Package 'munfold'

February 8, 2016
Type Package
Title Metric Unfolding
Version 0.3.5
Date 2016-02-08
Author Martin Elff
Maintainer Martin Elff martin@elff.eu
Description Multidimensional unfolding using Schoenemann's algorithm for metric and Procrustes rotation of unfolding results.

License GPL-2
LazyLoad Yes
Imports memisc, MASS, stats, graphics

URL http://www.elff.eu/software/munfold/http://github.com/melff/munfold/
NeedsCompilation no
Repository CRAN
Date/Publication 2016-02-08 23:32:37

R topics documented:

procrustes 2
unfold 2

Description

procrustes performs procrustes rotation, at the moment only of unfold solutions.

Usage

procrustes(x, ...)
\#\# S3 method for class 'unfolding'
procrustes(x, use=attr(x,"procrustes_use"), target, ...)

Arguments

$x \quad$ an object the components of which to rotate.,
use which of the components of x should be used as criterion for rotation.
target a matrix to which the rotation criterion should be brought as close as possible.
... further arguments for future methods, currently ignored.

Value

a copy of x with components appropriately rotated.

```
unfold Metric Unfolding
```


Description

unfold computes a metric unfolding solution based on a rectangular matrix, that is, reconstructs two sets of points from the distances between points of the first set and the points of the second set. uapply applies a function the two point sets that are reconstructed by unfold.

Usage

unfold (x, \ldots)
\#\# S3 method for class 'matrix'
unfold(x, ndims=NULL, squared=FALSE, tol=1e-7, method=c("Schoenemann", "CG"), ...)
\#\# S3 method for class 'formula'
unfold(x, data=parent.frame(), ...)

```
## S3 method for class 'unfolding'
biplot(x, dimen=c(1,2), type=attr(x,"biplot_type"),
    xlim, ylim, tpos=c(4,2), tposdim=1,
    asp=1, lty=c(1,2), lwd=c(1,1), pch=c(1,3), cex=c(1,1),
    col=c("black","black"), contour.col="black", contour.lty=1,
    xlab=paste("Dimension ",dimen[1]),
    ylab=paste("Dimension ",dimen[2]),
    ...)
## S3 method for class 'unfolding'
plot(x, y=NULL ,dimen=1, discrete=attr(x,"plot_discrete"),
    use.rownames=discrete, xlab=paste("Dimension ",dimen), ...)
uapply(x,FUN)
```


Arguments

X
data
ndims an optional integer value that specifies the dimensionality of the solution. If NULL the dimensionality is selected automatically based on a singular value decomposition of the matrix of squared distances.
squared a logical value; does the matrix D contain squared distances?
tol
method
y
dimen
type
for unfold.matrix: a rectangular matrix that contains distances or squared distances (if argument squared is TRUE). For unfold.formula: a formula which specifies the variables that form the columns of the matrix of distances. For biplot.unfolding and plot.unfolding: an object that contains an unfolding solution.
a data frame or an environment that contains variables specified in the formula given as first argument.
a tolerance value for the convergence of the conjugate gradients method.
a method for the iterative computation of the unfolding solution.
a dummy argument for compatibility with default methods, ignored.
for biplot: a two-element integer vector, for plot: a single integer value, that specifies the dimension(s) of the unfolding solution to be plotted.
a character vector of length less then or equal to 2 . Determines how each of the two point sets of the unfolding solutions are represented in the biplot. Valid choices are

- "points"the respective set of points are plotted as points in the biplot.
- "lines"the points of the respective set are connected by lines.
- "both"the points of the respective set are plotted as points and connected by lines.
- "text"the points of the respective set are represented by the corresponding row names and, if argument tpos is present, by points.
- "density"contour lines are drawn of two-dimensional kernel density estimate for the respective set of points. This biplot type uses the function kde2d of library MASS.

```
tpos a two-element integer vector; specifies the position of text labels relative to the
        points. For the meaning of these integer values see text
tposdim an integer value; specifies which how elements of tpos are used. Labels of
        points with negative positions along coordinate axis dimen[tposdim] are posi-
        tioned according to tpos[1], labels of other points are positioned according to
        tpos[1].
xlab, ylab, xlim, ylim, asp, lty, lwd, pch, cex, col
        arguments passed to base graphics functions.
contour.col, contour.lty
        colour and line type for contour lines, see contour.
discrete a logical vector of lenght 2; if TRUE, the respective set of points are represented
        by spikes in theplot, otherwise the set is represented by a graph of a kernel
        density estimate.
use.rownames logical; should row names used for annotation?
... further arguments passed to optim in case of unfold or points in case of the
        plotting methods.
FUN a function applied to the two sets of points that result from the unfolding.
```


Details

unfold first computes an unfolding solution according to Schoenemanns metric unfolding algorithm that uses only linear algebra operations. This preliminary solution is then refined by minimizing the stress using a conjugate-gradients method.
uapply applies a given function to the two sets of points recovered by an unfolding solution. It applies the function to the components A and B of an object of class "unfolding".

Value

unfold returns an object of class "unfolding" with components
A a numeric matrix representing the first set of points. Each row contains the coordinate of one point of the first set.
B a numeric matrix representing the second set of points. Each row contains the coordinate of one point of the second set.
fitted a numeric matrix that contains the fitted squared distances.
stress A stress value, denotes the "badness of fit".

Examples

```
\(r<-\operatorname{seq}(f r o m=0\), to \(=2 \star\) pi, length \(=24\) )
a1 <- \(\cos (r) * 4+0.00001 * r n o r m(r)\)
a2 <- \(\sin (r) * 4+0.00001 * r n o r m(r)\)
b1 <- c(.5,-. \(5,-.5, .5) * 3+5\)
b2 <- c(.5,.5,-. \(5,-.5) * 3+1\)
D1 <- outer(b1,a1,"-")
D2 <- outer (b2,a2,"-")
```

```
Dsq <- D1^2+D2^2
Dsq.uf<-unfold(sqrt(Dsq),squared=FALSE)
oldpar <- par(mfrow=c(1,2))
A <- cbind(a1,a2)
B <- cbind(b1,b2)
ltype <- c(rep(1,NROW(A)),rep(2,NROW(A)))
orig <- rbind(A,B)
unfolded <- rbind(Dsq.uf$A,Dsq.uf$B)
xlim <- ylim <- range(orig)#*1.5
plot(A, type="b", pch=1,
    xlim=xlim,ylim=ylim,
    xlab="Dimension 1",ylab="Dimension 2",main=expression("Original data"),asp=1)
lines(B, type="b",pch=3,lty=2)
abline(h=0,v=0,lty=3)
biplot(Dsq.uf,type="b",
    xlim=xlim,ylim=ylim,
    main=expression(paste(italic(unfold)," solution")),asp=1)
par(oldpar)
```


Index

*Topic hplot
unfold, 2
*Topic multivariate
unfold, 2
biplot.unfolding (unfold), 2
contour, 4
kde2d, 3
optim, 4
plot.unfolding (unfold), 2
points, 4
procrustes, 2
text, 4
uapply (unfold), 2
unfold, 2

