
Package ‘mvMORPH’
March 17, 2021

Type Package

Title Multivariate Comparative Tools for Fitting Evolutionary Models
to Morphometric Data

Version 1.1.4

Date 2021-12-02

Author Julien Clavel, with contributions from Aaron King, and Emmanuel Paradis

Maintainer Julien Clavel <julien.clavel@hotmail.fr>

Description Fits multivariate (Brownian Motion, Early Burst, ACDC, Ornstein-
Uhlenbeck and Shifts) models of continuous traits evolution on trees and time series. 'mv-
MORPH' also proposes high-dimensional multivariate comparative tools (linear models us-
ing Generalized Least Squares and multivariate tests) based on penalized likelihood. See
Clavel et al. (2015) <DOI:10.1111/2041-
210X.12420>, Clavel et al. (2019) <DOI:10.1093/sysbio/syy045>, and Clavel & Mor-
lon (2020) <DOI:10.1093/sysbio/syaa010>.

Depends R (>= 3.5.0), phytools, ape, corpcor, subplex

Imports stats, spam, graphics, glassoFast, parallel, pbmcapply

Suggests knitr, rmarkdown, car

License GPL (>= 2.0)

URL https://github.com/JClavel/mvMORPH

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-03-17 12:20:02 UTC

R topics documented:
mvMORPH-package . 2
aicw . 3
coef.mvgls . 5
EIC . 6

1

https://github.com/JClavel/mvMORPH

2 mvMORPH-package

estim . 8
fitted.mvgls . 10
GIC . 11
halflife . 12
LRT . 14
manova.gls . 16
mv.Precalc . 18
mvBM . 20
mvEB . 25
mvgls . 28
mvgls.dfa . 32
mvgls.pca . 33
mvLL . 35
mvOU . 39
mvOUTS . 44
mvRWTS . 48
mvSHIFT . 51
mvSIM . 55
phyllostomid . 58
predict.mvgls . 59
pruning . 60
residuals.mvgls . 62
stationary . 63
vcov.mvgls . 64

Index 66

mvMORPH-package Multivariate Comparative Methods for Fitting Evolutionary Models to
Morphometric Data

Description

Fits of multivariate evolutionary models on trees (with one or multiple selective regimes) and time-
series dedicated to morphometrics or biometric continuous data with covariation. Testing for a
phylogenetic signal in a multivariate dataset (including fossil and/or extant taxa), fitting linear mod-
els to high-dimensional multivariate comparative data, changes in rate or mode of evolution of
continuous traits, simulating multivariate traits evolution, computing the likelihood of multivariate
models, accounts for measurement errors and missing data, and other things...

Details

Package: mvMORPH
Type: Package
Version: 1.1.4
Date: 2013-07-22
License: GPL (>=2.0)

aicw 3

Author(s)

Julien Clavel

Maintainer: Julien Clavel <julien.clavel@hotmail.fr>

References

Clavel et al. (2015). mvMORPH: an R package for fitting multivariate evolutionary models to
morphometric data. Methods in Ecology and Evolution, 6(11):1311-1319. doi: 10.1111/2041-
210X.12420.

Clavel et al. (2019). A Penalized Likelihood framework for high-dimensional phylogenetic com-
parative methods and an application to new-world monkeys brain evolution. Systematic Biology
68(1): 93-116. doi: 10.1093/sysbio/syy045.

Clavel & Morlon (2020). Reliable phylogenetic regressions for multivariate comparative data: il-
lustration with the MANOVA and application to the effect of diet on mandible morphology in
Phyllostomid bats. Systematic Biology 69(5): 927-943.

See Also

mvgls mvgls.pca mvgls.dfa manova.gls mvOU mvBM mvEB mvSHIFT mvOUTS mvRWTS mvSIM mvLL
LRT halflife stationary estim aicw GIC EIC

aicw Akaike weights

Description

This function return the Akaike weights for a set of fitted models.

Usage

aicw(x,...)

Arguments

x A list with the fitted objects or a list/vector of AIC

... Options to be passed through; e.g. aicc=TRUE when a list of fitted objects is
provided.

Details

This function compute the Akaike weights for a set of model AIC or AICc. Akaike weights can be
used for model comparison and model averaging.

4 aicw

Value

models List of models

AIC Akaike Information Criterion

diff AIC difference with the best fit model

wi Absolute weight

aicweights Akaike weights (relative weights)

Author(s)

Julien Clavel

References

Burnham K.P., Anderson D.R. 2002. Model selection and multi-model inference: a practical
information-theoric approach. New York: Springer-Verlag.

See Also

AIC mvMORPH

Examples

set.seed(1)
Generating a random tree
tree<-pbtree(n=50)

#simulate the traits
sigma <- matrix(c(0.01,0.005,0.003,0.005,0.01,0.003,0.003,0.003,0.01),3)
theta<-c(0,0,0)
data<-mvSIM(tree, model="BM1", nsim=1, param=list(sigma=sigma, theta=theta))

Fitting the models
BM1 - General structure
fit1 <- mvBM(tree, data, model="BM1", method="pic")

BM1 - No covariations
fit2 <- mvBM(tree, data, model="BM1", method="pic", param=list(constraint="diagonal"))

BM1 - Equal variances/rates
fit3 <- mvBM(tree, data, model="BM1", method="pic", param=list(constraint="equal"))

results <- list(fit1,fit2,fit3)

or
results <- c(AIC(fit1), AIC(fit2), AIC(fit3))

Akaike weights
aicw(results)

AICc weights

coef.mvgls 5

aicw(results, aicc=TRUE)

we can compare the MSE...
mean((fit1$sigma-sigma)^2)
mean((fit3$sigma-sigma)^2)

coef.mvgls Extract multivariate gls model coefficients

Description

Returns the coefficients of a linear model fit of class ’mvgls’.

Usage

S3 method for class 'mvgls'
coef(object, ...)

Arguments

object an object of class ’mvgls’ obtained from a mvgls fit.

... other arguments (not used).

Value

The coefficients extracted from the model.

Note

For an intercept only model with phylogenetic structure this correspond to the ancestral states.

Author(s)

J. Clavel

See Also

vcov.mvgls residuals.mvgls fitted.mvgls mvgls

6 EIC

EIC Extended Information Criterion (EIC) to compare models fit with
mvgls by Maximum Likelihood (ML) or Penalized Likelihood (PL).

Description

The EIC (Ishiguro et al. 1997, Kitagawa & Konishi 2010), uses bootstrap to estimate the bias term
of the Extended Information Criterion. This criterion allows comparing models fit by Maximum
Likelihood (ML) or Penalized Likelihood (PL).

Usage

EIC(object, nboot=100L, nbcores=1L, ...)

Arguments

object An object of class ’mvgls’. See ?mvgls

nboot The number of boostrap replicates used for estimating the EIC.

nbcores The number of cores used to speed-up the computations (uses the ’parallel’
package)

... Options to be passed through.

Details

The Extended Information Criterion (EIC) allows comparing the fit of various models estimated
by Penalized Likelihood or Maximum Likelihood (see ?mvgls). Similar to the GIC or the more
common AIC, the EIC has the form:

EIC = -2*(Likelihood) + 2*bias

Where Likelihood corresponds to either the full or the restricted likelihood (see the note below), and
the bias term is estimated by (semi-parametric) bootstrap simulations rather than by using analytical
or approximate solutions (see for instance ?GIC). The smaller the EIC, the better is the model. With
small sample sizes, the variability around the bootstrap estimates is expected to be high, and one
must increase the number of bootstrap replicates. Parallel computation (argument nbcores) allows
to speed-up the computations.

Note: for models estimated by REML, it is generally not possible to compare the restricted likeli-
hood when they have different fixed effects. However, it is possible to compare models with differ-
ent fixed effects by using the full likelihood evaluated with the REML estimates (see e.g. Yafune
et al. 2006, Verbyla 2019). Both options - evaluating the restricted likelihood or the full likelihood
with parameters estimated by REML - are available through the REML argument in the EIC function.
The default has been set to REML=FALSE to allow the comparison of models with different fixed
effects using the full likelihood evaluated with the REML estimates (see Verbyla 2019).

EIC 7

Value

a list with the following components

LogLikelihood the log-likelihood estimated for the model with estimated parameters

EIC the EIC criterion

se the standard error of the bias term estimated by bootstrap

bias the values of the bias term estimated from the boostrapped replicates to compute
the EIC

Author(s)

J. Clavel

References

Clavel J., Aristide L., Morlon H., 2019. A Penalized Likelihood framework for high-dimensional
phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst.
Biol. 68:93-116.

Ishiguro M., Sakamoto Y., Kitagawa G., 1997. Bootstrapping log likelihood and EIC, an extension
of AIC. Ann. Inst. Statist. Math. 49:411-434.

Kitagawa G., Konishi S., 2010. Bias and variance reduction techniques for bootstrap information
criterion. Ann. Inst. Stat. Math. 62:209-234.

Konishi S., Kitagawa G., 1996. Generalised information criteria in model selection. Biometrika.
83:875-890.

Verbyla A. P., 2019. A note on model selection using information criteria for general linear models
estimated using REML. Aust. N. Z. J. Stat. 61:39-50.

Yafune A., Funatogawa T., Ishiguro M., 2005. Extended information criterion (EIC) approach for
linear mixed effects models under restricted maximum likelihood (REML) estimation. Statist. Med.
24:3417-3429.

See Also

GIC mvgls mvgls.pca

Examples

set.seed(1)
n <- 32 # number of species
p <- 50 # number of traits

tree <- pbtree(n=n) # phylogenetic tree
R <- crossprod(matrix(runif(p*p), ncol=p)) # a random symmetric matrix (covariance)
simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))

8 estim

fit1 <- mvgls(Y~1, tree=tree, model="BM", method="H&L")
fit2 <- mvgls(Y~1, tree=tree, model="OU", method="H&L")

EIC(fit1); EIC(fit2)

estim Ancestral states reconstructions and missing value imputation with
phylogenetic/time-series models

Description

This function imputes the missing cases (NA values) according to a given phylogenetic model
(object of class "mvmorph"); it can also do ancestral state reconstruction.

Usage

estim(tree, data, object, error=NULL, asr=FALSE)

Arguments

tree Phylogenetic tree (an object of class "phylo" or "simmap") or a time-series.

data Matrix or data frame with species in rows and continuous traits with missing
cases (NA values) in columns (preferentially with names and in the same order
than in the tree).

object A fitted object from an mvMORPH model (class "mvmorph").

error Matrix or data frame with species in rows and continuous traits sampling vari-
ance (squared standard errors) in columns.

asr If asr=TRUE, the ancestral states are estimated instead of the missing cases.

Details

Missing observations for species in a phylogenetic tree are estimated according to a given evolution-
ary model (and parameters). Multivariate models are useful to recover the variance and covariance
structure of the dataset to be imputed.

When asr=TRUE, the estimates, their variances and standard errors are those of the ancestral states
at each node of the tree (this option is not available for the time-series). Note that if there are
missing cases, they are first imputed before estimating the ancestral states.

Value

estimates The imputed dataset

var Variance of the estimates

se Standard error of the estimates

NA_index Position of the missing cases in the dataset

estim 9

Author(s)

Julien Clavel

References

Clavel J., Merceron G., Escarguel G. 2014. Missing Data Estimation in Morphometrics: How Much
is Too Much? Syst. Biol. 63:203-218.

Cunningham C.W., Omland K.E., Oakley T.H. 1998. Reconstructing ancestral character states: a
critical reappraisal. Trends Ecol. Evol. 13:361-366.

See Also

mvMORPH mvOU mvEB mvBM mvSHIFT

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Forest","Savannah")

Plot of the phylogeny for illustration
plotSimmap(tree,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate two correlated traits evolving along the phylogeny
traits<-mvSIM(tree,nsim=1, model="BMM", param=list(sigma=list(matrix(c(2,1,1,1.5),2,2),

matrix(c(4,1,1,4),2,2)), names_traits=c("head.size","mouth.size")))

Introduce some missing cases (NA values)
data<-traits
data[8,2]<-NA
data[25,1]<-NA

Fit of model 1
fit<-mvBM(tree,data,model="BMM")

Estimate the missing cases
imp<-estim(tree, data, fit)

Check the imputed data
imp$estim[1:10,]

We want the ancestral states values at each nodes:

10 fitted.mvgls

nodelabels() # To see where the nodes are situated

imp2<-estim(tree, data, fit, asr=TRUE)

Check the 10 firsts ancestral states
imp2$estim[1:10,]

fitted.mvgls Extract multivariate gls model fitted values

Description

Returns the fitted values of a linear model of class ’mvgls’.

Usage

S3 method for class 'mvgls'
fitted(object, ...)

Arguments

object an object of class ’mvgls’ obtained from a mvgls fit.

... other arguments (not used).

Value

The fitted values extracted from the model.

Author(s)

J. Clavel

See Also

vcov.mvgls residuals.mvgls coef.mvgls mvgls

GIC 11

GIC Generalized Information Criterion (GIC) to compare models fit with
mvgls by Maximum Likelihood (ML) or Penalized Likelihood (PL).

Description

The GIC (Konishi & Kitagawa 1996) allows comparing models fit by Maximum Likelihood (ML)
or Penalized Likelihood (PL).

Usage

GIC(object, ...)

Arguments

object An object of class ’mvgls’. See ?mvgls
... Options to be passed through.

Details

The Generalized Information Criterion (GIC) allows comparing the fit of various models estimated
by Penalized Likelihood (see ?mvgls). See also the gic_criterion function in the RPANDA
package. Note that the current implementation of the criterion has not been tested for multiple
predictors comparison. Prefer simulation based comparisons instead.

Value

a list with the following components

LogLikelihood the log-likelihood estimated for the model with estimated parameters
GIC the GIC criterion
bias the value of the bias term estimated to compute the GIC

Author(s)

J. Clavel

References

Clavel, J., Aristide, L., Morlon, H., 2019. A Penalized Likelihood framework for high-dimensional
phylogenetic comparative methods and an application to new-world monkeys brain evolution. Sys-
tematic Biology 68(1): 93-116.

Konishi S., Kitagawa G. 1996. Generalised information criteria in model selection. Biometrika.
83:875-890.

12 halflife

See Also

mvgls mvgls.pca

Examples

set.seed(1)
n <- 32 # number of species
p <- 50 # number of traits

tree <- pbtree(n=n) # phylogenetic tree
R <- crossprod(matrix(runif(p*p), ncol=p)) # a random symmetric matrix (covariance)
simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))

fit1 <- mvgls(Y~1, tree=tree, model="BM", method="H&L")
fit2 <- mvgls(Y~1, tree=tree, model="OU", method="H&L")

GIC(fit1); GIC(fit2)

halflife The phylogenetic half-life for an Ornstein-Uhlenbeck process

Description

This function returns the phylogenetic half-life for an Ornstein-Uhlenbeck process (object of class
"ou").

Usage

halflife(object)

Arguments

object Object fitted with the "mvOU" function.

Details

The phylogenetic half-life describes the time to move halfway from the ancestral state to the pri-
mary optimum (Hansen, 1997). The multivariate counterpart is computed on the eigenvalues of the
"selection" matrix (Bartoszek et al. 2012).

Value

The phylogenetic half-life computed from each eigenvalues (or alpha for the univariate case)

halflife 13

Author(s)

Julien Clavel

References

Bartoszek K., Pienaar J., Mostad P., Andersson S., Hansen T.F. 2012. A phylogenetic comparative
method for studying multivariate adaptation. J. Theor. Biol. 314:204-215.

Hansen T.F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution.
51:1341-1351.

See Also

mvMORPH mvOU stationary

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Forest","Savannah")

Plot of the phylogeny for illustration
plotSimmap(tree,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate the traits
alpha<-matrix(c(2,0.5,0.5,1),2)
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(2,3,1,1.3)
data<-mvSIM(tree, param=list(sigma=sigma, alpha=alpha, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size")), model="OUM", nsim=1)

Fitting the models
OUM - Analysis with multiple optima
result<-mvOU(tree, data)

halflife(result)

14 LRT

LRT Likelihood Ratio Test

Description

This function compares the fit of two nested models of trait evolution with a loglikelihood-ratio
statistic.

Usage

LRT(model1, model2, echo = TRUE, ...)

Arguments

model1 The most parameterized model. A fitted object from an mvMORPH model.

model2 The second model under comparison (fitted object).

echo Whether to return the result or not.

... Options to be passed through. (Not yet available)

Details

The LRT function extracts the log-likelihood of two nested models to compute the loglikelihood-
ratio statistic which is compared to a Chi-square distribution. Note that if the models are not nested,
the LRT is not an appropriate test and you should rely instead on Information criteria, evidence
ratios, or simulated distributions (e.g., Lewis et al. 2011). This can be achieved using the simulate
function (see examples below).

Value

pval The p-value of the LRT test (comparison with Chi-square distribution).

ratio The LRT (Loglikelihood-ratio test) statistic.

ddf The number of degrees of freedom between the two models.

model1 Name of the first model.

model2 Name of the second model.

Note

When comparing BM models to OU models, the LRT test might not be at it’s nominal level. You
should prefer a simulations based test.

Author(s)

Julien Clavel

LRT 15

References

Neyman J., Pearson E.S. 1933. On the problem of the most efficient tests of statistical hypotheses.
Philos. Trans. R. Soc. A. 231:289-337.

Lewis F., Butler A., Gilbert L. 2011. A unified approach to model selection using the likelihood
ratio test. Meth. Ecol. Evol. 2:155-162.

See Also

mvMORPH mvOU mvEB mvBM mvSHIFT

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Forest","Savannah")

Plot of the phylogeny for illustration
plotSimmap(tree,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate two correlated traits evolving along the phylogeny
traits<-mvSIM(tree,nsim=1, model="BMM", param=list(sigma=list(matrix(c(2,1,1,1.5),2,2),

matrix(c(4,1,1,4),2,2)), ntraits=2, names_traits=c("head.size","mouth.size")))

Fit of model 1
mod1<-mvBM(tree,traits,model="BMM")

Fit of model 2
mod2<-mvBM(tree,traits,model="BM1")

comparing the fit using LRT...
LRT(mod1,mod2)

Simulation based test
nsim = 500
boot <- simulate(mod2, tree=tree, nsim=nsim)
simulations <- sapply(1:nsim, function(i){

mod1boot<-mvBM(tree, boot[[i]], model="BMM", diagnostic=FALSE, echo=FALSE)
mod2boot<-mvBM(tree, boot[[i]], model="BM1", diagnostic=FALSE, echo=FALSE, method="pic")
2*(mod1boot$LogLik-mod2boot$LogLik)

16 manova.gls

})

Compute the p-value
LRT_stat<-(2*((mod1$LogLik-mod2$LogLik)))
mean(simulations>=LRT_stat)

plot(density(simulations), main="Non-parametric LRT");
abline(v=LRT_stat, col="red")

manova.gls Multivariate Analysis of Variance

Description

Performs a Multivariate Analysis of Variance (MANOVA) on an object fitted by the mvgls function.
With the regularized methods by penalized likelihood implemented in mvgls (ridgeArch penalty),
this function can be used to compare model fit on high-dimensional datasets (where the number of
variable is larger than the number of observations).

Usage

manova.gls(object, test=c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),
type=c("I","II","III"), nperm=1000L, L=NULL, ...)

Arguments

object A model fit obtained by the mvgls function.

test The multivariate test statistic to compute - "Wilks", "Pillai", "Hotelling-Lawley",
or "Roy"

type The type of test (sums of squares and cross-products) - "I", "II", or "III"

nperm The number of permutations used for building the null distribution of the chosen
statistic. Permutation is the only available approach for high-dimensional PL
models, but either permutations or parametric tests can be used with maximum
likelihood (method "LL" in mvgls)

L A (contrasts) matrix or a vector giving linear combinations of the coefficients
rows.

... Further arguments to be passed through. (e.g., nbcores=2L to provide the num-
ber of cores used for parallel calculus; parametric=FALSE to obtain permuta-
tion instead of parametric tests for maximum likelihood fit; verbose=TRUE to
display a progress bar during permutations; rhs=0 the "right-hand-side" vector
for general linear hypothesis testing. See details)

manova.gls 17

Details

manova.gls allows performing multivariate tests (e.g. Pillai’s, Wilks, Hotelling-Lawley and Roy
largest root) on generalized least squares (GLS) linear model (objects of class "mvgls") fit by either
maximum likelihood (method="LL") or penalized likelihood (method="PL-LOO") using the mvgls
function.

General Linear Hypothesis of the form:

LB=O

an L matrix specifying linear combinations of the model coefficients (B) can be provided through
the argument L. The right-hand-side matrix O is a constant matrix (of zeros by default) that can be
provided through the argument rhs.

Permutations on high-dimensional datasets is time consuming. You can use the option nbcores to
parallelize the calculus over several cores using forking in UNIX platforms (default is nbcores=1L.
Estimated time to completion is displayed when verbose=TRUE.

Value

An object of class ’manova.mvgls’ which is usually printed. It contains a list including the following
components:

test the multivariate test statistic used

type the type of tests used to compute the SSCP matrices

stat the statistic calculated for each terms in the model

pvalue the pvalues calculated for each terms in the model

Note

For PL methods, only the "RidgeArch" penalty is allowed for now.

Author(s)

J. Clavel

References

Clavel, J., Aristide, L., Morlon, H., 2019. A Penalized Likelihood framework for high-dimensional
phylogenetic comparative methods and an application to new-world monkeys brain evolution. Sys-
tematic Biology 68(1): 93-116.

Clavel, J., Morlon, H. 2020. Reliable phylogenetic regressions for multivariate comparative data:
illustration with the MANOVA and application to the effect of diet on mandible morphology in
phyllostomid bats. Systematic Biology 69(5): 927-943.

See Also

mvgls, GIC EIC

18 mv.Precalc

Examples

set.seed(1)
n <- 32 # number of species
p <- 30 # number of traits

tree <- pbtree(n=n) # phylogenetic tree
R <- crossprod(matrix(runif(p*p),p)) # a random symmetric matrix (covariance)

simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))
X <- rnorm(n) # continuous
grp <- rep(1:2, each=n/2)
dataset <- list(y=Y, x=X, grp=as.factor(grp))

Model fit
model1 <- mvgls(y~x, data=dataset, tree=tree, model="BM", method="LOO")

Multivariate test
(multivariate_test <- manova.gls(model1, nperm=999, test="Pillai"))

MANOVA on a binary predictor
model2 <- mvgls(y~grp, data=dataset, tree=tree, model="lambda", method="LOO")

Multivariate test
(multivariate_test <- manova.gls(model2, nperm=999, test="Pillai", verbose=TRUE))

mv.Precalc Model parameterization for the various mvMORPH functions

Description

This function allows computing the fixed parameters or objects needed by the mvMORPH func-
tions. This could be useful for bootstrap-like computations (see exemple)

Usage

mv.Precalc(tree, nb.traits = 1, scale.height = FALSE, param = list(pivot = "MMD",
method = c("sparse"), smean = TRUE, model = "OUM"))

Arguments

tree A "phylo" (or SIMMAP like) object representing the tree for which we want to
precalculate parameters.

nb.traits The number of traits involved in the subsequent analysis.

scale.height Whether the tree should be scaled to unit length or not.

param A list of parameters used in the computations (see details)

mv.Precalc 19

Details

The mv.Precalc function allows the pre-computation of the fixed parameters required by the dif-
ferent mvMORPH models (e.g., the design matrix, the vcv matrix, the sparsity structure...). In the
"param" list you should provide the details about the model fit:

-model name (e.g., "OUM", "OU1")

-method (which kind of algorithm is used for computing the log-likelihood).

-smean (whether there is one ancestral state per trait or per selective regimes - for mvBM only).

Additional parameters can be fixed:

-root (estimation of the ancestral state for the Ornstein-Uhlenbeck model; see ?mvOU).

-pivot (pivot method used by the "sparse" matrix method for computing the log-likelihood; see
?spam).

Value

An object of class "mvmorph.precalc" which can be used in the "precalc" argument of the various
mvMORPH functions.

Note

This function is mainly used internally; it is still in development. A misuse of this functions can
result in a crash of the R session.

Author(s)

Julien Clavel

See Also

mvMORPH mvOU mvEB mvBM mvSHIFT mvLL

Examples

set.seed(14)
Generating a random tree
tree<-pbtree(n=50)

Simulate two correlated traits evolving along the phylogeny according to a
Ornstein-Uhlenbeck process
alpha<-matrix(c(2,1,1,1.3),2,2)
sigma<-matrix(c(1,0.5,0.5,0.8),2,2)
theta<-c(3,1)
nsim<-50
simul<-mvSIM(tree,param=list(sigma=sigma, alpha=alpha, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size")), model="OU1", nsim=nsim)

Do the pre-calculations
precal<-mv.Precalc(tree,nb.traits=2, param=list(method="sparse",model="OU1", root=FALSE))

20 mvBM

mvOU(tree, simul[[1]], method="sparse", model="OU1", precalc=precal,
param=list(decomp="cholesky"))

Bootstrap

Fit the model to the "nsim" simulated datasets
results<-lapply(1:nsim,function(x){
mvOU(tree, simul[[x]], method="sparse", model="OU1", precalc=precal,

param=list(decomp="cholesky"),
echo=FALSE, diagnostic=FALSE)

})

Use parallel package
library(parallel)

if(.Platform$OS.type == "unix"){
number_of_cores<-2L # Only working on Unix systems

}else{
number_of_cores<-1L

}

results<-mclapply(simul, function(x){
mvOU(tree, x, method="sparse", model="OU1", precalc=precal,

param=list(decomp="cholesky"), echo=FALSE, diagnostic=FALSE)
}, mc.cores = getOption("mc.cores", number_of_cores))

Summarize (we use the generic S3 method "logLik" to extract the log-likelihood)
loglik<-sapply(results,logLik)
hist(loglik)

mvBM Multivariate Brownian Motion models of continuous traits evolution

Description

This function allows the fitting of multivariate multiple rates of evolution under a Brownian Motion
model. This function can also fit constrained models.

Usage

mvBM(tree, data, error = NULL, model = c("BMM", "BM1"),
param = list(constraint = FALSE, smean = TRUE, trend=FALSE),
method = c("rpf", "pic", "sparse", "inverse", "pseudoinverse"),
scale.height = FALSE, optimization = c("L-BFGS-B", "Nelder-Mead", "subplex"),
control = list(maxit = 20000), precalc = NULL, diagnostic = TRUE, echo = TRUE)

mvBM 21

Arguments

tree Phylogenetic tree in SIMMAP format by default. A "phylo" object can also be
used with the "BM1" model.

data Matrix or data frame with species in rows and continuous traits in columns (pref-
erentially with names and in the same order than in the tree). NA values are
allowed with the "rpf", "inverse", and "pseudoinverse" methods.

error Matrix or data frame with species in rows and continuous trait sampling variance
(squared standard errors) in columns.

model "BMM" for multi-rate and multi-selective regimes, and "BM1" for a unique rate
of evolution per trait.

param List of arguments to be passed to the function. See details.

method Choose between "rpf", "sparse", "inverse", "pseudoinverse", or "pic" for log-
likelihood computation during the fitting process. See details.

scale.height Whether the tree should be scaled to unit length or not.

optimization Methods used by the optimization routines (see ?optim and ?subplex for details).
The "fixed" method returns the log-likelihood function only.

control Max. bound for the number of iteration of the optimizer; other options can be
fixed in the list (see ?optim or ?subplex).

precalc Optional. Precalculation of fixed parameters. See ?mvmorph.Precalc.

diagnostic Whether the diagnostics of convergence should be returned or not.

echo Whether the results must be returned or not.

Details

The mvBM function fits a multivariate Brownian Motion (BM) process, with unique or multiple
BM rates (see O’Meara et al., 2006; Revell and Collar, 2009). Note that the function uses the non-
censored approach of O’Meara et al. (2006) by default (i.e., a common ancestral state is assumed
for the different regimes), but it is possible to specify multiple ancestral states (i.e., one for each
regimes) through the "smean" parameter (smean=FALSE) in the "param" list.

The "method" argument allows the user to try different algorithms for computing the log-likelihood.
The "rpf" and "sparse" methods use fast GLS algorithms based on factorization for avoiding the
computation of the inverse of the variance-covariance matrix and its determinant involved in the log-
likelihood estimation. The "inverse" approach uses the "stable" standard explicit computation of
the inverse and determinant of the matrix and is therefore slower. The "pseudoinverse" method
uses a generalized inverse that is safer for matrix near singularity but highly time consuming. The
"pic" method uses a very fast algorithm based on independent contrasts. It should be used with
strictly dichotomic trees (i.e., no polytomies) and is currently not available for the multivariate
"BMM" model. See ?mvLL for more details on these computational methods.

The "param" list arguments:

"constraint" - The "constraint" argument in the "param" list allows the user to compute the joint
likelihood for each trait by assuming they evolved independently (constraint="diagonal", or
constraint="equaldiagonal"). If constraint="equal", the sigma values are constrained to be
the same for each studied trait using the constrained Cholesky decomposition proposed by Adams

22 mvBM

(2013) or a separation strategy based on spherical parameterization (when p>2) because of an un-
stable behavior observed for the constrained Cholesky (Clavel et al. 2015).

This approach is extended here to the multi-rate case by specifying that the rates must be the same
in different parts of the tree (common selective regime). It’s also possible to constraint the rate
matrices in the "BMM" model to share the same eigen-vectors (constraint="shared"); the same
variance but different covariances (constraint="variance"); the same correlation but different
variances (constraint="correlation"); or to fit a model with different but proportional rates
matrices (constraint="proportional").

Finally, user-defined constrained models can be specified through a numeric matrix (square and
symmetric) with integer values taken as indices of the parameters. For instance, for three traits:

constraint=matrix(c(1,3,3,3,2,3,3,3,2),3).

Covariances constrained to be zero are introduced by NA values, e.g.,

constraint=matrix(c(1,4,4,4,2,NA,4,NA,3),3).

Difference between two nested fitted models can be assessed using the "LRT" function. See example
below and ?LRT.

"decomp" - For the general case (unconstrained models), the sigma matrix is parameterized by
various methods to ensure its positive definiteness (Pinheiro and Bates, 1996). These methods are
the "cholesky", "eigen+", and "spherical" parameterizations.

"smean" - Default set to TRUE. If FALSE, the ancestral state for each selective regime is estimated
(e.g., Thomas et al., 2006).

"trend" - Default set to FALSE. If TRUE, the ancestral state is allowed to drift linearly with time.
This model is identifiable only with non-ultrametric trees. Note that it is possible to provide a vector
of integer indices to constrain the estimated trends (see the vignettes).

"sigma" - Starting values for the likelihood estimation. By default the theoretical expected val-
ues are used as starting values for the likelihood optimization (for measurement errors, multiple
rates,...). The user can specify starting values with a list() object for the "BMM" model (e.g., two
objects in the list for a two-regime analysis), or a simple vector of values for the "BM1" model. The
parameterization is done using various factorizations for symmetric matrices (e.g., for the "decomp"
argument; Pinheiro & Bates, 1996). Thus, you should provide p*(p+1)/2 values, with p the num-
ber of traits (e.g., random numbers or the values from the cholesky factor of a symmetric positive
definite sigma matrix; see example below). If a constrained model is used, the number of starting
values is (p*(p-1)/2)+1.

If no selective regime is specified the function works only with the model "BM1".

N.B.: Mapping of ancestral states can be done using the "make.simmap", "make.era.map" or "paintSub-
Tree" functions from the "phytools" package.

Value

LogLik The log-likelihood of the optimal model.

AIC Akaike Information Criterion for the optimal model.

AICc Sample size-corrected AIC.

theta Estimated ancestral states.

sigma Evolutionary rate matrix for each selective regime.

mvBM 23

convergence Convergence status of the optimizing function; "0" indicates convergence (See
?optim for details).

hess.values Reliability of the likelihood estimates calculated through the eigen-decomposition
of the hessian matrix. "0" means that a reliable estimate has been reached. (See
?mvOU).

param List of model fit parameters (optimization, method, model, number of parame-
ters...).

llik The log-likelihood function evaluated in the model fit "$llik(par, root.mle=TRUE)".

Note

The "pic" method is not yet implemented for the multivariate "BMM" model.

Author(s)

Julien Clavel

References

Adams D.C. 2013. Comparing evolutionary rates for different phenotypic traits on a phylogeny
using likelihood. Syst. Biol. 62:181-192.

Clavel J., Escarguel G., Merceron G. 2015. mvMORPH: an R package for fitting multivariate
evolutionary models to morphometric data. Methods Ecol. Evol. 6(11):1311-1319.

O’Meara B.C., Ane C., Sanderson M.J., Wainwright P.C. 2006. Testing for different rates of con-
tinuous trait evolution. Evolution. 60:922-933.

Revell L.J. 2012. phytools: An R package for phylogenetic comparative biology (and other things).
Methods Ecol. Evol. 3:217-223.

Revell L.J., Collar D.C. 2009. Phylogenetic analysis of the evolutionary correlation using likeli-
hood. Evolution. 63:1090-1100.

Thomas G.H., Freckleton R.P., Szekely T. 2006. Comparative analyses of the influence of develop-
mental mode on phenotypic diversification rates in shorebirds. Proc. R. Soc. B. 273:1619-1624.

See Also

mvMORPH mvgls mvOU mvEB mvSHIFT mvOUTS mvRWTS mvSIM LRT optim brownie.lite evol.vcv
make.simmap make.era.map paintSubTree

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states

24 mvBM

tree<-make.simmap(tree,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Forest","Savannah")

Plot of the phylogeny for illustration
plotSimmap(tree,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate the traits
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(0,0)
data<-mvSIM(tree, param=list(sigma=sigma, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size")), model="BM1", nsim=1)

Fitting the models
BMM - Analysis with multiple rates
mvBM(tree, data)

BM1 - Analysis with a unique rate matrix
fit1<-mvBM(tree, data, model="BM1", method="pic")

BM1 constrained
fit2<-mvBM(tree, data, model="BM1", method="pic", param=list(constraint="equal"))

Comparison with LRT test
LRT(fit1,fit2)

Random starting values
mvBM(tree, data, model="BMM", method="sparse", param=list(sigma=list(runif(3), runif(3))))

Specified starting values (from the Cholesky factor)
chol_factor<-chol(sigma)
starting_values<-chol_factor[upper.tri(chol_factor,TRUE)]
mvBM(tree, data, model="BMM", method="sparse",

param=list(sigma=list(starting_values, starting_values)))

Multiple mean
mvBM(tree, data, model="BMM", method="sparse", param=list(smean=FALSE))

Introduce some missing cases (NA values)
data2<-data
data2[8,2]<-NA
data2[25,1]<-NA

mvBM(tree, data2, model="BM1")

FAST FOR THE UNIVARIATE CASE!!

set.seed(14)
tree2<-pbtree(n=5416) # Number of Mammal species

Setting the regime states of tip species
sta<-as.vector(c(rep("group_1",2000),rep("group_2",3416))); names(sta)<-tree2$tip.label

mvEB 25

Making the simmap tree with mapped states
tree2<-make.simmap(tree2,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Group_1","Group_2")
plotSimmap(tree2,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate a trait evolving by brownian motion on the tree
trait<-rTraitCont(tree2)

Fitting the models
mvBM(tree2, trait, model="BMM", method="pic")
mvBM(tree2, trait, model="BM1", method="pic")

mvEB Multivariate Early Burst model of continuous traits evolution

Description

This function fits to a multivariate dataset of continuous traits a multivariate Early Burst (EB) or
ACDC models of evolution.

Usage

mvEB(tree, data, error = NULL, param = list(up = 0), method =
c("rpf", "sparse", "inverse", "pseudoinverse", "pic"), scale.height =
FALSE, optimization = c("Nelder-Mead", "L-BFGS-B", "subplex"),
control = list(maxit = 20000), precalc = NULL, diagnostic = TRUE,
echo = TRUE)

Arguments

tree Phylogenetic tree (phylo object).

data Matrix or data frame with species in rows and continuous traits in columns (pref-
erentially with names and in the same order than in the tree). NA values are
allowed with the "rpf", "inverse", and "pseudoinverse" methods.

error Matrix or data frame with species in rows and continuous trait sampling variance
(squared standard errors) in columns.

param List of arguments to be passed to the function. See details.

method Choose between "rpf", "sparse", "inverse", "pseudoinverse", or "pic" for com-
puting the log-likelihood during the fitting process. See details.

scale.height Whether the tree should be scaled to unit length or not.

optimization Methods used by the optimization routines (see ?optim and ?subplex for details).
The "fixed" method returns the log-likelihood function only.

26 mvEB

control Max. bound for the number of iteration of the optimizer; other options can be
fixed in the list (see ?optim or ?subplex for details).

precalc Optional. Precalculation of fixed parameters. See ?mvmorph.Precalc for details.

diagnostic Whether the diagnostics of convergence should be returned or not.

echo Whether the results must be returned or not.

Details

The Early Burst model (Harmon et al. 2010) is a special case of the ACDC model of Blomberg et
al. (2003). Using an upper bound larger than zero transform the EB model to the accelerating rates
of character evolution of Blomberg et al. (2003).

The "method" argument allows the user to try different algorithms for computing the log-likelihood.
The "rpf" and "sparse" methods use fast GLS algorithms based on factorization for avoiding the
computation of the inverse of the variance-covariance matrix and its determinant for the log-likelihood
estimation. The "inverse" approach uses the "stable" standard explicit computation of the inverse
and determinant of the matrix and is therefore slower. The "pseudoinverse" method uses a general-
ized inverse that is safer for matrix near singularity but highly time consuming. The "pic" method
uses a very fast algorithm based on independent contrasts. See ?mvLL for more details on these
computational methods.

The "param" list can be used to set the lower (low) and upper (up, default value is 0 - i.e., Early
Burst model) bounds for the estimation of the exponential rate (beta). The default lower bound for
decelerating rates (as assumed in Early Burst) is fixed as log(min.rate) / T, where T is the depth of
the tree and min.rate is the minimum rate that could be assumed for the model (following Slater and
Pennell, 2014; log(10^-5)/T). Bounds may need to be adjusted by the user for specific cases.

Starting values for "sigma" and "beta" could also be provided through the "param" list.

Value

LogLik The log-likelihood of the optimal model.

AIC Akaike Information Criterion for the optimal model.

AICc Sample size-corrected AIC.

theta Estimated ancestral states.

beta Exponent rate (of decay or increase).

sigma Evolutionary rate matrix for each selective regimes.

convergence Convergence status of the optimizing function; "0" indicates convergence (see
?optim for details).

hess.values Reliability of the likelihood estimates calculated through the eigen-decomposition
of the hessian matrix. "0" means that a reliable estimate has been reached. (see
?mvOU for details).

param List of model fit parameters (optimization, method, model, number of parame-
ters...).

llik The log-likelihood function evaluated in the model fit "$llik(par, root.mle=TRUE)".

mvEB 27

Note

The derivative-free "Nelder-Mead" optimization method is used as default setting instead of "L-
BFGS-B".

Author(s)

Julien Clavel

References

Blomberg S.P., Garland T.J., Ives A.R. 2003. Testing for phylogenetic signal in comparative data:
behavioral traits are more labile. Evolution. 57:717-745.

Clavel J., Escarguel G., Merceron G. 2015. mvMORPH: an R package for fitting multivariate
evolutionary models to morphometric data. Methods Ecol. Evol. 6(11):1311-1319.

Harmon L.J., Losos J.B., Davies J.T., Gillespie R.G., Gittleman J.L., Jennings B.W., Kozak K.H.,
McPeek M.A., Moreno-Roark F., Near T.J., Purvis A., Ricklefs R.E., Schluter D., Schulte II J.A.,
Seehausen O., Sidlauskas B.L., Torres-Carvajal O., Weir J.T., Mooers A.O. 2010. Early bursts of
body size and shape evolution are rare in comparative data. Evolution. 64:2385-2396.

Slater G.J., Pennell M. 2014. Robust regression and posterior predictive simulation increase power
to detect early bursts of trait evolution. Syst. Biol. 63: 293-308.

See Also

mvMORPH mvgls mvOU mvBM mvSHIFT mvOUTS mvRWTS mvSIM optim

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-pbtree(n=50, scale=10)

Simulate the traits
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(0,0)
beta<- -0.34 # 5 phylogenetic half-life (log(2)/ (10/5))
data<-mvSIM(tree, param=list(sigma=sigma, beta=beta, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size")), model="EB", nsim=1)

Fitting the models
mvEB(tree, data)
mvEB(tree, data, method="pic")
mvEB(tree, data, method="pic", param=list(low=log(10^-5)/10)) # avoid internal estimation

ACDC
Note that the AC model is not differentiable from an OU model on ultrametric trees.
beta<- 0.34
data<-mvSIM(tree, param=list(sigma=sigma, beta=beta, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size")), model="EB", nsim=1)

28 mvgls

fit<-mvEB(tree, data, method="pic", param=list(up=2, low=-2))

logLik(fit)
AIC(fit)
summary(fit)

mvgls Fit linear model using Generalized Least Squares to multivariate
(high-dimensional) data sets.

Description

This function use maximum likelihood (or restricted likelihood) and penalized likelihood approaches
to fit linear models where the errors are allowed to be correlated (i.e. a GLS model for serially cor-
related phylogenetic and time-series data). mvgls uses a penalized-likelihood (PL) approach (see
descriptions in Clavel et al. 2019) to fit linear models to high-dimensional data sets (where the num-
ber of variables p is approaching or is larger than the number of observations n). The PL approach
generally provides improved estimates compared to ML.

Usage

mvgls(formula, data, tree, model, method=c("PL-LOOCV","LL"),
REML=TRUE, ...)

Arguments

formula An object of class "formula" (a two-sided linear formula describing the model
to be fitted. See for instance ?lm)

data An optional list, data.frame or environment containing the variables in the model.
If not found in data the variables are taken from the current environment. Prefer
list for blocks of multivariate responses unless you’re specifying the response
variables by their names using cbind with data.frame.

tree Phylogenetic tree (an object of class "phylo") or a time-series object (not yet
available).

model The evolutionary model: "BM" is Brownian Motion, "OU" is Ornstein-Uhlenbeck,
"EB" is Early Burst, "lambda" is Pagel’s lambda transformation, and "BMM" is
a multi-rates Brownian motion (needs a tree of class "simmap").

method The method used to fit the model. "PL-LOOCV" (or equivalently just "LOOCV")
is the nominal leave one out cross-validation of the penalized log-likelihood,
"LL" is the log-likelihood (used in the conventional ML and REML estimation).
Two approximated LOOCV methods are also available: "H&L" and "Maha-
lanobis". The method "H&L" is a fast LOOCV approach based on Hoffbeck and
Landgrebe (1996) tricks, and "Mahalanobis" is an approximation of the LOOCV
score proposed by Theiler (2012). Both "H&L" and "Mahalanobis" work only
with the "RidgeArch" penalty and for intercept only models (see details).

mvgls 29

REML Use REML (default) or ML for estimating the parameters.

... Options to be passed through. For instance the type of penalization: penalty="RidgeArch"
(default), penalty="RidgeAlt", or penalty="LASSO". The target matrices
used by "RidgeArch" and "RidgeAlt" penalizations: target="unitVariance",
target="Variance" or target="null"... etc. (see details)

Details

mvgls allows fitting various multivariate linear models to high-dimensional datasets (i.e. where
the number of variables p is larger than n) for which the residuals have a correlated structure (e.g.
evolutionary models such as BM and OU). Models estimates are generally more accurate than
maximum likelihood methods. Models fit can be compared using the GIC or EIC criterion (see
?GIC and ?EIC) and hypothesis testing can be performed using the manova.gls function.

The tree is assumed to be fully dichotomic and in "postorder", otherwise the functions multi2di
and reorder.phylo are used internally. Note that for the "BMM" model, a tree of class "simmap"
must be provided to scale the BM covariance in different parts of the tree.

The various arguments that can be passed through "...":

"penalty" - The "penalty" argument allow specifying the type of penalization used for regulariza-
tion (described in Clavel et al. 2019). The various penalizations are: penalty="RidgeArch" (the
default), penalty="RidgeAlt" and penalty="LASSO". The "RidgeArch" penalization shrink lin-
early the covariance matrix toward a target structure (see below for target). This penalization is
generally fast and the tuning parameter is bounded between 0 and 1 (see van Wieringen & Peeters
2016). The "RidgeAlt" penalization scheme uses a quadratic ridge penalty to shrink the covariance
matrix toward a specified target matrix (see target below and also see van Wieringen & Peeters
2016). Finally, the "LASSO" regularize the covariance matrix by estimating a sparse estimate of its
inverse (Friedman et al. 2008). The computation of the solution for this penalization is computa-
tionally intensive. Moreover, this penalization scheme is not invariant to arbitrary rotations of the
data.

"target" - This argument allows specifying the target matrix toward which the covariance matrix
is shrunk for "Ridge" penalties. target="unitVariance" (for a diagonal target proportional to the
identity) and target="Variance" (for a diagonal unequal variance target) can be used with both
"RidgeArch" and "RidgeAlt" penalties. target="null" (a null target matrix) is only available for
"RidgeAlt". Penalization with the "Variance" target shrink the eigenvectors of the covariance matrix
and is therefore not rotation invariant. See details on the various target properties in Clavel et al.
(2019).

"error" - If TRUE the measurement error (or intra-specific variance) is estimated from the data
as a nuisance parameter (like in mixed models). It should probably be systematically used with
empirical data. See also Housworth et al. 2004 and Clavel et al. 2019 for details on the proposed
implementation.

"scale.height" - Whether the tree should be scaled to unit length or not.

"echo" - Whether the results must be returned or not.

"grid_search" - A logical indicating whether or not a preliminary grid search must be performed
to find the best starting values for optimizing the log-likelihood (or penalized log-likelihood). User-
specified starting values can be provided through the start argument. Default is TRUE.

"upper" - The upper bound for the parameter search with the "L-BFGS-B" method. See optim for
details.

30 mvgls

"lower" - The lower bound for the parameter search with the "L-BFGS-B" method. See optim for
details.

"tol" - Minimum value for the regularization parameter. Singularities can occur with a zero value
in high-dimensional cases. (default is NULL)

Value

An object of class ’mvgls’. It contains a list including the following components:

coefficients a named vector of coefficients

residuals the residuals ("raw") of the model. That is response minus fitted values. Uses the
residuals(x,type="normalized") function to obtain the normalized residu-
als.

fitted.values the fitted mean values

variables the variables used for model fit

sigma the estimated covariance (Pi) and precision (P) matrix, as well as the sample
estimate (S)

model the evolutionary model. But more generally, the model used to specify the struc-
ture within the residuals

logLik either the (negative) log-likelihood when method="LL" or the cross-validated
penalized likelihood

param the (evolutionary) model parameter estimates

tuning the regularization/tuning parameter of the penalized likelihood

mserr the estimated standard error when error=TRUE

start_values the starting parameters used for the optimization of the LL or PL

corrSt a list including the transformed tree, the determinant obtained from its covari-
ance matrix and the normalized variables (by the inverse square root of the co-
variance matrix of the phylogenetic tree or the time-series)

penalty the penalty used for the penalized likelihood approach

target the target used with the "RidgeArch" or "RidgeAlt" penalized likelihood ap-
proaches

REML logical indicating if the REML (TRUE) or ML (FALSE) method has been used

opt optimizing function output. See optim

Author(s)

Julien Clavel

References

Clavel, J., Aristide, L., Morlon, H., 2019. A Penalized Likelihood framework for high-dimensional
phylogenetic comparative methods and an application to new-world monkeys brain evolution. Sys-
tematic Biology 68(1): 93-116.

mvgls 31

Friedman J., Hastie T., Tibshirani R. 2008. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics. 9:432-441.

Hoffbeck J.P., Landgrebe D.A. 1996. Covariance matrix estimation and classification with limited
training data. IEEE Trans. Pattern Anal. Mach. Intell. 18:763-767.

Housworth E.A., Martins E.P., LynchM. 2004. The phylogenetic mixed model. Am. Nat. 163:84-
96.

Theiler J. 2012. The incredible shrinking covariance estimator. In: Automatic Target Recognition
XXII. Proc. SPIE 8391, Baltimore, p. 83910P.

van Wieringen W.N., Peeters C.F.W. 2016. Ridge estimation of inverse covariance matrices from
high-dimensional data. Comput. Stat. Data Anal. 103:284-303.

See Also

manova.gls EIC GIC mvgls.pca fitted.mvgls residuals.mvgls coef.mvgls vcov.mvgls

Examples

set.seed(1)
n <- 32 # number of species
p <- 50 # number of traits (p>n)

tree <- pbtree(n=n, scale=1) # phylogenetic tree
R <- crossprod(matrix(runif(p*p), ncol=p)) # a random covariance matrix
simulate a BM dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R, theta=rep(0,p)))
data=list(Y=Y)

fit1 <- mvgls(Y~1, data=data, tree, model="BM", penalty="RidgeArch")
fit2 <- mvgls(Y~1, data=data, tree, model="OU", penalty="RidgeArch")
fit3 <- mvgls(Y~1, data=data, tree, model="EB", penalty="RidgeArch")

GIC(fit1); GIC(fit2); GIC(fit3) # BM have the lowest GIC value

Testing for phylogenetic signal with model fit
signal <- mvgls(Y~1, data=data, tree, model="lambda", penalty="RidgeArch")
summary(signal)

A High-dimensional dataset
p <- 200 # number of traits (p>n)

R <- crossprod(matrix(runif(p*p), ncol=p)) # a random symmetric matrix (covariance)
simulate a BM dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R, theta=rep(0,p)))
data=list(Y=Y)

Fast LOOCV using "H&L" with RidgeArch penalization
summary(mvgls(Y~1, data=data, tree, model="BM", penalty="RidgeArch", method="H&L"))

32 mvgls.dfa

mvgls.dfa Discriminant Function Analysis (DFA) - also called Linear Discrimi-
nant Analysis (LDA) or Canonical Variate Analysis (CVA) - based on
multivariate GLS model fit

Description

Performs a discriminant analysis (DFA) on a regularized variance-covariance matrix obtained using
the mvgls function.

Usage

mvgls.dfa(object, ...)

Arguments

object A model fit obtained by the mvgls function.

... Options to be passed through. (e.g., term="the term corresponding to the
factor of interest", type="I" for the type of decomposition of the hypoth-
esis matrix (see also manova.gls) , etc.)

Details

mvgls.dfa allows computing a discriminant analysis based on a GLS estimate of a regression
model (see mvgls). Discriminant functions can be used for dimensionality reduction, to follow up
a MANOVA analysis by inspecting how the grouping best separate, or for group prediction.

Value

a list with the following components

coeffs a matrix containing the raw discriminants

coeffs.std a matrix containing the standardized discriminants

scores a matrix containing the discriminant scores [residuals X coeffs]

residuals the centered [with GLS] response variables

H the hypothesis (or between group model matrix)

E the error (or residual model matrix)

rank the rank of HE^-1

pct the percentage of the discriminant functions

mvgls.pca 33

Note

Still in development, may not handle special designs.

Author(s)

J. Clavel

References

Clavel, J., Aristide, L., Morlon, H., 2019. A Penalized Likelihood framework for high-dimensional
phylogenetic comparative methods and an application to new-world monkeys brain evolution. Sys-
tematic Biology 68(1): 93-116.

Clavel, J., Morlon, H., 2020. Reliable phylogenetic regressions for multivariate comparative data:
illustration with the MANOVA and application to the effect of diet on mandible morphology in
Phyllostomid bats. Systematic Biology 69(5): 927-943.

See Also

mvgls, manova.gls, mvgls.pca,

Examples

library(mvMORPH)
n=64
p=4

tree <- pbtree(n=n)
sigma <- crossprod(matrix(runif(p*p),p,p))
resid <- mvSIM(tree, model="BM1", param=list(sigma=sigma))
Y <- rep(c(0,1.5), each=n/2) + resid
grp <- as.factor(rep(c("gp1","gp2"),each=n/2))
names(grp) = rownames(Y)
data <- list(Y=Y, grp=grp)
mod <- mvgls(Y~grp, data=data, tree=tree, model="BM")

fda
da1 <- mvgls.dfa(mod)

plot(da1)

mvgls.pca Principal Component Analysis (PCA) based on GLS estimate of the
traits variance-covariance matrix (possibly regularized).

34 mvgls.pca

Description

Performs a principal component analysis (PCA) on a regularized variance-covariance matrix ob-
tained using the mvgls function. With "evolutionary" models, this performs the so-called phyloge-
netic PCA.

Usage

mvgls.pca(object, plot=TRUE, ...)

Arguments

object A model fit obtained by the mvgls function.

plot Plot of the PC’s axes. Default is TRUE (see details).’

... Options to be passed through. (e.g., axes=c(1,2), col, pch, cex, mode="cov"
or "corr", etc.)

Details

mvgls.pca allows computing a principal component analysis based on a GLS estimate of the covari-
ance matrix (see mvgls). The phylogenetic PCA (following Revell 2009) is a special case obtained
from the (possibly regularized) evolutionary variance-covariance matrix (see also the phyl.pca_pl
function in RPANDA). In the high-dimensional case the contribution of the firsts PC axes tend to be
overestimated with traditional maximum likelihood approaches. Penalized/regularized model fits
reduce this bias and allow the estimation of various error structure models (see Clavel et al. 2018).
Ploting options, the number of axes to display (axes=c(1,2) is the default), and whether the co-
variance (mode="cov") or correlation (mode="corr") should be used can be specified through the
ellipsis "..." argument.

Value

a list with the following components

scores the PC scores

values the eigenvalues of the variance-covariance matrix estimated by mvgls

vectors the eigenvectors of the variance-covariance matrix estimated by mvgls

rank the rank of the estimated variance-covariance matrix

Note

Contrary to conventional PCA, the principal axes of the gls PCA are not orthogonal, they represent
the main axes of independent (according to a given phylogenetic or time-series model) changes.

Author(s)

J. Clavel

mvLL 35

References

Clavel, J., Aristide, L., Morlon, H., 2019. A Penalized Likelihood framework for high-dimensional
phylogenetic comparative methods and an application to new-world monkeys brain evolution. Sys-
tematic Biology 68(1): 93-116.

Revell, L.J., 2009. Size-correction and principal components for intraspecific comparative studies.
Evolution, 63:3258-3268.

See Also

mvgls, GIC, EIC

Examples

set.seed(1)
n <- 32 # number of species
p <- 30 # number of traits

tree <- pbtree(n=n) # phylogenetic tree
R <- crossprod(matrix(runif(p*p),p)) # a random symmetric matrix (covariance)

simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))

The conventional phylogenetic PCA
phylo_pca <- mvgls(Y~1, tree=tree, model="BM", method="LL")
mvgls.pca(phylo_pca, plot=TRUE)

fit a multivariate Pagel lambda model with Penalized likelihood
fit <- mvgls(Y~1, tree=tree, model="lambda", method="LOO", penalty="RidgeAlt")

Perform a regularized phylogenetic PCA using the model fit (Pagel lambda model)
pca_results <- mvgls.pca(fit, plot=TRUE)

retrieve the scores
head(pca_results$scores)

mvLL Multivariate (and univariate) algorithms for log-likelihood estimation
of arbitrary covariance matrix/trees

36 mvLL

Description

This function allows computing the log-likelihood and estimating ancestral states of an arbitrary
tree or variance-covariance matrix with differents algorithms based on GLS (Generalized Least
Squares) or Independent Contrasts. Works for univariate or multivariate models. Can be wrapped
for maximizing the log-likelihood of user-defined models.

Usage

mvLL(tree, data, error = NULL, method = c("pic", "rpf", "sparse", "inverse",
"pseudoinverse"), param = list(estim = TRUE, mu = 0, sigma = 0, D = NULL,
check = TRUE), precalc = NULL)

Arguments

tree A phylogenetic tree of class "phylo" or a variance-covariance matrix (vcv) of
that tree (or time-series).

data Matrix or data frame with species in rows and continuous traits in columns. NA
values are allowed with the "rpf", "inverse" and "pseudoinverse" methods.

error Matrix or data frame with species in rows and continuous trait sampling variance
(squared standard errors) in columns.

method Method used for computing the log-likelihood. Could be "pic", "sparse", "rpf",
"inverse", or "pseudoinverse". See details below.

param List of additional arguments to be passed through the function. The "estim",
"mu" and "sigma" arguments are only used with the "pic" method. The "D"
argument is used with the others to specify the design matrix. See details below.

precalc Optional. Object of class "precalc.mvmorph". See ?mv.Precalc for details.

Details

The mvLL function computes the log-likelihood and the ancestral states (mean at the root-theta) for
an arbitrary variance-covariance matrix (or trees for the prunning algorithm based on independent
contrasts "pic") provided by the user. This function can be wrapped for optimizing various multi-
variate models of trait evolution (by transforming the branch lengths of a tree for the "pic" method,
or feeding it with variance-covariance and design matrices for the other methods).

Five methods are proposed to compute the log-likelihood:

-"pic" is a very fast prunning algorithm based on independent contrasts which should be used with
strictly dichotomic trees (i.e., no polytomies). This method can neither be used with measurement
errors nor for multiple ancestral states estimation (theta values).

-"rpf" is a GLS algorithm using the rectangular packed format Cholesky factorization for solving the
linear system without computing the inverse of the variance-covariance matrix and its determinant
(normally used in the loglikelihood estimation). This algorithm uses fast BLAS 3 routines with half
storage in packed format for computing the Cholesky upper factor. This method is more efficient
than the "inverse" method and can be used with dense matrices (no zero entries).

-"sparse" is a GLS algorithm using Cholesky factorization for sparse matrices (including zero en-
tries). The matrices are stored in the "old Yale sparse format" internally. Depending on the spar-
sity structure of the variance-covariance matrix this algorithm can be more efficient than the "rpf"
method.

mvLL 37

-"inverse" is a GLS algorithm that uses explicit inversion of the variance-covariance matrix (through
QR decomposition) as well as computation of its determinant in the log-likelihood estimation. This
is the "textbook" method, that is computationally more intensive than the previous approaches.

-"pseudoinverse" is a GLS method that uses a generalized inverse (through SVD) for computing
the log-likelihood. This method is safer when the matrix is near singularity, but it is the most
time-consuming.

The user must provide a variance-covariance matrix (e.g., vcv.phylo(tree)) or a multivariate variance-
covariance matrix (e.g., kronecker(matrix(c(2,1,1,1.5),2),vcv.phylo(tree)) as well as a design matrix
(or multivariate design matrix) with the "rpf", "sparse", "inverse", and "pseudoinverse" methods.

Use the "param" list of arguments to define whether or not the brownian rate should be estimated and
returned (estim=TRUE) with the "pic" method. Otherwise, the rate parameter (also called sigma) is
fixed to 1. The arguments "mu" and "sigma" can be used to specify (e.g., in a MCMC setting) the
mean at the root and the (squared) brownian rate, respectively.

You can choose to provide differently scaled trees for multivariate data with the "pic" method. In
such a case, the trees (one per trait) should be embedded within a list() object. See example below.

Value

logl Estimated log-likelihood for the data with the given matrix/tree.

theta Estimated ancestral states at the root. They are defined by the design matrix (D)
for all the methods but "pic".

sigma Estimated (squared) rate parameters. Only when param$estim=TRUE with the
"pic" method.

Author(s)

Julien Clavel

References

Andersen B. S., Wasniewski J., Gustavson F. G. 2001. A recursive formulation of Cholesky factor-
ization of a matrix in packed storage. ACM Trans. Math. Soft. 27:214-244.

Clavel J., Escarguel G., Merceron G. 2015. mvMORPH: an R package for fitting multivariate
evolutionary models to morphometric data. Methods Ecol. Evol. 6(11):1311-1319.

Freckleton R.P. 2012. Fast likelihood calculations for comparative analyses. Methods Ecol. Evol.
3:940-947.

Golub G.H., Van Loan C.F. 2013. Matrix computations. Baltimore: The John Hopkins University
Press.

Gustavson, F.G., Wasniewski, J., Dongarra, J.J., Langou, J. 2010. Rectangular full packed format
for Cholesky’s algorithm: factorization, solution and inversion. ACM Trans. Math. Soft., 37:1-33.

See Also

mvMORPH mvgls mvOU mvEB mvBM mvSHIFT mvSIM

38 mvLL

Examples

Simulated dataset
set.seed(14)
Generating a random tree with 50 tips
n=50
tree<-pbtree(n=n)

Simulated trait
data=rTraitCont(tree)

Design matrix
D=matrix(rep(1,n),ncol=1)

Compute the log-likelihood
Inverse
mvLL(vcv.phylo(tree),data,method="inverse",param=list(D=D))

Pseudoinverse
mvLL(vcv.phylo(tree),data,method="pseudoinverse",param=list(D=D))

Sparse
mvLL(vcv.phylo(tree),data,method="sparse",param=list(D=D))

RPF
mvLL(vcv.phylo(tree),data,method="rpf",param=list(D=D))

Pic
mvLL(tree,data,method="pic",param=list(estim=TRUE))

Pic with arbitrary values
mvLL(tree,data,method="pic",param=list(estim=FALSE, mu=0, sigma=1))
mvLL(tree,data,method="pic",param=list(estim=FALSE))
mvLL(tree,data,method="pic",param=list(estim=FALSE, sigma=1)) # similar to mu=NULL

Arbitrary value for mu with other methods (similar to mu=0 and sigma=1 with "pic")
mvLL(vcv.phylo(tree),data,method="rpf",param=list(D=D, estim=FALSE, mu=0))

Multivariate cases
Simulate traits
data2<-mvSIM(tree,nsim=1,model="BM1",param=list(sigma=diag(2),theta=c(0,0),ntraits=2))
Design matrix
D<-cbind(rep(c(1,0),each=50),rep(c(0,1),each=50))

RPF
mvLL(kronecker(diag(2),vcv.phylo(tree)),data2,method="rpf", param=list(D=D))

Inverse (with default design matrix if not provided)
mvLL(kronecker(diag(2),vcv.phylo(tree)),data2,method="inverse")

Pic
mvLL(tree,data2,method="pic")

mvOU 39

NB: The trees in the list could be differently scaled for each traits...
mvLL(list(tree,tree),data2,method="pic")

VERY FAST COMPUTATION FOR LARGE TREES (take few seconds)

Big tree (1,000,000 species) - It's the time consuming part...
tree2<-rtree(1000000)

Simulate trait with a Brownian motion process
trait<-rTraitCont(tree2)
system.time(mvLL(tree2,trait,method="pic",param=list(estim=FALSE, sigma=1)))

precal<-mv.Precalc(tree2,nb.traits=1, param=list(method="pic"))
system.time(mvLL(tree2,trait,method="pic",param=list(estim=FALSE, sigma=1),

precalc=precal))

Check=FALSE !! Your tree should be in post-order !!
tr2<-reorder(tree2,"postorder")
system.time(mvLL(tr2,trait,method="pic",param=list(estim=FALSE, sigma=1, check=FALSE)))

mvOU Multivariate Ornstein-Uhlenbeck model of continuous traits evolution

Description

This function allows the fitting of a multivariate Ornstein-Uhlenbeck (OU) model by allowing a
given tree branch to be subdivided into multiple selective regimes using SIMMAP-like mapping of
ancestral states. Species measurement errors or dispersions can also be included in the model.

Usage

mvOU(tree, data, error = NULL, model = c("OUM", "OU1"), param = list(sigma = NULL,
alpha = NULL, vcv = "fixedRoot", decomp = c("cholesky","spherical","eigen","qr",
"diagonal","upper","lower")), method = c("rpf", "sparse", "inverse",

"pseudoinverse", "univarpf"), scale.height = FALSE, optimization = c("L-BFGS-B",
"Nelder-Mead", "subplex"), control = list(maxit = 20000), precalc = NULL,
diagnostic = TRUE, echo = TRUE)

Arguments

tree Phylogenetic tree with mapped ancestral states in SIMMAP format. (See make.simmap
function from phytools package). A "phylo" object can be used with model
"OU1".

data Matrix or data frame with species in rows and continuous traits in columns. NA
values are allowed with the "rpf", "inverse", and "pseudoinverse" methods.

error Matrix or data frame with species in rows and continuous trait sampling variance
(squared standard errors) in columns.

40 mvOU

model Choose between "OUM" for a multiple selective regime model, or "OU1" for a
unique selective regime for the whole tree.

param List of arguments to be passed to the function. See details below.

method Choose between "rpf", "sparse", "inverse", "pseudoinverse", or "univarpf" for
computing the log-likelihood during the fitting process. See details below.

scale.height Whether the tree should be scaled to unit length or not.

optimization Methods used by the optimization routines (see ?optim and ?subplex for details).
The "fixed" method returns the log-likelihood function only.

control Max. bound for the number of iteration of the optimizer; other options can be
fixed in the list. (See ?optim or ?subplex for details).

precalc Optional. Precalculation of fixed parameters. See ?mvmorph.Precalc for details.

diagnostic Whether the convergence diagnostics should be returned or not.

echo Whether the results must be returned or not.

Details

The mvOU function fits a multivariate model of evolution according to an Ornstein-Uhlenbeck
process. The user can incorporate measurement errors and uses SIMMAP-like mapping of ances-
tral states (phytools objects of class "simmap"). SIMMAP mapping allows one to assign parts of
branchs to different selective regimes, and allows testing for change in trait variance that is not syn-
chronous with the species divergence events. See the package vignette: browseVignettes("mvMORPH").

Mapping of ancestral states can be done using the "make.simmap", "make.era.map" or "paintSub-
Tree" functions from the "phytools" package.

The "method" argument allows the user to try different algorithms for computing the log-likelihood.
The "rpf", "univarpf" (for univariate analysis) and "sparse" methods use fast GLS algorithms
based on factorization for avoiding the computation of the inverse of the variance-covariance matrix
and its determinant for the log-likelihood estimation. The "inverse" approach uses the "stable"
standard explicit computation of the inverse and determinant of the matrix and is therefore slower.
The "pseudoinverse" method uses a generalized inverse that is safer for matrix near singularity
but highly time consuming. See ?mvLL for details.

Arguments in the "param" list are:

"sigma" or "alpha" - Starting values for the likelihood search can be specified through the "alpha"
and "sigma" arguments in the param list. It is also possible to test for the significance of the off-
diagonal sigma (scatter) and alpha (drift) matrix in the full model by making comparison with a
constrained model (using sigma="constraint", or alpha="constraint") in the "param" argument list.
You can also provide starting values for the constrained model. For instance, for two traits use
sigma=list("constraint", c(0.5,0.5)) (or alpha=list("constraint", c(0.5,0.5))).

"decomp" - You can further constrain the alpha matrix by specifying the decomposition of the
matrix through the "decomp" argument in the "param" list. Indeed, the multivariate Ornstein-
Uhlenbeck model is described by the spectral decomposition of the alpha matrix. Thus it is possible
to parameterize the alpha matrix to be decomposable using various parameterizations (e.g., on its
eigenvalues with different biological interpretations; Sy et al. 1997, Bartoszek et al. 2012). For a
symmetric matrix parameterization the user can choose the "cholesky", "eigen", or "spherical"
option.

mvOU 41

For general square (non-symmetric) matrices the "svd", "qr" and "schur" parameterizations can
be used. The "schur" parameterization constrains the eigenvalues of the alpha matrix to be real
numbers. The "svd+", "qr+" or "eigen+" options forces the eigenvalues to be positives by taking
their logarithm. It is also possible to specify "diagonal" which is similar to the use of the "con-
straint" argument for "alpha" argument, or to use "equal" and "equaldiagonal". Finally, one can
specify that the alpha matrix is "upper" or "lower" triangular (i.e., one process affect the other
unilateraly). Details can be found in the package vignette: browseVignettes("mvMORPH").

"decompSigma" - The sigma matrix is parameterized by various methods to ensure its positive
definiteness (Pinheiro and Bates, 1996). These methods can be accessed through the "decomp-
Sigma" argument and are the "cholesky", "eigen+", and "spherical" parameterization. The
sigma matrix can also be forced to be diagonal using "diagonal" or "equaldiagonal" and forced
to have the same variances using "equal". Details can be found in the package vignette: browse-
Vignettes("mvMORPH").

"vcv" - It is possible to specify in the "param" list what kind of variance-covariance matrix to
use with the "vcv" argument, depending on how the root is treated. The vcv="randomRoot" option
assumes that the value at the root is a random variable with the stationary distribution of the process.
It cannot be used with the "sparse" method to speed up the computations. The vcv="fixedRoot"
option assumes that the root is a fixed parameter. On ultrametric trees both approaches should
converge on the same results when the OU process is stationary.

"root" - This argument allows the user to specify if the ancestral state at the root (theta 0) should be
estimated (root=TRUE), or assumed to be at the oldest regime state stationary distribution (root=FALSE).
An alternative is to follow Beaulieu et al. (2012) and explicitly drop the root state influence
(root="stationary"). The first option should be used with non-ultrametric trees (i.e., with fossil
species; e.g., Hansen 1997) where information on the ancestral state is directly available from the
data. Indeed, estimating shifts in the ancestral state from extant species could be problematic and it
seems preferable to assume each regime optimum to be at the stationary distribution.

For the "decomp" and "decompSigma arguments, an user-defined matrix with integer values taken
as indices of the parameters to be estimated can be provided. See ?mvBM and ?mvRWTS.

Note on the returned Hessian matrix in the result list (paramopthessian):

The hessian is the matrix of second order partial derivatives of the likelihood function with respect
to the maximum likelihood parameter values. This matrix provides a measure of the steepness of the
likelihood surface in the vicinity of the optimum. The eigen-decomposition of the hessian matrix
returned by the optimizing function allows assessing the reliability of the fit of the model (even if the
optimizer has converged). When the optimization function does not converge on a stable result, the
user may consider increasing the "maxit" argument in the "control" option, or try a simpler model
with fewer parameters to estimate. Changing the starting values ("alpha" and "sigma" options in the
param list) as well as the optimizing method ("optimization" options) may help sometimes (e.g.,
alpha=runif(3) for a two-trait analysis with random starting values - i.e., the lower triangular alpha
matrix). Note that the number of starting values to provide depends on the matrix decomposition
chosen for the alpha parameter (p*(p+1)/2 values for symmetric alpha matrix, but p*p values for
non-symmetric ones - with p the number of traits).

Value

LogLik The log-likelihood of the optimal model.

AIC Akaike Information Criterion for the optimal model.

42 mvOU

AICc Sample size-corrected AIC.

theta Estimated ancestral states.

alpha Matrix of estimated alpha values (strength of selection).

sigma Evolutionary rate matrix (drift).

convergence Convergence status of the optimizing function; "0" indicates convergence. (see
?optim for details).

hess.values Reliability of the likelihood estimates calculated through the eigen-decomposition
of the hessian matrix. "0" means that a reliable estimate has been reached. See
details above.

param List of model fit parameters (optimization, method, model, number of parame-
ters...).

llik The log-likelihood function evaluated in the model fit "$llik(par, root.mle=TRUE)".

Note

This function partly uses a modified version of the C code from the "OUCH" package built by
Aaron King, as well as a C code which is part of the "ape" package by Emmanuel Paradis. I
kindly thank those authors for sharing their sources. Note that Bartoszek et al. (2012) proposed the
mvSLOUCH package also dedicated to multivariate Ornstein-Uhlenbeck processes, which allows
fitting regression models with randomly evolving predictor variables.

The "symmetric", "nsymmetric", "symmetricPositive", and "nsymPositive" options for the "de-
comp" argument are deprecated.

Author(s)

Julien Clavel

References

Bartoszek K., Pienaar J., Mostad P., Andersson S., Hansen T.F. 2012. A phylogenetic comparative
method for studying multivariate adaptation. J. Theor. Biol. 314:204-215.

Beaulieu J.M., Jhwueng D.-C., Boettiger C., O’Meara B.C. 2012. Modeling stabilizing selection:
Expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution. 66:2369-2389.

Butler M.A., King A.A. 2004. Phylogenetic comparative analysis: a modeling approach for adap-
tive evolution. Am. Nat. 164:683-695.

Clavel J., Escarguel G., Merceron G. 2015. mvMORPH: an R package for fitting multivariate
evolutionary models to morphometric data. Methods Ecol. Evol. 6(11):1311-1319.

Hansen T.F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution.
51:1341-1351.

Pinheiro J.C., Bates D.M. 1996. Unconstrained parameterizations for variance-covariance matrices.
Stat. Comput. 6:289-296.

Sy J.P., Taylor J.M.G., Cumberland W.G. 1997. A stochastic model for the analysis of bivariate
longitudinal AIDS data. Biometrics. 53:542-555.

mvOU 43

See Also

mvMORPH mvgls halflife stationary mvBM mvEB mvSHIFT mvOUTS mvRWTS mvSIM LRT optim
make.simmap make.era.map paintSubTree

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Forest","Savannah")

Plot of the phylogeny for illustration
plotSimmap(tree,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate the traits
alpha<-matrix(c(2,0.5,0.5,1),2)
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(2,3,1,1.3)
data<-mvSIM(tree, param=list(sigma=sigma, alpha=alpha, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size")), model="OUM", nsim=1)

Fitting the models

OUM - Analysis with multiple optima
mvOU(tree, data)

OU1 - Analysis with a unique optimum
mvOU(tree, data, model="OU1", method="sparse")

various options
mvOU(tree, data, model="OUM", method="sparse", scale.height=FALSE,

param=list(decomp="svd", root="stationary"))# non-symmetric alpha
mvOU(tree, data, model="OUM", method="sparse", scale.height=FALSE,

param=list(decomp="qr", root=TRUE)) # non-symmetric alpha
mvOU(tree, data, model="OUM", method="sparse", scale.height=FALSE,

param=list(decomp="cholesky", root=TRUE)) # symmetric-positive
OUCH setting
mvOU(tree, data, model="OUM", method="rpf", scale.height=FALSE,

param=list(decomp="cholesky", root=FALSE, vcv="ouch"))

Univariate case - FAST with RPF
set.seed(14)
tree<-pbtree(n=500)

Setting the regime states of tip species

44 mvOUTS

sta<-as.vector(c(rep("Forest",200),rep("Savannah",300))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Forest","Savannah")

Plot of the phylogeny for illustration
plotSimmap(tree,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Parameters
alpha<-2.5
sigma<-0.1
theta<-c(0,2)
data<-mvSIM(tree, param=list(sigma=sigma, alpha=alpha, ntraits=1, theta=theta,

names_traits=c("body_size")), model="OUM", nsim=1)

Fit the model
system.time(mvOU(tree, data, model="OUM", method="univarpf",

param=list(root="stationary")))
system.time(mvOU(tree, data, model="OU1", method="univarpf",

param=list(root="stationary")))

Add measurement error
error=rnorm(500,sd=0.1)
mvOU(tree, data, error=error^2, model="OUM", method="univarpf",

param=list(root="stationary"))

mvOUTS Multivariate continuous trait evolution for a stationary time series
(Ornstein-Uhlenbeck model)

Description

This function allows the fitting of a multivariate Ornstein-Uhlenbeck (OU) model to a time series.
Species measurement errors or dispersions can also be included in the model.

Usage

mvOUTS(times, data, error = NULL, param = list(sigma = NULL, alpha = NULL,
vcv = "randomRoot", decomp = c("cholesky","spherical","eigen","qr",
"diagonal","upper","lower")), method = c("rpf", "inverse", "pseudoinverse",

"univarpf"), scale.height = FALSE, optimization = c("L-BFGS-B", "Nelder-Mead",
"subplex"), control = list(maxit = 20000), precalc = NULL, diagnostic = TRUE,
echo = TRUE)

mvOUTS 45

Arguments

times Time series - vector of sample ages.

data Matrix or data frame with species in rows and continuous traits in columns. NA
values are allowed.

error Matrix or data frame with species in rows and continuous trait sampling variance
(squared standard errors) in columns.

param List of arguments to be passed to the function. See details below.

method Choose between "rpf", "inverse", "pseudoinverse", or "univarpf" for computing
the log-likelihood during the fitting process. See details below.

scale.height Whether the time series should be scaled to unit length or not.

optimization Methods used by the optimization routines (see ?optim and ?subplex for details).
The "fixed" method returns the log-likelihood function only.

control Max. bound for the number of iteration of the optimizer; other options can be
fixed in the list (see ?optim or ?subplex).

precalc Optional. Precalculation of fixed parameters. See ?mvmorph.Precalc for details.

diagnostic Whether the convergence diagnostics should be returned or not.

echo Whether the results must be returned or not.

Details

The mvOUTS function fits a multivariate model of trait evolution on a time series according to an
Ornstein-Uhlenbeck process. The user can include measurement errors to the analyzed dataset.

The "method" argument allows the user to try different algorithms for computing the log-likelihood.
The "rpf", "univarpf" (for univariate analysis) methods use fast GLS algorithms based on factoriza-
tion for avoiding the computation of the inverse of the variance-covariance matrix and its determi-
nant for the log-likelihood estimation. The "inverse" approach uses the "stable" standard explicit
computation of the inverse and determinant of the matrix and is therefore slower. The "pseudoin-
verse" method uses a generalized inverse that is safer for matrix near singularity but highly time
consuming. See ?mvLL for details.

Arguments in the "param" list are:

"sigma" or "alpha" - Starting values for the likelihood search can be specified through the "alpha"
and "sigma" arguments in the param list. It is also possible to test for the significance of the off-
diagonal sigma (scatter) and alpha (drift) matrix in the full model by making comparison with a
constrained model (using sigma="constraint", or alpha="constraint") in the "param" argument list.
You can also provide starting values for the constrained model. For instance, for two traits use
sigma=list("constraint", c(0.5,0.5)) (or alpha=list("constraint", c(0.5,0.5))).

"decomp" - You can further constrain the alpha matrix by specifying the decomposition of the
matrix through the "decomp" argument in the "param" list. Indeed, the multivariate Ornstein-
Uhlenbeck model is described by the spectral decomposition of the alpha matrix. Thus it is possible
to parameterize the alpha matrix to be decomposable using various parameterizations (e.g., on its
eigenvalues with different biological interpretations; Sy et al. 1997, Bartoszek et al. 2012). For
a symmetric matrix parameterization the user can choose the "cholesky", "eigen", or "spherical"
option. For general square (non-symmetric) matrices the "svd", "qr" and "schur" parameterizations
can be used. The "schur" parameterization constrains the eigenvalues of the alpha matrix to be real

46 mvOUTS

numbers. The "svd+", "qr+" or "eigen+" options forces the eigenvalues to be positives by taking
their logarithm. It is also possible to specify "diagonal" which is similar to the use of the "con-
straint" argument for the "alpha" argument, or to use "equal" and "equaldiagonal". Finally, one
can specify that the alpha matrix is "upper" or "lower" triangular (i.e., one process affect the other
unilateraly). Details can be found in the package vignette: browseVignettes("mvMORPH").

"decompSigma" - The sigma matrix is parameterized by various methods to ensure its positive def-
initeness (Pinheiro and Bates, 1996). These methods can be accessed through the "decompSigma"
argument and are the "cholesky", "eigen+", and "spherical" parameterization. The sigma matrix can
also be forced to be diagonal using "diagonal" or "equaldiagonal" and forced to have the same vari-
ances using "equal". Details can be found in the package vignette: browseVignettes("mvMORPH").

"vcv" - It is possible to specify in the "param" list what kind of variance-covariance matrix to
use with the "vcv" argument, depending on how the root is treated. The vcv="randomRoot" option
assumes that the value at the root is a random variable with the stationary distribution of the process.
The vcv="fixedRoot" option assumes that the root is a fixed parameter.

"root" - If root=TRUE, the ancestral state and the optimum (stationary mean) are estimated, oth-
erwise (root=FALSE) the ancestral (initial) state and the optimum (long-term expectation) are as-
sumed to be the same.

Note: for the "decomp" and "decompSigma arguments, an user-defined matrix with integer values
taken as indices of the parameters to be estimated can be provided. See ?mvBM and ?mvRWTS.

Value

LogLik The log-likelihood of the optimal model.

AIC Akaike Information Criterion for the optimal model.

AICc Sample size-corrected AIC.

theta Estimated ancestral states.

alpha Matrix of estimated alpha values (strength of selection, drift matrix).

sigma Evolutionary rate matrix (scatter).

convergence Convergence status of the optimizing function; "0" indicates convergence. (See
?optim for details).

hess.values Reliability of the likelihood estimates calculated through the eigen-decomposition
of the hessian matrix. "0" means that a reliable estimate has been reached. See
details on ?mvOU.

param List of model fit parameters (optimization, method, model, number of parame-
ters...).

llik The log-likelihood function evaluated in the model fit "$llik(par, root.mle=TRUE)".

Author(s)

Julien Clavel

References

Bartoszek K., Pienaar J., Mostad P., Andersson S., Hansen T.F. 2012. A phylogenetic comparative
method for studying multivariate adaptation. J. Theor. Biol. 314:204-215.

mvOUTS 47

Clavel J., Escarguel G., Merceron G. 2015. mvMORPH: an R package for fitting multivariate
evolutionary models to morphometric data. Methods Ecol. Evol. 6(11):1311-1319.

Hunt G., Bell M.A., Travis M.P. 2008. Evolution toward a new adaptive optimum: phenotypic
evolution in a fossil stickleback lineage. Evolution 62(3):700-710.

Pinheiro J.C., Bates D.M. 1996. Unconstrained parameterizations for variance-covariance matrices.
Stat. Comput. 6:289-296.

Sy J.P., Taylor J.M.G., Cumberland W.G. 1997. A stochastic model for the analysis of bivariate
longitudinal AIDS data. Biometrics. 53:542-555.

See Also

mvMORPH halflife stationary mvOU mvRWTS mvBM mvEB mvSHIFT mvSIM LRT optim

Examples

Simulate the time series
set.seed(14)
timeseries <- 0:49
Parameters with general alpha matrix on two competitive species (or two traits)
asymetric (drift) matrix with intervention from the lowest layer
alpha <- matrix(c(0.15,0,0.1,0.1),2,2)
scatter matrix
sigma <- matrix(c(0.01,0.005,0.005,0.01),2)
ancestral states and long term optimum expectation
theta <- matrix(c(0,1,0,.5),2) # columns=traits

Simulate the data
traits <- mvSIM(timeseries, model="OUTS", param=list(theta=theta, alpha=alpha, sigma=sigma))

Plot the time series
matplot(traits,type="o",pch=1, xlab="Time (relative)")

fit1 <- mvOUTS(timeseries, traits, param=list(decomp="qr"))

fit2 <- mvOUTS(timeseries, traits, param=list(decomp="eigen"))

fit3 <- mvOUTS(timeseries, traits, param=list(decomp="diagonal"))

results <- list(fit1,fit2,fit3)
aicw(results)

Simulate under the MLE
traits2 <- simulate(fit1,tree=timeseries)
matplot(traits2, type="o", pch=1, xlab="Time (relative)")

mvOUTS(timeseries, traits2, param=list(decomp="eigen"))
mvOUTS(timeseries, traits2, param=list(decomp="diagonal"))
mvOUTS(timeseries, traits2, param=list(decomp="upper"))
mvOUTS(timeseries, traits2, param=list(decomp="lower"))

48 mvRWTS

try user defined constraints
set.seed(100)
ts <- 49
timeseries <- 1:ts

sigma <- matrix(c(0.01,0.005,0.003,0.005,0.01,0.003,0.003,0.003,0.01),3)
upper triangular matrix with effect of trait 2 on trait 1.
alpha <- matrix(c(0.4,0,0,-0.5,0.3,0,0,0,0.2),3,3)
theta <- matrix(c(0,0,0,1,0.5,0.5),byrow=TRUE, ncol=3); root=TRUE

data <- mvSIM(timeseries, model="OUTS", param=list(alpha=alpha,
sigma=sigma, theta=theta, root=root,
names_traits=c("sp 1", "sp 2", "sp 3")))

plot
matplot(data, type="o", pch=1, xlab="Time (relative)")
legend("bottomright", inset=.05, legend=colnames(data), pch=19, col=c(1,2,3), horiz=TRUE)

define an user constrained drift matrix
indice <- matrix(NA,3,3)
diag(indice) <- c(1,2,3)
indice[1,2] <- 4

fit the model
fit_1 <- mvOUTS(timeseries, data, param=list(vcv="fixedRoot", decomp=indice))
fit_2 <- mvOUTS(timeseries, data, param=list(vcv="fixedRoot", decomp="diagonal"))

LRT(fit_1, fit_2)

mvRWTS Multivariate Brownian motion / Random Walk model of continuous
traits evolution on time series

Description

This function allows the fitting of multivariate Brownian motion/Random walk model on time-
series. This function can also fit constrained models.

Usage

mvRWTS(times, data, error = NULL, param =
list(sigma=NULL, trend=FALSE, decomp="cholesky"), method = c("rpf",
"inverse", "pseudoinverse"), scale.height = FALSE,
optimization = c("L-BFGS-B", "Nelder-Mead", "subplex"),
control = list(maxit = 20000), precalc = NULL, diagnostic = TRUE,
echo = TRUE)

mvRWTS 49

Arguments

times Time series - vector of sample ages.

data Matrix or data frame with species/sampled points in rows and continuous traits
in columns

error Matrix or data frame with species/sampled points in rows and continuous traits
sampling variance (squared standard error) in columns.

param List of arguments to be passed to the function. See details below.

method Choose between "rpf", "inverse", or "pseudoinverse" for log-likelihood compu-
tation during the fitting process. See details below.

scale.height Whether the time series should be scaled to unit length or not.

optimization Methods used by the optimization routines (see ?optim and ?subplex for details).
The "fixed" method returns the log-likelihood function only.

control Max. bound for the number of iteration of the optimizer; other options can be
fixed in the list (see ?optim or ?subplex).

precalc Optional. Precalculation of fixed parameters. See ?mvmorph.Precalc.

diagnostic Whether the diagnostics of convergence should be returned or not.

echo Whether the results must be returned or not.

Details

The mvRWTS function fits a multivariate Random Walk (RW; i.e., the time series counterpart of
the Brownian motion process).

The "method" argument allows the user to try different algorithms for computing the log-likelihood.
The "rpf" and "sparse" methods use fast GLS algorithms based on factorization for avoiding the
computation of the inverse of the variance-covariance matrix and its determinant involved in the
log-likelihood estimation. The "inverse" approach uses the "stable" standard explicit computation
of the inverse and determinant of the matrix and is therefore slower. The "pseudoinverse" method
uses a generalized inverse that is safer for matrix near singularity but highly time consuming. See
?mvLL for more details on these computational methods.

Arguments in the "param" list are:

"constraint" - The "constraint" argument in the "param" list allows the user to compute the joint
likelihood for each trait by assuming they evolved independently (constraint="diagonal", or
constraint="equaldiagonal"). If constraint="equal", the sigma values are constrained to be
the same for each trait using the constrained Cholesky decomposition proposed by Adams (2013)
or a separation strategy based on spherical parameterization when p>2 (Clavel et al. 2015).

User-defined constraints can be specified through a numeric matrix (square and symmetric) with
integer values taken as indices of the parameters.

For instance, for three traits:

constraint=matrix(c(1,3,3,3,2,3,3,3,2),3).

Covariances constrained to be zero are introduced by NA values, e.g.,

constraint=matrix(c(1,4,4,4,2,NA,4,NA,3),3).

Difference between two nested fitted models can be assessed using the "LRT" function. See example
below and ?LRT.

50 mvRWTS

"decomp" - For the general case (unconstrained models), the sigma matrix is parameterized by
various methods to ensure its positive definiteness (Pinheiro and Bates, 1996). These methods are
the "cholesky", "eigen+", and "spherical" parameterizations.

"trend" - Default set to FALSE. If TRUE, the ancestral state is allowed to drift leading to a
directional random walk. Note that it is possible to provide a vector of integer indices to constraint
the estimated trends when p>1 (see the vignettes).

"sigma" - Starting values for the likelihood estimation. By default the trait covariances are used
as starting values for the likelihood optimization. The user can specify starting values as square
symmetric matrices or a simple vector of values for the upper factor of the sigma matrix. The pa-
rameterization is done using the factorization determined through the "decomp" argument (Pinheiro
and Bates, 1996). Thus, you should provide p*(p+1)/2 values, with p the number of traits (e.g., ran-
dom numbers or the values from the cholesky factor of a symmetric positive definite sigma matrix;
see example below). If a constrained model is used, the number of starting values is (p*(p-1)/2)+1.

Value

LogLik The log-likelihood of the optimal model.

AIC Akaike Information Criterion for the optimal model.

AICc Sample size-corrected AIC.

theta Estimated ancestral states.

sigma Evolutionary rate matrix for each selective regime.

convergence Convergence status of the optimizing function; "0" indicates convergence (see
?optim for details).

hess.values Reliability of the likelihood estimates calculated through the eigen-decomposition
of the hessian matrix. "0" means that a reliable estimate has been reached (see
?mvOU).

param List of model fit parameters (optimization, method, model, number of parame-
ters...).

llik The log-likelihood function evaluated in the model fit "$llik(par, root.mle=TRUE)".

Author(s)

Julien Clavel

References

Adams D.C. 2013. Comparing evolutionary rates for different phenotypic traits on a phylogeny
using likelihood. Syst. Biol. 62:181-192.

Clavel J., Escarguel G., Merceron G. 2015. mvMORPH: an R package for fitting multivariate
evolutionary models to morphometric data. Methods Ecol. Evol., 6(11):1311-1319.

Hunt G. (2012). Measuring rates of phenotypic evolution and the inseparability of tempo and mode.
Paleobiology, 38(3):351-373.

Revell L.J. 2012. phytools: An R package for phylogenetic comparative biology (and other things).
Methods Ecol. Evol. 3:217-223.

mvSHIFT 51

See Also

mvMORPH mvOU mvEB mvSHIFT mvSIM mvOUTS LRT optim

Examples

set.seed(1)
Simulate the time series
timeseries <- 0:49

Simulate the traits
sigma <- matrix(c(0.01,0.005,0.005,0.01),2)
theta <- c(0,1)
error <- matrix(0,ncol=2,nrow=50);error[1,]=0.001
data<-mvSIM(timeseries, error=error,

param=list(sigma=sigma, theta=theta), model="RWTS", nsim=1)

plot the time series
matplot(data, type="o", pch=1, xlab="Time (relative)")

model fit
mvRWTS(timeseries, data, error=error, param=list(decomp="diagonal"))
mvRWTS(timeseries, data, error=error, param=list(decomp="equal"))
mvRWTS(timeseries, data, error=error, param=list(decomp="cholesky"))

Random walk with trend
set.seed(1)
trend <- c(0.02,0.02)
data<-mvSIM(timeseries, error=error,

param=list(sigma=sigma, theta=theta, trend=trend), model="RWTS", nsim=1)

plot the time serie
matplot(data, type="o", pch=1, xlab="Time (relative)")

model fit
mvRWTS(timeseries, data, error=error, param=list(trend=TRUE))

we can specify a vector of indices
mvRWTS(timeseries, data, error=error, param=list(trend=c(1,1)))

mvSHIFT Multivariate change in mode of continuous trait evolution

Description

This function fits different models of evolution after a fixed point. This allows fitting models of
change in mode of evolution following a given event.

52 mvSHIFT

Usage

mvSHIFT(tree, data, error = NULL, param = list(age = NULL, sigma = NULL,
alpha = NULL, sig = NULL, beta = NULL), model = c("ER", "RR", "EC",
"RC", "SR", "EBOU", "OUEB", "EBBM", "BMEB"), method = c("rpf",
"sparse", "inverse", "pseudoinverse"), scale.height = FALSE,
optimization = c("L-BFGS-B", "Nelder-Mead", "subplex"), control =
list(maxit = 20000), precalc = NULL, diagnostic = TRUE, echo = TRUE)

Arguments

tree Phylogenetic tree with a shift mapped (see "make.era.map" function from "phy-
tools" package). A "phylo" object can be used if the "age" argument is provided
in the "param" list.

data Matrix or data frame with species in rows and continuous traits in columns. NA
values are allowed with the "rpf", "inverse", and "pseudoinverse" methods.

error Matrix or data frame with species in rows and continuous trait sampling variance
(squared standard errors) in columns.

param List of arguments to be passed to the function. See details.

model Choose between the different models "OUBM", "BMOU", "EBOU", "OUEB",
"BMEB", "EBBM"... See details below.

method Choose between "rpf", "sparse", "inverse", or "pseudoinverse" for computing
the log-likelihood during the fitting process. See details below.

scale.height Whether the tree should be scaled to unit length or not.

optimization Methods used by the optimization routines (see ?optim and ?subplex for details).
The "fixed" method returns the log-likelihood function only.

control Max. bound for the number of iteration of the optimizer; other options can be
fixed in the list (see ?optim and ?subplex for details).

precalc Optional. Precalculation of fixed parameters. See ?mvmorph.Precalc for details.

diagnostic Whether the diagnostics of convergence should be returned or not.

echo Whether the results must be returned or not.

Details

The mvSHIFT function fits a shift in mode or rate of evolution at a fixed point in time, as previously
proposed by some authors (O’Meara et al. 2006; O’Meara, 2012; Slater, 2013). Shift in mode of
evolution can be mapped on a modified "phylo" object using the "make.era.map" function from the
"phytools" package. Note that only one shift is allowed by the current version of mvMORPH. The
age of the shift can be otherwise directly provided (in unit of times of the tree) in the function by
the "age" argument in the "param" list.

The function allows fitting model with shift from an Orstein-Uhlenbeck to a Brownian motion
process and vice-versa ("OUBM" and "BMOU"), shifts from a Brownian motion to/from an Early
Burst (ACDC) model ("BMEB" and "EBBM"), or shifts from an Orstein-Uhlenbeck to/from an
Early Burst (ACDC) model ("OUEB" and "EBOU"). Note that the shift models with OU process
are relevant only if you use fossil species.

mvSHIFT 53

In all these cases it is possible to allow the drift parameter to vary after the fixed point by specifying
"i" (for independent) after the model name. For instance, to fit models of "ecological release"
or "ecological release and radiate" following Slater (2013), one can use "OUBM" or "OUBMi",
respectively.

Alternatively it is also possible to use the shortcuts "ER" or "RR" to fit models of "ecological
release" and "ecological release and radiate" respectively, and "EC" for a model of "constrained
ecology" (e.g., after invasion of a competitive species in a given ecosystem) where traits are con-
strained in an Ornstein-Uhlenbeck process after a fixed point in time ("RC" is the same model but
assumes an independent rate during the early radiative phase). The "SR" model allows fitting dif-
ferent (Brownian) rates/drift before and after the shift point (note that this model could also be fitted
using the mvBM function).

The "param" list can be used to provide lower and upper bounds for the exponential rate parameter
of the Early-Burst/ACDC model. See ?mvEB for details.

The "method" argument allows the user to try different algorithms for computing the log-likelihood.
The "rpf" and "sparse" methods use fast GLS algorithms based on factorization for avoiding the
computation of the inverse of the variance-covariance matrix and its determinant involved in the
log-likelihood estimation. The "inverse" approach uses the "stable" standard explicit computation
of the inverse and determinant of the matrix and is therefore slower. The "pseudoinverse" method
uses a generalized inverse that is safer for matrix near singularity but highly time consuming. See
?mvLL for details.

Value

LogLik The log-likelihood of the optimal model.

AIC Akaike Information Criterion for the optimal model.

AICc Sample size-corrected AIC.

theta Estimated ancestral states.

alpha Matrix of estimated alpha values (strength of selection).

beta Exponent rate (of decay or increase) for the ACDC/Early-Burst model.

sigma Evolutionary rate matrix (drift) for the BM process before the shift.

sig Evolutionary rate matrix (drift) for the BM process after the shift (only for "i"
models).

convergence Convergence status of the optimizing function; "0" indicates convergence (see
?optim for details).

hess.values Reliability of the likelihood estimates calculated through the eigen-decomposition
of the hessian matrix. "0" means that a reliable estimate has been reached (see
?mvOU for details).

param List of model fit parameters (optimization, method, model, number of parame-
ters...).

llik The log-likelihood function evaluated in the model fit "$llik(par, root.mle=TRUE)".

Note

Changes in rate of evolution and optima can also be fitted using the mvBM and mvOU functions
using a ’make.era.map’ transformed tree.

54 mvSHIFT

Author(s)

Julien Clavel

References

Clavel J., Escarguel G., Merceron G. 2015. mvMORPH: an R package for fitting multivariate
evolutionary models to morphometric data. Methods in Ecology and Evolution, 6(11):1311-1319.

O’Meara B.C. 2012. Evolutionary inferences from phylogenies: a review of methods. Annu. Rev.
Ecol. Evol. Syst. 43:267-285.

O’Meara B.C., Ane C., Sanderson M.J., Wainwright P.C. 2006. Testing for different rates of con-
tinuous trait evolution. Evolution. 60:922-933.

Slater G.J. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution
at the Cretaceous-Palaeogene boundary. Methods Ecol. Evol. 4:734-744.

See Also

mvMORPH mvOU mvBM mvEB mvOUTS mvRWTS mvSIM optim subplex paintSubTree make.era.map

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-rtree(50)

Providing a tree whith the shift mapped on
tot<-max(nodeHeights(tree))
age=tot-3 # The shift occured 3 Ma ago
tree<-make.era.map(tree,c(0,age))

Plot of the phylogeny for illustration
plotSimmap(tree,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate the traits
alpha<-matrix(c(2,0.5,0.5,1),2)
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(2,3)
data<-mvSIM(tree, param=list(sigma=sigma, alpha=alpha, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size")), model="ER", nsim=1)

Fitting the models
"Ecological release model"
mvSHIFT(tree, data, model="OUBM") # similar to mvSHIFT(tree, data, model="ER")

"Release and radiate model"

mvSHIFT(tree, data, model="RR", method="sparse")
similar to mvSHIFT(tree, data, model="OUBMi")

mvSIM 55

More generally...

OU to/from BM
mvSHIFT(tree, data, model="OUBM", method="sparse")
mvSHIFT(tree, data, model="BMOU", method="sparse")
mvSHIFT(tree, data, model="OUBMi", method="sparse")
mvSHIFT(tree, data, model="BMOUi", method="sparse")

BM to/from EB
mvSHIFT(tree, data, model="BMEB", method="sparse")
mvSHIFT(tree, data, model="EBBM", method="sparse")
mvSHIFT(tree, data, model="BMEBi", method="sparse")
mvSHIFT(tree, data, model="EBBMi", method="sparse")

OU to/from EB
mvSHIFT(tree, data, model="OUEB", method="sparse")
mvSHIFT(tree, data, model="OUEBi", method="sparse")
mvSHIFT(tree, data, model="EBOU", method="sparse")
mvSHIFT(tree, data, model="EBOUi", method="sparse")

Without providing mapped tree
The shift occured 3Ma ago (param$age=3)
set.seed(14)
tree<-rtree(50)
data<-mvSIM(tree, param=list(sigma=sigma, alpha=alpha, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size"), age=3), model="ER", nsim=1)

Fitting the models without mapped tree but by specifying the age in the param list.
mvSHIFT(tree, data, model="OUBM", param=list(age=3))

mvSIM Simulation of (multivariate) continuous traits on a phylogeny

Description

This function allows simulating multivariate (as well as univariate) continuous traits evolving ac-
cording to a BM (Brownian Motion), OU (Ornstein-Uhlenbeck), ACDC (Accelerating rates and
Decelerating rates/Early bursts), or SHIFT models of phenotypic evolution.

Usage

mvSIM(tree, nsim = 1, error = NULL, model = c("BM1", "BMM", "OU1", "OUM", "EB"),
param = list(theta = 0, sigma = 0.1, alpha = 1, beta = 0))

Arguments

tree Phylogenetic tree with mapped ancestral states in SIMMAP format (see make.simmap
function from phytools package) or a standard "phylo" object (ape). Or a time-
series

56 mvSIM

nsim The number of simulated traits (or datasets for multivariate analysis).

error Matrix or data frame with species in rows and continuous trait sampling variance
(squared standard errors) in columns.

model The model of trait evolution for the simulations. Could be any of the models
used by the mvBM, mvEB, mvOU and mvSHIFT functions.

param List of parameter arguments used for the simulations. You should provide the
sigma (values or matrix), alpha (for OU and SHIFT models), beta (EB and
SHIFT), theta (ancestral states), ntraits (the number of traits) or others param
arguments used in the models. Alternatively you can provide a fitted object of
class "mvmorph". See details below.

Details

This function simulates multivariate (as well as univariate) continuous traits evolving along a given
phylogenetic tree or time series according to a BM/RW (Brownian Motion/Random walk), OU
(Ornstein-Uhlenbeck), ACDC (Accelerating rates and Decelerating rates/Early Bursts), and SHIFT
models of phenotypic evolution. The traits are simulated by random sampling from a Multivariate
Normal Distribution (Paradis, 2012).

The mvSIM function allows simulating continuous trait (univariate or multivariate) evolution along
a phylogeny (or a time-series) with user specified parameters or parameters estimated from a previ-
ous fit.

The "simulate" wrapper can also be used with a fitted object of class "mvmorph": simulate(object,
nsim=1, tree=tree). See example below.

If parameter values are not provided, the default values are fixed to 1 (sigma, sig, alpha, beta) or to
0 for the mean at the root (ancestral state).

For the "BMM" model were different parts of the tree have their own rate, a list with one rate (or
matrix of rates) per selective regime must be provided.

For the "OU1" and "OUM" models, the user can specify if the ancestral state (theta0) should be
computed (param$root=TRUE), assumed to be at the oldest regime state (param$root=FALSE), or
if there is no root and each regimes is at the stationary point (param$root="stationary"; see also
?mvOU).

For the "BM1", "BMM", and "RWTS" models, a trend can be simulated by providing values to the
"trend" argument in the "param" list.

Traits names can be provided with the "names_traits" argument in the "param" list. For all the shift
models, if the tree is not mapped the age of the shift should be directly provided (in unit of times of
the tree) using the "age" argument in the "param" list.

Value

A matrix with simulated traits (columns) for the univariate case, or a list of matrix for the multivari-
ate case (nsim>1).

Note

Ancestral states for Ornstein-Uhlenbeck processes (param$root=TRUE) should be used with non-
ultrametric trees. As this method uses Multivariate Normal distribution (MVN) for simulating the

mvSIM 57

traits, it is advised to avoid its use with very large datasets/trees and rely instead on recursive algo-
rithms (see, e.g., ?rTraitCont from "ape").

Author(s)

Julien Clavel

References

Paradis E. 2012. Analysis of Phylogenetics and Evolution with R. New York: Springer.

See Also

mvMORPH mvgls mvOU mvEB mvBM mvSHIFT mvRWTS mvOUTS mvLL

Examples

Simulated dataset
set.seed(14)
Generating a random tree with 50 species
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Forest","Savannah")

Plot of the phylogeny for illustration
plotSimmap(tree,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate trait evolution according to a bivariate "BMM" model
Number of traits
ntraits<-2
Number of simulated (pairs of) traits
nsim<-10
Rates matrices for the "Forest" and the "Savannah" regimes
sigma<-list(Forest=matrix(c(2,0.5,0.5,1),2), Savannah=matrix(c(5,3,3,4),2))
ancestral states for each traits
theta<-c(0,0)

Simulate
simul<-mvSIM(tree,nsim=nsim, model="BMM",param=list(ntraits=ntraits,sigma=sigma,theta=theta))

Try to fit a "BM1" model to the first simulated dataset
model_fit<-mvBM(tree,simul[[1]],model="BM1")

Use the estimated parameters to simulate new traits!
simul2<-mvSIM(tree,nsim=nsim,param=model_fit)

58 phyllostomid

or try with generic "simulate" function
simul3<-simulate(model_fit,nsim=nsim,tree=tree)

Just-for-fun :Comparing parameters

simul4<-simulate(model_fit,nsim=100,tree=tree)

results<-lapply(simul4,function(x){
mvBM(tree,x,model="BM1",method="pic", echo=FALSE,diagnostic=FALSE)
})

sigma_simul<-sapply(results,function(x){x$sigma})

comparison between the simulated (black) and the observed (red) multivariate rates
layout(matrix(1:4, ncol=2))
for(i in 1:4){
hist(sigma_simul[i,], main=paste("Estimated sigma on simulated traits"),
xlab="estimated sigma for 100 replicates");abline(v=mean(sigma_simul[i,]),lwd=2);
abline(v=model_fit$sigma[i],col="red",lwd=2)

}

phyllostomid Phylogeny and trait data for a sample of Phyllostomid bats

Description

Phylogeny, diet, and morphological variables for 49 species of Phyllostomid bats.

Usage

data("phyllostomid")

Details

Illustrative phylogeny (phyllostomid$tree) and morphological data (phyllostomid$mandible - 73
variables composed of the superimposed procrustes 2D-coordinates for the mandible and the condy-
lobasal length) of 49 species of Phyllostomid bats from Monteiro & Nogueira (2011). The firsts 22
coordinates represent anatomical landmarks and the last 50 coordinates are semilandmarks.

The four grouping factor variables (e.g., phyllostomid$grp1, phyllostomid$grp2, ...) are the adaptive
regime models for association between mandible morphology and diet considered in Monteiro &
Nogueira (2011).

References

Monteiro L.R., Nogueira M.R. 2011. Evolutionary patterns and processes in the radiation of phyl-
lostomid bats. BMC Evolutionary Biology. 11:1-23.

Clavel, J., Morlon, H. 2020. Reliable phylogenetic regressions for multivariate comparative data:
illustration with the MANOVA and application to the effect of diet on mandible morphology in
phyllostomid bats. Systematic Biology 69(5): 927-943.

predict.mvgls 59

Examples

data(phyllostomid)
plot(phyllostomid$tree)
head(phyllostomid$mandible)

Fit a linear model by PL
fit1 <- mvgls(mandible~grp1, data=phyllostomid, phyllostomid$tree, model="lambda", method="LOO")

regularized MANOVA test
(manova.gls(fit1, test="Wilks", verbose=TRUE))

predict.mvgls Predictions from (multivariate) gls model fit

Description

Returns the prediction(s) of a linear model of class ’mvgls’.

Usage

S3 method for class 'mvgls'
predict(object, newdata, ...)

Arguments

object an object of class ’mvgls’ obtained from a mvgls fit.

newdata a dataframe with new observation(s). The column names must match the names
of the predictors in the model fit object. The type (e.g. factors, numeric) must
also match the type of the predictors in the model fit object. Note: the fitted
values are simply returned if "newdata" is not provided.

... other arguments for this generic function. If tree is provided (with tip name(s)
matching rowname(s) in newdata), then the best unbiased linear prediction for
the model is returned. Otherwise the GLS coefficients are used to predict "new-
data".

Value

A matrix with the predictions for the linear model fitted by mvgls.

Author(s)

J. Clavel

60 pruning

See Also

fitted.mvgls vcov.mvgls residuals.mvgls coef.mvgls mvgls

pruning Pruning algorithm to compute the square root of the phylogenetic co-
variance matrix and it’s determinant.

Description

This function use the pruning algorithm (Felsenstein 1973) to efficiently compute the determinant
of the phylogenetic covariance matrix as well as the square root of this matrix (or it’s inverse; Stone
2011, Khabbazian et al. 2016). This algorithm is faster than using "eigen" or "cholesky" function to
compute the determinant or the square root (see e.g., Clavel et al. 2015) and can be used to compute
independent contrasts and the log-likelihood of a model in linear time.

Usage

pruning(tree, inv=TRUE, scaled=TRUE, trans=TRUE, check=TRUE)

Arguments

tree Phylogenetic tree (an object of class "phylo" or "simmap").

inv Return the matrix square root of either the covariance matrix (inv=FALSE) or
it’s inverse (inv=TRUE, the default). This matrix is a "contrasts" matrix.

scaled Indicates whether the contrasts should be scaled with their expected variances
(default to TRUE).

trans Return the transpose (trans=TRUE) of the matrix square root/contrasts matrix.
(i.e. by default it returns a matrix equivalent to the upper triangular Cholesky
factor)

check Check if the input tree is dichotomous and in "postorder" (see ?is.binary.tree and
?reorder.phylo).

Details

The tree is assumed to be fully dichotomic and in "postorder", otherwise the functions multi2di and
reorder.phylo are used internally when check=TRUE.

Value

sqrtMat The matrix square root (contrasts matrix)

varNode Variance associated to each node values (similar to "contrasts" variance)

varRoot Variance associated to the root value (similar to the ancestral state variance)

det Log-determinant of the phylogenetic covariance of the tree

pruning 61

Author(s)

Julien Clavel

References

Clavel J., Escarguel G., Merceron G. 2015. mvMORPH: an r package for fitting multivariate evo-
lutionary models to morphometric data. Methods Ecol. Evol. 6:1311-1319.

Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous charac-
ters. Am. J. Hum. Genet. 25:471-492.

Khabbazian M., Kriebel R., Rohe K., Ane C. 2016. Fast and accurate detection of evolutionary
shifts in Ornstein-Uhlenbeck models. Methods Ecol. Evol. 7:811-824.

Stone E.A. 2011. Why the phylogenetic regression appears robust to tree misspecification. Syst.
Biol. 60:245-260

See Also

mvLL mvgls

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-pbtree(n=50)
Y <- mvSIM(tree, model="BM1", param=list(sigma=1, theta=0)) # trait
X <- matrix(1, nrow=Ntip(tree), ncol=1) # design matrix

Use the GLS trick
Compute the matrix square root
C <- vcv.phylo(tree)
D <- chol(C)
Cinv <- solve(C)
Di <- chol(Cinv)

transform the traits
Xi <- Di%*%X
Yi <- Di%*%Y

Compute the GLS estimate and determinant (see Clavel et al. 2015)
GLS estimate for the root
print(pseudoinverse(Xi)%*%Yi)

Determinant of the phylogenetic covariance matrix
print(sum(log(diag(D)^2)))

Use the pruning algorithm (much faster)

M <- pruning(tree, inv=TRUE)

62 residuals.mvgls

Xi <- M$sqrtMat%*%X
Yi <- M$sqrtMat%*%Y

GLS estimate
print(pseudoinverse(Xi)%*%Yi)

determinant
print(M$det)

REML determinant (without variance of the root state; see Felsenstein 1973)
full REML
log(det(C)) + log(det(t(X)%*%Cinv%*%X))

pruning REML
sum(log(M$varNode))

residuals.mvgls Extract gls model residuals

Description

Returns the residuals of a linear model of class ’mvgls’.

Usage

S3 method for class 'mvgls'
residuals(object, type, ...)

Arguments

object an object of class ’mvgls’ obtained from a mvgls fit.

type an optional character string specifying the type of residuals to be used. To
match conventions used in the nlme package: if "response", the "raw" resid-
uals (observed-fitted) are used; else, if "normalized", the normalized residuals
(the residuals pre-multiplied by the inverse square-root factor of the estimated
(between observations) covariance matrix) are used. Note however that there is
still between variables correlations with both types.

... other arguments for this generic function (not used).

Value

A matrix with the residuals for the linear model fitted by mvgls.

stationary 63

Author(s)

J. Clavel

See Also

vcov.mvgls residuals.mvgls coef.mvgls mvgls

stationary The stationary variance of an Ornstein-Uhlenbeck process

Description

This function returns the stationary variance for an Ornstein-Uhlenbeck process (object of class
"ou").

Usage

stationary(object)

Arguments

object Object fitted with the "mvOU" function.

Details

This function computes the dispersion parameter of the Ornstein-Uhlenbeck process (i.e., the ex-
pected variance when the process is stationary). The multivariate normal stationary distribution of
the Ornstein-Uhlenbeck process is computed following Bartoszek et al. (2012).

Value

The stationary variance-covariance matrix of the OU process

Author(s)

Julien Clavel

References

Bartoszek K., Pienaar J., Mostad P., Andersson S., Hansen T.F. 2012. A phylogenetic comparative
method for studying multivariate adaptation. J. Theor. Biol. 314:204-215.

See Also

mvMORPH mvOU halflife

64 vcov.mvgls

Examples

Simulated dataset
set.seed(14)
Generating a random tree
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree,sta , model="ER", nsim=1)
col<-c("blue","orange"); names(col)<-c("Forest","Savannah")

Plot of the phylogeny for illustration
plotSimmap(tree,col,fsize=0.6,node.numbers=FALSE,lwd=3, pts=FALSE)

Simulate the traits
alpha<-matrix(c(2,0.5,0.5,1),2)
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(2,3,1,1.3)
data<-mvSIM(tree, param=list(sigma=sigma, alpha=alpha, ntraits=2, theta=theta,

names_traits=c("head.size","mouth.size")), model="OUM", nsim=1)

Fitting the models
OUM - Analysis with multiple optima
result<-mvOU(tree, data)

stationary(result)

Expected values when the process is stationary
expected<-list(alpha=alpha,sigma=sigma)
class(expected)<-c("mvmorph","mvmorph.ou")
stationary(expected)

vcov.mvgls Calculate variance-covariance matrix for a fitted object of class
’mvgls’

Description

Returns the variance-covariance matrix of the coefficients or the traits.

Usage

S3 method for class 'mvgls'
vcov(object, ...)

vcov.mvgls 65

Arguments

object an object of class ’mvgls’ obtained from a mvgls fit.

... additional arguments for methods function. See details below.

Details

The vcov function returns by default the variance-covariance matrix of the main parameters of
a fitted model object. The main parameters are the coefficients (this correspond to the argu-
ment type="coef"; see also coef.mvgls). With type="covariance", the vcov.mvgls func-
tion returns the estimated traits covariance matrix (possibly regularized for PL approaches) while
type="precision" return the precision matrix (i.e. the inverse of the covariance).

Value

A matrix of the estimated covariances between the parameter estimates (of type "coef", "covari-
ance", or "precision").

Author(s)

J. Clavel

See Also

coef.mvgls residuals.mvgls fitted.mvgls mvgls

Index

∗ AIC
aicw, 3

∗ Accelerating rates
mvEB, 25

∗ Akaike weights
aicw, 3

∗ BM
mvMORPH-package, 2

∗ Brownian Motion
mvBM, 20
mvRWTS, 48
mvSHIFT, 51

∗ CVA
mvgls.dfa, 32

∗ Cholesky constraint
mvBM, 20
mvRWTS, 48

∗ DFA
mvgls.dfa, 32

∗ Decelerating rates
mvEB, 25

∗ Determinant
pruning, 60

∗ Discriminant
mvgls.dfa, 32

∗ EB
mvMORPH-package, 2

∗ EC
mvSHIFT, 51

∗ ER
mvSHIFT, 51

∗ Early burst
mvEB, 25

∗ Early-Burst
mvSHIFT, 51

∗ Estim
estim, 8

∗ Evolutionary rates
mvBM, 20

mvMORPH-package, 2
mvRWTS, 48
mvSHIFT, 51

∗ GIC
manova.gls, 16
mvgls, 28
mvgls.pca, 33

∗ GLS
EIC, 6
GIC, 11
manova.gls, 16
mvgls, 28
mvgls.pca, 33
mvLL, 35
pruning, 60

∗ General Linear Hypothesis
manova.gls, 16

∗ Hessian
mvOU, 39
mvOUTS, 44

∗ High dimensions
EIC, 6
GIC, 11
manova.gls, 16
mvgls, 28
mvgls.dfa, 32
mvgls.pca, 33

∗ Imputation
estim, 8

∗ Independent contrasts
mvLL, 35
pruning, 60

∗ LDA
mvgls.dfa, 32

∗ LRT
LRT, 14

∗ Loglikelihood ratio test
LRT, 14

∗ Loglikelihood

66

INDEX 67

mvLL, 35
∗ MANOVA

manova.gls, 16
∗ Matrix square root

pruning, 60
∗ Measurement error

mvMORPH-package, 2
∗ Methods

mvLL, 35
∗ Missing values

estim, 8
∗ Model comparison

EIC, 6
GIC, 11

∗ Models comparison
LRT, 14
manova.gls, 16

∗ Multivariate Linear Models
mvgls, 28

∗ Multivariate tests
manova.gls, 16

∗ OU
halflife, 12
mvMORPH-package, 2
mvOU, 39
mvOUTS, 44
stationary, 63

∗ Ornstein Uhlenbeck
halflife, 12
mvOU, 39
mvOUTS, 44
mvSHIFT, 51
stationary, 63

∗ PCA
mvgls.pca, 33

∗ Penalized likelihood
manova.gls, 16
mvgls, 28
mvgls.dfa, 32
mvgls.pca, 33

∗ RR
mvSHIFT, 51

∗ Random walk
mvRWTS, 48

∗ Regularization
manova.gls, 16
mvgls, 28
mvgls.dfa, 32

mvgls.pca, 33
∗ SIMMAP

mvMORPH-package, 2
∗ SR

mvSHIFT, 51
∗ Shifts

mvMORPH-package, 2
mvSHIFT, 51

∗ Simulations
mvMORPH-package, 2

∗ Time series
mvOUTS, 44
mvRWTS, 48

∗ User defined constraints
mvRWTS, 48

∗ bats
phyllostomid, 58

∗ datasets
phyllostomid, 58

∗ half-life
halflife, 12

∗ manova.gls
phyllostomid, 58

∗ mvgls
mvMORPH-package, 2
phyllostomid, 58

∗ mvmorph object
mvSIM, 55

∗ parameters
mv.Precalc, 18

∗ precalculation
mv.Precalc, 18

∗ simulate traits
mvSIM, 55

∗ stationary
stationary, 63

AIC, 4
aicw, 3, 3

brownie.lite, 23

coef.mvgls, 5, 10, 31, 60, 63, 65

EIC, 3, 6, 17, 31, 35
estim, 3, 8
evol.vcv, 23

fitted.mvgls, 5, 10, 31, 60, 65

68 INDEX

GIC, 3, 7, 11, 17, 31, 35

halflife, 3, 12, 43, 47, 63

LRT, 3, 14, 23, 43, 47, 51

make.era.map, 23, 43, 54
make.simmap, 23, 43
manova.gls, 3, 16, 31, 33
mv.Precalc, 18
mvBM, 3, 9, 15, 19, 20, 27, 37, 43, 47, 54, 57
mvEB, 3, 9, 15, 19, 23, 25, 37, 43, 47, 51, 54, 57
mvgls, 3, 5, 7, 10, 12, 17, 23, 27, 28, 33, 35,

37, 43, 57, 60, 61, 63, 65
mvgls.dfa, 3, 32
mvgls.pca, 3, 7, 12, 31, 33, 33
mvLL, 3, 19, 35, 57, 61
mvMORPH, 4, 9, 13, 15, 19, 23, 27, 37, 43, 47,

51, 54, 57, 63
mvMORPH (mvMORPH-package), 2
mvMORPH-package, 2
mvOU, 3, 9, 13, 15, 19, 23, 27, 37, 39, 47, 51,

54, 57, 63
mvOUTS, 3, 23, 27, 43, 44, 51, 54, 57
mvRWTS, 3, 23, 27, 43, 47, 48, 54, 57
mvSHIFT, 3, 9, 15, 19, 23, 27, 37, 43, 47, 51,

51, 57
mvSIM, 3, 23, 27, 37, 43, 47, 51, 54, 55

optim, 23, 27, 43, 47, 51, 54

paintSubTree, 23, 43, 54
phyllostomid, 58
predict.mvgls, 59
pruning, 60

residuals.mvgls, 5, 10, 31, 60, 62, 63, 65

stationary, 3, 13, 43, 47, 63
subplex, 54

vcov.mvgls, 5, 10, 31, 60, 63, 64

	mvMORPH-package
	aicw
	coef.mvgls
	EIC
	estim
	fitted.mvgls
	GIC
	halflife
	LRT
	manova.gls
	mv.Precalc
	mvBM
	mvEB
	mvgls
	mvgls.dfa
	mvgls.pca
	mvLL
	mvOU
	mvOUTS
	mvRWTS
	mvSHIFT
	mvSIM
	phyllostomid
	predict.mvgls
	pruning
	residuals.mvgls
	stationary
	vcov.mvgls
	Index

