$find(sort='{"distance":-1}')

Select columns
jan1 <- m$find('{"month":1,"day":1}', fields = '{"_id":0, "distance":1, "carrier":1}')

List unique values
m$distinct("carrier")
m$distinct("carrier", '{"distance":{"$gt":3000}}')

Tabulate

https://jeroen.github.io/mongolite/
https://arxiv.org/abs/1403.2805

mongo_options 7

m$aggregate('[{"$group":{"_id":"$carrier", "count": {"$sum":1}, "average":{"$avg":"$distance"}}}]')

Map-reduce (binning)
hist <- m$mapreduce(

map = "function(){emit(Math.floor(this.distance/100)*100, 1)}",
reduce = "function(id, counts){return Array.sum(counts)}"

)

Stream jsonlines into a connection
tmp <- tempfile()
m$export(file(tmp))

Remove the collection
m$drop()

Import from jsonlines stream from connection
dmd <- mongo("diamonds")
dmd$import(url("http://jeroen.github.io/data/diamonds.json"))
dmd$count()

Export
dmd$drop()

End(Not run)

mongo_options Mongo Options

Description

Get and set global client options. Calling with NULL parameters returns current values without
modifying.

Usage

mongo_options(log_level = NULL, bigint_as_char = NULL, date_as_char = NULL)

Arguments

log_level integer between 0 and 6 or NULL to leave unchanged.

bigint_as_char logical: parse int64 as strings instead of double.

date_as_char logical: parse UTC datetime as strings instead of POSIXct.

Details

Setting log_level to 0 suppresses critical warnings and messages, while 6 is most verbose and dis-
plays all debugging information. Possible values for level are:

• 0: error

http://mongoc.org/libmongoc/current/logging.html

8 ssl_options

• 1: critical
• 2: warning
• 3: message
• 4: info (default)
• 5: debug
• 6: trace

Note that setting it below 2 will suppress important warnings and setting below 1 will suppress
critical errors (not recommended). The default is 4.

oid_to_timestamp Get OID date

Description

The initial 4 bytes of a MongoDB OID contain a timestamp value, representing the ObjectId cre-
ation, measured in seconds since the Unix epoch.

Usage

oid_to_timestamp(oid)

Arguments

oid string or raw value with document oid

Examples

oid_to_timestamp('5349b4ddd2781d08c09890f3')

ssl_options Connection SSL options

Description

Set SSL options to connect to the MongoDB server.

Usage

ssl_options(
cert = NULL,
key = cert,
ca = NULL,
ca_dir = NULL,
crl_file = NULL,
allow_invalid_hostname = NULL,
weak_cert_validation = NULL

)

ssl_options 9

Arguments

cert path to PEM file with client certificate, or a certificate as returned by openssl::read_cert()

key path to PEM file with private key from the above certificate, or a key as returned
by openssl::read_key(). This can be the same PEM file as cert.

ca a certificate authority PEM file

ca_dir directory with CA files

crl_file file with revocations
allow_invalid_hostname

do not verify hostname on server certificate
weak_cert_validation

disable certificate verification

Index

connection, 3, 5

file, 2

gridfs, 2

jsonlite::toJSON, 5

mongo, 4, 4
mongo_options, 7
mongolite (mongo), 4

oid_to_timestamp, 8
openssl::read_cert(), 9
openssl::read_key(), 9

raw, 3

socket, 2
ssl_options, 8

url, 2

10

	gridfs
	mongo
	mongo_options
	oid_to_timestamp
	ssl_options
	Index

