
Package ‘multiversion’
March 21, 2022

Type Package

Title Version Controlled Package Manager

Version 0.3.6

Description Supports installing of multiple versions of a package and loading
of specific versions and their dependencies. The only package that you need
to install is this package providing the support for the complete library
management. Migrate your ordinary library today!!

License LGPL-2

Encoding UTF-8

RoxygenNote 7.1.2

Depends R (>= 3.5.0)

Suggests testthat (>= 3.0.0), waldo, devtools, withr, callr

Config/testthat/edition 3

NeedsCompilation no

Author Siete C. Frouws [aut, cre]

Maintainer Siete C. Frouws <scfrouws@gmail.com>

Repository CRAN

Date/Publication 2022-03-21 18:50:05 UTC

R topics documented:
.set_test_lib_location . 2
bareVersion . 3
chooseVersion . 3
clean_download_catch . 4
detachAll . 5
detachIfExisting . 5
error_packageAlreadyLoaded . 6
lib.available_versions . 7
lib.check_compatibility . 7
lib.clean . 8

1

2 .set_test_lib_location

lib.clean_install_dir . 8
lib.clean_libPaths . 9
lib.convert . 10
lib.decide_version . 11
lib.dependencies . 12
lib.dependencies_online . 13
lib.dependsOnMe . 14
lib.devtools_load . 14
lib.execute_using_packagelist . 15
lib.git_show_untracked . 17
lib.install . 17
lib.installed_packages . 20
lib.is_basepackage . 20
lib.load . 21
lib.load_namespaces . 24
lib.location . 24
lib.location_install_dir . 25
lib.package_version_loaded . 25
lib.packs_str2vec . 26
lib.packs_vec2str . 27
lib.printVerboseLibCall . 27
lib.set_libPaths . 28
normPath . 28
raw_input_parser . 29
strRemain . 29
unique_highest_package_versions . 30
with_safe_package_tester . 30

Index 32

.set_test_lib_location

Set lib.location to test_library

Description

Set lib.location to test_library

Usage

.set_test_lib_location()

bareVersion 3

bareVersion Remove ‘>‘ or ‘>=‘ from version string.

Description

Remove ‘>‘ or ‘>=‘ from version string.

Usage

bareVersion(packVersion)

Arguments

packVersion A version indication you would like to remove ‘>‘ and ‘>=‘ from.

chooseVersion Choose version based on the version indication, and available ver-
sions.

Description

Obtains the correct version based on the version instruction provided (e.g. >= 0.5), the package
name and it’s available versions. If no compatible version is found between the available versions
a suitable error is thrown. All different version indications should be handled in this function,
including:

1. a version with > or >= indicator.

2. just a version e.g. '0.5.0' (most specific)

3. a zero length char e.g. ''

Usage

chooseVersion(
packVersion,
versionList,
packageName = "",
pick.last = FALSE,
warn_for_major_diff = TRUE

)

4 clean_download_catch

Arguments

packVersion A single named version value. i.e. A package name and it’s version requirement
like: c(dplyr = '>= 0.4.0').

versionList A list of available versions for this package to choose from. It is the list to
choose from and check availability. Created with lib.available_versions.

packageName It is used for clear error handling. It should be the package name it is trying to
load so we can mention it when crashing.

pick.last See details.

warn_for_major_diff

If true, it will throw a warning when the requested package is a major release
higher than that is specified.

Details

Note that both (1) and (3) are effected by ’pick.last’.

If a version like >= 0.5 is given and multiple versions exist, a choice needs to be made. By default it
will take the same or first higher version (when it exists, just 0.5 in the example). This most likely
leads to not changing the behaviour of the code. Alternatively, picking the latest version is most
likely to be accepted by other packages their dependencies (e.g. if a package that is loaded in the
future depends on this package but asks for > 0.6, it will likely fail). The downside of this is that
an update could be a major one, going from 0.5 to 2.0, where allot of things can have changed and
your code that used to work fine is at risk.

clean_download_catch Clean package download catch

Description

Clean the catch folder ’downloaded_packages’ which lives in the temporary R session folder ‘tem-
pdir()‘.

Usage

clean_download_catch()

Value

No return value, is called for it’s side-effect of removing the file.path(tempdir(),'downloaded_packages')
folder.

detachAll 5

detachAll Detach all loaded packages and namespaces.

Description

Tries to detach all loaded packages and namespaces. Not always stable (within Rstudio). A restart
of Rstudio might be required since it will often hold on to certain namespaces. A proper reset of all
libraries is not possible, this is the best we can do.

In general, it is possible to create a complete clean environment by clearing your work space,
running detachAll and then restarting Rstudio. If problems with package loading still persists,
then follow the final alternative solution described in the details section of the documentation of
lib.load.

Usage

detachAll(reload_multiversion = FALSE, packageList = "all", dry_run = FALSE)

Arguments

reload_multiversion

If multiversion needs to be loaded again after everything (or all mentioned in
packageList) is unloaded.

packageList A character vector with the packages to detach/unload. Defaults to all packages
(names(sessionInfo()$otherPkgs). When package X depends on package Y,
make sure you first specify Y then X.

dry_run If TRUE, lists all packages that will be cleaned up.

Value

When dry_run is FALSE, will returns the list of packages that it tried to detach. When not requested,
will return them invisibly. In general, this function is called for it’s side effect to unload all or some
loaded packages.

detachIfExisting Detach package if it exists.

Description

Detach package if it exists.

Usage

detachIfExisting(packageNames)

6 error_packageAlreadyLoaded

Arguments

packageNames A vector of package names which need to be detached. Silently ignores when
the package is not loaded.

Value

No return value, this function is called for it’s side-effect. Detaches a package if it can find it. Will
also try to unload package DLLs that might be loaded using library.dynam.unload.

error_packageAlreadyLoaded

Throw error because this package is already loaded and not compati-
ble with the requested version.

Description

Throw error because this package is already loaded and not compatible with the requested version.

Usage

error_packageAlreadyLoaded(
requested_package_name,
requested_version,
already_loaded_version

)

Arguments

requested_package_name

A single package name of the package that was desired to be loaded.

requested_version

The version definition (like: ">= 3.2.1") of the package that was tried to be
loaded.

already_loaded_version

The version of the package that is already loaded, which causes this error to be
fired.

lib.available_versions 7

lib.available_versions

Just checks the multiversion library for all available versions installed
for a specific package. If no name is provided, an error is returned.

Description

Just checks the multiversion library for all available versions installed for a specific package. If no
name is provided, an error is returned.

Usage

lib.available_versions(packageName, lib_location = lib.location())

Arguments

packageName The name of the package for which all versions must be returned.

lib_location The folder containing the structure where this package his versions need to be
checked.

Value

A character vector with the different versions that are available for a specific package.

lib.check_compatibility

check if version indication is compliant.

Description

Returns TRUE if the ’condition’ complies with the provided ’version’. This function is vectorized.

Usage

lib.check_compatibility(condition, version)

Arguments

condition A version indication like ‘>= 4.5.1‘ or ‘2.3.4‘ or ‘> 1.2.3‘ or ‘”‘ (empty) or ‘NA‘.

version A version number like ‘1.2.3‘, or a vector of version strings (will be converted
to ‘numeric_version(’1.2.3’) during comparison).

Value

A logical indicating if the version is considered compatible.

8 lib.clean_install_dir

lib.clean Clean multiversion library, revert to state of last commit.

Description

Clean up all un-tracked (not committed) installed libraries in the multiversion library. Will addi-
tionally also clean up the TEMP_install_location directory (this is an ’ignored’ directory).

Usage

lib.clean(lib_location = lib.location(), clean_temp_lib = TRUE)

Arguments

lib_location By default the library path returned by lib.location() is used. See Note.

clean_temp_lib If true, will also run lib.clean_install_dir().

Details

Since it involves a quite invasive operation, it asks for permission when being called in an interactive
session.

Value

Clean up all un-tracked (not committed) installed libraries in the multiversion library. Will addi-
tionally also clean up the TEMP_install_location directory (this is an ’ignored’ directory). Will ask
for permission when being called in an interactive session.

Note

It will build the most likely installation directory based on the lib_location you provide. See
lib.location_install_dir. Which is <your lib>/TEMP_install_location.

lib.clean_install_dir Clear the temp install folder.

Description

The temporary installation folder (indicated by lib.location_install_dir()) is used to install
the package before moving (’converting’) it to the final location. This function removes this tem-
porary folder. Make sure that all installed packages that are desired to keep are converted. You can
run the lib.convert() once again to make sure this is the case.

lib.clean_libPaths 9

Usage

lib.clean_install_dir(
lib_location = lib.location(),
temp_install_location = lib.location_install_dir(lib_location)

)

Arguments

lib_location By default the library path returned by lib.location() is used. It is only used
to build the temp_install.location when that argument is not provided.

temp_install_location

The folder that is emptied by this function.

Value

No return value, it is called for it’s side-effect of removing the temporary installation folder (located
in <multiversion_lib>/TEMP_install_location). This must be called after every installation.

lib.clean_libPaths Exclude not relevant search paths.

Description

Excludes all .libPaths other then those needed for lib.load().

Usage

lib.clean_libPaths(lib_location = lib.location(), dry_run = FALSE)

Arguments

lib_location The folder which contains the multiversion library. All directories in .libPaths()
containing this path will be kept. By default, it checks the environment variable
R_MV_LIBRARY_LOCATION to find this directory.

dry_run If TRUE, will not change the paths but will print the paths that would be removed
by cleaning up the .libPaths() list.

Value

No return value, called for it’s side effect of cleaning the .libPaths by removing any non-multiversion
library locations.

10 lib.convert

lib.convert Move normally installed packages to R_MV_library structure.

Description

After this conversion is completed and you configure (temporarily by using lib.location(...) or
for eternity by setting the equally named environment variable) the R_MV_LIBRARY_LOCATION
env var, you are good to go! You can directly use lib.load for loading packages. Thanks for using
multiversion!!

This function creates the R_MV_library structure by moving normally installed packages to a par-
allel library structure. <lib1>/BH/DESCRIPTION becomes<lib2>/BH/1.60.0-2/BH/DESCRIPTION
so that also 1.60.0-3 etc. can be installed.
This functionality is also used (with it’s default values) for converting installed packages from the
temporary installation directory to the final R_MV_library. The TEMP installation directory is in a
standard flat library structure.

Note that it is really no problem to perform a conversion again, it will only move new versions
of already present packages and will never overwrite. To continue with a clean Temp folder, run
lib.clean_install_dir() which will remove the folder.

Usage

lib.convert(
source_lib = lib.location_install_dir(destination_mv_lib),
destination_mv_lib = lib.location(),
force_overwrite = FALSE,
packages_to_convert

)

Arguments

source_lib The temporary library where a package is temporarily installed (having a normal
library structure). By default, the path is generated using lib.location_install_dir()
on the destination_mv_lib that is provided which appends /TEMP_install_location.

destination_mv_lib

The folder containing a structure where all packages in the temp folder must be
moved to. By default, it checks the environment variable R_MV_LIBRARY_LOCATION
for this directory.

force_overwrite

If you are experimenting and you would like to overwrite the newly installed
package. Normally only desired when the package you are experimenting with
is a self maintained package and you are sure you increased the version to a new
one.

packages_to_convert

A character vector with the names of the packages that need to be converted to
the R_MV_library. If missing or empty, all will be converted.

lib.decide_version 11

Value

No return value, it is called for it’s side-effect. Will convert a set of packages from a normal package
library structure to a multiversion library version. By default, from the temporary multiversion
installation directory to the final multiversion library.

Examples

As an experiment (or when getting started) you could run this with
your complete standard library (not your base library).

#> lib.convert(source_lib = Sys.getenv("R_LIBS_USER"),
#> destination_mv_lib = "./REMOVE_ME_example_library")

Running the same operation a second time will result
in a notification that all files were already copied.

Just running it will use the R_MV_library defined by the environment
variable and look inside for the Temp folder to use.

#> lib.convert()

It is sufficient to only provide the destination_mv_lib,
it will look for the "/TEMP_install_location" folder as the 'source_lib' by default.

#> lib.convert(destination_mv_lib = "./R_MV_library")

lib.decide_version Choose correct package version, and print decision.

Description

Obtains the correct version based on the version instruction provided (e.g. >= 0.5). It will print
which version is chosen if ‘verbose = TRUE‘. if no compatible version is found between the avail-
able versions, the function ’chooseVersion’ will return an error to notify you.

Usage

lib.decide_version(
packVersion,
lib_location,
pick.last = FALSE,
print_version_choice = TRUE,
warn_for_major_diff = TRUE

)

12 lib.dependencies

Arguments

packVersion A named character vector with package names and their version indication (e.g.
c(dplyr = '>= 0.4.0',ggplot = '')).

lib_location The location of the R_MV_library folder.

pick.last If a version like>= 0.5 is given and multiple versions exist, a choice needs to
be made. By default it will take the first higher version (when it exists, just0.5,
which is often the case). This because this is most likely to not change the be-
havior of the code. Picking the latest version is most compatible with matching
other packages their dependencies (e.g. if a later package depends on this pack-
age but asks for> 0.6, it will crash). The downside of this is that an update could
be a major one, going from0.5 to2.0, where allot of things can change and code
is likely to not work anymore.

print_version_choice

if true, it will print the choices it made.
warn_for_major_diff

If true, the default, will return warnings if the loaded package is a major release
higher then the package that was requested.

lib.dependencies List the dependencies of a package.

Description

Provide a package name (can be without quotes) to show its dependencies. To list all dependencies
of the complete library, use the inverse function "lib.dependsOnMe(all)" with the value ’all’.
That function also does not require quotes when calling it. So lib.dependencies(package.a)
will work.

Usage

lib.dependencies(
packageName,
do_print = TRUE,
character.only = FALSE,
lib_location = lib.location()

)

Arguments

packageName The (unquoted) package name for which you would like to print the dependen-
cies.

do_print If true (default), prints the dependencies. In both cases, the dependencies are
returned invisibly.

character.only If TRUE, (FALSE by default), the package names can be provided as character
vector. Otherwise, direct unquoted package names are supported.

lib.dependencies_online 13

lib_location The folder containing the R_MV_library structure where this function observes
the dependencies. By default, it checks the environment variable R_MV_LIBRARY_LOCATION
for this directory.

Value

When do_print is TRUE, will print use message to show the provided package(s) his dependencies.
Also returns the dependencies invisibly.

Examples

Not run:
lib.dependencies(dplyr)
lib.dependencies('devtools', character.only = TRUE)
devtools_deps <- lib.dependencies(devtools, do_print = FALSE)

End(Not run)

lib.dependencies_online

Check a package his online dependencies

Description

Returns a c(name = '<version spec>') array which can be used for lib.load(), lib.install_if_not_compatible()
or lib.dependsOnMe().

Usage

lib.dependencies_online(packageName, cran_url = "https://cran.rstudio.com/")

Arguments

packageName The package name to check.

cran_url Defaults to ’https://cran.rstudio.com/’.

Value

Returns a named character with the packages and their version conditions which the given package
depends on.

14 lib.devtools_load

lib.dependsOnMe Shows the dependencies of (all or) a certain function(s).

Description

Can be called without using quotes like lib.dependsOnMe(dplyr). It supports the special feature
lib.dependsOnMe(all), which will print a list of all packages available with their dependencies.

A simple wrapper "lib.installed_packages", will do precisely that.

Usage

lib.dependsOnMe(
...,
checkMyDeps = NULL,
lib_location = lib.location(),
dont_print = FALSE

)

Arguments

... All packages and their versions you would like to check e.g. lib.dependsOnMe(DBI
= '0.5',assertthat,R6 = '0.6',quietly = TRUE).

checkMyDeps Supports providing a named character vector of packages and their versions in-
stead of the direct input. Use it like this when calling it via another function.

lib_location The folder containing a structure where this function observe the dependencies
from. By default, it checks the environment variable R_MV_LIBRARY_LOCATION
for this directory.

dont_print When true, will not print anything, but will expect you to make use of the invis-
ibly returned package character vector.

Value

It returns a special character array with package:version names for every package that has a depen-
dency on the provided checkMyDeps or ... condition.

lib.devtools_load Loads ‘devtools‘ version 1.13.1 and it’s dependencies.

Description

During the library call, appendLibPaths is TRUE, making sure that some devtools functionality
(like running tests) in child R instances will still work and know where to load their libraries from.

lib.execute_using_packagelist 15

Usage

lib.devtools_load(lib_location = lib.location())

Arguments

lib_location The (version controlled) library to load devtools from. Use lib.install('devtools',allow_overwrite_on_convert
= TRUE) to install devtools, if you have not done so already.

Value

No return value, called for it’s side-effect of loading the devtools and testthat packages. Also the
library paths of both packages will be added to the .libPaths()

lib.execute_using_packagelist

Perform operation with a certain set of packages.

Description

This function can be used to perform R operations with a configured set of packages to load in a
separate R process. The package callr is required to use this functionality. It will start a new
process, then load the provided packages and execute your function. The callr package may be
provided via the R_MV_library or your standard library, in which case it must be in a library where
.libPaths is pointing to.

Usage

lib.execute_using_packagelist(
packages_to_load = c(),
func_handle,
...,
.lib_location = lib.location(),
.pick_last = FALSE,
.also_load_from_temp_lib = FALSE,
.wait_for_response = TRUE,
.run_quietly = FALSE,
.callr_arguments = list()

)

Arguments

packages_to_load

An array indicating which packages must be loaded like "c(dplyr = '0.5.0',ggplot2
= '',tidyr = '> 1.2.3')".

func_handle A function object or the function name as a character string.

16 lib.execute_using_packagelist

... Provide all the remaining arguments which will be arguments for the function
handle. Note that every argument must be named and must match an argument
in your func_handle.

.lib_location The location of the version controlled library. Defaults to lib.location(), which
is the directory provided by the environment variable.

.pick_last Passed to lib.load(packages_to_load,...) inside the fired callr process.

.also_load_from_temp_lib

Passed to lib.load(packages_to_load,...) inside the fired callr process.
.wait_for_response

If false, it will fire and forget and return immediately using callr::r_process,
otherwise will use callr::r.

.run_quietly Controls the ’show’ parameter of callr::r or callr::r_process.

.callr_arguments

List specifying additional arguments for callr::r or callr::r_process (de-
pending on the .wait_for_response value). Note that func, args, show and
libpath are already in use. Every parameter must be named.

Details

The additional arguments to callr: .callr_arguments, can for example be used to keep a log of a
detached process. By including the following .callr_arguments for example:

lib.execute_using_packagelist(
...,

.callr_arguments = list(stdout = paste0('./execution_', gsub('\s|-|:', '_', format(Sys.time())), '.log'), stderr = "2>&1")
)

See the example below for a complete example. When you do this, it somehow swallows the first
character of every stderr that is directly returned (also from message calls) when run_quietly =
FALSE, but the log file seems intact.

Value

Will return the outcome of your func_handle.

Example

If you would like to log the outcomes, provide the .callr_arguments:

lib.execute_using_packagelist(
packages_to_load = c(package.a = '0.1.0'),
func_handle = function() {an_important_value(); package_a1(5, 10)},
.wait_for_response = TRUE,

.callr_arguments = list(stdout = paste0('./execution_', gsub('\s|-|:', '_', format(Sys.time())), '.log'), stderr = "2>&1"),
.run_quietly = TRUE

)

lib.git_show_untracked 17

Another more simple example:

lib.execute_using_packagelist(
packages_to_load = c(dplyr = ''),
func_handle = function() {mtcars}

)

lib.git_show_untracked

List all un-tracked library folders

Description

List all un-tracked directories (libraries) within the multiversion library. The returned un-tracked
directories are cleaned up and printed so that only the unique combinations of each library and it’s
version is shown once.

Usage

lib.git_show_untracked(lib_location = lib.location())

Arguments

lib_location By default the default library path obtained with lib.location().

Value

No return value, is called for the printed feedback. Will show which packages inside the library are
not yet tracked by git (when that is desired). It is recommended to track packages with git so that

lib.install Install packages and tarballs into R_MV_library

Description

This family of functions can help with installing packages without the risk of installing every minor
package improvement as soon as it is released.

1. lib.install_tarball can install a tarball based on the tarball location and it’s dependencies
(like c(dplyr = '> 5.0')).

2. lib.install_if_not_compatible can install CRAN package depending on a condition.
This is especially useful (and used on the background) for installing the dependencies for
the tarball installation.

3. lib.install can install CRAN packages into the R_MV_library, which in return is used by
lib.install_if_not_compatible.

18 lib.install

Usage

lib.install(
package_names = NULL,
lib_location = lib.location(),
install_temporarily = FALSE,
allow_overwrite_on_convert = FALSE,
quiet = TRUE,
cran_url = "http://cran.us.r-project.org"

)

lib.install_if_not_compatible(
package_conditions,
lib_location = lib.location(),
install_temporarily = FALSE,
allow_overwrite_on_convert = FALSE,
quiet = TRUE,
cran_url = "http://cran.us.r-project.org"

)

lib.install_tarball(
tarball,
dependencies = c(),
lib_location = lib.location(),
install_temporarily = FALSE,
allow_overwrite_on_convert = c("tarball", "dependencies"),
cran_url = "http://cran.us.r-project.org"

)

Arguments

package_names Provide a vector of package names. A version cannot be supplied.

lib_location The folder where this package can be installed. The package will first be in-
stalled in a temporary install folder <multiversion lib>/TEMP_install_location
indicated by the lib.location_install_dir() function. If install_temporarily
is set to FALSE (the default), the installed package(s) is moved to the lib_location
automatically.

install_temporarily

If FALSE, the installed packages are moved to the R_MV_library, specified by
the lib_location argument, automatically. Otherwise it is necessary to run
lib.convert() manually after the installation into the temporary folder fin-
ished. When multiple tarballs are provided, this is set to FALSE with no warning.

allow_overwrite_on_convert

Can be used if you are experimenting and you would like to overwrite the in-
stalled (tarball) package. Only makes sense with install_temporarily on
FALSE. See details below.

quiet Will affect install.packages(...,quiet = quiet).

cran_url Will be passed trough to the install.packages command.

lib.install 19

package_conditions

Provide a vector of package name/’version condition’ specifications. See section
’limitations for package_conditions’.

tarball The complete path to the tarball file that you would like to install.

dependencies Provide the dependencies like a package version combination: c(dplyr = '>=
0.5',data.table = '',R6 = '0.1.1'). Note that all dependencies must refer
to packages on CRAN. Otherwise install the dependency manually somewhere
and use lib.convert to include it.

Value

Nothing is returned, this function is called for it’s side-effect of installing a package in the multi-
version library.

limitations for package_conditions

All version specifications are allowed except for the exact version indication (e.g. don’t provide
c(dplyr = '1.2.3')). It is allowed to provide no specification, which will match any installed
version of that package. If the condition is met, the package is skipped, which is the desired
behavior for dependencies. For an empty condition (e.g. c(dplyr = '')), it will only install the
package when no version is installed at all.

Allow overwrite on convert

When an installed package is converted to the R_MV_library, it would normally show that it failed
to copy the packages of which that version was already present. This means that these packages
were already converted from the temporary library to the R_MV_library structure before, and no
lib.clean_install_dir() was performed yet. In case you are experimenting with a self made
tarball package, and you are developing the package within the same package version, it is some
times desired to overwrite the already present installed package with a new installation. For CRAN
packages, this options doesn’t make sense.

Only for lib.install_tarball, the options TRUE, FALSE, and additionally "tarball" "dependencies"
are allowed. ’dependencies’ will affect all packages that are in the temporary installation location
except for the tarball package. ’tarball’ will only overwrite the tarball package.

Installing temporarily

Installing a package temporarily gives you the opportunity to test the package before adding it
to the multiversion library structure. Loading packages, including those in the temporary library
(lib.location_install_dir()) can be done using: lib.load(...,also_load_from_temp_lib
= TRUE).

Note

To clean up the installation directory, run lib.clean_install_dir().

20 lib.is_basepackage

lib.installed_packages

Show the complete library content.

Description

Use to print all available packages in the R_MV_library with all their versions including their
dependencies. Simply performs a call to lib.dependsOnMe(all).

Usage

lib.installed_packages(lib_location = lib.location(), dont_print = FALSE)

Arguments

lib_location The R_MV_library location.
dont_print When true, will not print anything, but will expect you to make use of the invis-

ibly returned package character vector.

Value

It returns a special character array with package:version names for every package and package
version in the library.

lib.is_basepackage Check if a package belongs to the standard R (base) packages.

Description

To check if the package is a base package, we look it up among all packages in the .Library
directory (list.dirs(.Library,full.names = FALSE,recursive = FALSE)). We cannot version
control packages which are located in this library since the .Library will always be added to the
.libPaths. For base packages, this is acceptable, but it appears that this directory is not always
as clean as we would wish. Because of this reason, we do not check the more widely accepted
rownames(installed.packages(priority="base")).

Usage

lib.is_basepackage(packageName)

Arguments

packageName The package name to check.

Value

Returns logical indicating if the provided package name is a base package or not.

lib.load 21

lib.load Load package from R_MV_library

Description

There are two ways you can provide a package or vector of packages that need to be loaded:
1: just provide them directly (the ... input). All not recognized named variables will be inter-
preted as package names or (if it’s a named argument) as a package name=version combination.
lib.load(DBI = '0.5',assertthat,R6) 2: provide the loadPackages input in the following
way: lib.load(loadPackages = c(DBI = '0.5',assertthat = '',R6 = ''))

If an empty string e.g. dplyr = '', or only the package name is specified, one of two things will
happen: - if one version is available, this one is used. - if multiple versions are available, the first or
last version is loaded depending on the ’pick.last’ value (FALSE by default).

if >= or > is used, as in dplyr = '>= 2.5', it will decide for the first or last compatible version,
depending on the ’pick.last’ parameter. If another version is desired, please define it in the input list
of packages to load, prior to the package that depends on it.

Usage

lib.load(
...,
loadPackages = NULL,
lib_location = lib.location(),
dry_run = FALSE,
quietly = FALSE,
verbose = FALSE,
appendLibPaths = FALSE,
pick.last = FALSE,
also_load_from_temp_lib = FALSE,
.packNameVersionList = c(),
.skipDependencies = c()

)

Arguments

... All packages and their versions you would like to load e.g. lib.load(DBI =
'0.5',assertthat = '',R6 = '',quietly = TRUE). Input names like quietly
will be recognized and interpreted as expected.

loadPackages Supports providing a named character vector of packages and their versions in
the shape that is supported by all other functions in this package. e.g. c(DBI =
'0.5',assertthat = '',R6 = '')

lib_location The folder containing a structure where this package must load packages from.
By default, it checks the environment variable R_MV_LIBRARY_LOCATION for this
directory.

22 lib.load

dry_run Will make it perform a dry run. It will check all dependencies and if appendLibPaths
it will add their paths to .libPaths but it will not load those packages. If the
paths are added this way, you should be able to just call the located packages
with library(...)

quietly Indicates if the loading must happen silently. No messages and warnings will be
shown if the value is set to true.

verbose Indicates if additional information must be shown that might help with debug-
ging the decision flow of this function. More specifically, when false, it will
wrap ’library’ calls in suppressWarnings(suppressMessages(...)) and sup-
press unloading attempts.

appendLibPaths When true, the path to every package that is loaded will be appended to .libPath(...).
That configured path is the location where library() will look for packages.
For a usecase for this feature, see the description above.

pick.last Changes the way a decision is made. In the scenario where a dependency of > or
>= is defined, multiple versions may be available to choose from. By default, the
lowest compliant version is chosen. Setting this to true will choose the highest
version.

also_load_from_temp_lib

when true, it will also load packages from the temporary installation directory
(created when packages are installed in the R_MV_library). Can be usefull
when installing using: lib.install("new package!",install_temporarily
= TRUE).

.packNameVersionList

See main description. Should be left blank.
.skipDependencies

See main description. Should be left blank.

Details

Dependencies are checked by recursively running this function with dry_run = TRUE. Then the
paths of the found dependencies are temporarily appended (.libPaths()) when the actual pack-
age is loaded. This makes that dependencies are not loaded automatically, but are added to the
namespace. To access a dependency directly, load it explicitly. Because the .libPaths() does not
include the package it’s location, this still needs to be done by lib.load.
In other words, dependencies are remembered, but not loaded.

Using dry_run will show the packages that will be used and will crash when no option is feasi-
ble (not installed or not compliant packages). If you are trying to setup a proper lib.load call,
it is always a good idea to work with dry_run’s. Once an incorrect package has been loaded, it is
very likely you will have to restart your R session to unload it (Ctrl + shift + F10). Unloading
packages in R often leaves traces.

The .libPaths of specific package versions can be appended when using ’appendLibPaths = TRUE’.
Afterwards, the normal library call can be used to load the package since it’s path is in the
.LibPaths vector. For example:
lib.load(c(dplyr = '0.5.0'),dry_run = TRUE,appendLibPaths = TRUE) library(dplyr)

lib.load 23

How this works is that dry_run skips the loading step, and appendLibPaths adds the paths of
dplyr and it’s dependencies to .libPaths, which make a library call work.

One reason to use appendLibPaths = TRUE is to make these packages accessible by a new ’child’
R session. This is the case if devtools::test() is ran by using cntrl + shift + TRUE in Rstudio.
When running it directly, it will use the packages it can find in the available libraries (.libPath())
and return an error if they cannot be found.

The inputs .packNameVersionList [vector of named versions] and .skipDependencies [vector of
names] can be left blank in general. They are used internally and might be deprecated in the future.

Value

Will return a named character vector indicating which version of which package is loaded (or will
be loaded, when dry_run = TRUE). In general, this function is called for it’s side effect. It will load
specific versions of specific packages from a special multiversion library.

Major version differences

By default, when chosing the right version to load, only versions are looked up within the same ma-
jor version. For example, when pick.last = TRUE, the version '> 15.3.0' is requested and the ver-
sions c('15.5.0','15.9.0','16.0.0') are available, the version 15.9.0 is chosen. When a re-
quested (dependency) version '>= 0.5' is provided, and only the versions c('0.4.0','1.5.0','1.7.0')
are available, it will throw a warning that the first available version is a major release higher, and
pick '1.5.0' or '1.7.0' depending on the pick.last value.

This behavior can be disabled by setting options(mv_prefer_within_major_version = ’no’).

Base packages

The packages within the directory returned by .Library are considered ’base packages’. Of these,
only one version can exist, and these cannot be included in the multiversion library.

Problem solving

If you receive the error "cannot unload ..." it means that it tries to load a package, but another
version is already loaded. To unload this other (older) version, run detach(package = ’...’). If it is a
dependency of an other package, you will receive this error. Try restarting your RStudio with a clean
workspace (environment). If that doesn’t help, the only workaround (when using this in R studio) is
to close your Rstudio session (NOTE: save your unsaved process before proceeding!!), rename (or
remove) the folder "YourRProject/.Rproj.user/.../sources/prop" and start Rstudio again. If
it doesn’t work, try "/sources/per" also. Where the ... stands for a hash that is used in the current
session e.g. /F3B1663E/. After this, the packages should be unloaded and you should be able to
load a new batch of packages. Most times it will suffice to clear the workspace (environment) and
reload the project while saving the empty environment.

24 lib.location

lib.load_namespaces Load namespaces

Description

Load (but do not attach) the namespaces of a list of packages.

Usage

lib.load_namespaces(
packages_to_load_in_ns,
lib_location = lib.location(),
additional_lib

)

Arguments

packages_to_load_in_ns

A named character vector with package names and their version indication (e.g.
‘c(dplyr = ’>= 0.4.0’, ggplot = ”)‘).

lib_location The folder which contains the multiversion library. By default, it checks the en-
vironment variable R_MV_LIBRARY_LOCATION to find this directory, see lib.location().

additional_lib A single or multiple paths that must be used in addition to the lib_location for
looking up the packages. Non existing paths are silently ignored.

lib.location The R_MV_library location.

Description

This function will look for the environment variable R_MV_LIBRARY_LOCATION indicating the R_MV_library
location. Alternatively you can provide a path for this session only, using lib.location(yourPath).
This will set the environment variable for this session. (You might want to consider to add this to
your .Rprofile file, see ?Startup)

Usage

lib.location(set_session_path)

Arguments

set_session_path

(optional) If no environment variable has been set to indicate the library location,
You can call this function and let it set the environment variable for this session
only.

lib.location_install_dir 25

Value

When a path is provided, this will be stored as the multiversion library location to use during this
session (via the environment variable "R_MV_LIBRARY_LOCATION"). In all cases, it will return
the location of the multiversion library. When it cannot be found, it will return an error indicating
what to do.

lib.location_install_dir

Temporary directory location.

Description

Indicates the default directory for initially installing a package before it is ’converted’ to the fi-
nal multiversion library structure (see: lib.convert()). This folder can be cleaned up using
cleanTempInstallFolder() after installing the package succeeded. This is not done automati-
cally but won’t influence the installation of other packages.

Usage

lib.location_install_dir(lib_location = lib.location(), do_create = TRUE)

Arguments

lib_location By default the default library path obtained with lib.location().

do_create When it doesn’t exist yet, create the folder.

Value

The temporary folder location where packages are installed before they are moved to their final
location in the multiversion library. When do_create == TRUE, the folder will be created when it
does not yet exist.

lib.package_version_loaded

Check the versions of an already loaded package.

Description

This works for both packages within the R_MV_library (which are loaded) and for packages outside
the library.

Usage

lib.package_version_loaded(packageNames, exclude_not_loaded = TRUE)

26 lib.packs_str2vec

Arguments

packageNames The name or a vector of names of the packages for which to obtain the version.

exclude_not_loaded

If true, the default, it will not try to find a ’loaded version’ of a package that is
not loaded.

Value

A named character vector with the package name(s) and it’s version that is loaded.

lib.packs_str2vec Parse single string to named character vector.

Description

Parses a string shaped like:
assertthat (>= 0.1),R6 (>= 2.1.2),Rcpp (>= 0.12.3),tibble (>= 1.2),magrittr (>= 1.5),lazyeval
(>= 0.2.0),DBI (>= 0.4.1)
to match the normal package name/version layout like:
assertthat R6 Rcpp tibble magrittr lazyeval DBI
">= 0.1" ">= 2.1.2" ">= 0.12.3" ">= 1.2" ">= 1.5" ">= 0.2.0" ">= 0.4.1"

Used by lib.dependencies_online to interpret the by CRAN provided dependencies, used to
parse the ’vc_override_dependencies.txt’ files and the dependencies mentioned in the ’DESCRIP-
TION’ files of the installed packages.

Usage

lib.packs_str2vec(deps)

Arguments

deps A string of length one with the format shown in the description. This will be
converted to a named character vector.

Value

Returns a character vector with the packages and their versions that it could derive from the single
provided string.

lib.packs_vec2str 27

lib.packs_vec2str Convert package name/version vector to single string.

Description

Used to print a set of package names and their version criteria in a way that lib.packs_str2vec()
can parse it again to a package vector. This way we can list the dependencies of a function easily
and support command line interaction for example.

Usage

lib.packs_vec2str(x, do_return = FALSE)

Arguments

x A named character vector with package names/versions. c(dplyr = '>= 1.5.0',data.table
= '')

do_return If FALSE (the default) the package sting is printed, if TRUE, it is returned as a
character string and not printed.

Value

When do_return = TRUE, returns a character string that describes a vector with packages and their
version specifications like "dplyr (>= 1.5.0),data.table". When FALSE, it prints this string
and returns nothing.

lib.printVerboseLibCall

Print example lib.load call.

Description

Prints the library call that you can use, based on a name/version input vector.

Usage

lib.printVerboseLibCall(packNameVersion, .forceToPrint = FALSE)

Arguments

packNameVersion

A named character vector with package names and their version indication (e.g.
‘c(dplyr = ’>= 0.4.0’, ggplot = ”)‘).

.forceToPrint For testing, I need to be able to overrule the ’interactive()’ criteria for printing
this example library call.

28 normPath

lib.set_libPaths Set .libPaths() to the provided version specific package locations.

Description

Adds .Library and the paths of the specific versions of the provided packages that are speci-
fied (and likely loaded before) to the .libPaths. Note that this function will erase any current
.libPaths() configuration silently.

Usage

lib.set_libPaths(packNameVersion, lib_location, additional_lib_paths = c())

Arguments

packNameVersion

A named character vector with package names and their version indication (e.g.
c(dplyr = '>= 0.05',ggplot = '')). Or the special string ’all’, which will
add the paths of all directories of the latest versions of every package in the
R_MV_library. The path that is appended to the .libPaths() is constructed
based on the name and version provided.

lib_location The multiversion library location path (no default configured here!).
additional_lib_paths

Any additional .libPaths() that needs to be set. Namely used for the tempo-
rary installation directory.

Value

The old .libPaths() content is returned invisibly.

normPath Normalize path with backslashes.

Description

This short-hand function normalizes the path and makes sure only forward slashes are used. Other
slashes are not usable in grepl statements directly for example, the ’\’ is parsed to ’\’ before being
used as regexp.

Usage

normPath(path)

Arguments

path The path which needs to be normalized. Will make C:/PROGRA~1/R/R-33~1.1/library
into C:/Program Files/R/R-3.3.1/library.

raw_input_parser 29

raw_input_parser Parse direct unquoted input to package name/version vector.

Description

Converts input like lib.load(hoi = 3.4,hai = '>= 7.9.2',FIETS)
to a named character vector like c(hoi = '3.4',hai = '>= 7.9.2',FIETS = '')
which is compatible with all code that follows.

Must be called like raw_input_parser(as.list(match.call()),c('named_param1','named_param2','named_param3')).
It will return all (name) value pairs if values are available excluding the named parameters provided
in the second argument.

Usage

raw_input_parser(arguments, varnames_to_exclude)

Arguments

arguments The as.list(match.call()) list returned from the calling function. It creates
a list of all provided arguments.

varnames_to_exclude

A character vector with var names to exclude. Normally that includes all argu-
ments after

strRemain Removes pattern A and pattern B from a string.

Description

Removes pattern A and pattern B from a string.

Usage

strRemain(patA, patB, str)

Arguments

patA The first regex pattern to remove from the string.

patB The second regex pattern to remove from the remaining of the first removal.

str The string that needs cleaning up.

30 with_safe_package_tester

unique_highest_package_versions

Create unique list of highest package versions.

Description

Creates a vector with the unique set of with package name = versions and will keep the highest
version when multiple versions of one package are defined.

Usage

unique_highest_package_versions(packNameVersion, return_as_df = FALSE)

Arguments

packNameVersion

provide a package name list like so: c(dplyr = '0.5.0',R6 = '',R6 = 0.5)

return_as_df FALSE if the output should remain a structured dataframe, or if it should return
a named character vector.
To get a feel with the function, you can try:

multiversion:::unique_highest_package_versions(
c(pack.a = '0.1.0', pack.c = '5.2', package.b = '1.9', pack.c = '99.99'))

with_safe_package_tester

Create a safe environment in which certain expressions can be tested

Description

Will reset the .libPaths, the ’R_MV_LIBRARY_LOCATION’ environment variable to their old val-
ues and will unload ’package.a’ till ’package.f’ when finishing the execution.

Usage

with_safe_package_tester(expr, also_clean_install_dir = FALSE)

Arguments

expr The expression that needs to be evaluated in this protected environment.
also_clean_install_dir

If lib.clean_install_dir() must be run before and after the test.

with_safe_package_tester 31

Details

Before execution it will set the following values:

1. .libPaths - will be set to .Library only.

2. R_MV_LIBRARY_LOCATION - will contain ’../test_library/’ or ’tests/test_library/’ depending on
the current directory.

Index

.set_test_lib_location, 2

bareVersion, 3

chooseVersion, 3
clean_download_catch, 4

detachAll, 5
detachIfExisting, 5

error_packageAlreadyLoaded, 6

lib.available_versions, 7
lib.check_compatibility, 7
lib.clean, 8
lib.clean_install_dir, 8
lib.clean_libPaths, 9
lib.convert, 8, 10, 18
lib.decide_version, 11
lib.dependencies, 12
lib.dependencies_online, 13, 26
lib.dependsOnMe, 14
lib.devtools_load, 14
lib.execute_using_packagelist, 15
lib.git_show_untracked, 17
lib.install, 17
lib.install_if_not_compatible

(lib.install), 17
lib.install_tarball (lib.install), 17
lib.installed_packages, 20
lib.is_basepackage, 20
lib.load, 19, 21, 21, 22, 29
lib.load_namespaces, 24
lib.location, 24, 24
lib.location_install_dir, 8, 18, 19, 25
lib.package_version_loaded, 25
lib.packs_str2vec, 26
lib.packs_vec2str, 27
lib.printVerboseLibCall, 27
lib.set_libPaths, 28

normPath, 28

raw_input_parser, 29

strRemain, 29

unique_highest_package_versions, 30

with_safe_package_tester, 30

32

	.set_test_lib_location
	bareVersion
	chooseVersion
	clean_download_catch
	detachAll
	detachIfExisting
	error_packageAlreadyLoaded
	lib.available_versions
	lib.check_compatibility
	lib.clean
	lib.clean_install_dir
	lib.clean_libPaths
	lib.convert
	lib.decide_version
	lib.dependencies
	lib.dependencies_online
	lib.dependsOnMe
	lib.devtools_load
	lib.execute_using_packagelist
	lib.git_show_untracked
	lib.install
	lib.installed_packages
	lib.is_basepackage
	lib.load
	lib.load_namespaces
	lib.location
	lib.location_install_dir
	lib.package_version_loaded
	lib.packs_str2vec
	lib.packs_vec2str
	lib.printVerboseLibCall
	lib.set_libPaths
	normPath
	raw_input_parser
	strRemain
	unique_highest_package_versions
	with_safe_package_tester
	Index

