Package 'mvdalab’

July 14, 2021
Type PackageTitle Multivariate Data Analysis Laboratory
Version 1.6
Date 2021-06-14
Author Nelson Lee Afanador, Thanh Tran, Lionel Blanchet, and Richard Baumgartner
Maintainer Nelson Lee Afanador nelson.afanador@gmail.com
Description An open-source implementation of latent variable methods and multivariate model-ing tools. The focus is on exploratory analyses using dimensionality reduction methods includ-ing low dimensional embedding, classical multivariate statistical tools, and tools for enhanced in-terpretation of machine learning methods (i.e. intelligible models to provide important informa-tion for end-users). Target domains include extension to dedicated applications e.g. for manu-facturing process modeling, spectroscopic analyses, and data mining.
License GPL-3
LazyData true
Imports car, dummies, ggplot2, MASS, moments, parallel, penalized,plyr, reshape2, sn
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-07-14 17:30:01 UTC
R topics documented:
mvdalab-package 3
acfplot 4
ap.plot 5
bca.cis 6
bidiagpls.fit 7
BiPlot 9
boot.plots 11
coef.mvdareg 12
coefficients.boots 13
coefficients.mvdareg 14
coefficientsplot2D 16
coefsplot 17
College 18
contr.niets 18
ellipse.mvdalab 19
imputeBasic 20
imputeEM 21
imputeQs 22
imputeRough 23
introNAs 24
jk.after.boot 25
loadings 26
loadings.boots 28
loadingsplot 29
loadingsplot2D 30
mewma 31
model.matrix 32
MultCapability 33
MVcis 35
MVComp 36
mvdaboot 37
mvdaloo 39
mvrnorm.svd 41
my.dummy.df 42
no.intercept 43
pca.nipals 43
pcaFit 45
PE 46
Penta 47
perc.cis 48
plot.cp 49
plot.mvcomp 50
plot.mvdareg 52
plot.plusminus 53
plot.R2s 54
plot.smc 55
plot.sr 56
plot.wrtpls 57
plsFit 58
plusminus.fit 61
plusminus.loo 62
plusMinusDat 63
plusminusFit 64
predict.mvdareg 66
print.mvdalab 67
print.plusminus 68
mvdalab-package 3
proCrustes 68
R2s 70
ScoreContrib 71
scoresplot 72
SeqimputeEM 73
smc 74
smc.acfTest 75
sr 76
T2 78
Wang_Chen 79
Wang_Chen_Sim 79
weight.boots 80
weights 81
weightsplot 83
weightsplot2D 84
wrtpls.fit 84
Xresids 86
XresidualContrib 87
y.loadings 88
y.loadings.boots 89
Index 91
mvdalab-package Multivariate Data Analysis Laboratory (mvdalab)

Description

Implementation of latent variables methods. The focus is on explorative anlaysis using dimensionality reduction methods, such as Principal Component Analysis (PCA), and on multivariate regression based on Partial Least Squares regression (PLS). PLS analyses are supported by embedded bootstrapping and variable selection procedures.

Details

Package:	mvdalab
Type:	Package
Version:	1.0
Date:	$2015-08-10$
License:	GPL-3

Author(s)

Nelson Lee Afanador (<nelson. afanador@gmail.com>), Thanh Tran (<thanh. tran@mvdalab. com>), Lionel Blanchet (lionel.blanchet@mvdalab.com), Richard Baumgartner (richard_baumgartner@merck.com)
Maintainer: Nelson Lee Afanador (<nelson. afanador@gmail.com>)
acfplot Plot of Auto-correlation Funcion

Description

This function computes the autocorrelation function estimates for a selected parameter.

Usage

acfplot(object, parm = NULL)

Arguments

object an object of class mvdareg, i.e., plsFit.
parm a chosen predictor variable; if NULL a random predictor variable is chosen

Details

This function computes the autocorrelation function estimates for a selected parameter, via acf, and generates a graph that allows the analyst to assess the need for an autocorrelation adjustment in the smc.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

This function is built using the acf function in the stats R package.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. SpringerVerlag.

See Also

smc, smc.acfTest

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
                ncomp = 2, validation = "loo")
acfplot(mod1, parm = NULL)
```

ap.plot Actual versus Predicted Plot and Residuals versus Predicted

Description

This function provides the actual versus predicted and actual versus residuals plot as part of a model assessment

Usage

ap.plot(object, ncomp = object\$ncomp, verbose = FALSE)

Arguments

object an object of class mvdareg, i.e., plsFit.
ncomp number of components used in the model assessment
verbose output results as a data frame

Details

This function provides the actual versus predicted and residuals versus predicted plot as part of model a assessment across the desired number of latent variables. A smooth fit (dashed line) is added in order to detect curvature in the fit.

Value

The output of ap. plot is a two facet graph for actual versus predicted and residuals versus predicted plots.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

See Also

```
plsFit
```


Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
ap.plot(mod1, ncomp = 2)
```


Description

Computes bootstrap BCa confidence intervals for chosen parameters for PLS models fitted with validation = "oob".

Usage

bca.cis(object, conf = .95, type = c("coefficients", "loadings", "weights"))

Arguments

object an object of class "mvdareg", i.e. plsFit.
conf desired confidence level
type input parameter vector

Details

The function computes the bootstrap BCa confidence intervals for any fitted mvdareg model. Should be used in instances in which there is reason to suspectd the percentile intervals. Results provided across all latent variables (LVs). As such, it may be slow for models with a large number of LVs.

Value

A bca.cis object contains component results for the following:

ncomp	number of components in the model
variables	variable names
boot.mean	mean of the bootstrap
BCa percentiles	confidence intervals
proportional bias	
calculated bias	
skewness	skewness of the bootstrap distribution
a	acceleration contstant

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

There are many references explaining the bootstrap and its implementation for confidence interval estimation. Among them are:
Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.
Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman \& Hall.
Hinkley, D.V. (1988) Bootstrap methods (with Discussion). Journal of the Royal Statistical Society, B, 50, 312:337, 355:370.

See Also

plsFit, mvdaboot, boot.plots

Examples

```
data(Penta)
## Number of bootstraps set to 250 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 250)
bca.cis(mod1, conf = .95, type = "coefficients")
## Not run:
bca.cis(mod1, conf = .95, type = "loadings")
bca.cis(mod1, conf = .95, type = "weights")
## End(Not run)
```

```
bidiagpls.fit
```

Bidiag2 PLS

Description

Bidiagonalization algorithm for PLS1

Usage

bidiagpls.fit(X, Y, ncomp, ...)

Arguments

$X \quad$ a matrix of observations. NAs and Infs are not allowed.
Y a vector. NAs and Infs are not allowed.
ncomp the number of components to include in the model (see below).
... additional arguments. Currently ignored.

Details

This function should not be called directly, but through plsFit with the argument method="bidiagpls". It implements the Bidiag2 scores algorithm.

Value

An object of class mvdareg is returned. The object contains all components returned by the underlying fit function. In addition, it contains the following:

loadings	X loadings
weights	weights
D2	bidiag2 matrix
iD2	inverse of bidiag2 matrix
Ymean	mean of reponse variable
Xmeans	mean of predictor variables
coefficients	regression coefficients
y.loadings	y-loadings
scores	X scores
R	orthogonal weights
Y	scaled response values
Yactual	actual response values
fitted	fitted values
residuals	residuals
Xdata	X matrix
iPreds	predicted values
$y . l o a d i n g s 2$	scaled y-loadings
fit.time	model fitting time
val.method	validation method
ncomp	number of latent variables
contrasts	contrast matrix used
method	PLS algorithm used
scale	scaling used
validation	validation method
call	model call
terms	model terms
model	fitted model

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>), Thanh Tran (<thanh. tran@mvdalab. com>)

References

Indahl, Ulf G., (2014) The geometry of PLS1 explained properly: 10 key notes on mathematical properties of and some alternative algorithmic approaches to PLS1 modeling. Journal of Chemometrics, 28, 168:180.
Manne R., Analysis of two partial-least-squares algorithms for multi-variate calibration. Chemom. Intell. Lab. Syst. 1987; 2: 187:197.

See Also

plsFit

BiPlot \quad| Generates a biplot from the output of an 'mvdareg' and 'mvdapca' |
| :--- |
| object |

Description

Generates a 2D Graph of both the scores and loadings for both "mvdareg" and "mvdapca" objects.

Usage

```
BiPlot(object, diag.adj = c(0, 0), axis.scaling = 2,
    cov.scale = FALSE, comps = c(1, 2),
    col = "red", verbose = FALSE)
```


Arguments

object	an object of class "mvdareg" or "mvdapca".
diag.adj	adjustment to singular values. see details.
axis.scaling	a graphing parameter for extenting the axis.
cov.scale	implement covariance scaling
comps	the components to illustrate on the graph
col	the color applied to the scores
verbose	output results as a data frame

Details

"BiPlot" is used to extract a 2D graphical summary of the scores and loadings of PLS and PCA models.
The singular values are scaled so that the approximation becomes $\mathrm{X}=\mathrm{GH}$ ':
$\mathrm{X}=\mathrm{ULV}^{\prime}=\left(\mathrm{UL}^{\wedge}\right.$ alpha1 $)\left(\mathrm{L}^{\wedge}\right.$ alpha2 $\left.\mathrm{V}^{\prime}\right)=\mathrm{GH}^{\prime}$, and where alpha2 is $=$ to $(1=$ alpha $)$
The rows of the G matrix are plotted as points, corresponding to observations. The rows of the H matrix are plotted as vectors, corresponding to variables. The choice of alpha determines the following:
$c(0,0)$: variables are scaled to unit length and treats observations and variables symmetrically.
$c(0,1)$: This biplot attempts to preserve relationships between variables wherein the distance betweein any two rows of G is proportional to the Mahalanobis distance between the same observations in the data set.
$c(1,0)$: This biplot attempts to preserve the distance between observations where in the positions of the points in the biplot are identical to the score plot of first two principal components, but the distance between any two rows of G is equal to the Euclidean distance between the corresponding observations in the data set.
cov. scale $=$ FALSE sets diag.adj to $c(0,0)$ and multiples G by $\operatorname{sqrt}(\mathrm{n}-1)$ and divides H by sqrt(n $-1)$. In this biplot the rows of H approximate the variance of the corresponding variable, and the distance between any two points of G approximates the Mahalanobis distance between any two rows.

Additional scalings may be implemented.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

SAS Stat Studio 3.11 (2009), User's Guide.
Additional information pertaining to biplots can be obtained from the following:
Friendly, M. (1991), SAS System for Statistical Graphics, SAS Series in Statistical Applications, Cary, NC: SAS Institute
Gabriel, K. R. (1971), "The Biplot Graphical Display of Matrices with Applications to Principal Component Analysis," Biometrika, 58(3), 453-467.

Golub, G. H. and Van Loan, C. F. (1989), Matrix Computations, Second Edition, Baltimore: Johns Hopkins University Press.
Gower, J. C. and Hand, D. J. (1996), Biplots , London: Chapman \& Hall.
Jackson, J. E. (1991), A User's Guide to Principal Components , New York: John Wiley \& Sons.

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
                    ncomp = 2, validation = "loo")
BiPlot(mod1, diag.adj = c(0, 0), axis.scaling = 2, cov.scale = FALSE)
## Not run:
data(Penta)
mod2 <- pcaFit(Penta[, -1], ncomp = 4)
BiPlot(mod2, diag.adj = c(0, 0), axis.scaling = 2.25, cov.scale = FALSE)
## End(Not run)
```


Description

This takes an mvdareg object fitted with validation = "oob" and produces a graph of the bootstrap distribution and its corresponding normal quantile plot for a variable of interest.

Usage

boot.plots(object, comp = object\$ncomp, parm = NULL, type = c("coefs", "weights", "loadings"))

Arguments

object an object of class "mvdareg", i.e., a plsFit.
comp latent variable from which to generate the bootstrap distribution for a specific parameter
parm a parameter for which to generate the bootstrap distribution
type input parameter vector

Details

The function generates the bootstrap distribution and normal quantile plot for a bootstrapped mvdareg model given validation = "oob" for type = c("coefs", "weights", "loadings"). If parm = NULL a paramater is chosen at random.

Value

The output of boot. plots is a histogram of the bootstrap distribution and the corresponding normal quantile plot.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

See Also

```
bca.cis
```


Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
boot.plots(mod1, type = "coefs", parm = NULL)
```

```
coef.mvdareg Extract Information From a plsFit Model
```


Description

Functions to extract information from mvdalab objects.

Usage

```
## S3 method for class 'mvdareg'
coef(object, ncomp = object$ncomp, type = c("coefficients",
            "loadings", "weights", "y.loadings"), conf = .95, ...)
```


Arguments

object an mvdareg object, i.e. a plsFit.
ncomp the number of components to include in the model (see below).
type specify model parameters to return.
conf for a bootstrapped model, the confidence level to use.
... additional arguments. Currently ignored.

Details

These are usually called through their generic functions coef and residuals, respectively. coef.mvdareg is used to extract the regression coefficients, loadings, or weights of a PLS model.

If comps is missing (or is NULL), all parameter estimates are returned.

Value

coefficients a named vector, or matrix, of coefficients.
loadings a named vector, or matrix, of loadings.
weights a named vector, or matrix, of weights.
y.loadings a named vector, or matrix, of y.loadings.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

See Also

coef, coefficients.boots, coefficients, loadings, loadings.boots, weights, weight.boots

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
coef(mod1, type = "coefficients")
```

coefficients.boots BCa Summaries for the coefficient of an mvdareg object

Description

Computes bootstrap BCa confidence intervals for regression coefficients, along with expanded bootstrap summaries.

Usage

coefficients.boots(object, ncomp = object\$ncomp, conf $=0.95$)

Arguments

object	an object of class mvdareg, i.e., a plsFit.
ncomp	number of components in the model
conf	desired confidence level

Details

The function computes the bootstrap BCa confidence intervals for fitted mvdareg models where valiation = "oob". Should be used in instances in which there is reason to suspectd the percentile intervals. Results provided across all latent variables or for specific latent variables via ncomp.

Value

A coefficients.boots object contains component results for the following:

variable	variable names
actual	Actual loading estimate using all the data
BCa percentiles	
	confidence intervals
boot.mean	mean of the bootstrap
skewness	skewness of the bootstrap distribution
bias	estimate of bias w.r.t. the loading estimate
Bootstrap Error	
	estimate of bootstrap standard error
t value	approximate 't-value' based on the Bootstrap Error
bias t value	approximate 'bias t-value' based on the Bootstrap Error

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

There are many references explaining the bootstrap. Among them are:
Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.

Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman \& Hall.
Hinkley, D.V. (1988) Bootstrap methods (with Discussion). Journal of the Royal Statistical Society, B, 50, 312:337, 355:370.

See Also

coef, coefficients, coefsplot, coefficients

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
coefficients.boots(mod1, ncomp = 2, conf = .95)
```

coefficients.mvdareg Extract Summary Information Pertaining to the Coefficients resulting
from a PLS model

Description

Functions to extract regression coefficient bootstrap information from mvdalab objects.

Usage

\#\# S3 method for class 'mvdareg'
coefficients(object, ncomp = object\$ncomp, conf = . $95, \ldots$)

Arguments

object an mvdareg object. A fitted model.
ncomp the number of components to include in the model (see below).
conf for a bootstrapped model, the confidence level to use.
... additional arguments. Currently ignored.

Details

coefficients is used to extract a bootstrap summary of the regression of a PLS model.
If comps is missing (or is NULL), summaries for all regression estimates are returned. Otherwise, if comps is given parameters for a model with only the requested component comps is returned.

Boostrap summaries provided are for actual regression coefficients, bootstrap percentiles, bootstrap mean, skewness, and bias. These summaries can also be extracted using coefficients.boots

Value

A coefficients object contains a data frame with columns:

variable	variable names
Actual	Actual loading estimate using all the data
BCa percentiles	confidence intervals
boot.mean	mean of the bootstrap
skewness	skewness of the bootstrap distribution
bias	estimate of bias w.r.t. the loading estimate
Bootstrap Error	estimate of bootstrap standard error
t value	approximate 't-value' based on the Bootstrap Error bias t value

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

See Also

coef, coefficients.boots, coefficients

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
coefficients(mod1)
```

coefficientsplot2D	2-Dimensionsl Graphical Summary Information Pertaining to the Co- efficients of a PLS

Description

Functions to extract 2D graphical coefficients information from mvdalab objects.

Usage

coefficientsplot2D(object, comps $=c(1,2)$, verbose $=$ FALSE)

Arguments

object an mvdareg object.
comps a vector of length 2 corresponding to the number of components to include.
verbose output results as a data frame

Details

coefficientsplot2D is used to extract a graphical summary of the coefficients of a PLS model. If comp is missing (or is NULL), a graphical summary for the 1st and 2nd components is returned.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

See Also

loadingsplot2D, weightsplot2D

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
coefficientsplot2D(mod1, comp = c(1, 2))
```

$$
\begin{array}{ll}
\text { coefsplot } & \begin{array}{l}
\text { Graphical Summary Information Pertaining to the Regression Coeffi- } \\
\text { cients }
\end{array}
\end{array}
$$

Description

Functions to extract regression coefficient bootstrap information from mvdalab objects.

Usage

coefsplot(object, ncomp $=$ object\$ncomp, conf $=0.95$, verbose $=$ FALSE)

Arguments

object
an mvdareg object. A fitted model.
ncomp the number of components to include.
conf for a bootstrapped model, the confidence level to use.
verbose output results as a data frame

Details

coefficients is used to extract a graphical summary of the regression coefficients of a PLS model.
If comps is missing (or is NULL), a graphical summary for the nth component regression estimates are returned. Otherwise, if comps is given parameters for a model with only the requested component comps is returned.

Bootstrap graphcal summaries provided are when method $=0 o b$.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
coefsplot(mod1, ncomp = 1:2)
```


College

Data for College Level Examination Program and the College Qualification Test

Description

Scores obtained from 87 college students on the College Level Examination Program and the College Qualification Test.

Usage

College

Format

A data frame with 87 observations and the following 3 variables.
Science Science (CQT) - numerical vector
Social Social science and history (CLEP) - numerical vector
Verbal Verbal (CQT) - numerical vector

Source

Johnson, R.A., Wichern, D.W. (2002) Applied Multivariate Statistical Analysis. Prentice Hall.

```
contr.niets Cell Means Contrast Matrix
```


Description

This function generates a cell means contrast matrix to support PLS models.

Usage

contr.niets(n, contrasts)

Arguments

n	A vector of levels for a factor, or the number of levels.
contrasts	a logical indicating whether contrasts should be computed; set to FALSE in order to generate required contrast matrix.

Details

This function uses contr. treatment to generate a cell means contrast matrix in support of PLS models.

Value

For datasets with categorical variables it produces the needed design matrix.

Author(s)

Nelson Lee Afanador

Examples

```
# Three levels
levels <- LETTERS[1:3]
contr.niets(levels)
# Two levels
levels <- LETTERS[1:2]
contr.niets(levels)
```

```
ellipse.mvdalab Ellipses,Data Ellipses, and Confidence Ellipses
```


Description

This function draws econfidence ellipses for covariance and correlation matrices derived from from either a matrix or dataframe.

Usage

ellipse.mvdalab(data, center $=c(0,0)$, radius $=$ "chi", scale $=$ TRUE,
segments $=51$, level $=c(0.95,0.99)$, plot. points $=$ FALSE, pch $=1$, size $=1$, alpha $=0.5$, verbose $=$ FALSE, ...)

Arguments

data	A dataframe
center	2-element vector with coordinates of center of ellipse.
radius	Use of the Chi or F Distributions for setting the radius of the confidence ellipse
scale	use correlation or covariance matrix
segments	number of line-segments used to draw ellipse.
level	draw elliptical contours at these (normal) probability or confidence levels.
pch	symbols to use for scores
size	size to use for scores
alpha	transparency of scores
plot. points	Should the points be added to the graph.
verbose	output results as a data frame
\ldots	additional arguments. Currently ignored.

Details

ellipse uses the singular value decomposition in order to generate the desired confidence regions. The default confidence ellipse is based on the chisquare statistic.

Value

Returns a graph with the ellipses at the stated as levels, as well as the ellipse coordinates.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Fox, J. (2008) Applied Regression Analysis and Generalized Linear Models, Second Edition. Sage.
Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition, Sage.

Examples

```
data(iris)
ellipse.mvdalab(iris[, 1:2], plot.points = FALSE)
ellipse.mvdalab(iris[, 1:2], center = colMeans(iris[, 1:2]), plot.points = TRUE)
```

imputeBasic Naive imputation of missing values.

Description

Imputes the mean or median for continous variables; highest frequency for categorical variables.

Usage

imputeBasic(data, Init = "mean")

Arguments

data a dataset with missing values
Init For continous variables impute either the mean or median

Details

A completed data frame is returned. For numeric variables, NAs are replaced with column means or medians. For categorical variables, NAs are replaced with the most frequent levels. If object contains no NAs, it is returned unaltered.

Value

imputeBasic returns a list containing the following components:
Imputed. DataFrame
Final imputed data frame
Imputed.Missing.Continous
Imputed continous values
Imputed. Missing. Factors
Imputed categorical values

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
dat <- introNAs(iris, percent = 25)
imputeBasic(dat)
```

imputeEM

Expectation Maximization (EM) for imputation of missing values.

Description

Missing values are iterarively updated via an EM algorithm.

Usage

imputeEM(data, impute.ncomps $=2$, pca.ncomps $=2, \mathrm{CV}=$ TRUE, Init = "mean", scale $=$ TRUE, iters $=25$, tol = .Machine\$double.eps^0.25)

Arguments

data a dataset with missing values.
impute. ncomps integer corresponding to the minimum number of components to test.
pca.ncomps minimum number of components to use in the imputation.
CV Use cross-validation in determining the optimal number of components to retain for the final imputation.
Init For continous variables impute either the mean or median.
scale Scale variables to unit variance.
iters For continous variables impute either the mean or median.
tol the threshold for assessing convergence.

Details

A completed data frame is returned that mirrors a model.matrix. NAs are replaced with convergence values as obtained via EM. If object contains no NAs, it is returned unaltered.

Value

imputeEM returns a list containing the following components:
Imputed. DataFrames
A list of imputed data frames across impute. comps
Imputed. Continous
A list of imputed values, at each EM iteration, across impute. comps
CV.Results Cross-validation results across impute.comps
ncomps impute.comps

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>), Thanh Tran (<thanh. tran@mvdalab. com>)

References

B. Walczak, D.L. Massart. Dealing with missing data, Part I. Chemom. Intell. Lab. Syst. 58 (2001); 15:27

Examples

```
dat <- introNAs(iris, percent = 25)
imputeEM(dat)
```

 imputeQs Quartile Naive Imputation of Missing Values

Description

Missing value imputed as 'Missing'.

Usage

imputeQs(data)

Arguments

data a dataset with missing values

Details

A completed data frame is returned. For continous variables with missing values, missing values are replaced with 'Missing', while the non-missing values are replaced with their corresponding quartile assignment. For categorical variable with missing values, missing values are replaced with 'Missing'. This procedure can greatly increases the dimensionality of the data.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
dat <- introNAs(iris, percent = 25)
imputeQs(dat)
```

imputeRough Naive Imputation of Missing Values for Dummy Variable Model Matrix

Description

After generating a cell means model matrix, impute expected values (mean or median for continous; hightest frequency for categorical).

Usage

imputeRough(data, Init = "mean")

Arguments

data a dataset with missing values
Init For continous variables impute either the mean or median

Details

A completed data frame is returned that mirrors a model.matrix. NAs are replaced with column means or medians. If object contains no NAs, it is returned unaltered. This is the starting point for imputeEM.

Value

imputeRough returns a list containing the following components:
Initials Imputed values
Pre.Imputed Pre-imputed data frame
Imputed. Dataframe
Imputed data frame

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
dat <- introNAs(iris, percent = 25)
imputeRough(dat)
```

 introNAs Introduce NA's into a Dataframe

Description

Function for testing missing value imputation algorithms

Usage

introNAs(data, percent = 25)

Arguments

data a dataset without missing values.
percent the percent data that should be randomly assigned as missing

Details

A completed data frame is returned with the desired percentage of missing data. NAs are assigned at random.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
dat <- introNAs(iris)
dat
```


Description

This function calculates the jackknife influence values from a bootstrap output mvdareg object and plots the corresponding jackknife-after-bootstrap plot.

Usage

```
    jk.after.boot(object, ncomp = object$ncomp,
    type = c("coefficients", "loadings", "weights"),
    parm = NULL)
```


Arguments

object an mvdareg object. A fitted model.
ncomp the component number to include in the jackknife-after-bootstrap plot assessment.
type input parameter vector.
parm predictor variable for which to perform the assessment. if NULL one will be chosen at random.

Details

The centred jackknife quantiles for each observation are estimated from those bootstrap samples in which a particular observation did not appear. These are then plotted against the influence values.
The resulting plots are useful diagnostic tools for looking at the way individual observations affect the bootstrap output.
The plot will consist of a number of horizontal dotted lines which correspond to the quantiles of the centred bootstrap distribution. For each data point the quantiles of the bootstrap distribution calculated by omitting that point are plotted against the jackknife values. The observation number is printed below the plots. To make it easier to see the effect of omitting points on quantiles, the plotted quantiles are joined by line segments. These plots provide a useful diagnostic tool in establishing the effect of individual observations on the bootstrap distribution. See the references below for some guidelines on the interpretation of the plots.

Value

There is no returned value but a graph is generated on the current graphics display.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.
Efron, B. (1992) Jackknife-after-bootstrap standard errors and influence functions (with Discussion). Journal of the Royal Statistical Society, B, 54, 83:127.

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
jk.after.boot(mod1, type = "coefficients")
## Not run:
jk.after.boot(mod1, type = "loadings")
jk.after.boot(mod1, type = "weights")
## End(Not run)
```

loadings Summary Information Pertaining to the Bootstrapped Loadings

Description

Functions to extract loadings bootstrap information from mvdalab objects.

Usage

\#\# S3 method for class 'mvdareg'
loadings(object, ncomp = object\$ncomp, conf = .95, ...)

Arguments

object an mvdareg or mvdapaca object. A fitted model.
ncomp the number of components to include in the model (see below).
conf for a bootstrapped model, the confidence level to use.
... additional arguments. Currently ignored.

Details

loadings is used to extract a summary of the loadings of a PLS or PCA model. If ncomps is missing (or is NULL), summaries for all loadings estimates are returned. Otherwise, if comps is given parameters for a model with only the requested component comps is returned.
Boostrap summaries are provided for mvdareg objects where validation = "oob". These summaries can also be extracted using loadings.boots

Value

A loadings object contains a data frame with columns:

variable	variable names
Actual	Actual loading estimate using all the data
BCa percentiles	
	confidence intervals
boot.mean	mean of the bootstrap
skewness	skewness of the bootstrap distribution
bias e	estimate of bias w.r.t. the loading estimate
Bootstrap Error	
	estimate of bootstrap standard error
t value a	approximate 't-value' based on the Bootstrap Error
biastvalue a	approximate 'bias t-value' based on the Bootstrap Error

Author(s)

Nelson Lee Afanador (nelson.afanador@mvdalab.com)

References

There are many references explaining the bootstrap. Among them are:
Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.
Efron, B. (1992) Jackknife-after-bootstrap standard errors and influence functions (with Discussion). Journal of the Royal Statistical Society, B, 54, 83:127.

See Also

loadingsplot, loadings.boots, loadingsplot2D

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
        ncomp = 2, validation = "oob", boots = 300)
loadings(mod1, ncomp = 2, conf = .95)
data(iris)
pc1 <- pcaFit(iris)
loadings(pc1)
```


Description

Computes bootstrap BCa confidence intervals for the loadings, along with expanded bootstrap summaries.

Usage

loadings.boots(object, ncomp = object\$ncomp, conf = .95)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { an object of class "mvdareg", i.e., a plsFit. } \\
\text { ncomp } & \text { number of components in the model. } \\
\text { conf } & \text { desired confidence level. }
\end{array}
$$

Details

The function computes the bootstrap BCa confidence intervals for fitted mvdareg models where valiation = "oob". Should be used in instances in which there is reason to suspectd the percentile intervals. Results provided across all latent variables or for specific latent variables via ncomp.

Value

A loadings.boots object contains component results for the following:

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

There are many references explaining the bootstrap. Among them are:
Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.
Efron, B. (1992) Jackknife-after-bootstrap standard errors and influence functions (with Discussion). Journal of the Royal Statistical Society, B, 54, 83:127.

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
loadings.boots(mod1, ncomp = 2, conf = .95)
```

loadingsplot Graphical Summary Information Pertaining to the Loadings

Description

Functions to extract graphical loadings information from mvdareg and mvdapca object.

Usage

loadingsplot(object, ncomp $=$ object\$ncomp, conf $=0.95$, verbose $=$ FALSE)

Arguments

object an mvdareg or mvdapca object.
ncomp the number of components to include.
conf for a bootstrapped model, the confidence level to use.
verbose output results as a data frame

Details

"loadingsplot" is used to extract a graphical summary of the loadings of a PLS model. If "comps" is missing (or is NULL), a graphical summary for the nth component estimates are returned. Otherwise, if comps is given parameters for a model with only the requested component comps is returned.
Bootstrap graphcal summaries provided are when "method = oob"

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

See Also

loadings, loadings.boots, loadingsplot2D

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
loadingsplot(mod1, ncomp = 1:2)
```

loadingsplot2D 2-Dimensionsl Graphical Summary Information Pertaining to the Loadings of a PLS or PCA Analysis

Description

Functions to extract 2D graphical loadings information from mvdalab objects.

Usage

loadingsplot2D(object, comps $=c(1,2)$, verbose $=$ FALSE)

Arguments

object an mvdareg or mvdapca object.
comps a vector or length 2 corresponding to the number of components to include.
verbose output results as a data frame

Details

loadingsplot2D is used to extract a graphical summary of the loadings of a PLS model. If comp is missing (or is NULL), a graphical summary for the 1 st and 2 nd componentsare returned.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

See Also

coefficientsplot2D, weightsplot2D

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
loadingsplot2D(mod1, comp = c(1, 2))
## Not run:
data(Penta)
mod2 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
loadingsplot2D(mod2, comp = c(1, 2))
## End(Not run)
data(iris)
pc1 <- pcaFit(iris)
loadingsplot2D(pc1, comp = c(1, 2))
```

mewma	Generates a Hotelling's T2 Graph of the Multivariate Exponentially
Weighted Average	

Description

Generates a Hotelling's T2 Graph for mewma objects.

Usage

mewma $(X$, phase $=1$, lambda $=0.2$, conf $=c(0.95,0.99)$, asymptotic.form $=$ FALSE)

Arguments

X
phase designates whether the confidence limits should reflect the current data frame, phase $=1$ or future observations, phase $=2$.
lambda EWMA smoothing parameter
conf the confidence level(s) to use for upper control limit.
asymptotic.form
use asymptotic convergence parameter for scaling the covariance matrix.

Details

mewma is used to generates a Hotelling's T2 graph for the multivariate EWMA.

Value

The output of mewma is a graph of Hotelling's T2 for the Multivariate EWMS, and a list containing a data frame of univariate EWMAs and the multivariate EWMA T2 values.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>)

References

Lowry, Cynthia A., et al. "A multivariate exponentially weighted moving average control chart." Technometrics 34.1 (1992): 46:53.

Examples

```
mewma(iris[, -5], phase = 1, lambda = 0.2, conf = c(0.95, 0.99),
    asymptotic.form = FALSE)
```

 model.matrix model.matrix creates a design (or model) matrix.

Description

This function returns the model.matrix of an mvdareg object.

Usage

\#\# S3 method for class 'mvdareg'
model.matrix(object, ...)

Arguments

object an mvdareg object
... additional arguments. Currently ignored.

Details

"model.matrix.mvdareg" is used to returns the model.matrix of an mvdareg object.

Value

The design matrix for a PLS model with the specified formula and data.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
model.matrix(mod1)
```

MultCapability Principal Component Based Multivariate Process Capability Indices

Description

Provides three multivariate capability indices for correlated multivariate processes based on Principal Component Analysis.

Usage

MultCapability(data, lsls, usls, targets, ncomps = NULL, Target = FALSE)

Arguments

data	a multivariable dataset
lsls	is the vector of the lower specification limits
usls	is the vector of the upper specification limits
targets	is the vector of the target of the process
ncomps	is the number of principal component to use
Target	Use targets for calculation of univariate PpKs; otherwise the average is used

Details

ncomps has to be set prior to running the analysis. The user is strongly encouraged to use pcaFit in order to determine the optimal number of principal components using cross-validation.

When the parameter targets is not specified, then is estimated of centered way as targets $=1$ lsls + (usls - lsls)/2.
Ppk values are provided to allow the user to compare the multivariate results to the univariate results.

Value

A list with the following elements:
For mpca_wang, the following is returned:

ncomps	number of components used
mcp_wang	index greater than 1, the process is capable
mcpk_wang	index greater than 1, the process is capable

```
mcpm_wang index greater than 1, the process is capable
mcpmk_wang index greater than 1, the process is capable
```

For mcp_xe, the following is returned:

ncomps	number of components used
mcp_wang_2	index greater than 1, the process is capable
mcpk_wang_2	index greater than 1, the process is capable
mcpm_wang_2	index greater than 1, the process is capable
mcpmk_wang_2	index greater than 1, the process is capable

For mpca_wang_2, the following is returned:
ncomps number of components used
mcp_xe index greater than 1, the process is capable
mcpk_xe index greater than 1, the process is capable
mcpm_xe index greater than 1, the process is capable
mcpmk_xe index greater than 1, the process is capable
For Ppk, the following is returned:
Individual.Ppks
univariate Ppks; index greater than 1 , the process is capable

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Wang F, Chen J (1998). Capability index using principal components analysis. Quality Engineering, 11, 21-27.

Xekalaki E, Perakis M (2002). The Use of principal component analysis in the assessment of process capability indices. Proceedings of the Joint Statistical Meetings of the American Statistical Association, The Institute of Mathematical Statistics, The Canadian Statistical Society. New York.

Wang, C (2005). Constructing multivariate process capability indices for short-run production. The International Journal of Advanced Manufacturing Technology, 26, 1306-1311.

Scagliarini, M (2011). Multivariate process capability using principal component analysis in the presence of measurement errors. AStA Adv Stat Anal, 95, 113-128.

Santos-Fernandez E, Scagliarini M (2012). "MPCI: An R Package for Computing Multivariate Process Capability Indices". Journal of Statistical Software, 47(7), 1-15, URL http://www.jstatsoft.org/v47/i07/.

Examples

```
data(Wang_Chen_Sim)
lsls1 <- c(2.1, 304.5, 304.5)
usLs1 <- c(2.3, 305.1, 305.1)
targets1 <- c(2.2, 304.8, 304.8)
MultCapability(Wang_Chen_Sim, lsls = lsls1, usls = usLs1, targets = targets1, ncomps = 2)
data(Wang_Chen)
targets2 <- c(177, 53)
lsls2 <- c(112.7, 32.7)
usLs2 <- c(241.3, 73.3)
MultCapability(Wang_Chen, lsls = lsls2, usls = usLs2, targets = targets2, ncomps = 1)
```

MVcis \quad Calculate Hotelling's T2 Confidence Intervals

Description

Calculate joint confidence intervals (Hotelling's T2 Intervals).

Usage

MVcis(data, segments $=51$, level $=.95$, Vars2Plot $=c(1,2)$, include.zero $=F)$

Arguments

data	a multivariable dataset to compare to means
segments	number of line-segments used to draw ellipse.
level	draw elliptical contours at these (normal) probability or confidence levels.
Vars2Plot	variables to plot
include.zero	add the zero axis to the graph output

Details

This function calculates the Hotelling's T2 Intervals for a mean vector.
Assumption:
Population is a random sample from a multivariate population.
If the confidence ellipse does not cover $c(0,0)$, we reject the NULL that the joint confidence region is equal to zero (at the stated alpha level).

Value

This function returns the Hotelling's T2 confidence intervals for the p-variates and its corresponding confidence ellipse at the stated confidence level.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Johnson, R.A., Wichern, D.W. (2002) Applied Multivariate Statistical Analysis. Prentice Hall.

See Also

MVComp

Examples

```
data(College)
```

MVcis(College, Vars2Plot $=c(1,2)$, include.zero $=$ TRUE $)$

MVComp

Traditional Multivariate Mean Vector Comparison

Description

Performs a traditional multivariate comparison of mean vectors drawn from two populations.

Usage

MVComp(data1, data2, level = .95)

Arguments

data1 a multivariable dataset to compare to.
data2 a multivariable dataset to compare.
level draw elliptical contours at these (normal) probability or confidence levels.

Details

This function provides a T2-statistic for testing the equality of two mean vectors. This test is appropriate for testing two populations, assuming independence.
Assumptions:
The sample for both populations is a random sample from a multivariate population.
-Both populations are independent
-Both populations are multivariate normal
-Covariance matrices are approximately equal
mvdaboot

Value

This function returns the simultaneous confidence intervals for the p-variates and its corresponding confidence ellipse at the stated confidence level.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Johnson, R.A., Wichern, D.W. (2002) Applied Multivariate Statistical Analysis. Prentice Hall.

Examples

```
    data(College)
    dat1 <- College
    #Generate a 'fake' difference of 15 units
    dat2 <- College + matrix(rnorm(nrow(dat1) * ncol(dat1), mean = 15),
        nrow = nrow(dat1), ncol = ncol(dat1))
    Comparison <- MVComp(dat1, dat2, level = .95)
    Comparison
    plot(Comparison, Diff2Plot = c(1, 2), include.zero = FALSE)
    plot(Comparison, Diff2Plot = c(1, 2), include.zero = TRUE)
    plot(Comparison, Diff2Plot = c(2, 3), include.zero = FALSE)
    plot(Comparison, Diff2Plot = c(2, 3), include.zero = TRUE)
    data(iris)
    dat1b <- iris[, -5]
    #Generate a 'fake' difference of . }5\mathrm{ units
    dat2b <- dat1b + matrix(rnorm(nrow(dat1b) * ncol(dat1b), mean = . 5),
        nrow = nrow(dat1b), ncol = ncol(dat1b))
Comparison2 <- MVComp(dat1b, dat2b, level = .90)
plot(Comparison2, Diff2Plot = c(1, 2), include.zero = FALSE)
plot(Comparison2, Diff2Plot = c(1, 2), include.zero = TRUE)
plot(Comparison2, Diff2Plot = c(3, 4), include.zero = FALSE)
plot(Comparison2, Diff2Plot = c(3,4), include.zero = TRUE)
```

mvdaboot
Bootstrapping routine for mvdareg objects

Description

When validation $=$ ' oob' this routine effects the bootstrap procedure for mvdareg objects.

Usage

mvdaboot(X, Y, ncomp, method = "bidiagpls", scale = FALSE, n_cores, parallel, boots, ...)

Arguments

X
Y a vector. NAs and Infs are not allowed.
ncomp the number of components to include in the model (see below).
method PLS algorithm used.
scale scaling used.
n_cores \quad No. of cores to run for parallel processing. Currently set to 2 (4 max).
parallel should parallelization be used.
boots No. of bootstrap samples when validation = ' oob'
... additional arguments. Currently ignored.

Details

This function should not be called directly, but through the generic function plsFit with the argument validation = 'oob'.

Value

Provides the following bootstrapped results as a list for mvdareg objects:

coefficients	fitted values
weights	weights
loadings	loadings
ncomp	number of latent variables
bootstraps	No. of bootstraps
scores	scores
cvR2	bootstrap estimate of cvR2
PRESS	bootstrap estimate of prediction error sums of squares
MSPRESS	bootstrap estimate of mean squared error prediction sums of squares
boot.means	bootstrap mean of bootstrapped parameters
RMSPRESS	bootstrap estimate of mean squared error prediction sums of squares
D2	bidiag2 matrix
iD2	Inverse of bidiag2 matrix
y.loadings	normalized y-loadings
y.loadings2	non-normalized y-loadings
MSPRESS.632	.632 corrected estimate of MSPRESS
oob.fitted	out-of-bag PLS fitted values
RMSPRESS.632	.632 corrected estimate of RMSPRESS
in.bag	bootstrap samples used for model building at each bootstrap

mvdaloo

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>), Thanh Tran (<thanh. tran@mvdalab. com>)

References

There are many references explaining the bootstrap and its implementation for confidence interval estimation. Among them are:

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.

Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman \& Hall.
Hinkley, D.V. (1988) Bootstrap methods (with Discussion). Journal of the Royal Statistical Society, B, 50, 312:337, 355:370.
NOTE: This function is adapted from mvr in package pls with extensive modifications by Nelson Lee Afanador and Thanh Tran.

See Also

plsFit, mvdaloo

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
## Run line below to see bootstrap results
## mod1$validation
```

mvdaloo Leave-one-out routine for mvdareg objects

Description

When validation = 'loo' this routine effects the leave-one-out cross-validation procedure for mvdareg objects.

Usage

$$
\begin{gathered}
\text { mvdaloo(X, Y, ncomp, weights }=\text { NULL, method }=\text { "bidiagpls", } \\
\text { scale }=\text { FALSE, boots }=\text { NULL, } . . \text {) }
\end{gathered}
$$

Arguments

a matrix of observations. NAs and Infs are not allowed.
$Y \quad$ a vector. NAs and Infs are not allowed.
ncomp the number of components to include in the model (see below).
weights currently not in use
method PLS algorithm used
scale scaling used
boots not applicable for validation = 'loo'
... additional arguments. Currently ignored.

Details

This function should not be called directly, but through the generic function plsFit with the argument validation = 'loo'.

Value

Provides the following bootstrapped results as a list for mvdareg objects:
cVR2 leave-one-out estimate of cvR2.
PRESS leave-one-out estimate of prediction error sums of squares.
MSPRESS leave-one-out estimate of mean squared error prediction sums of squares.
RMSPRESS leave-one-out estimate of mean squared error prediction sums of squares.
in.bag leave-one-out samples used for model building.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>), Thanh Tran (<thanh. tran@mvdalab. com>)

References

NOTE: This function is adapted from mvr in package pls with extensive modifications by Nelson Lee Afanador and Thanh Tran.

See Also

plsFit, mvdaboot

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, method = "bidiagpls", validation = "loo")
mod1$validation$cvR2
mod1$validation$PRESS
mod1$validation$MSPRESS
```

mod1\$validation\$RMSPRESS
mod1\$validation\$in.bag
mvrnorm.svd Simulate from a Multivariate Normal, Poisson, Exponential, or Skewed Distribution

Description

Produces one or more samples from the specified multivariate distribution.

Usage

mvrnorm. $\operatorname{svd}(\mathrm{n}=1, \mathrm{mu}=\mathrm{NULL}, \mathrm{Sigma}=$ NULL, tol $=1 \mathrm{e}-06$, empirical = FALSE, Dist = "normal", skew $=5$, skew.mean $=0$, skew.sd $=1$, poisson.mean $=5$)

Arguments

$\mathrm{n} \quad$ the number of samples required.
$\mathrm{mu} \quad \mathrm{a}$ vector giving the means of the variables.
Sigma a positive-definite symmetric matrix specifying the covariance matrix of the variables.
tol tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.
empirical logical. If true, mu and Sigma specify the empirical not population mean and covariance matrix.

Dist desired distribution.
skew amount of skew for skewed distributions.
skew.mean mean for skewed distribution.
skew.sd standard deviation for skewed distribution.
poisson.mean mean for poisson distribution.

Details

"mvrnorm.svd" The matrix decomposition is done via svd

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>)

Examples

```
Sigma <- matrix(c(1, . 5, . 5, . 5, 1, . 5, . 5, . 5, 1), 3, 3)
Means <- rep(0, 3)
Sim.dat.norm <- mvrnorm.svd(n = 1000, Means, Sigma, Dist = "normal")
plot(as.data.frame(Sim.dat.norm))
Sim.dat.pois <- mvrnorm.svd(n = 1000, Means, Sigma, Dist = "poisson")
plot(as.data.frame(Sim.dat.pois))
Sim.dat.exp <- mvrnorm.svd(n = 1000, Means, Sigma, Dist = "exp")
plot(as.data.frame(Sim.dat.exp))
Sim.dat.skew <- mvrnorm.svd(n = 1000, Means, Sigma, Dist = "skewnorm")
plot(as.data.frame(Sim.dat.skew))
```

my. dummy.df Create a Design Matrix with the Desired Constrasts

Description

This function generates a dummy variable data frame in support various functions.

Usage

my.dummy.df(data, contr = "contr.niets")

Arguments

data a data frame
contr an optional list. See the contrasts.arg of model.matrix.default.

Details

my.dummy.df takes a data.frame with categorical variables, and returns a data.frame in which all the categorical variables columns are expanded as dummy variables.

The argument contr is passed to the default contr.niets; contr.helmert, contr.poly, contr.sum, contr.treatment are also supported.

Value

For datasets with categorical variables it produces the specified design matrix.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
    data(iris)
    my.dummy.df(iris)
```

no.intercept Delete Intercept from Model Matrix

Description

Deletes the intercept from a model matrix.

Usage

no. intercept(mm)

Arguments

mm Model Matrix

Value

A model matrix without intercept column.

Author(s)

Nelson Lee Afanador
pca.nipals PCA with the NIPALS algorithm

Description

Implements the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm for computing PCA scores and loadings and intermediate steps to convergence.

Usage

pca.nipals(data, ncomps = 1, Iters = 500, start.vec = NULL, tol = 1e-08)

Arguments

data	A dataframe
ncomps	the number of components to include in the analysis.
Iters	Number of iterations
start.vec	option for choosing your own starting vector
tol	tolernace for convergence

Details

The NIPALS algorithm is a popular algorithm in multivariate data analysi for computing PCA scores and loadings. This function is specifically designed to help explore the subspace prior to convergence. Currently only mean-centering is employed.

Value

Loadings Loadings obtained via NIPALS
Scores Scores obtained via NIPALS
Loading. Space A list containing the intermediate step to convergence for the loadings
Score. Space A list containing the intermediate step to convergence for the scores

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

There are many good references for the NIPALS algorithm:
Risvik, Henning. "Principal component analysis (PCA) \& NIPALS algorithm." (2007).
Wold, Svante, Kim Esbensen, and Paul Geladi. "Principal component analysis." Chemometrics and intelligent laboratory systems 2.1-3 (1987): 37:52.

Examples

```
my.nipals <- pca.nipals(iris[, 1:4], ncomps = 4, tol = 1e-08)
names(my.nipals)
#Check results
my.nipals$Loadings
svd(scale(iris[, 1:4], scale = FALSE))$v
nipals.scores <- data.frame(my.nipals$Scores)
names(nipals.scores) <- paste("np", 1:4)
svd.scores <- data.frame(svd(scale(iris[, 1:4], scale = FALSE))$u)
names(svd.scores) <- paste("svd", 1:4)
Scores. <- cbind(nipals.scores, svd.scores)
plot(Scores.)
my.nipals$Loading.Space
my.nipals$Score.Space
```


pcaFit Principal Component Analysis

Description

Function to perform principal component analysis.

Usage

pcaFit(data, scale = TRUE, ncomp = NULL)

Arguments

data an data frame containing the variables in the model.
scale should scaling to unit variance be used.
ncomp the number of components to include in the model (see below).

Details

The calculation is done via singular value decomposition of the data matrix. Dummy variables are automatically created for categorical variables.

Value

pcaFit returns a list containing the following components:
loadings X loadings
scores X scores
$D \quad$ eigenvalues
Xdata X matrix
Percent.Explained
Explained variation in X
PRESS Prediction Error Sum-of-Squares
ncomp number of latent variables
method PLS algorithm used

Author(s)

Nelson Lee Afanador (nelson.afanador@mvdalab.com)

References

Everitt, Brian S. (2005). An R and S-Plus Companion to Multivariate Analysis. Springer-Verlag.
Edoardo Saccentia, Jos? Camacho, (2015) On the use of the observation-wise k-fold operation in PCA cross-validation, J. Chemometrics 2015; 29: 467-478.

See Also

loadingsplot2D, T2, Xresids, ScoreContrib

Examples

```
data(iris)
pc1 <- pcaFit(iris, scale = TRUE, ncomp = NULL)
pc1
print(pc1) #Model summary
plot(pc1) #MSEP
PE(pc1) #X-explained variance
T2(pc1, ncomp = 2) #T2 plot
Xresids(pc1, ncomp = 2) #X-residuals plot
scoresplot(pc1) #scoresplot variable importance
(SC <- ScoreContrib(pc1, obs1 = 1:9, obs2 = 10:11)) #score contribution
plot(SC) #score contribution plot
loadingsplot(pc1, ncomp = 1) #loadings plot
loadingsplot(pc1, ncomp = 1:2) #loadings plot
loadingsplot(pc1, ncomp = 1:3) #loadings plot
loadingsplot(pc1, ncomp = 1:7) #loadings plot
loadingsplot2D(pc1, comps = c(1, 2)) #2-D loadings plot
loadingsplot2D(pc1, comps = c(2, 3)) #2-D loadings plot
```


Description

This function provides both the cumulative and individual percent explained for the X-block for an mvdareg and mvdapca objects.

Usage

PE(object, verbose = FALSE)

Arguments

object an object of class mvdareg or mvdapca objects.
verbose output results as a data frame

Details

This function provides both the cumulative and individual percent explained for the X-block for an mvdareg or mvdapca objects.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
        ncomp = 2, validation = "none")
PE(mod1)
## Not run:
data(Penta)
mod2 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
PE(mod2)
## End(Not run)
```

Penta
Penta data set

Description

This data is obtained from drug discovery and includes measurements pertaining to size, lipophilicity, and polarity at various sites on a molecule.

Usage

Penta

Format

A data frame with 30 observations and the following 17 variables.
Obs.Name Categorical ID Variable
S1 numeric predictor vector
L1 numeric predictor vector
P1 numeric predictor vector
S2 numeric predictor vector
L2 numeric predictor vector
P2 numeric predictor vector
S3 numeric predictor vector
L3 numeric predictor vector
P3 numeric predictor vector

S4 numeric predictor vector
L4 numeric predictor vector
P4 numeric predictor vector
S5 numeric predictor vector
L5 numeric predictor vector
P5 numeric predictor vector
log.RAI numeric response vector

Source

Umetrics, Inc. (1995), Multivariate Analysis (3-day course), Winchester, MA.
SAS/STAT(R) 9.22 User’s Guide, "The PLS Procedure".

```
perc.cis Percentile Bootstrap Confidence Intervals
```


Description

Computes percentile bootstrap confidence intervals for chosen parameters for plsFit models fitted with validation = "oob"

Usage

perc.cis(object, ncomp $=$ object\$ncomp, conf $=0.95$, type = c("coefficients", "loadings", "weights"))

Arguments

object an object of class "mvdareg", i.e., plsFit
ncomp number of components to extract percentile intervals.
conf confidence level.
type input parameter vector.

Details

The function fits computes the bootstrap percentile confidence intervals for any fitted mvdareg model.

Value

A perc.cis object contains component results for the following:
ncomp number of components in the model
variables variable names
boot.mean mean of the bootstrap
percentiles confidence intervals

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

There are many references explaining the bootstrap and its implementation for confidence interval estimation. Among them are:
Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.
Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman \& Hall.
Hinkley, D.V. (1988) Bootstrap methods (with Discussion). Journal of the Royal Statistical Society, B, 50, 312:337, 355:370.

Examples

```
data(Penta)
## Number of bootstraps set to 250 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 250)
perc.cis(mod1, ncomp = 1:2, conf = .95, type = "coefficients")
```

plot.cp Plotting Function for Score Contributions.

Description

This function generates a plot an object of class score. contribution

Usage

\#\# S3 method for class 'cp'
plot(x, ncomp = "Overall", ...)

Arguments

x score. contribution object
ncomp the number of components to include the graph output.
... additional arguments. Currently ignored.

Details

A graph of the score contributions for ScoreContrib objects.

Value

The output of plot is a graph of score contributions for the specified observation(s).

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, method = "bidiagpls", validation = "loo")
Score.Contributions1 <- ScoreContrib(mod1, obs1 = 1, obs2 = 3)
plot(Score.Contributions1, ncomp = 1)
## Not run:
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod2 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
Score.Contributions2 <- ScoreContrib(mod2, obs1 = 1, obs2 = 3)
plot(Score.Contributions2, ncomp = 1)
## End(Not run)
#PCA Model
pc1 <- pcaFit(Penta[, -1], ncomp = 3)
Score.Contributions1 <- ScoreContrib(mod1, obs1 = 1, obs2 = 3)
plot(Score.Contributions1, ncomp = 1)
```

plot.mvcomp
Plot of Multivariate Mean Vector Comparison

Description

Plot a comparison of mean vectors drawn from two populations.

Usage

\#\# S3 method for class 'mvcomp'
plot $(x$, Diff2Plot $=c(3,4)$, segments $=51$, include.zero $=$ FALSE,...$)$

Arguments

x
segments
Diff2Plot variable differences to plot.
include.zero
... add the zero axis to the graph output.
additional arguments. Currently ignored.

Details

This function provides a plot of the T2-statistic for testing the equality of two mean vectors. This test is appropriate for testing two populations, assuming independence.
Assumptions:
The sample for both populations is a random sample from a multivariate population.
-Both populations are independent
-Both populations are multivariate normal
-Covariance matrices are approximately equal
If the confidence ellipse does not cover $c(0,0)$, we reject the NULL that the differnece between mean vectors is equal to zero (at the stated alpha level).

Value

This function returns a plot of the simultaneous confidence intervals for the p-variates and its corresponding confidence ellipse at the stated confidence level.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Johnson, R.A., Wichern, D.W. (2002) Applied Multivariate Statistical Analysis. Prentice Hall.

Examples

```
data(College)
dat1 <- College
#Generate a 'fake' difference of 15 units
dat2 <- College + matrix(rnorm(nrow(dat1) * ncol(dat1), mean = 15),
    nrow = nrow(dat1), ncol = ncol(dat1))
Comparison <- MVComp(dat1, dat2, level = .95)
Comparison
plot(Comparison, Diff2Plot = c(1, 2), include.zero = FALSE)
plot(Comparison, Diff2Plot = c(1, 2), include.zero = TRUE)
plot(Comparison, Diff2Plot = c(2, 3), include.zero = FALSE)
plot(Comparison, Diff2Plot = c(2, 3), include.zero = TRUE)
data(iris)
dat1b <- iris[, -5]
#Generate a 'fake' difference of . }5\mathrm{ units
dat2b <- dat1b + matrix(rnorm(nrow(dat1b) * ncol(dat1b), mean = .5),
    nrow = nrow(dat1b), ncol = ncol(dat1b))
Comparison2 <- MVComp(dat1b, dat2b, level = .90)
plot(Comparison2, Diff2Plot = c(1, 2), include.zero = FALSE)
```

```
plot(Comparison2, Diff2Plot = c(1, 2), include.zero = TRUE)
plot(Comparison2, Diff2Plot = c(3, 4), include.zero = FALSE)
plot(Comparison2, Diff2Plot = c(3, 4), include.zero = TRUE)
```

plot.mvdareg General plotting function for mvdareg and mvdapaca objects.

Description

A general plotting function for a mvdareg and mvdapca objects.

Usage

```
## S3 method for class 'mvdareg'
plot(x, plottype = c("PE", "scoresplot", "loadingsplot",
    "loadingsplot2D", "T2", "Xresids", "coefsplot", "ap.plot",
    "weightsplot", "weightsplot2D", "acfplot"), ...)
```


Arguments

x
plottype
... additional arguments. Currently ignored.

Details

The following plotting functions are supported:
PE, scoreplot, loadingsplot, loadingsplot2D, T2, Xresids, coefsplot, ap.plot, weightsplot, weightsplot2D, acfplot

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
                    ncomp = 2, validation = "loo")
plot(mod1, plottype = "scoresplot")
## Not run:
plot(mod1, plottype = "loadingsplot2D")
plot(mod1, plottype = "T2", ncomp = 2, phase = 1, conf = c(.95, .99))
## End(Not run)
```

```
plot.plusminus 2D Graph of the PCA scores associated with a plusminusFit
```


Description

Generates a 2-dimensional graph of the scores for both plusminus objects.

Usage

\#\# S3 method for class 'plusminus'
plot (x, ncomp $=2$, comps $=c(1,2), \ldots$)

Arguments

x
an object of class plusminus, i.e. plusminusFit.
ncomp the number of components to include in the model (see below).
comps a vector or length 2 corresponding to the number of components to include.
... additional arguments. Currently ignored.

Details

plot.plusminus is used to extract a 2D graphical summary of the PCA scores associated with a plusminus object.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
### PLUS-Minus CLASSIFIER WITH validation = 'none', i.e. no CV ###
data(plusMinusDat)
mod1 <- plusminusFit(Y ~., data = plusMinusDat, validation = "none", n_cores = 2)
plot(mod1, ncomp = 2, comps = c(1, 2))
### Plus-Minus CLASSIFIER WITH validation = 'loo', i.e. leave-one-out CV ###
## Not run:
data(plusMinusDat)
mod2 <- plusminusFit(Y ~., data = plusMinusDat, validation = "loo", n_cores = 2)
plot(mod2, ncomp = 2, comps = c(1, 2))
## End(Not run)
```

```
plot.R2s Plot of R2
```


Description

Plots for the cross-validated R2 (CVR2), explained variance in the predictor variables (R2X), and the reponse (R2Y).

Usage

```
## S3 method for class 'R2s'
plot(x, ...)
```


Arguments

x
An R2s object
... additional arguments. Currently ignored.

Details

plot.R2s is used to generates the graph of the cross-validated R2 (CVR2), explained variance in the predictor variables (R2X), and the reponse (R2Y) for PLS models.

Value

The output of plot.R2s is a graph of the stated explained variance summary.

Author(s)

Thanh Tran (thanh.tran@mvdalab.com)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
plot(R2s(mod1))
```


Description

This function generates a plot an object of class smc.

Usage

\#\# S3 method for class 'smc'
plot(x, variables = "all", ...)

Arguments

x
variables the number of variables to include the graph output. ... additional arguments. Currently ignored.

Details

plot. smc is used to generates the graph of the significant multivariate correlation from smc objects.

Value

The output of plot.smc is a graph of the significant multivariate correlation for the specified observation(s).

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
smc(mod1)
plot(smc(mod1))
```


Description

This function provides the ability to plot an object of class $s r$

Usage

$$
\begin{aligned}
& \text { \#\# S3 method for class 'sr' } \\
& \text { plot(x, variables = "all", ...) }
\end{aligned}
$$

Arguments

x	sr object
variables	the number of variables to include the graph output.
\ldots.	additional arguments. Currently ignored.

Details

plot. sr is used to generates the graph of the selectivity ratio from sr objects.

Value

The output of plot.sr is a graph of the selectivity ratio for the specified observation(s).

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
sr(mod1)
plot(sr(mod1))
```

```
plot.wrtpls Plots of the Output of a Permutation Distribution for an mvdareg Ob-
```

ject with method = "bidiagpls"

Description

This takes an mvdareg object fitted with method = "bidiagpls" and produces a graph of the bootstrap distribution and its corresponding normal quantile plot for a variable of interest.

Usage

\#\# S3 method for class 'wrtpls'
plot(x, comp = 1:object\$ncomp, distribution = "log", ...)

Arguments

x	an object of class "mvdareg", i.e., a plsFit.
comp	number of latent variables to generate the permutation distribution
distribution	plot the "log", or "actual", of the permutation distribution
\ldots	additional arguments. Currently ignored.

Details

The function generates the permutation distribution and normal quantile plot for a mvdareg model when method = "bidiagpls" is specified.

Value

The output of plot.wrtpls is a histogram of the permutation distribution with the following vertical line indicators.
Solid line = Actual Value; Dashed Line $=$ Critical Value from t-distribution at the model specifed alpha; Dotted line = Quantile at the model specifed alpha

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

See Also

bca.cis

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    method = "wrtpls", validation = "none")
## Not run
## plot.wrtpls(mod1, distribution = "log")
```


Description

Functions to perform partial least squares regression with a formula interface. Bootstraping can be used. Prediction, residuals, model extraction, plot, print and summary methods are also implemented.

Usage

plsFit(formula, data, subset, ncomp = NULL, na.action,
method = c("bidiagpls", "wrtpls"), scale = TRUE, n_cores = 2,
alpha = 0.05, perms = 2000, validation = c("none", "oob", "loo"),
boots $=1000$, model $=$ TRUE, parallel = FALSE,
x = FALSE, y = FALSE, ...)
\#\# S3 method for class 'mvdareg'
summary (object, ncomp = object\$ncomp, digits = 3, ...)

Arguments

formula	a model formula (see below).
data	an optional data frame containing the variables in the model.
subset	an optional vector specifying a subset of observations to be used in the fitting process.
ncomp	the number of components to include in the model (see below).
na.action	a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset. The default is na.omit. Another possible value is NULL, no action. Value na. exclude can be useful.
method	the multivariate regression algorithm to be used.
scale	should scaling to unit variance be used.
n_cores	Number of cores to run for parallel processing. Currently set to 2 with the max being 4 .
alpha	the significance level for wrtpls
perms	the number of permutations to run for wrtpls
validation	character. What kind of (internal) validation to use. See below.
boots	Number of bootstrap samples when validation = 'oob'
model	an optional data frame containing the variables in the model.
parallel	should parallelization be used.
x	a logical. If TRUE, the model matrix is returned.
y	a logical. If TRUE, the response is returned.

$$
\begin{array}{ll}
\text { object } & \text { an object of class "mvdareg", i.e., a fitted model. } \\
\text { digits } & \text { the number of decimal place to output with summary.mvdareg } \\
\ldots & \begin{array}{l}
\text { additional arguments, passed to the underlying fit functions, and mvdareg. Cur- } \\
\text { rently not in use. }
\end{array}
\end{array}
$$

Details

The function fits a partial least squares (PLS) model with $1, \ldots$, ncomp number of latent variables. Multi-response models are not supported.
The type of model to fit is specified with the method argument. Currently two PLS algorithms are available: the bigiag2 algorithm ("bigiagpls" and "wrtpls").
The formula argument should be a symbolic formula of the form response \sim terms, where response is the name of the response vector and terms is the name of one or more predictor matrices, usually separated by + , e.g., $y \sim X+Z$. See $1 m$ for a detailed description. The named variables should exist in the supplied data data frame or in the global environment. The chapter Statistical models in R of the manual An Introduction to R distributed with R is a good reference on formulas in R .
The number of components to fit is specified with the argument ncomp. It this is not supplied, the maximal number of components is used.
Note that if the number of samples is $<=15$, oob validation may fail. It is recommended that you PLS with validation = "loo".
If method = "bidiagpls" and validation = "oob", bootstrap cross-validation is performed. Bootstrap confidence intervals are provided for coefficients, weights, loadings, and y.loadings. The number of bootstrap samples is specified with the argument boots. See mvdaboot for details.
If method = "bidiagpls" and validation = "loo", leave-one-out cross-validation is performed.
If method = "bidiagpls" and validation = "none", no cross-validation is performed. Note that the number of components, ncomp, is set to min(nobj -1 , npred)
If method = "wrtpls" and validation = "none", The Weight Randomization Test for the selection of the number of components is performed. Note that the number of components, ncomp, is set to $\min ($ nobj -1 , npred)

Value

An object of class mvdareg is returned. The object contains all components returned by the underlying fit function. In addition, it contains the following:

loadings	X loadings
weights	weights
D2.values	bidiag2 matrix
iD2	inverse of bidiag2 matrix
Ymean	mean of reponse variable
Xmeans	mean of predictor variables
coefficients	PLS regression coefficients
y.loadings	y-loadings
scores	X scores

R	orthogonal weights
Y.values	scaled response values
Yactual	actual response values
fitted	fitted values
residuals	residuals
Xdata	X matrix
iPreds	predicted values
y.loadings2	scaled y-loadings
ncomp	number of latent variables
method	PLS algorithm used
scale	scaling used
validation	validation method
call	model call
terms	model terms
model	fitted model

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>), Thanh Tran (thanh.tran@mvdalab.com)

References

NOTE: This function is adapted from mvr in package pls with extensive modifications by Nelson Lee Afanador and Thanh Tran.

See Also

bidiagpls.fit, mvdaboot, boot.plots, R2s, PE, ap.plot, T2, Xresids, smc, scoresplot, ScoreContrib, sr, loadingsplot, weightsplot, coefsplot, coefficientsplot2D, loadingsplot2D, weightsplot2D, bca.cis, coefficients.boots, loadings.boots, weight.boots, coefficients, loadings, weights, BiPlot, jk.after.boot

Examples

```
### PLS MODEL FIT WITH method = 'bidiagpls' and validation = 'oob', i.e. bootstrapping ###
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1], method = "bidiagpls",
    ncomp = 2, validation = "oob", boots = 300)
summary(mod1) #Model summary
### PLS MODEL FIT WITH method = 'bidiagpls' and validation = 'loo', i.e. leave-one-out CV ###
## Not run:
mod2 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1], method = "bidiagpls",
    ncomp = 2, validation = "loo")
```

```
summary(mod2) #Model summary
## End(Not run)
### PLS MODEL FIT WITH method = 'bidiagpls' and validation = 'none', i.e. no CV is performed ###
## Not run:
mod3 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1], method = "bidiagpls",
    ncomp = 2, validation = "none")
summary(mod3) #Model summary
## End(Not run)
### PLS MODEL FIT WITH method = 'wrtpls' and validation = 'none', i.e. WRT-PLS is performed ###
## Not run:
mod4 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    method = "wrtpls", validation = "none")
summary(mod4) #Model summary
plot.wrtpls(mod4)
## End(Not run)
```


Description

Plus-Minus classifier

Usage

plusminus.fit(XX, YY, ...)

Arguments

XX a matrix of observations. NAs and Infs are not allowed.
YY a vector. NAs and Infs are not allowed.
... additional arguments. Currently ignored.

Details

This function should not be called directly, but through plusminusFit with the argument method="plusminus". It implements the Plus-Minus algorithm.

Value

An object of class plusminus is returned. The object contains all components returned by the underlying fit function. In addition, it contains the following:

coefficients	regression coefficients
Y	response values
X	scaled predictors

Author(s)

Richard Baumgartner (<richard_baumgartner@merck. com>), Nelson Lee Afanador (nelson.afanador@mvdalab.com)

References

Zhao et al. (2014) Mas-o-menos: a simple sign averaging method for discriminationin genomic data analysis. Bioinformatics, 30(21):3062-3069.

See Also

plusminusFit

```
plusminus.loo Leave-one-out routine for plusminus objects
```


Description

When validation = 'loo' this routine effects the leave-one-out cross-validation procedure for plusminus objects.

Usage

plusminus.loo(X, Y, method = "plusminus", n_cores, ...)

Arguments

X
$Y \quad$ a vector. NAs and Infs are not allowed.
method PlusMinus algorithm used
n_cores number of cores
... additional arguments. Currently ignored.

Details

This function should not be called directly, but through the generic function plusminusFit with the argument validation = 'loo'.

Value

Provides the following crossvalideted results as a list for plusminus objects:
cvError leave-one-out estimate of cv error.
in.bag leave-one-out samples used for model building.

Author(s)

Richard Baumgartner (<richard_baumgartner@merck. com>), Nelson Lee Afanador (nelson.afanador@mvdalab.com)

References

NOTE: This function is adapted from mvr in package pls with extensive modifications by Nelson Lee Afanador and Thanh Tran.

See Also

plusminusFit

Examples

```
data(plusMinusDat)
mod1 <- plusminusFit(Y ~., data = plusMinusDat, validation = "loo", n_cores = 2)
## Not run:
summary(mod1)
mod1$validation$cvError
mod1$validation$in.bag
## End(Not run)
```

plusMinusDat plusMinusDat data set

Description

A simulated dataset for demonstrating the performance of a plusminusFit analysis.

Usage

plusMinusDat

Format

A data frame with 201 observations, 200 input variables (X) and one response variable (Y).

Source

Richard Baumgartner (richard_baumgartner@merck.com)

```
plusminusFit Plus-Minus(Mas-o-Menos)Classifier
```


Description

Functions to perform plus-minus classifier with a formula interface. Leave one out crossvalidation also implemented. Model extraction, plot, print and summary methods are also implemented.

Usage

plusminusFit(formula, data, subset, na.action, method = "plusminus", n_cores = 2, validation = c("loo", "none"), model = TRUE, $x=$ FALSE, $y=F A L S E, \ldots)$
\#\# S3 method for class 'plusminus'
summary (object, ...)

Arguments

formula a model formula (see below).
data an optional data frame containing the variables in the model.
subset an optional vector specifying a subset of observations to be used in the fitting process.
na.action a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset. The default is na. omit. Another possible value is NULL, no action. Value na. exclude can be useful.
method the classification algorithm to be used.
n_cores Number of cores to run for parallel processing. Currently set to 2 with the max being 4 .
validation character. What kind of (internal) validation to use. See below.
model an optional data frame containing the variables in the model.
$x \quad a \operatorname{logical}$. If TRUE, the model matrix is returned.
$y \quad a \operatorname{logical}$. If TRUE, the response is returned.
object an object of class "plusminus", i.e., a fitted model.
$\ldots \quad$ additional arguments, passed to the underlying fit functions, and plusminus. Currently not in use.

Details

The function fits a Plus-Minus classifier.
The formula argument should be a symbolic formula of the form response \sim terms, where response is the name of the response vector and terms is the name of one or more predictor matrices, usually
separated by + , e.g., $y \sim X+Z$. See $1 m$ for a detailed description. The named variables should exist in the supplied data data frame or in the global environment. The chapter Statistical models in R of the manual An Introduction to R distributed with R is a good reference on formulas in R .
If validation $=$ "loo", leave-one-out cross-validation is performed. If validation = "none", no cross-validation is performed.

Value

An object of class plusminus is returned. The object contains all components returned by the underlying fit function. In addition, it contains the following:

```
coefficients Plus-Minus regression coefficients
X X matrix
Y actual response values (class labels)
val.method validation method
call model call
terms model terms
mm model matrix
model fitted model
```


Author(s)

Richard Baumgartner (richard_baumgartner@merck.com), Nelson Lee Afanador (nelson.afanador@mvdalab.com)

References

Zhao et al.: Mas-o-menos: a simple sign averaging method for discriminationin genomic data analysis. Bioinformatics, 30(21):3062-3069,2014.

See Also

plusminus.fit, plusminus.loo

Examples

```
### PLUS-Minus CLASSIFIER WITH validation = 'none', i.e. no CV ###
data(plusMinusDat)
mod1 <- plusminusFit(Y ~., data = plusMinusDat, validation = "none", n_cores = 2)
summary(mod1)
### Plus-Minus CLASSIFIER WITH validation = 'loo', i.e. leave-one-out CV ###
## Not run:
data(plusMinusDat)
mod2 <- plusminusFit(Y ~., data = plusMinusDat, validation = "loo", n_cores = 2)
summary(mod2)
## End(Not run)
```

predict.mvdareg Model Predictions From a plsFit Model

Description

predict provides predictions from the results of a pls model.

Usage

```
    ## S3 method for class 'mvdareg'
    predict(object, newdata, ncomp = object$ncomp,
                na.action = na.pass, ...)
```


Arguments

object newdata	A plsFit model. An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
ncomp	the number of components to include in the model (see below). na.action function determining what should be done with missing values in newdata. The default is to predict NA.
\ldots	additional arguments. Currently ignored.

Details

predict.mvdareg produces predicted values, obtained by evaluating the regression function in the frame newdata (which defaults to model.frame(object). If newdata is omitted the predictions are based on the data used for the fit.
If comps is missing (or is NULL), predictions of the number of latent variables is provided. Otherwise, if comps is given parameters for a model with only the requested components is returned. The generic function residuals return the model residuals for all the components specified for the model. If the model was fitted with na.action = na.exclude (or after setting the default na.action to na. exclude with options), the residuals corresponding to excluded observations are returned as NA; otherwise, they are omitted.

Value

predict.mvdareg produces a vector of predictions or a matrix of predictions

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

NOTE: This function is adapted from mvr in package pls with extensive modifications by Nelson Lee Afanador.

See Also

coef, coefficients.boots, coefficients, loadings, loadings.boots, weights, weight.boots

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
predict.mvdareg(mod1)
## Not run:
residuals(mod1)
## End(Not run)
```

print.mvdalab

Print Methods for mvdalab Objects

Description

Summary and print methods for mvdalab objects.

Usage

\#\# S3 method for class 'mvdareg'
print(x, ...)

Arguments

x	an mvdalab object
\ldots	additional arguments. Currently ignored.

Details

print.mvdalab Is a generic function used to print mvdalab objects, such as print.empca for imputeEM, print.mvdapca for mvdapca objects, and summary.mvdareg for mvdareg objects.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
print(mod1, ncomp = 2)
summary(mod1, ncomp = 2)
```

print.plusminus Print Methods for plusminus Objects

Description

Summary and print methods for plusminus objects.

Usage

\#\# S3 method for class 'plusminus'
print(x, ...)

Arguments

$x \quad$ an plusminus object
$\ldots \quad$ additional arguments. Currently ignored.

Details

print. plusminus Is a generic function used to print plusminus objects, such as print. plusminus for plusminus objects.

Author(s)

Richard Baumgartner (<richard_baumgartner@merck. com>), Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
## Not run:
data(plusMinusDat)
mod1 <- plusminusFit(Y ~., data = plusMinusDat, validation = "loo", n_cores = 2)
print(mod1)
## End(Not run)
```

 proCrustes Comparison of n-point Configurations vis Procrustes Analysis

Description

Implementation of Procrustes Analysis in the spirit of multidimensional scaling.

Usage

proCrustes(X, Y, scaling = TRUE, standardize = FALSE, scale.unit = F, ...)

Arguments

X	Target configuration
Y	Matching configuration
scaling	Scale Y-axis
standardize	Standardize configurations
scale.unit	Scale to unit variance
\ldots	additional arguments. Currently ignored.

Details

This function implements Procrustes Analysis as described in the reference below. That is to say:
Translation: Fixed displacement of points through a constant distance in a common direction
Rotation: Fixed displacement of all points through a constant angle
Dilation: Stretching or shrinking by a contant amount

Value
 Rotation.Matrix

The matrix, Q , that rotates Y towards X ; obtained via svd of $\mathrm{X}^{\prime} \mathrm{Y}$
Residuals residuals after fitting
M2_min Residual Sums of Squares
Xmeans Column Means of X
Ymeans Column Means of Y
PRMSE Procrustes Root Mean Square Error
Yproj Projected Y-values
scale logical. Should Y be scaled.
Translation Scaling through a common distance based on rotation of Y and scaling parameter, c
residuals. residual sum-of-squares
Anova.MSS Explained Variance w.r.t. Y
Anova.ESS Unexplained Variance w.r.t. Y
Anova.TSS Total Sums of Squares w.r.t. X

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Krzanowski, Wojtek. Principles of multivariate analysis. OUP Oxford, 2000.

Examples

```
X <- iris[, 1:2]
Y <- iris[, 3:4]
proc <- proCrustes(X, Y)
proc
names(proc)
```


Description

Functions to report the cross-validated R2 (CVR2), explained variance in the predictor variables (R2X), and the reponse (R2Y) for PLS models.

Usage

R2s(object)

Arguments

object an mvdareg object, i.e., plsFit.

Details

R2s is used to extract a summary of the cross-validated R2 (CVR2), explained variance in the predictor variables (R2X), and the reponse (R2Y) for PLS models.

Author(s)

Nelson Lee Afanador (nelson.afanador@mvdalab.com)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
R2s(mod1)
## Not run:
plot(R2s(mod1))
## End(Not run)
```


ScoreContrib Generates a score contribution plot

Description

Generates a the Score Contribution Graph both mvdareg and mvdapca objects.

Usage

ScoreContrib(object, ncomp = 1:object\$ncomp, obs1 = 1, obs2 = NULL)

Arguments

object an object of class mvdareg or mvdapca.
ncomp the number of components to include in the model (see below).
obs1 the first observaion(s) in the score(s) comparison.
obs2 the second observaion(s) in the score(s) comparison.

Details

ScoreContrib is used to generates the score contributions for both PLS and PCA models. Up to two groups of score(s) can be selected. If only one group is selected, the contribution is measured to the model average. For PLS models the PCA loadings are replaced with the PLS weights.

Value

The output of ScoreContrib is a matrix of score contributions for the specified observation(s).

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

MacGregor, Process Monitoring and Diagnosis by Multiblock PLS Methods, May 1994 Vol. 40, No. 5 AIChE Journal.

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "none")
Score.Contributions1 <- ScoreContrib(mod1, ncomp = 1:2, obs1 = 1, obs2 = 3)
plot(Score.Contributions1, ncomp = 2)
## Not run:
data(Penta)
mod2 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
```

```
    ncomp = 2, validation = "none")
Score.Contributions2 <- ScoreContrib(mod2, obs1 = 1, obs2 = 3)
plot(Score.Contributions2)
Score.Contributions3 <- ScoreContrib(mod1, obs1 = c(1, 3), obs2 = c(5:10))
plot(Score.Contributions3)
## End(Not run)
### PLS MODEL FIT WITH method = 'wrtpls' and validation = 'none', i.e. WRT-PLS is performed ###
## Not run:
mod3 <- plsFit(Sepal.Length ~., scale = TRUE, data = iris,
    method = "wrtpls", validation = "none") #ncomp is ignored
Score.Contributions4 <- ScoreContrib(mod3, ncomp = 1:5, obs1 = 1, obs2 = 3)
plot(Score.Contributions4, ncomp = 5)
## End(Not run)
#PCA Model
pc1 <- pcaFit(Penta[, -1], ncomp = 2)
Score.Contributions1 <- ScoreContrib(pc1, obs1 = 1, obs2 = 3)
plot(Score.Contributions1)
```

scoresplot
2D Graph of the scores

Description

Generates a 2-dimensional graph of the scores for both mvdareg and mvdapca objects.

Usage

scoresplot (object, comps $=c(1,2)$, alphas $=c(.95, .99)$, segments $=51$, verbose $=$ FALSE)

Arguments

object an object of class mvdareg, i.e. plsFit.
comps a vector or length 2 corresponding to the number of components to include.
alphas draw elliptical contours at these confidence levels.
segments number of line-segments used to draw ellipse.
verbose output results as a data frame

Details

scoresplot is used to extract a 2D graphical summary of the scores of PLS and PCA models.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
scoresplot(mod1, comp = c(1, 2))
```

SeqimputeEM

Sequential Expectation Maximization (EM) for imputation of missing values.

Description

Missing values are sequentially updated via an EM algorithm.

Usage

SeqimputeEM(data, max.ncomps = 5, max.ssq = 0.99, Init = "mean", adjmean $=$ FALSE, max.iters $=200$, tol $=$.Machine\$double.eps^0.25)

Arguments

data a dataset with missing values.
max. ncomps integer corresponding to the maximum number of components to test
max.ssq maximal SSQ for final number of components. This will be improved by automation.
Init For continous variables impute either the mean or median.
adjmean Adjust (recalculate) mean after each iteration.
max.iters maximum number of iterations for the algorithm.
tol the threshold for assessing convergence.

Details

A completed data frame is returned that mirrors the model matrix. NAs are replaced with convergence values as obtained via Seqential EM algorithm. If object contains no NAs, it is returned unaltered.

Value

Imputed. DataFrames
A list of imputed data frames across impute. comps
ncomps number of components to test

Author(s)

Thanh Tran (<thanh. tran@mvdalab.com>), Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

NOTE: Publication Pending

Examples

```
dat <- introNAs(iris, percent = 25)
SeqimputeEM(dat)
```


Description

This function calculates the significant multivariate correlation (smc) metric for an mvdareg object

Usage

smc(object, ncomps = object\$ncomp, corrected = F)

Arguments

object an mvdareg or mvdapaca object, i.e. plsFit.
ncomps the number of components to include in the model (see below).
corrected whether there should be a correction of 1st order auto-correlation in the residuals.
Note that hidden objects include the smc modeled matrix and error matrices

Details

smc is used to extract a summary of the significant multivariae correlation of a PLS model.
If comps is missing (or is NULL), summaries for all smc estimates are returned. Otherwise, if comps are given parameters for a model with only the requested component comps is returned.

Value

The output of smc is an smc summary detailing the following:
smc significant multivariate correlation statistic (smc).
p.value $\quad p$-value of the smc statistic.
f.value $\quad f$-value of the smc statistic.

Significant Assessment of statistical significance.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>)

References

Thanh N. Tran, Nelson Lee Afanador, Lutgarde M.C. Buydens, Lionel Blanchet, Interpretation of variable importance in Partial Least Squares with Significance Multivariate Correlation (sMC). Chemom. Intell. Lab. Syst. 2014; 138: 153:160.
Nelson Lee Afanador, Thanh N. Tran, Lionel Blanchet, Lutgarde M.C. Buydens, Variable importance in PLS in the presence of autocorrelated data - Case studies in manufacturing processes. Chemom. Intell. Lab. Syst. 2014; 139: 139:145.

See Also

```
smc.acfTest, sr
```


Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
                ncomp = 2, validation = "loo")
smc(mod1)
plot(smc(mod1))
### PLS MODEL FIT WITH method = 'wrtpls' and validation = 'none', i.e. WRT-PLS is performed ###
## Not run:
mod2 <- plsFit(Sepal.Length ~., scale = TRUE, data = iris,
        method = "wrtpls", validation = "none") #ncomp is ignored
plot(smc(mod2, ncomps = 2))
## End(Not run)
```

smc.acfTest Test of the Residual Significant Multivariate Correlation Matrix for the presence of Autocorrelation

Description

This function peforms a 1st order test of the Residual Significant Multivariate Correlation Matrix in order to help determine if the smc should be performed correcting for 1st order autocorrelation.

Usage

smc.acfTest(object, ncomp = object\$ncomp)

Arguments

object an object of class mvdareg, i.e. plsFit.
ncomp the number of components to include in the acf assessment

Details

This function computes a test for 1 st order auto correlation in the smc residual matrix.

Value

The output of smc.acfTest is a list detailing the following:
variable variable for whom the test is being performed
ACF value of the 1st lag of the ACF
Significant Assessment of the statistical significance of the 1st order lag

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Thanh N. Tran, Nelson Lee Afanador, Lutgarde M.C. Buydens, Lionel Blanchet, Interpretation of variable importance in Partial Least Squares with Significance Multivariate Correlation (sMC). Chemom. Intell. Lab. Syst. 2014; 138: 153:160.
Nelson Lee Afanador, Thanh N. Tran, Lionel Blanchet, Lutgarde M.C. Buydens, Variable importance in PLS in the presence of autocorrelated data - Case studies in manufacturing processes. Chemom. Intell. Lab. Syst. 2014; 139: 139:145.

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
smc.acfTest(mod1, ncomp = 2)
```

 sr Selectivity Ratio

Description

This function calculates the Selectivity Ratio (sr) metric for an mvdareg object

Usage

sr(object, ncomps = object\$ncomp)

Arguments

object an mvdareg or mvdapaca object, i.e. plsFit.
ncomps the number of components to include in the model (see below).

Details

$s r$ is used to extract a summary of the significant multivariae correlation of a PLS model.
If comps is missing (or is NULL), summaries for all sr estimates are returned. Otherwise, if comps are given parameters for a model with only the requested component comps is returned.

Value

The output of $s r$ is an sr summary detailing the following:
$\mathrm{sr} \quad$ selectivity ratio statistic (sr).
p.value $\quad p$-value of the sr statistic.
f.value $\quad f$-value of the sr statistic.
Significant Assessment of statistical significance.
Note that hidden objects include the SR modeled matrix and error matrices.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

O.M. Kvalheim, T.V. Karstang, Interpretation of latent-variable regression models. Chemom. Intell. Lab. Syst., 7 (1989), pp. 39:51
O.M. Kvalheim, Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots. J. Chemom., 24 (2010), pp. 496:504

See Also

smc

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
                                    ncomp = 2, validation = "loo")
sr(mod1)
plot(sr(mod1))
## Not run:
mod2 <- plsFit(Sepal.Length ~., scale = TRUE, data = iris,
    method = "wrtpls", validation = "none") #ncomp is ignored
plot(sr(mod2, ncomps = 2))
## End(Not run)
```


Description

Generates a Hotelling's T2 Graph both mvdareg and mvdapca objects.

Usage

T2 (object, ncomp $=$ object $\$$ ncomp, phase $=1$, conf $=c(.95, .99)$, verbose $=$ FALSE)

Arguments

object an object of class mvdareg or mvdapca.
ncomp the number of components to include in the calculation of Hotelling's T2.
phase designates whether the confidence limits should reflect the current data frame, phase $=1$ or future observations, phase $=2$.
conf the confidence level(s) to use for upper control limit.
verbose output results as a data frame

Details

T2 is used to generates a Hotelling's T2 graph both PLS and PCA models.

Value

The output of T2 is a graph of Hotelling's T2 and a data frame listing the T2 values.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Hotelling, H. (1931). "The generalization of Student's ratio". Annals of Mathematical Statistics 2 (3): 360:378.

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
T2(mod1, ncomp = 2)
```

Wang_Chen Bivariate process data.

Description

Twenty-five observations where 'H' represents brinell hardness and 'S' represents tensile strength.

Usage

Wang_Chen

Format

A data frame with 25 observations and the following 2 variables.
H brinell hardness
S tensile strength

Source

Wang F, Chen J (1998). "Capability index using principal components analysis." Quality Engineering, 11, 21-27.

Wang_Chen_Sim Simulated process data from a plastics manufacturer.

Description

Fifty observations where 'D' represents depth, 'L' represents length, and 'W' represents width.

Usage

Wang_Chen_Sim

Format

A simulated data frame with 50 observations and the following 3 variables.
D depth
L length
W width

Source

Data simulated by Nelson Lee Afanador from average and covariance estimates provided in Wang F, Chen J (1998). "Capability index using principal components analysis." Quality Engineering, 11, 21-27.

Description

Computes weights bootstrap BCa confidence intervals, along with expanded bootstrap summaries.

Usage

weight.boots(object, ncomp = object\$ncomp, conf = .95)

Arguments

object an object of class mvdareg, i.e. plsFit.
ncomp number of components in the model.
conf desired confidence level.

Details

The function fits computes the bootstrap BCa confidence intervals for fitted mvdareg models where valiation = "oob". Should be used in instances in which there is reason to suspectd the percentile intervals. Results provided across all latent variables or for specific latent variables via ncomp.

Value

A weight.boots object contains component results for the following:
variable variable names.
actual Actual loading estimate using all the data.
BCa percentiles confidence intervals.
boot.mean mean of the bootstrap.
skewness skewness of the bootstrap distribution.
bias estimate of bias w.r.t. the loading estimate.
Bootstrap Error
estimate of bootstrap standard error.
t value approximate 't-value' based on the Bootstrap Error.
bias t value approximate 'bias t-value' based on the Bootstrap Error.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.

Efron, B. (1992) Jackknife-after-bootstrap standard errors and influence functions (with Discussion). Journal of the Royal Statistical Society, B, 54, 83:127.

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
weight.boots(mod1, ncomp = 2, conf = .95)
```

```
weights
Extract Summary Information Pertaining to the Bootstrapped weights
```


Description

Functions to extract weights bootstrap information from mvdalab objects.

Usage

```
## S3 method for class 'mvdareg'
weights(object, ncomp = object$ncomp, conf = .95, ...)
```


Arguments

object an mvdareg or mvdapaca object, i.e. plsFit.
ncomp the number of components to include in the model (see below).
conf for a bootstrapped model, the confidence level to use.
... additional arguments. Currently ignored.

Details

weights is used to extract a summary of the weights of a PLS. If ncomps is missing (or is NULL), summaries for all regression estimates are returned. Otherwise, if comps is given parameters for a model with only the requested component comps is returned.

For mvdareg objects only, boostrap summaries provided are for actual regression weights, bootstrap percentiles, bootstrap mean, skewness, and bias. These summaries can also be extracted using weight.boots

Value

A weights object contains a data frame with columns:
variable variable names.
Actual Actual loading estimate using all the data.
BCa percentiles
confidence intervals.
boot.mean mean of the bootstrap.
skewness skewness of the bootstrap distribution.
bias estimate of bias w.r.t. the loading estimate.
Bootstrap Error
estimate of bootstrap standard error.
t value approximate 't-value' based on the Bootstrap Error.
bias t value approximate 'bias t-value' based on the Bootstrap Error.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.

Efron, B. (1992) Jackknife-after-bootstrap standard errors and influence functions (with Discussion). Journal of the Royal Statistical Society, B, 54, 83:127.

See Also

weightsplot, weight. boots, weightsplot2D

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
weights(mod1, ncomp = 2, conf = .95)
```

```
weightsplot
```


Description

Functions to extract regression coefficient bootstrap information from mvdalab objects.

Usage

weightsplot(object, ncomp = object\$ncomp, conf = .95, verbose = FALSE)

Arguments

object an mvdareg object, i.e. plsFit
ncomp the number of components to include.
conf for a bootstrapped model, the confidence level to use.
verbose output results as a data frame

Details

weightsplot is used to extract a graphical summary of the weights of a PLS model.
If comps is missing (or is NULL), a graphical summary for the nth component regression estimates are returned. Otherwise, if comps is given parameters for a model with only the requested component comps is returned.

Boostrap graphcal summaries provided are when method $=$ oob.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
weightsplot(mod1, ncomp = 1:2)
```

weightsplot2D Extract a 2-Dimensional Graphical Summary Information Pertaining to the weights of a PLS Analysis

Description

Functions to extract 2D graphical weights information from mvdalab objects.

Usage

weightsplot2D(object, comps $=c(1,2)$, verbose $=$ FALSE)

Arguments

object an mvdareg object, i.e. plsFit.
comps a vector or length 2 corresponding to the number of components to include.
verbose output results as a data frame

Details

weightsplot2D is used to extract a graphical summary of the weights of a PLS model.
If comp is missing (or is NULL), a graphical summary for the 1 st and 2 nd componentsare returned.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
weightsplot2D(mod1, comp = c(1, 2))
```

 wrtpls.fit Weight Randomization Test PLS

Description

Weight Randomization Test algorithm for PLS1

Usage

wrtpls.fit(X, Y, ncomp, perms, alpha, ...)

Arguments

X
Y a vector. NAs and Infs are not allowed.
ncomp
alpha
perms
...
a matrix of observations. NAs and Infs are not allowed. the number of components to include in the model (see below).
the significance level for wrtpls the number of permutations to run for wrtpls additional arguments. Currently ignored.

Details

This function should not be called directly, but through plsFit with the argument method="wrtpls". It implements the Bidiag2 scores algorithm with a permutation test for selecting the statistically significant components.

Value

An object of class mvdareg is returned. The object contains all components returned by the underlying fit function. In addition, it contains the following:

loadings	X loadings
weights	weights
D2	bidiag2 matrix
iD2	inverse of bidiag2 matrix
Ymean	mean of reponse variable
Xmeans	mean of predictor variables
coefficients	regression coefficients
y.loadings	y-loadings
scores	X scores
R	orthogonal weights
Y	scaled response values
Yactual	actual response values
fitted	fitted values
residuals	residuals
Xdata	X matrix
iPreds	predicted values
y.loadings2	scaled y-loadings
wrtpls	permutations effected
wrtpls.out.Sig	Significant LVs
wrtpls.crit	weight critical values
actual.normwobs	
	normed weights

fit.time	model fitting time
val.method	validation method
ncomp	number of latent variables
perms	number of permutations performed
alpha	permutation alpha value
method	PLS algorithm
scale	scaling used
scaled	was scaling performed
call	model call
terms	model terms
mm	model matrix
model	fitted model

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab. com>), Thanh Tran (<thanh. tran@mvdalab. com>)

References

Indahl, Ulf G., (2014) The geometry of PLS1 explained properly: 10 key notes on mathematical properties of and some alternative algorithmic approaches to PLS1 modeling. Journal of Chemometrics, 28, 168:180.
Manne R., Analysis of two partial-least-squares algorithms for multi-variate calibration. Chemom. Intell. Lab. Syst. 1987; 2: 187:197.

Thanh Tran, Ewa Szymanska, Jan Gerretzen, Lutgarde Buydens, Nelson Lee Afanador, Lionel Blanchet, Weight Randomization Test for the Selection of the Number of Components in PLS Models. Chemom. Intell. Lab. Syst., accepted for publication - Jan 2017.

See Also

```
plsFit
```


Xresids Generates a Graph of the X-residuals

Description

Generates a graph of the X-residuals for both mvdareg and mvdapca objects.

Usage

Xresids(object, ncomp = object\$ncomp, conf = c(.95, .99),
normalized $=$ TRUE, verbose $=$ FALSE)

Arguments

object an object of class mvdareg or mvdapca.
ncomp the number of components to include in the calculation of the X-residuals.
conf the confidence level(s) to use for upper control limit.
normalized should residuals be normalized
verbose output results as a data frame

Details

Xresids is used to generates a graph of the X-residuals for both PLS and PCA models.

Value

The output of Xresids is a graph of X-residuals and a data frame listing the X-residuals values.

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

References

MacGregor, Process Monitoring and Diagnosis by Multiblock PLS Methods, May 1994 Vol. 40, No. 5 AIChE Journal.

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
Xresids(mod1, ncomp = 2)
```

XresidualContrib Generates the squared prediction error contributions and contribution plot

Description

Generates the squared prediction error (SPE) contributions and graph both mvdareg and mvdapca objects.

Usage

XresidualContrib(object, ncomp = object\$ncomp, obs1 = 1)

Arguments

object an object of class mvdareg or mvdapca.
ncomp the number of components to include in the SPE calculation.
obs1 the observaion in SPE assessment.

Details

XresidualContrib is used to generates the squared prediction error (SPE) contributions and graph for both PLS and PCA models. Only one observation at a time is supported.

Value

The output of XresidualContrib is a matrix of score contributions for a specified observation and the corresponding graph.

Author(s)

Nelson Lee Afanador (nelson.afanador@mvdalab.com)

References

MacGregor, Process Monitoring and Diagnosis by Multiblock PLS Methods, May 1994 Vol. 40, No. 5 AIChE Journal

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
            ncomp = 2, validation = "loo")
XresidualContrib(mod1, ncomp = 2, obs1 = 3)
## Not run:
#PCA Model
pc1 <- pcaFit(Penta[, -1], ncomp = 4)
XresidualContrib(pc1, ncomp = 3, obs1 = 3)
## End(Not run)
```

y.loadings

Extract Summary Information Pertaining to the y-loadings

Description

Functions to extract the y-loadings from mvdareg and mvdapca objects.

Usage

y.loadings(object, conf = .95)

Arguments

object an mvdareg or mvdapaca object, i.e. plsFit.
conf for a bootstrapped model, the confidence level to use.

Details

y. loadings is used to extract a summary of the y-loadings from a PLS or PCA model.
If comps is missing (or is NULL), summaries for all regression estimates are returned. Otherwise, if comps is provided the requested component comps are returned.

For mvdareg objects only, boostrap summaries provided are for actual regression y.loadings, bootstrap percentiles, bootstrap mean, skewness, and bias. These summaries can also be extracted using y. loadings.boots

Author(s)

Nelson Lee Afanador (<nelson. afanador@mvdalab.com>)

Examples

```
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "loo")
    y.loadings(mod1)
```

 y.loadings.boots Extract Summary Information Pertaining to the y-loadings

Description

Functions to extract the y-loadings from mvdareg and mvdapca objects.

Usage

y.loadings.boots(object, ncomp = object\$ncomp, conf = 0.95)

Arguments

object
an mvdareg or mvdapaca object, i.e. plsFit.
ncomp the number of components to include in the model (see below).
conf for a bootstrapped model, the confidence level to use.

Details

y. loadings.boots is used to extract a summary of the y-loadings from a PLS or PCA model.

If comps is missing (or is NULL), summaries for all regression estimates are returned. Otherwise, if comps is provided the requested component comps are returned.
For mvdareg objects only, boostrap summaries provided are for actual regression y.loadings, bootstrap percentiles, bootstrap mean, skewness, and bias. These summaries can also be extracted using y.loadings.boots

Author(s)

Nelson Lee Afanador (nelson.afanador@mvdalab.com)

Examples

```
data(Penta)
## Number of bootstraps set to 300 to demonstrate flexibility
## Use a minimum of 1000 (default) for results that support bootstraping
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
    ncomp = 2, validation = "oob", boots = 300)
y.loadings(mod1)
y.loadings.boots(mod1)
```


Index

acfplot, 4
ap.plot, 5, 60
bca.cis, 6, 11, 57, 60
bidiagpls.fit, 7, 60
BiPlot, 9, 60
boot.plots, 7, 11, 60
coef, $12,14,15,67$
coef.mvdareg, 12
coefficients, $12,14,15,59,60,67$
coefficients.boots, $12,13,15,60,67$
coefficients.mvdareg, 14
coefficientsplot2D, 16, 30, 60
coefsplot, $14,17,60$
College, 18
contr.niets, 18
ellipse.mvdalab, 19
imputeBasic, 20
imputeEM, 21
imputeQs, 22
imputeRough, 23
introNAs, 24
jk.after.boot, 25, 60
lm, 59, 65
loadings, 12 , 26, 30, 60, 67
loadings.boots, $12,27,28,30,60,67$
loadingsplot, 27, 29, 60
loadingsplot2D, 16, 27, 30, 30, 46, 60
mewma, 31
model.matrix, 32
MultCapability, 33
MVcis, 35
MVComp, 36, 36
mvdaboot, 7, 37, 40, 60
mvdalab (mvdalab-package), 3
mvdalab-package, 3
mvdaloo, 39, 39
mvdareg (plsFit), 58
mvrnorm.svd, 41
mvrnormBase.svd (mvrnorm.svd), 41
my.dummy.df, 42
no. intercept, 43
pca.nipals, 43
pcaFit, 45
PE, 46, 60
Penta, 47
perc.cis, 48
plot.cp, 49
plot.mvcomp, 50
plot.mvdapca (pcaFit), 45
plot.mvdareg, 52
plot.plusminus, 53
plot.R2s, 54
plot.smc, 55
plot.sr, 56
plot.wrtpls, 57
plsFit, 5, 7, 9, 39, 40, 58, 86
plusminus.fit, 61, 65
plusminus.loo, 62, 65
plusMinusDat, 63
plusminusFit, 62, 63, 64
predict.mvdareg, 66
print.empca (imputeEM), 21
print.mvcomp (MVComp), 36
print.mvdalab, 67
print.mvdapca (pcaFit), 45
print.mvdareg (print.mvdalab), 67
print.npca (pca.nipals), 43
print.plusminus, 68
print.proC (proCrustes), 68
print.R2s (R2s), 70
print.roughImputation (imputeRough), 23
print.seqem (SeqimputeEM), 73

```
print.smc (smc), 74
print.sr(sr),76
proCrustes,68
R2s, 60, 70
ScoreContrib, 46, 60, 71
scoresplot, 60,72
SeqimputeEM, 73
smc, 4, 60,74,77
smc.acfTest, 4, 75, 75
sr, 60, 75,76
summary.mvdareg (plsFit),58
summary.plusminus (plusminusFit), 64
T2, 46, 60, 78
Wang_Chen, 79
Wang_Chen_Sim, 79
weight.boots, 12,60,67, 80, 82
weights, 12, 60, 67, 81
weightsplot, 60, 82, 83
weightsplot2D, 16, 30, 60, 82, 84
wrtpls.fit, 84
Xresids, 46, 60, 86
XresidualContrib, }8
y.loadings, }8
y.loadings.boots,89
```

