
Package ‘nat’
April 6, 2022

Type Package

Title NeuroAnatomy Toolbox for Analysis of 3D Image Data

Version 1.8.19

URL https://github.com/natverse/nat, https://natverse.org/

BugReports https://github.com/natverse/nat/issues

Description NeuroAnatomy Toolbox (nat) enables analysis and visualisation of 3D
biological image data, especially traced neurons. Reads and writes 3D images
in NRRD and 'Amira' AmiraMesh formats and reads surfaces in 'Amira' hxsurf
format. Traced neurons can be imported from and written to SWC and 'Amira'
LineSet and SkeletonGraph formats. These data can then be visualised in 3D
via 'rgl', manipulated including applying calculated registrations, e.g.
using the 'CMTK' registration suite, and analysed. There is also a simple
representation for neurons that have been subjected to 3D skeletonisation
but not formally traced; this allows morphological comparison between
neurons including searches and clustering (via the 'nat.nblast' extension
package).

Depends R (>= 2.15.1), rgl (>= 0.98.1)

Imports nabor, igraph (>= 0.7.1), methods, filehash (>= 2.3), digest,
nat.utils (>= 0.4.2), plyr, yaml

Suggests Rvcg (>= 0.17), testthat, httr, XML, knitr, rmarkdown,
markdown, MASS, alphashape3d, webshot2

Additional_repositories https://dmurdoch.github.io/drat

License GPL-3

LazyData yes

Collate 'alphashape3d.R' 'amiralandmarks-io.R' 'amiramesh-io.R'
'cmtk-reformat.R' 'cmtk.R' 'cmtk_geometry.R' 'cmtk_io.R'
'cmtkreg.R' 'coordinates.R' 'dist3D_Segment_to_Segment.R'
'neuron.R' 'dotprops.R' 'graph-nodes.R' 'hxsurf.R' 'im3d.R'
'nat-data.R' 'nat-package.R' 'ndigest.R' 'neuron-io-amira.R'
'neuron-io-fiji.R' 'neuron-io-neuroml.R' 'neuron-io.R'
'neuron-plot.R' 'neuronlist.R' 'neuronlist_interactive_3d.R'

1

https://github.com/natverse/nat
https://natverse.org/
https://github.com/natverse/nat/issues
https://dmurdoch.github.io/drat


2 R topics documented:

'neuronlist_sets.R' 'neuronlistfh.R' 'ngraph.R' 'nrrd-io.R'
'pop3d.R' 'potential_synapses.R' 'reglist.R' 'seglist.R'
'summary.R' 'utils.R' 'vaa3draw-io.R' 'vtk-io.R' 'xform.R'
'xformimage.R' 'xformpoints.R' 'zzz.R'

RoxygenNote 7.1.1

Encoding UTF-8

VignetteBuilder knitr

NeedsCompilation no

Author Gregory Jefferis [aut, cre] (<https://orcid.org/0000-0002-0587-9355>),
James Manton [aut] (<https://orcid.org/0000-0001-9260-3156>),
Dominik Krzeminski [ctb] (<https://orcid.org/0000-0003-4568-0583>)

Maintainer Gregory Jefferis <jefferis@gmail.com>

Repository CRAN

Date/Publication 2022-04-06 11:50:02 UTC

R topics documented:
nat-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
*.dotprops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
*.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
*.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
affmat2cmtkparams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
all.equal.dotprops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
all.equal.im3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
all.equal.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
amiratype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
as.data.frame.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
as.hxsurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
as.im3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
as.mesh3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
as.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
as.neuronlist.neuronlistfh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
boundingbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
c.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Cell07PNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
clampmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
cmtk.bindir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
cmtk.call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
cmtk.dof2mat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
cmtk.extract_affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
cmtk.mat2dof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
cmtk.reformatx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
cmtk.statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
cmtk.targetvolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
cmtk.version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

https://orcid.org/0000-0002-0587-9355
https://orcid.org/0000-0001-9260-3156
https://orcid.org/0000-0003-4568-0583


R topics documented: 3

cmtkparams2affmat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
cmtkreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
cmtkreglist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
coord2ind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
dotprops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
fileformats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
find.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
find.soma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
flip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
graph.nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
im3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
im3d-coords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
im3d-io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
image.im3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
imexpand.grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
imscalebar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
imslice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ind2coord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
is.amiramesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
is.fijitraces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
is.im3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
is.neuroml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
is.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
is.nrrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
is.swc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
is.vaa3draw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
kcs20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
MBL.surf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ndigest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
neuronlist-dataframe-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
neuronlistfh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
ngraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
nlapply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
nlscan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
nopen3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
normalise_swc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
npop3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
nrrd.voxdims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
nvertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
nview3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
pan3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



4 R topics documented:

plot.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
plot.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
plot3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
plot3d.boundingbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
plot3d.cmtkreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
plot3d.dotprops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
plot3d.hxsurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
plot3d.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
plot3d.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
pointsinside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
potential_synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
prune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
prune_strahler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
prune_vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
read.amiramesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
read.cmtk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
read.cmtkreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
read.hxsurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
read.landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
read.morphml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
read.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
read.neuron.fiji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
read.neuron.neuroml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
read.neuron.swc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
read.neuronlistfh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
read.neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
read.nrrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
read.vaa3draw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
reglist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
remotesync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
resample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
rootpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
scale.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
seglengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
seglist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
seglist2swc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
segmentgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
setdiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
simplify_reglist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
smooth_neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
strahler_order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
sub2ind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
subset.dotprops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
subset.hxsurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
subset.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



nat-package 5

subset.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
summary.neuronlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
unmask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
voxdims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
write.amiramesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
write.cmtk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
write.cmtkreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
write.hxsurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
write.neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
write.neuronlistfh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
write.neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
write.nrrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
write.vtk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
xform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
xformimage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
xformpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
xyzmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
[.neuronlistfh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Index 174

nat-package Analyse 3D biological image data especially neurons

Description

nat provides tools to read, analyse, plot, transform and convert neuroanatomical data, especially
representations of neurons.

Neuron Objects

At present there are 2 main representations of neuronal data:

• neuron objects contain one or more connected trees that make up a neuron

• dotprops objects can contain one (or more) neurons represented as points and tangent vectors
in which the connectivity information has been discarded

The subset function has both subset.neuron and subset.dotprops methods, which can be used
to keep (or reject) specified vertices within a neuron e.g. by spatial constraints. subset.neuron
will look after the tree structure of neurons in these circumstances.

neuron objects containing connected trees can be converted to ngraph objects, a lightweight wrap-
per around the igraph library’s graph class that preserves 3D coordinate information. This allows
neurons to be manipulated based on their graph structure, e.g. by finding all nodes upstream (closer
to the root) or downstream of a given node. The as.neuron function can convert ngraph objects
back to neurons or selected vertex indices can be used to subset a neuron with subset.neuron.
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Collections of Neurons

Neurons can be collected as neuronlist objects, which contain multiple neuron or dotprops ob-
jects along with an attached dataframe of metadata. The metadata can be accessed and manipulated
using the myneuronlist[i,j] notation (see neuronlist-dataframe-methods).

Neurons can be read in to a neuronlist using read.neurons or written out using write.neurons
with support for many of the most common formats including swc.

Metadata can be used to colour or subset the neurons during plotting (see plot3d.neuronlist and
subset.neuronlist). Interactive 3D selection of neurons in a neuronlist is also possible using
find.neuron (which makes use of rgl’s select3d function.

neuronlist objects also provide additional functionality to streamline arithmetic (e.g. scaling
all the points in all neurons see *.neuronlist) and transformations (see Transformations section
below and xform). Arbitrary functions can be applied to each individual neuron can be applied using
the nlapply function, which also provides options for progress bars and simple parallelisation.

Transformations

neuron or dotprops objects can be transformed from e.g. sample to template brain space using
affine or non-rigid registrations, typically calculated with the open source CMTK package available
at https://www.nitrc.org/projects/cmtk/, see ?cmtk for installation details. The function
xform has methods to deal with a variety of types of interest.

3D Image Data

In addition to data types defined by unstructured collections of 3D vertices such as neuron, dotprops
and hxsurf objects nat provides the im3d class to handle image/density data on a regular grid. I/O
is handled by read.im3d and write.im3d, which are currently implemented for the amiramesh and
nrrd file formats; there is also read only access to the vaa3d raw format.

Spatial information can be queried with voxdims, boundingbox and ijkpos, xyzpos methods. You
can convert between voxel data and coordinate (vertex) -based representations using the following
functions:

• as.im3d The as.im3d.matrix method converts XYZ coordinates to an im3d image volume

• ind2coord Find XYZ coordinates of specified voxels of an im3d image volume

• dotprops The dotprops.im3d method converts an im3d object to a dotprops format neuron,
i.e. a cloud of unconnected segments.

Surface Data

nat can read, write, transform and subset surface (mesh) objects defined by Amira’s HxSurface
class. See read.hxsurf and links therein. In addition hxsurf objects can be converted to the
mesh3d format, which provides a link to the rgl package and also to packages for morphometrics
and sophisticated mesh manipulation such as Morpho and Rvcg.

rgl Package

nat uses the rgl package extensively for 3D visualisation. rgl’s core function is to provide interac-
tive visualisation (usually in an X11 window depending on OpenGL - and therefore on a graphics

https://www.nitrc.org/projects/cmtk/
http://www.vaa3d.org/
https://cran.r-project.org/package=Morpho
https://cran.r-project.org/package=Rvcg
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card or OpenGL software emulator) but recently significant functionality for static snapshots and
embedding results in reports such as web pages has been added. With this in mind, Duncan Mur-
doch has added the rgl.useNULL option. As of nat 1.8.0, options(rgl.useNULL=TRUE) will be set
before nat is loaded in non-interactive R sessions. If you want to use nat in interactive environments
where X11 is not available, you may want to set options(rgl.useNULL=TRUE) manually before
loading nat.

File Formats

nat supports multiple input and output data formats for the object classes. There is a registry-based
mechanism which allows support for reading or writing specific file formats (see fileformats) to
be plugged in to reasonably generic functions such as read.neurons. It is perfectly possible for
other R packages or end users to extend the supported list of file types by registering new read/write
or identification functions.

Package Options

The following options can be set to specify default behaviour.

• nat.cmtk.bindir Location of CMTK binaries. See cmtk.bindir

• nat.default.neuronlist A character string naming a neuronlist to use with the plot3d.character
method

• nat.progress The default progress reporter to use with nlapply. See create_progress_bar
for possible values. When unset is equivalent to special value 'auto'. To suppress altogether,
use nat.progress="none".

In addition there is one read-only option:

• nat.cmtk.version which is used to store the current cmtk version when there are repeated
calls to cmtk.version.

See Also

neuron, dotprops, neuronlist, nlapply, plot3d, xform, im3d, read.hxsurf, rgl which is used
for visualisation, fileformats, read.neurons, cmtk.

*.dotprops Arithmetic for dotprops objects

Description

Arithmetic for dotprops objects
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Usage

## S3 method for class 'dotprops'
x * y

## S3 method for class 'dotprops'
x + y

## S3 method for class 'dotprops'
x - y

## S3 method for class 'dotprops'
x / y

Arguments

x A dotprops object
y A scalar or 3-vector that will be applied to the dotprops object

Value

A new dotprops object

*.neuron Arithmetic for neuron coordinates

Description

If x is a 1-vector or a 3-vector, multiply xyz only If x is a 4-vector, multiply xyz and diameter by
that TODO Figure out how to document arithemtic functions in one go

Usage

## S3 method for class 'neuron'
n * x

## S3 method for class 'neuron'
n + x

## S3 method for class 'neuron'
n - x

## S3 method for class 'neuron'
n / x

Arguments

n a neuron
x (a numeric vector to multiply neuron coords in neuron)
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Value

modified neuron

See Also

neuron

Examples

n1<-Cell07PNs[[1]]*2
n2<-Cell07PNs[[1]]*c(2,2,2,1)
stopifnot(all.equal(n1,n2))
n3<-Cell07PNs[[1]]*c(2,2,4)

*.neuronlist Arithmetic for neuron coordinates applied to neuronlists

Description

If x is one number or 3-vector, multiply coordinates by that If x is a 4-vector, multiply xyz and
diameter TODO Figure out how to document arithemtic functions in one go

Usage

## S3 method for class 'neuronlist'
x * y

## S3 method for class 'neuronlist'
x + y

## S3 method for class 'neuronlist'
x - y

## S3 method for class 'neuronlist'
x / y

Arguments

x a neuronlist

y (a numeric vector to multiply coords in neuronlist members)

Value

modified neuronlist
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See Also

Other neuronlist: is.neuronlist(), neuronlist-dataframe-methods, neuronlistfh(), neuronlist(),
nlapply(), read.neurons(), write.neurons()

Examples

mn2<-Cell07PNs[1:10]*2

affmat2cmtkparams Decompose homogeneous affine matrix to CMTK registration param-
eters

Description

Decompose homogeneous affine matrix to CMTK registration parameters

Usage

affmat2cmtkparams(matrix, centre = c(0, 0, 0))

Arguments

matrix 4x4 homogeneous affine matrix

centre Rotation centre

Details

The version attribute of the resultant matrix marks this as compliant with CMTK>v2.4 (~ Dec 2013)
when a bug in affine matrix (de)composition was fixed.

Value

5x3 matrix of CMTK registration parameters with a version attribute

See Also

Other cmtk-geometry: cmtk.dof2mat(), cmtk.mat2dof(), cmtkparams2affmat()
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all.equal.dotprops all.equal method tailored to dotprops objects

Description

all.equal method tailored to dotprops objects

Usage

## S3 method for class 'dotprops'
all.equal(
target,
current,
check.attributes = FALSE,
absoluteVectors = TRUE,
...

)

Arguments
target, current

dotprops objects to compare
check.attributes

Whether to check attributes (false by default)
absoluteVectors

Whether to check only the absolute value of eigenvectors for equality (default
TRUE, see details)

... Additional arguments passed to base all.equal.

Details

This method is required because the direction vectors are computed using an eigenvector decom-
position where the sign of the eigenvector is essentially random and subject to small numerical
instabilities. Therefore it does not usually make sense to check the value of vect exactly.

Examples

# equal using default
kc1=kcs20[[1]]
kc1.recalc=dotprops(kc1)
# not equal due to differences in attributes and vectors
all.equal.default(kc1.recalc, kc1)
# still not equal because of tangent vector flipping
all.equal.default(kc1.recalc, kc1, check.attributes=FALSE)
# equal using appropriate method
stopifnot(isTRUE(all.equal(kc1.recalc, kc1)))
# NB identical when recalculated on same setup from same data
stopifnot(isTRUE(all.equal.default(kc1.recalc, dotprops(kc1))))
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all.equal.im3d Check equality on data and key attributes of im3d objects

Description

Check equality on data and key attributes of im3d objects

Usage

## S3 method for class 'im3d'
all.equal(
target,
current,
tolerance = 1e-06,
attrsToCheck = c("BoundingBox"),
attrsToCheckIfPresent = c("dim", "names", "dimnames", "x", "y", "z"),
CheckSharedAttrsOnly = FALSE,
...

)

Arguments

target R object.

current other R object, to be compared with target.

tolerance numeric ≥ 0. Differences smaller than tolerance are not reported. The default
value is close to 1.5e-8.

attrsToCheck Which attributes in im3d should always be checked

attrsToCheckIfPresent

Which attributes in im3d should be checked if present

CheckSharedAttrsOnly

Logical whether to check shared attributes only (default: FALSE)

... additional arguments passed to all.equal

See Also

all.equal
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all.equal.neuron Check equality on key fields of neuron object

Description

Check equality on key fields of neuron object

Usage

## S3 method for class 'neuron'
all.equal(
target,
current,
tolerance = 1e-06,
check.attributes = FALSE,
fieldsToCheck = c("NumPoints", "StartPoint", "BranchPoints", "EndPoints", "NumSegs",

"SegList", "d"),
fieldsToCheckIfPresent = c("NeuronName", "nTrees", "SubTrees"),
fieldsToExclude = character(),
CheckSharedFieldsOnly = FALSE,
...

)

Arguments

target R object.

current other R object, to be compared with target.

tolerance numeric ≥ 0. Differences smaller than tolerance are not reported. The default
value is close to 1.5e-8.

check.attributes

logical indicating if the attributes of target and current (other than the
names) should be compared.

fieldsToCheck Which fields in the neuron are always checked. The special value of NA indicates
that all fields in the neurons will be compared.

fieldsToCheckIfPresent

These fields are only checked if they are present
fieldsToExclude

Character vector of fields to exclude from check
CheckSharedFieldsOnly

Logical whether to check shared fields only (default: FALSE)

... additional arguments passed to all.equal

See Also

all.equal
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Examples

x=Cell07PNs[[1]]
y=x
y$NeuronName='rhubarb'
# NOT TRUE
all.equal(x, y)
# TRUE
all.equal(x, y, fieldsToExclude='NeuronName')

amiratype Return the type of an amiramesh file on disk or a parsed header

Description

Return the type of an amiramesh file on disk or a parsed header

Usage

amiratype(x, bytes = NULL)

Arguments

x Path to files on disk or a single pre-parsed parameter list

bytes A raw vector containing at least 11 bytes from the start of the file.

Details

Note that when checking a file we first test if it is an amiramesh file (fast, especially when bytes!=NULL)
before reading the header and determining content type (slow).

Value

character vector (NA_character_ when file invalid)

See Also

Other amira: is.amiramesh(), read.amiramesh(), read.hxsurf(), write.hxsurf()
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as.data.frame.neuronlist

Get or set the attached data.frame of a neuronlist

Description

For as.data.frame, when there is no attached data.frame the result will be a data.frame with 0
columns but an appropriate number of rows, named by the objects in the neuronlist.

data.frame<- methods set the data frame attached to an object. At present this is only used for
neuronlist objects.

Usage

## S3 method for class 'neuronlist'
as.data.frame(x, row.names = names(x), optional = FALSE, ...)

data.frame(x) <- value

## S3 replacement method for class 'neuronlist'
data.frame(x) <- value

Arguments

x neuronlist to convert

row.names row names (defaults to names of objects in neuronlist, which is nearly always
what you want.)

optional ignored in this method

... additional arguments passed to data.frame (see examples)

value The new data.frame to be attached to x

Value

for as.data.frame.neuronlist, a data.frame with length(x) rows, named according to names(x)
and containing the columns from the attached data.frame, when present.

for data.frame<-.neuronlist, a neuronlist with the attached data.frame.

See Also

data.frame, neuronlist
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Examples

head(as.data.frame(kcs20))

# add additional variables
str(as.data.frame(kcs20, i=seq(kcs20), abc=LETTERS[seq(kcs20)]))
# stop character columns being turned into factors
newdf <- as.data.frame(kcs20, i=seq(kcs20), abc=LETTERS[seq(kcs20)],

stringsAsFactors=FALSE)
str(newdf)
data.frame(kcs20)=newdf

as.hxsurf Convert an object to a nat hxsurf object

Description

Convert an object to a nat hxsurf object

Usage

as.hxsurf(x, ...)

## S3 method for class 'mesh3d'
as.hxsurf(x, region = "Interior", col = NULL, ...)

Arguments

x A surface object
... Additional arguments passed to methods
region The default name for the surface region
col The surface colour (default value of NULL implies the colour specified in mesh3d

object or grey when the mesh3d object has no colour.)

Details

hxsurf objects are based on the format of Amira’s surface objects (see read.hxsurf). They have
the ability to include multiple distinct regions. However, at the moment the only method that we
provide converts mesh3d objects, which can only include one region.

Value

A new surface object of class hxsurf (see read.hxsurf) for details.

See Also

as.mesh3d

Other hxsurf: as.mesh3d(), materials(), plot3d.hxsurf(), read.hxsurf(), subset.hxsurf(),
write.hxsurf()
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Examples

tet=tetrahedron3d(col='red')
teth=as.hxsurf(tet)

plot3d(teth)

as.im3d Convert a suitable object to an im3d object.

Description

Convert a suitable object to an im3d object.

Usage

as.im3d(x, ...)

## S3 method for class 'im3d'
as.im3d(x, ...)

## S3 method for class 'matrix'
as.im3d(x, voxdims, origin = NULL, BoundingBox = NULL, ...)

Arguments

x Object to turn into an im3d

... Additional arguments to pass to methods.

voxdims Numeric vector of length 3 or an im3d compatible object (see details) com-
pletely specifying the required space.

origin the location (or centre) of the first voxel

BoundingBox Physical extent of image. See the details section of boundingbox’s help for the
distinction.

Details

At present the only interesting method in nat is as.im3d.matrix which can be used to convert a
matrix of 3D points into a 3D volume representation. ind2coord can be used to do the reverse:
convert a set of 3D coords to an im3d volume.

Other than that, this is a largely a placeholder function with the expectation that other packages may
wish to provide suitable methods.

as.im3d.matrix can accept any object that can be converted to an im3d object in the voxdims
argument This will completely specify the dims, voxdims, origin etc. Any value passed to those
parameters will be ignored. This can be useful for producing a new im3d to match a target image
on disk or a nat.templatebrains::templatebrain object. See examples.
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See Also

im3d, ind2coord

im3d, as.im3d

Other im3d: boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(), imslice(),
is.im3d(), mask(), origin(), projection(), threshold(), unmask(), voxdims()

Examples

## convert a list of neurons into an image volume
im=as.im3d(xyzmatrix(kcs20), voxdims=c(1, 1, 1),

BoundingBox=c(250, 410, 0, 130, 0, 120))
## Not run:
write.im3d(im, 'kc20volume.nrrd')

## use image dimensions of an image on disk
# nb note use of ReadData = FALSE so that we just fetch the dimensions of
# the target image
diskim=read.im3d("/path/to/my/image.nrrd", ReadData = FALSE)
im=as.im3d(xyzmatrix(kcs20), diskim)

## use image dimensions of JFRC2 template brain to define the image space
library(nat.flybrains)
im=as.im3d(xyzmatrix(kcs20), JFRC2)

## End(Not run)

as.mesh3d Convert an object to an rgl mesh3d

Description

as.mesh3d.ashape3d converts an alphashape3d::ashape3d object into a nat/rgl compatible mesh3d
surface

Note that this provides a link to the Rvcg package

Usage

## S3 method for class 'ashape3d'
as.mesh3d(x, tri_to_keep = 2L, ...)

## S3 method for class 'hxsurf'
as.mesh3d(x, Regions = NULL, material = NULL, drop = TRUE, ...)
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Arguments

x Object to convert to mesh3d
tri_to_keep Which alphashape triangles to keep (expert use only - see triang entry in Value

section of ashape3d docs for details.)
... Additional arguments for methods
Regions Character vector or regions to select from hxsurf object
material rgl materials such as color
drop Whether to drop unused vertices (default TRUE)

Details

An alpha shape is a generalisation of a convex hull enclosing a set of points. Unlike a convex hull,
the resultant surface can be partly concave allowing the surface to more closely follow the set of
points.

In this implementation, the parameter alpha is a scale factor with units of length that defines a spatial
domain. When alpha is larger the alpha shape approaches the convex hull; when alpha is smaller
the alpha shape has a greater number of faces / vertices i.e. it follows the points more closely.

Value

a mesh3d object which can be plotted and manipulated using rgl and nat packages.

See Also

ashape3d, mesh3d

as.mesh3d, tmesh3d, as.hxsurf, read.hxsurf

Other hxsurf: as.hxsurf(), materials(), plot3d.hxsurf(), read.hxsurf(), subset.hxsurf(),
write.hxsurf()

Examples

library(alphashape3d)
kcs20.a=ashape3d(xyzmatrix(kcs20), alpha = 10)
plot(kcs20.a)

# convert to mesh3d
kcs20.mesh=as.mesh3d(kcs20.a)

# check that all points are inside mesh
all(pointsinside(kcs20, kcs20.mesh))
# and show that we can also use the alphashape directly
all(pointsinside(kcs20, kcs20.a))

clear3d()
wire3d(kcs20.mesh)
plot3d(kcs20, col=type, lwd=2)

https://en.wikipedia.org/wiki/Alpha_shape
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as.neuronlist Make a list of neurons that can be used for coordinate plotting/analysis

Description

Make a list of neurons that can be used for coordinate plotting/analysis

Usage

as.neuronlist(l, ...)

## Default S3 method:
as.neuronlist(l, df = NULL, AddClassToNeurons = TRUE, ...)

Arguments

l An existing list or a single neuron to start a list

... Additional arguments passed to methods

df the data.frame to attach with additional metadata.

AddClassToNeurons

Whether to ensure neurons have class neuron (see details).

Details

Note that as.neuronlist can cope with both neurons and dotprops objects but AddClassToNeurons
will only apply to things that look like neurons but don’t have a class of neuron.

See neuronlist details for more information.

Value

neuronlist with attr(’df’)

See Also

is.neuronlist,is.neuron,is.dotprops
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as.neuronlist.neuronlistfh

convert neuronlistfh to a regular (in memory) neuronlist

Description

convert neuronlistfh to a regular (in memory) neuronlist

Usage

## S3 method for class 'neuronlistfh'
as.neuronlist(l, ...)

Arguments

l An existing list or a single neuron to start a list

... Additional arguments passed to methods

boundingbox Get the bounding box of an im3d volume or other compatible object

Description

boundingbox.list is designed to be used on objects that contain 3D point information and for
which xyzmatrix is defined.

boundingbox.shape3d is designed to be used on objects that contain 3D point information and
inherit from rgl’s shape3d class and for which xyzmatrix is defined. Presently this applies to
mesh3d objects.

Set the bounding box of an im3d object

Usage

boundingbox(x, ...)

## S3 method for class 'im3d'
boundingbox(x, dims = dim(x), ...)

## S3 method for class 'character'
boundingbox(x, ...)

## S3 method for class 'list'
boundingbox(x, na.rm = FALSE, ...)

## S3 method for class 'neuron'
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boundingbox(x, na.rm = FALSE, ...)

## S3 method for class 'shape3d'
boundingbox(x, na.rm = FALSE, ...)

## Default S3 method:
boundingbox(x, dims, input = c("boundingbox", "bounds"), ...)

boundingbox(x) <- value

Arguments

x A vector or matrix specifying a bounding box, an im3d object, any object with
base class list for which xyzmatrix can extract 3D points (e.g. neurons, surfaces
etc), or, for boundingbox.character, a character vector specifying a file.

... Additional arguments for methods

dims The number of voxels in each dimension when x is a BoundingBox matrix.

na.rm Whether to ignore NA points (default FALSE)

input Whether x defines the boundingbox or bounds of the image (see details).

value The object which will provide the new boundingbox information. This can be be
either an im3d object with a boundingbox or a vector or matrix defined according
to boundingbox.default.

Details

The bounding box is defined as the position of the voxels at the two opposite corners of the
cuboid encompassing an image, when each voxel is assumed to have a single position (sometimes
thought of as its centre) and no physical extent. When written as a vector it should look like:
c(x0,x1,y0,y1,z0,z1). When written as a matrix it should look like: rbind(c(x0,y0,z0),c(x1,y1,z1))
where x0,y0,z0 is the position of the origin.

Note that there are two competing definitions for the physical extent of an image that are dis-
cussed e.g. http://teem.sourceforge.net/nrrd/format.html. The definition that makes most
sense depends largely on whether you think of a pixel as a little square with some defined area
(and therefore a voxel as a cube with some defined volume) or you take the view that you can
only define with certainty the grid points at which image data was acquired. The first view im-
plies a physical extent which we call the bounds=dim(x) * c(dx,dy,dz); the second is defined as
BoundingBox=dim(x)-1 * c(dx,dy,dz) and assumes that the extent of the image is defined by a
cuboid including the sample points at the extreme corner of the grid. Amira takes this second view
and this is the one we favour given our background in microscopy. If you wish to convert a bounds
type definition into an im3d BoundingBox, you should pass the argument input='bounds'.

Value

a matrix with 2 rows and 3 columns with class='boundingbox' or NULL when missing.

http://teem.sourceforge.net/nrrd/format.html
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See Also

plot3d.boundingbox

Other im3d: as.im3d(), im3d-coords, im3d-io, im3d(), imexpand.grid(), imslice(), is.im3d(),
mask(), origin(), projection(), threshold(), unmask(), voxdims()

Examples

boundingbox(c(x0=0,x1=10,y0=0,y1=20,z0=0,z1=30))
# bounding box for a neuron
boundingbox(Cell07PNs[[1]])

c.neuronlist Combine multiple neuronlists into a single list

Description

Combine multiple neuronlists into a single list

Usage

## S3 method for class 'neuronlist'
c(..., recursive = FALSE)

Arguments

... neuronlists to combine

recursive Presently ignored

Details

Uses rbind.fill to join any attached dataframes, so missing values are replaced with NAs.

See Also

c

Examples

stopifnot(all.equal(kcs20[1:2],c(kcs20[1],kcs20[2])))
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Cell07PNs Cell07PNs: 40 Sample Projection Neurons from Jefferis, Potter et al
2007

Description

These R lists (which have additional class neuronlist) contain 40 traced olfactory projection neurons
from Jefferis, Potter et al 2007 that have been transformed onto the IS2 template brain (Cachero,
Ostrovsky et al 2010).

References

Jefferis G.S.X.E., Potter C.J., Chan A.M., Marin E.C., Rohlfing T., Maurer C.R.J., and Luo L.
(2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and
pheromone representation. Cell 128 (6), 1187–1203. doi: 10.1016/j.cell.2007.01.040

Cachero S., Ostrovsky A.D., Yu J.Y., Dickson B.J., and Jefferis G.S.X.E. (2010). Sexual dimor-
phism in the fly brain. Curr Biol 20 (18), 1589–601. doi: 10.1016/j.cub.2010.07.045

See Also

head.neuronlist, with.neuronlist

Other nat-data: MBL.surf, kcs20

Examples

head(Cell07PNs)
table(with(Cell07PNs,Glomerulus))

clampmax Return function that finds maximum of its inputs within a clamping
range

Description

Return function that finds maximum of its inputs within a clamping range

Usage

clampmax(xmin, xmax, replace.infinite = NA_real_)

Arguments

xmin, xmax clamping range. If xmax is missing xmin should be a vector of length 2.
replace.infinite

The value with which to replace non-finite values in the input vector. When
codereplace.infinite=FALSE no action is taken. The default value of NA will
result in e.g. Inf being mapped to NA.

https://doi.org/10.1016/j.cell.2007.01.040
https://doi.org/10.1016/j.cub.2010.07.045
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Details

Note that by default infinite values in the input vector are converted to NAs before the being com-
pared with the clampmax range.

Value

A function with signature f(x,...,na.rm)

Examples

## Not run:
LHMask=read.im3d(system.file('tests/testthat/testdata/nrrd/LHMask.nrrd',package='nat'))
d=unmask(rnorm(sum(LHMask),mean=5,sd=5),LHMask)
op=par(mfrow=c(1,2))
rval=image(projection(d,projfun=max))
image(projection(d,projfun=clampmax(0,10)),zlim=rval$zlim)
par(op)

## End(Not run)

cmtk.bindir Return path to directory containing CMTK binaries

Description

The Computational Morphometry Toolkit (CMTK) is the default image registration toolkit sup-
ported by nat. An external CMTK installation is required in order to apply CMTK registrations.
This function attempts to locate the full path to the CMTK executable files and can query and set
an option.

Usage

cmtk.bindir(
firstdir = getOption("nat.cmtk.bindir"),
extradirs = c("~/bin", "/usr/local/lib/cmtk/bin", "/usr/local/bin", "/opt/local/bin",

"/opt/local/lib/cmtk/bin/", "/Applications/IGSRegistrationTools/bin",
"C:\\cygwin64\\usr\\local\\lib\\cmtk\\bin",
"C:\\Program Files\\CMTK-3.3\\CMTK\\lib\\cmtk\\bin"),

set = FALSE,
check = FALSE,
cmtktool = "gregxform"

)

https://www.nitrc.org/projects/cmtk
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Arguments

firstdir Character vector specifying path containing CMTK binaries or NA (see details).
This defaults to options(’nat.cmtk.bindir’).

extradirs Where to look if CMTK is not in firstdir or the PATH

set Whether to set options(’nat.cmtk.bindir’) with the found directory. Also check/sets
cygwin path on Windows (see Installation section).

check Whether to (re)check that a path that has been set appropriately in options(nat.cmtk.bindir=’/some/path’)
or now found in the PATH or alternative directories. Will throw an error on fail-
ure.

cmtktool Name of a specific cmtk tool which will be used to identify the location of all
cmtk binaries.

Details

Queries options(’nat.cmtk.bindir’) if firstdir is not specified. If that does not contain the appro-
priate binaries, it will look in the system PATH for the cmtk wrapper script installed by most recent
cmtk installations.

Failing that, it will look for the cmtk tool specified by cmtktool, first in the path and then a suc-
cession of plausible places until it finds something. Setting options(nat.cmtk.bindir=NA) or
passing firstdir=NA will stop the function from trying to locate CMTK, always returning NULL
unless check=TRUE, in which case it will error out.

Value

Character vector giving path to CMTK binary directory or NULL when this cannot be found.

Installation

It is recommended to install released CMTK versions available from the NITRC website. A bug in
composition of affine transformations from CMTK parameters in the CMTK versions <2.4 series
means that CMTK>=3.0 is strongly recommended. CMTK v3 registrations are not backwards
compatible with CMTK v2, but CMTKv3 can correctly interpret and convert registrations from
earlier versions.

On Windows, when set=TRUE, cmtk.bindir will also check that the cygwin bin directory is in the
PATH. If it is not, then it is added for the current R session. This should solve issues with missing
cygwin dlls.

See Also

options

Examples

message(ifelse(is.null(d<-cmtk.bindir()), "CMTK not found!",
paste("CMTK is at:",d)))

## Not run:
# set options('nat.cmtk.bindir') according to where cmtk was found
op=options(nat.cmtk.bindir=NULL)

https://www.nitrc.org/projects/cmtk/
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cmtk.bindir(set=TRUE)
options(op)
## End(Not run)

cmtk.call Utility function to create and run calls to CMTK commandline tools

Description

cmtk.call processes arguments into a form compatible with CMTK command line tools.
cmtk.system2 actually calls a cmtk tool using a call list produced by cmtk.call

Usage

cmtk.call(
tool,
PROCESSED.ARGS = NULL,
...,
FINAL.ARGS = NULL,
RETURN.TYPE = c("string", "list")

)

cmtk.system2(cmtkcall, moreargs = NULL, ...)

Arguments

tool Name of the CMTK tool
PROCESSED.ARGS Character vector of arguments that have already been processed by the callee.

Placed immediately after cmtk tool.
... Additional named arguments to be processed by (cmtk.call, see details) or

passed to system2 (cmtk.system2).
FINAL.ARGS Character vector of arguments that have already been processed by the callee.

Placed at the end of the call after optional arguments.
RETURN.TYPE Sets return type to a character string or list (the latter is suitable for use with

system2)
cmtkcall A list containing processed arguments prepared by cmtk.call(RETURN.TYPE="list")

moreargs Additional arguments to add to the processed call

Details

cmtk.call processes arguments in ... as follows:

• argument names will be converted from arg.name to --arg-name

• logical vectors (which must be of length 1) will be passed on as --arg-name
• character vectors (which must be of length 1) will be passed on as --arg-name arg i.e. quot-

ing is left up to callee.
• numeric vectors will be collapsed with commas if of length greater than 1 and then passed on

unquoted e.g. target.offset=c(1,2,3) will result in --target-offset 1,2,3
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Value

Either a string of the form "<tool> <PROCESSED.ARGS> <...> <FINAL.ARGS>" or a list containing
elements

• command A character vector of length 1 indicating the full path to the CMTK tool, shell
quoted for protection.

• args A character vector of arguments of length 0 or greater.

See the help of system2 for details.

See Also

cmtk.bindir

Examples

## Not run:
cmtk.call("reformatx",'--outfile=out.nrrd', floating='floating.nrrd',

mask=TRUE, target.offset=c(1,2,3), FINAL.ARGS=c('target.nrrd','reg.list'))
# get help for a cmtk tool
system(cmtk.call('reformatx', help=TRUE))

## End(Not run)
## Not run:
cmtk.system2(cmtk.call('mat2dof', help=TRUE, RETURN.TYPE="list"))
# capture response into an R variable
helptext=cmtk.system2(cmtk.call('mat2dof', help=TRUE, RETURN.TYPE="list"),

stdout=TRUE)

## End(Not run)

cmtk.dof2mat Convert CMTK registration to homogeneous affine matrix with
dof2mat

Description

Convert CMTK registration to homogeneous affine matrix with dof2mat

Usage

cmtk.dof2mat(reg, Transpose = TRUE, version = FALSE)

Arguments

reg Path to input registration file or 5x3 matrix of CMTK parameters.

Transpose ouput matrix so that form on disk matches R’s convention.

version Whether to return CMTK version string
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Details

Transpose is true by default since this results in the orientation of cmtk output files matching the
orientation in R. Do not change this unless you’re sure you know what you’re doing!

Value

4x4 transformation matrix

See Also

Other cmtk-commandline: cmtk.mat2dof()

Other cmtk-geometry: affmat2cmtkparams(), cmtk.mat2dof(), cmtkparams2affmat()

cmtk.extract_affine Extract affine registration from CMTK registration file or in-memory
list

Description

Extract affine registration from CMTK registration file or in-memory list

Usage

cmtk.extract_affine(r, outdir)

Arguments

r A registration list or path to file on disk

outdir Optional path to output file

Value

When outdir is missing a list containing the registration paramers. Otherwise NULL invisibly.

See Also

cmtkreglist

Other cmtk-io: read.cmtkreg(), read.cmtk(), write.cmtkreg(), write.cmtk()
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cmtk.mat2dof Use CMTK mat2dof to convert homogeneous affine matrix into CMTK
registration

Description

Use CMTK mat2dof to convert homogeneous affine matrix into CMTK registration

Usage

cmtk.mat2dof(m, f = NULL, centre = NULL, Transpose = TRUE, version = FALSE)

Arguments

m Homogenous affine matrix (4x4) last row 0 0 0 1 etc

f Output file (optional)

centre Centre for rotation (optional 3-vector)

Transpose the input matrix so that it is read in as it appears on disk

version When TRUE, function returns CMTK version number of mat2dof tool

Details

If no output file is supplied, 5x3 params matrix will be returned directly. Otherwise a logical will
be returned indicating success or failure at writing to disk.

Transpose is true by default since this results in an R matrix with the transpose in the fourth column
being correctly interpreted by cmtk.

Value

5x3 matrix of CMTK registration parameters or logical

See Also

Other cmtk-commandline: cmtk.dof2mat()

Other cmtk-geometry: affmat2cmtkparams(), cmtk.dof2mat(), cmtkparams2affmat()
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cmtk.reformatx Reformat an image with a CMTK registration using the reformatx tool

Description

Reformat an image with a CMTK registration using the reformatx tool

Usage

cmtk.reformatx(
floating,
registrations,
output,
target,
mask = FALSE,
direction = NULL,
interpolation = c("linear", "nn", "cubic", "pv", "sinc-cosine", "sinc-hamming"),
dryrun = FALSE,
Verbose = TRUE,
MakeLock = TRUE,
OverWrite = c("no", "update", "yes"),
filesToIgnoreModTimes = NULL,
...

)

Arguments

floating The floating image to be reformatted

registrations One or more CMTK format registrations on disk

output The path to the output image (defaults to "<targetstem>_<floatingstem>.nrrd")

target A character vector specifying an image file on disk, an im3d object (or an ob-
ject that can be coerced to im3d) or a 6-or 9-vector defining a grid in the form
Nx,Ny,Nz,dX,dY,dZ,[Ox,Oy,Oz].

mask Whether to treat target as a binary mask (only reformatting positive voxels)

direction Whether to transform image from sample space to reference space (called for-
ward by CMTK) or from reference to sample space (called inverse by CMTK).
Default (when NULL is forward).

interpolation What interpolation scheme to use for output image (defaults to linear - see de-
tails)

dryrun Just print command

Verbose Whether to show cmtk status messages and be verbose about file update checks.
Sets command line --verbose option.

MakeLock Whether to use a lock file to allow simple parallelisation (see makelock)
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OverWrite Whether to OverWrite an existing output file. One of c("no","update","yes").
When OverWrite=’update’ RunCmdForNewerInput is used to determine if the
output is older than any of the input files.

filesToIgnoreModTimes

Input files whose modification time should not be checked when determining if
new output is required.

... additional arguments passed to CMTK reformatx after processing by cmtk.call.

Details

Note that if you are reformatting a mask then you will need to change the interpolation to "nn",
since interpolating between e.g. mask levels 72 and 74 with 73 may have unintened consequences.
Presently we have no way of knowing whether an image should be treated as a mask, so the
interpolation must be handled manually.

Value

the path to the ouput image (whether or not it was re-created afresh) or NA_character_ if no output
was possible.

See Also

cmtk.bindir,cmtk.call,makelock,RunCmdForNewerInput

Examples

## Not run:
cmtk.reformatx('myimage.nrrd', target='template.nrrd',

registrations='template_myimage.list')

# get full listing of command line options
system(cmtk.call('reformatx', help=TRUE))

## End(Not run)

cmtk.statistics Calculate image statistics for a nrrd or other CMTK compatible file

Description

Calculate image statistics for a nrrd or other CMTK compatible file
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Usage

cmtk.statistics(
f,
mask,
imagetype = c("greyscale", "label"),
masktype = c("label", "binary"),
...,
Verbose = FALSE

)

Arguments

f Path to image file (any CMTK compatible format)
mask Optional path to a mask file
imagetype Whether image should be treated as greyscale (default) or label field.
masktype Whether mask should be treated as label field or binary mask (default label)
... Additional arguments for ctmk’s statistics tool processed by cmtk.call.
Verbose Whether to show cmtk status messages and be verbose about file update checks.

Sets command line --verbose option.

Details

When given a label mask, returns a dataframe with a row for each level of the label field.

Note that the Entropy column (sometimes H, sometimes Entropy) will always be named Entropy in
the returned dataframe.

Value

data.frame describing results with the following columns when image f is of imagetype='greyscale'
(optionally with a mask):

• MaskLevel (only present when using a mask) the integer value of the label field for this region
• min The minimum voxel value within the current region
• max The maximum voxel value within the current region
• mean The mean voxel value within the current region
• sdev The standard deviation of voxel values within the current region
• n The count of all voxel within the region (irrespective of their value)
• Entropy Information theoretic entropy of voxel value distribution within region
• sum Sum of voxel values within the region

When image f is of imagetype='label', the following results are returned:

• level The integer value of the label field for this region
• count The number of voxels in this region
• surface The surface area of this region
• volume The volume of this region
• X,Y,Z 3D coordinates of the centroid of this region
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Examples

## Not run:
cmtk.statistics('someneuron.nrrd', mask='neuropilregionmask.nrrd')
cmtk.statistics('somelabelfield.nrrd', imagetype='label')

## End(Not run)

cmtk.targetvolume Defines a target volume for a CMTK reformatx operation

Description

cmtk.targetvolume.list is designed to cope with any user-defined class for which an as.im3d
method exists. Presently the only example in the nat.* ecosystem is nat.templatebrains::as.im3d.templatebrain.

Usage

cmtk.targetvolume(target, ...)

## S3 method for class 'im3d'
cmtk.targetvolume(target, ...)

## S3 method for class 'list'
cmtk.targetvolume(target, ...)

## Default S3 method:
cmtk.targetvolume(target, ...)

Arguments

target A character vector specifying an image file on disk, an im3d object (or an ob-
ject that can be coerced to im3d) or a 6-or 9-vector defining a grid in the form
Nx,Ny,Nz,dX,dY,dZ,[Ox,Oy,Oz].

... additional arguments passed to methods

Details

if the character vector specifies an amiramesh file, it will be converted to a bare im3d object and
then to an appropriate ’–target-grid’ specification.

Value

a character vector specifying the full cmtk reformatx ’–target’ or ’–target-grid’ argument
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Examples

## Not run:
# see https://github.com/jefferislab/nat.flybrains
library(nat.flybrains)
cmtk.targetvolume(FCWB)

## End(Not run)

cmtk.version Return cmtk version or test for presence of at least a specific version

Description

Return cmtk version or test for presence of at least a specific version

Usage

cmtk.version(minimum = NULL)

Arguments

minimum If specified checks that the cmtk version

Details

NB this function has the side effect of setting an option nat.cmtk.version the first time that it is run
in the current R session.

Value

returns numeric_version representation of CMTK version or if minimum is not NULL, returns
a logical indicating whether the installed version exceeds the current version. If CMTK is not
installed returns NA.

See Also

cmtk.bindir,cmtk.dof2mat

Examples

## Not run:
cmtk.version()
cmtk.version('3.2.2')

## End(Not run)
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cmtkparams2affmat Compose homogeneous affine matrix from CMTK registration param-
eters

Description

Compose homogeneous affine matrix from CMTK registration parameters

Usage

cmtkparams2affmat(
params = NULL,
tx = 0,
ty = 0,
tz = 0,
rx = 0,
ry = 0,
rz = 0,
sx = 1,
sy = 1,
sz = 1,
shx = 0,
shy = 0,
shz = 0,
cx = 0,
cy = 0,
cz = 0,
legacy = NA

)

Arguments

params 5x3 matrix of CMTK registration parameters or list of length 5.

tx, ty, tz Translation along x, y and z axes (default 0)

rx, ry, rz Rotation about x, y and z axes (in degrees, default 0)

sx, sy, sz Scale for x, y and z axes (default 1)

shx, shy, shz Shear for x,y,z axes (default 0)

cx, cy, cz Centre for rotation

legacy Whether to assume that parameters are in the format used by CMTK <=2.4.0
(default value NA implies FALSE, see details).

Details

If the legacy parameter is not set explicitly, then it will be set to TRUE if params has a version
attribute <2.4 or FALSE otherwise.

translation and centre components are assumed to be in physical coordinates.
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Value

4x4 homogeneous affine transformation matrix

See Also

Other cmtk-geometry: affmat2cmtkparams(), cmtk.dof2mat(), cmtk.mat2dof()

cmtkreg Create and test cmtkreg objects that specify path to a CMTK registra-
tion

Description

cmtkreg creates an object of class cmtkreg that describes one (or more) CMTK registrations. This
is simply a character vector that also has class cmtkreg.

as.cmtkreg converts objects to class cmtkreg, minimally just by adding an approriate class at-
tribute.

is.cmtkreg checks if an object is a cmtk registration either by checking class (default), or inspect-
ing file.

Usage

cmtkreg(x, returnDir = TRUE)

as.cmtkreg(x, ...)

## S3 method for class 'matrix'
as.cmtkreg(x, ...)

## S3 method for class 'reglist'
as.cmtkreg(x, ...)

## Default S3 method:
as.cmtkreg(x, ...)

is.cmtkreg(x, filecheck = c("none", "exists", "magic"))

Arguments

x Path to a cmtk registration (either plain character vector or cmtkreg object)

returnDir Whether to return the registration directory (default) or the actual file containing
the registration

... Additional arguments passed to methods. Currently ignored.

filecheck Whether to check object class only (default: ’none’) or find amd check if regis-
tration file exists or check magic value in first line of file.

https://www.nitrc.org/projects/cmtk/
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cmtkreglist Make in-memory CMTK registration list from affine matrix or CMTK
parameters

Description

Make in-memory CMTK registration list from affine matrix or CMTK parameters

Usage

cmtkreglist(x, centre = c(0, 0, 0), reference = "dummy", floating = "dummy")

Arguments

x 5x3 matrix of CMTK registration parameters OR 4x4 homogeneous affine ma-
trix

centre Optional centre of rotation passed to affmat2cmtkparams when decomposing
4x4 affine matrix

reference, floating

Path to refererence and floating images.

Details

Note that this uses the modern CMTK notation of floating_study rather than model_study as used
by IGSParamsToIGSRegistration (which results in an implicit inversion by CMTK tools).

Note that the reference and floating fields have no impact on the transformation encoded in the
resultant .list folder and can be overridden on the command line of CMTK tools.

Value

list of class cmtkreg containing registration parameters suitable for write.cmtkreg

See Also

write.cmtkreg,affmat2cmtkparams,cmtkreg
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coord2ind Find 1D indices into a 3D image given spatial coordinates

Description

Find 1D indices into a 3D image given spatial coordinates

Usage

coord2ind(coords, ...)

## Default S3 method:
coord2ind(

coords,
imdims,
voxdims = NULL,
origin = NULL,
aperm,
Clamp = FALSE,
CheckRanges = !Clamp,
...

)

Arguments

coords spatial coordinates of image voxels.

... extra arguments passed to methods.

imdims array dimensions of 3D image OR an object for which a as.im3d object has
been defined (see Details).

voxdims vector of 3 voxels dimensions (width, height, depth).

origin the origin of the 3D image.

aperm permutation order for axes.

Clamp ???

CheckRanges whether to check if coordinates are out of range.

Details

coord2ind is designed to cope with any user-defined class for which an as.im3d method exists.
Presently the only example in the nat.* ecosystem is nat.templatebrains::as.im3d.templatebrain.
The existence of an as.im3d method implies that voxdims,origin, and dim functions can be called.
This is the necessary information required to convert i,j,k logical indices into x,y,z spatial indices.

See Also

ind2coord, sub2ind, ijkpos
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Examples

coord2ind(cbind(1,2,3), imdims = c(1024,512,218),
voxdims = c(0.622088, 0.622088, 0.622088), origin = c(0,0,0))

## Not run:
## repeat but using a templatebrain object to specify the coordinate system
library(nat.flybrains)
coord2ind(cbind(1,2,3), JFRC2)

## End(Not run)

dotprops dotprops: Neurons as point clouds with tangent vectors (but no con-
nectivity)

Description

dotprops makes dotprops representation from raw 3D points (extracting vertices from S3 objects
that have them)

dotprops.dotprops will default to the original vale of k and copy over all attributes that are not
set by dotprops.default.

dotprops.neuronlist will run for every object in the neuronlist using nlapply. ... arguments
will be passed to nlapply in addition to the named argument OmitFailures.

Usage

is.dotprops(x)

as.dotprops(x, ...)

dotprops(x, ...)

## S3 method for class 'character'
dotprops(x, ...)

## S3 method for class 'dotprops'
dotprops(x, k = attr(x, "k"), ...)

## S3 method for class 'im3d'
dotprops(x, ...)

## S3 method for class 'neuronlist'
dotprops(x, ..., OmitFailures = NA)

## S3 method for class 'neuron'
dotprops(x, Labels = NULL, resample = NA, ...)

## Default S3 method:
dotprops(x, k = NULL, Labels = NULL, na.rm = FALSE, ...)
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Arguments

x Object to be tested/converted

... Additional arguments passed to methods

k Number of nearest neighbours to use for tangent vector calculation (set to k=20
when passed NULL)

OmitFailures Whether to omit neurons for which FUN gives an error. The default value (NA)
will result in nlapply stopping with an error message the moment there is an
eror. For other values, see details.

Labels Vector of labels for each point e.g. identifying axon vs dendrite. The default
value NULL will produce class-specific default behaviour for different classes of
input object, TRUE always uses labels when an incoming object has them and
FALSE never uses labels.

resample When finite, a new length to which all segmented edges will be resampled. See
resample.neuron.

na.rm Whether to remove NA points (default FALSE)

Details

k will default to 20 nearest neighbours when unset (i.e. when it has default value of NA) unless x is
a dotprops object (when the original value of k is reused).

References

The dotprops format is essentially identical to that developed in:

Masse N.Y., Cachero S., Ostrovsky A., and Jefferis G.S.X.E. (2012). A mutual information ap-
proach to automate identification of neuronal clusters in Drosophila brain images. Frontiers in
Neuroinformatics 6 (00021). doi: 10.3389/fninf.2012.00021

See Also

nlapply

fileformats Set or return list of registered file formats that we can read

Description

fileformats returns format names, a format definition list or a table of information about the
formats that match the given filter conditions.

registerformat registers a format in the io registry

getformatreader gets the function to read a file

getformatwriter gets the function to write a file

https://doi.org/10.3389/fninf.2012.00021
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Usage

fileformats(
format = NULL,
ext = NULL,
read = NULL,
write = NULL,
class = NULL,
rval = c("names", "info", "all")

)

registerformat(
format = NULL,
ext = format,
read = NULL,
write = NULL,
magic = NULL,
magiclen = NA_integer_,
class = NULL

)

getformatreader(file, class = NULL)

getformatwriter(format = NULL, file = NULL, ext = NULL, class = NULL)

Arguments

format Character vector naming the format

ext Character vector of file extensions (including periods)

read, write Functions to read and write this format

class The S3 class for the format (character vector e.g. ’neuron’)

rval Character vector choosing what kind of return value fileformats will give.

magic Function to test whether a file is of this format

magiclen Optional integer specifying maximum number of bytes required from file header
to determine file’s type.

file Path to a file

Details

if a format argument is passed to fileformats it will be matched with partial string matching and
if a unique match exists that will be returned.

getformatreader starts by reading a set number of bytes from the start off the current file and then
checks using file extension and magic functions to see if it can identify the file. Presently formats
are in a queue in alphabetical order, dispatching on the first match.
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Value

• fileformats returns a character vector, matrix or list according to the value of rval.

• getformatreader returns a list. The reader can be accessed with $read and the format can
be accessed by $format.

• getformatwriter returns a list. The writer can be accessed with $write.

getformatwriter output file

If getformatwriter is passed a file argument, it will be processed based on the registered file-
formats information and the ext argument to give a final output path in the $file element of the
returned list.

If ext='.someext' getformatwriter will use the specified extension to overwrite the default
value returned by fileformats.

If ext=NULL, the default, and file='somefilename.someext' then file will be untouched and
ext will be set to 'someext' (overriding the value returned by fileformats).

If file='somefile_without_extension' then the suppplied or calculated extension will be ap-
pended to file.

If ext=NA then the input file name will not be touched (even if it has no extension at all).

Note that if ext=NULL or ext=NA, then only the specified format or, failing that, the file extension
will be used to query the fileformats database for a match.

See write.neuron for code to make this discussion more concrete.

See Also

write.neuron

Examples

# information about the currently registered file formats
fileformats(rval='info')
## Not run:
registerformat("swc",read=read.swc,write=read.swc,magic=is.swc,magiclen=10,

class='neuron')

## End(Not run)
swc=tempfile(fileext = '.swc')
write.neuron(Cell07PNs[[1]], swc)
stopifnot(isTRUE(getformatreader(swc)$format=='swc'))
unlink(swc)



44 find.neuron

find.neuron Find neurons within a 3D selection box (usually drawn in rgl window)

Description

Find neurons within a 3D selection box (usually drawn in rgl window)

Usage

find.neuron(
sel3dfun = select3d(),
indices = names(db),
db = getOption("nat.default.neuronlist"),
threshold = 0,
invert = FALSE,
rval = c("names", "data.frame", "neuronlist")

)

Arguments

sel3dfun A select3d style function to indicate if points are within region

indices Names of neurons to search (defaults to all neurons in list)

db neuronlist to search. Can also be a character vector naming the neuronlist.
Defaults to options('nat.default.neuronlist').

threshold More than this many points must be present in region

invert Whether to return neurons outside the selection box (default FALSE)

rval What to return (character vector, default=’names’)

Details

Uses subset.neuronlist, so can work on dotprops or neuron lists.

Value

Character vector of names of selected neurons, neuronlist, or data.frame of attached metadata ac-
cording to the value of rval.

See Also

select3d,find.soma,subset.neuronlist
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Examples

## Not run:
plot3d(kcs20)
# draw a 3D selection e.g. around tip of vertical lobe when ready
find.neuron(db=kcs20)
# would return 9 neurons
# make a standalone selection function
vertical_lobe=select3d()
find.neuron(vertical_lobe, db=kcs20)
# use base::Negate function to invert the selection function
# i.e. choose neurons that do not overlap the selection region
find.neuron(Negate(vertical_lobe), db=kcs20)

## End(Not run)

find.soma Find neurons with soma inside 3D selection box (usually drawn in rgl
window)

Description

Find neurons with soma inside 3D selection box (usually drawn in rgl window)

Usage

find.soma(
sel3dfun = select3d(),
indices = names(db),
db = getOption("nat.default.neuronlist"),
invert = FALSE,
rval = c("names", "neuronlist", "data.frame")

)

Arguments

sel3dfun A select3d style function to indicate if points are within region

indices Names of neurons to search (defaults to all neurons in list)

db neuronlist to search. Can also be a character vector naming the neuronlist.
Defaults to options('nat.default.neuronlist').

invert Whether to return neurons outside the selection box (default FALSE)

rval What to return (character vector, default=’names’)

Details

Can work on neuronlists containing neuron objects or neuronlists whose attached data.frame
contains soma positions specified in columns called X,Y,Z .
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Value

Character vector of names of selected neurons

See Also

select3d,subset.neuronlist,find.neuron

flip Flip an array, matrix or vector about an axis

Description

Flip an array, matrix or vector about an axis

Usage

flip(x, ...)

## S3 method for class 'array'
flip(x, flipdim = "X", ...)

Arguments

x Object to flip

... Aditional arguments for methods

flipdim Character vector or 1-indexed integer indicating array dimension alogn which
flip will occur. Characters X, Y, Z map onto dimensions 1, 2, 3.

Details

Note that dimensions 1 and 2 for R matrices will be rows and columns, respectively, which does not
map easily onto the intuition of a 2D image matrix where the X axis would typically be thought of
as running from left to right on the page and the Y axis would run from top to bottom.



graph.nodes 47

graph.nodes Return root, end, or branchpoints of an igraph object

Description

Return root, end, or branchpoints of an igraph object

Usage

graph.nodes(
x,
type = c("root", "end", "branch"),
original.ids = "label",
exclude.isolated = TRUE

)

Arguments

x An igraph object

type one of root, end (which includes root) or branch

original.ids Use named attribute to return original vertex ids (when available). Set to FALSE
when this is not desired.

exclude.isolated

Do not count isolated vertices as root points (default)

Details

Note that the graph must be directed in order to return a root point

im3d Construct an im3d object representing 3D image data, densities etc

Description

im3d objects consist of a data array with attributes defining the spatial positions at which the voxels
are located. There should always be a BoundingBox attribute which defines the physical extent of
the volume in the same manner as the Amira 3D visualisation and analysis software. This corre-
sponds to the node centers option in the NRRD format.

http://teem.sourceforge.net/nrrd/format.html
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Usage

im3d(
x = numeric(0),
dims = NULL,
voxdims = NULL,
origin = NULL,
BoundingBox = NULL,
bounds = NULL,
...

)

Arguments

x The object to turn into an im3d

dims The dimensions of the image array either as an integer vector or as an im3d ob-
ject, whose attributes will provide defaults for dims,origin,BoundingBox,bounds
arguments. The default (dims=NULL) will result in dims being set to x if x is an
im3d object or dim(x) otherwise.

voxdims The voxel dimensions

origin the location (or centre) of the first voxel

BoundingBox, bounds

Physical extent of image. See the details section of boundingbox’s help for the
distinction.

... Additional attributes such as units or materials

Details

We follow Amira’s convention of setting the bounding box equal to voxel dimension (rather than 0)
for any dimension with only 1 voxel.

Value

An array with additional class im3d

See Also

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, imexpand.grid(), imslice(),
is.im3d(), mask(), origin(), projection(), threshold(), unmask(), voxdims()



im3d-coords 49

im3d-coords Interconvert pixel and physical coordinates

Description

xyzpos converts pixel coordinates to physical coordinates

ijkpos converts physical coordinates to pixel coordinates

Usage

xyzpos(d, ijk)

ijkpos(d, xyz, roundToNearestPixel = TRUE)

Arguments

d An im3d object defining a physical space

ijk an Nx3 matrix of pixel coordinates (1-indexed)

xyz Nx3 matrix of physical coordinates

roundToNearestPixel

Whether to round calculated pixel coordinates to nearest integer value (i.e. near-
est pixel). default: TRUE

Value

Nx3 matrix of physica l or pixel coordinates

See Also

ind2coord

Other im3d: as.im3d(), boundingbox(), im3d-io, im3d(), imexpand.grid(), imslice(), is.im3d(),
mask(), origin(), projection(), threshold(), unmask(), voxdims()

Examples

# make an emty im3d
d=im3d(,dim=c(20,30,40),origin=c(10,20,30),voxdims=c(1,2,3))
# check round trip for origin
stopifnot(all.equal(ijkpos(d,xyzpos(d,c(1,1,1))), c(1,1,1)))
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im3d-io Read/Write calibrated 3D blocks of image data

Description

Read/Write calibrated 3D blocks of image data

Usage

read.im3d(
file,
ReadData = TRUE,
SimplifyAttributes = FALSE,
ReadByteAsRaw = FALSE,
...

)

write.im3d(x, file, format = NULL, ...)

Arguments

file Character vector describing a single file

ReadData Whether to read the data itself or return metadata only. Default: TRUE
SimplifyAttributes

When TRUE leave only core im3d attributes.

ReadByteAsRaw Whether to read byte values as R raw arrays. These occupy 1/4 memory but
arithmetic is less convenient. (default: FALSE)

... Arguments passed to methods

x The image data to write (an im3d, or capable of being interpreted as such)

format Character vector specifying an image format (e.g. "nrrd", "amiramesh"). Op-
tional, since the format will normally be inferred from the file extension. See
getformatwriter for details.

Details

Currently only nrrd and amira formats are implemented. Furthermore implementing a registry to
allow extension to arbitrary formats remains a TODO item.

The core attributes of an im3d object are BoundingBox,origin,x,y ,z where x,y,z are the loca-
tions of samples in the x, y and z image axes (which are assumed to be orthogonsl).

Value

For read.im3d an objecting inheriting from base array and im3d classes.
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See Also

read.nrrd,read.amiramesh

write.nrrd, getformatwriter

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d(), imexpand.grid(), imslice(),
is.im3d(), mask(), origin(), projection(), threshold(), unmask(), voxdims()

Examples

## Not run:
# read attributes of vaa3d raw file
read.im3d("L1DS1_crop_straight.raw", ReadData = F, chan=2)

## End(Not run)

image.im3d Method to plot spatially calibrated image arrays

Description

Method to plot spatially calibrated image arrays

Usage

## S3 method for class 'im3d'
image(
x,
xlim = NULL,
ylim = NULL,
zlim = NULL,
plotdims = NULL,
flipdims = "y",
filled.contour = FALSE,
asp = 1,
axes = FALSE,
xlab = NULL,
ylab = NULL,
nlevels = 20,
levels = pretty(zlim, nlevels + 1),
color.palette = colorRampPalette(c("navy", "cyan", "yellow", "red")),
col = color.palette(length(levels) - 1),
useRaster = NULL,
...

)
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Arguments

x The im3d object containing the data to be plotted (NAs are allowed).
xlim, ylim ranges for the plotted x and y values, defaulting to the BoundingBox of x.
zlim the minimum and maximum z values for which colors should be plotted, de-

faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted.

plotdims Which dimensions of 3D im3d object to plot (character vector). Defaults to
c('x','y')

flipdims Which dimensions to flip (character vector). Defaults to flipping y.
filled.contour Whether to use a filled.contour plot instead of a regular image plot.
asp Whether to have a a square aspect ratio (logical, default: FALSE)
axes Whether to plot axes (default: FALSE)
xlab, ylab each a character string giving the labels for the x and y axis. Default to the ‘call

names’ of x or y, or to "" if these were unspecified.
nlevels The number of colour levels in z
levels The levels at which to break z values
color.palette The colour palette from which col will be selected.
col a list of colors such as that generated by rainbow, heat.colors, topo.colors,

terrain.colors or similar functions.
useRaster Whether to use rasterImage to plot images as a bitmap (much faster for large

images). default useRaster=NULL checks dev.capabilities to see if raster
images are supported.

... graphical parameters for plot or image may also be passed as arguments to this
function.

Value

A list with elements:

• zlim The z (intensity limits)
• nlevels.actual The actual number of plotted levels
• nlevels.orig The requested number of plotted levels
• levels The chosen levels
• colors A character vector of colours

Examples

## Not run:
LHMask=read.im3d(system.file('tests/testthat/testdata/nrrd/LHMask.nrrd',package='nat'))
image(imslice(LHMask,10), asp=TRUE)
# useRaster is appreciably quicker in most cases
image(imslice(LHMask,10), asp=TRUE, useRaster=TRUE)

## End(Not run)
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imexpand.grid Convert locations of im3d voxel grid into XYZ coordinates

Description

Convert locations of im3d voxel grid into XYZ coordinates

Usage

imexpand.grid(d)

Arguments

d An im3d object

Value

Nx3 matrix of image coordinates

See Also

expand.grid

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imslice(), is.im3d(),
mask(), origin(), projection(), threshold(), unmask(), voxdims()

Examples

d=im3d(,dim=c(2,3,2),origin=c(10,20,30),voxdims=c(1,2,3))
imexpand.grid(d)

imscalebar Make a scalebar to accompany an image.im3d plot

Description

Make a scalebar to accompany an image.im3d plot

Usage

imscalebar(
levels,
col,
nlevels = NULL,
zlim = NULL,
horizontal = TRUE,
lab = "Density",



54 imslice

mar = c(4, 2, 2, 2) + 0.1,
border = NULL,
...

)

Arguments

levels The levels at which z values were cut or a list returned by image.im3d

col The plotted colours for each level
nlevels The number of colour levels (inferred from levels when NULL)
zlim The limits of the plotted z (intensity) values of the image
horizontal Whether to make a horizontal or vertical scalebar (default: TRUE)
lab The (single) axis label for the scale bar (default: Density)
mar The margins for ths plot
border Color for rectangle border (see rect’s border argument for details).
... Additional arguments for plot

Examples

## Not run:
LHMask=read.im3d(system.file('tests/testthat/testdata/nrrd/LHMask.nrrd',package='nat'))
op=par(no.readonly = TRUE)
layout(matrix(c(1, 2), ncol = 2L), widths = c(1, 0.2))
rval=image(imslice(LHMask,10), asp=TRUE)
imscalebar(rval)
par(op)

## End(Not run)

imslice Slice out a 3D subarray (or 2d matrix) from a 3D image array

Description

Slice out a 3D subarray (or 2d matrix) from a 3D image array

Usage

imslice(x, slice, slicedim = "z", drop = TRUE)

Arguments

x An im3d objet
slice Indices defining the slices to keep
slicedim Character vector or integer defining axis from which slices will be removed.
drop Whether singleton dimensions will be dropped (default: TRUE) conveting 3D

array to 2d matrix.
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Details

Note the sample locations stored in the x,y,z attributes will be updated appropriately. FIXME:
Should we also update bounding box?

See Also

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(),
is.im3d(), mask(), origin(), projection(), threshold(), unmask(), voxdims()

ind2coord Find XYZ coords corresponding to 1D indices into a 3D image

Description

If you have an image-like object and you want to turn it into a matrix of 3D coords then you need
ind2coord. For the reverse operation we offer as.im3d.matrix which allows you to turn a matrix
of 3D coordinates into an im3d image object.

Usage

ind2coord(inds, ...)

## Default S3 method:
ind2coord(inds, dims, voxdims, origin, ...)

## S3 method for class 'array'
ind2coord(inds, voxdims = NULL, origin = NULL, ...)

## S3 method for class 'im3d'
ind2coord(inds, voxdims = NULL, origin = NULL, ...)

Arguments

inds indices into an image array (either 1D, for which dims must be present, or a
logical array).

... extra arguments passed to methods.

dims dimensions of 3D image array.

voxdims vector of 3 voxel dimensions (width, height, depth).

origin the origin.

See Also

coord2ind, sub2ind, xyzpos, as.im3d.matrix
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intersect Find the intersection of two collections of objects

Description

Find the intersection of two collections of objects

Usage

intersect(x, y, ...)

## Default S3 method:
intersect(x, y, ...)

## S3 method for class 'neuronlist'
intersect(x, y, ...)

Arguments

x the first collection to consider.

y the second collection to consider.

... additional arguments passed to methods

Details

Note that intersect.default calls base::intersect to ensure consistent behaviour for regular vectors.

Value

A collection of the same mode as x that contains all elements of x that are also present in y.

See Also

intersect

is.amiramesh Check if file is amiramesh format

Description

Check if file is amiramesh format

Usage

is.amiramesh(f = NULL, bytes = NULL)
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Arguments

f Path to one or more files to be tested or an array of raw bytes, for one file only.

bytes optional raw vector of at least 11 bytes from the start of a single file (used in
preference to reading file f).

Details

Tries to be as fast as possible by reading only first 11 bytes and checking if they equal to "# Ami-
raMesh" or (deprecated) "# HyperMesh".

Value

logical

See Also

Other amira: amiratype(), read.amiramesh(), read.hxsurf(), write.hxsurf()

is.fijitraces Check whether a file is in Fiji’s simple neurite tracer format

Description

This will check a file on disk to see if it is in Fiji’s simple neurite tracer XML format.

Usage

is.fijitraces(f, bytes = NULL)

Arguments

f path to a file on disk

bytes optional raw vector of bytes used for prechecks

Details

Some prechecks (optionally taking place on a supplied raw vector of bytes) should weed out nearly
all true negatives and identify many true positives without having to read/parse the file header.
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is.im3d Test if an object is of class im3d

Description

Test if an object is of class im3d

Usage

is.im3d(x)

Arguments

x Object to test

Value

logical

See Also

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(),
imslice(), mask(), origin(), projection(), threshold(), unmask(), voxdims()

is.neuroml Check whether a file is in NeuroML format

Description

This will check a file on disk to see if it is in NeuroML format. Some prechecks (optionally taking
place on a supplied raw vector of bytes) should weed out nearly all true negatives and identify many
true positives without having to read/parse the file header.

Usage

is.neuroml(f, bytes = NULL)

Arguments

f path to a file on disk

bytes optional raw vector of bytes used for prechecks
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is.neuronlist Test objects of neuronlist class to store multiple neurons

Description

Tests if object is a neuronlist.

Usage

is.neuronlist(x)

Arguments

x the object to test

Details

is.neuronlist uses a relaxed definition to cope with older lists of neurons that do not have a class
attribute of neuronlist.

Value

A logical indicating whether the object is a neuronlist.

See Also

Other neuronlist: *.neuronlist(), neuronlist-dataframe-methods, neuronlistfh(), neuronlist(),
nlapply(), read.neurons(), write.neurons()

is.nrrd Check if a file is a NRRD file

Description

Check if a file is a NRRD file

Usage

is.nrrd(f = NULL, bytes = NULL, ReturnVersion = FALSE, TrustSuffix = FALSE)

Arguments

f A character vector specifying the path or a raw vector with at least 8 bytes.
bytes optional raw vector of at least 8 bytes from the start of a single file (used in

preference to reading file f).
ReturnVersion Whether to return the version of the nrrd format in which the file is encoded

(1-5).
TrustSuffix Whether to trust that a file ending in .nrrd or .nhdr is a NRRD
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Details

Note that multiple files can be checked when a character vector of length > 1 is provided, but only
one file can be checked when a raw byte array is provided.

is.swc Test if a file is an SWC format neuron

Description

Test if a file is an SWC format neuron

Usage

is.swc(f, TrustSuffix = TRUE)

Arguments

f Path to one or more files

TrustSuffix Whether to trust that a file ending in .nrrd or .nhdr is a NRRD

Details

Note that this test is somewhat expensive compared with the other file tests since SWC files do not
have a consistent magic value. It therefore often has to read and parse the first few lines of the file
in order to determine whether they are consistent with the SWC format.

Value

logical value

See Also

read.neuron
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is.vaa3draw Check if a file is in the raw image format used by Hanchuan Peng’s
Vaa3D

Description

See http://www.vaa3d.org/ https://github.com/Vaa3D/v3d_external/blob/master/imagej_io/v3draw_io_imagej/raw_reader.java

Usage

is.vaa3draw(f, bytes = NULL)

Arguments

f A character vector specifying the path or a raw vector (see bytes).

bytes optional raw vector of at least 24 bytes from the start of a single file (used in
preference to reading file f).

Details

Note that multiple files can be checked when a character vector of length > 1 is provided, but only
one file can be checked when a raw byte array is provided.

kcs20 List of 20 Kenyon Cells from Chiang et al 2011 converted to dotprops
objects

Description

This R list (which has additional class neuronlist) contains 20 skeletonized Drosophila Kenyon
cells as dotprops objects. Original data is due to Chiang et al. 2011, who have generously shared
their raw data at http://flycircuit.tw. Image registration and further processing was carried
out by Greg Jefferis.

References

[1] Chiang A.S., Lin C.Y., Chuang C.C., Chang H.M., Hsieh C.H., Yeh C.W., Shih C.T., Wu J.J.,
Wang G.T., Chen Y.C., Wu C.C., Chen G.Y., Ching Y.T., Lee P.C., Lin C.Y., Lin H.H., Wu C.C.,
Hsu H.W., Huang Y.A., Chen J.Y., et al. (2011). Three-dimensional reconstruction of brain-wide
wiring networks in Drosophila at single-cell resolution. Curr Biol 21 (1), 1–11.

See Also

head.neuronlist, with.neuronlist, plot3d.neuronlist, plot3d.dotprops, dotprops

Other nat-data: Cell07PNs, MBL.surf

http://flycircuit.tw
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Examples

head(kcs20)
table(with(kcs20, type))
nopen3d()
# see plot3d.neuronlist documentation for more details

plot3d(kcs20, col=type)

mask Mask an object, typically to produce a copy with some values zeroed
out

Description

Mask an object, typically to produce a copy with some values zeroed out

Usage

mask(x, ...)

## S3 method for class 'im3d'
mask(x, mask, levels = NULL, rval = c("im3d", "values"), invert = FALSE, ...)

Arguments

x Object to be masked

... Additional arguments passed to methods

mask An im3d object, an array or a vector with dimensions compatible with x.

levels Optional numeric vector of pixel values or character vector defining named
materials.

rval Whether to return an im3d object based on x or just the values from x matching
the mask.

invert Whether to invert the voxel selection (default FALSE)

Details

Note that mask.im3d passes . . . arguments on to im3d

Value

an oject with attributes matching x and elements with value as.vector(TRUE,mode=mode) i.e.
TRUE,1,0x01 and as.vector(FALSE,mode=mode) i.e. FALSE,0,0x00 as appropriate.

A copy of x with
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See Also

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(),
imslice(), is.im3d(), origin(), projection(), threshold(), unmask(), voxdims()

Examples

x=im3d(array(rnorm(1000),dim=c(10,10,10)), BoundingBox=c(20,200,100,200,200,300))
m=array(1:5,dim=c(10,10,10))
image(x[,,1])
image(mask(x, mask=m, levels=1)[,,1])
image(mask(x, mask=m, levels=1:2)[,,1])

materials Extract or set the materials for an object

Description

materials.character will read the materials from an im3d compatible image file on disk.

materials.hxsurf will extract the materials from an hxsurf object

Usage

materials(x, ...)

## Default S3 method:
materials(x, ...)

## S3 method for class 'character'
materials(x, ...)

## S3 method for class 'hxsurf'
materials(x, ...)

Arguments

x An object in memory or, for materials.character, an image on disk.

... additional parameters passed to methods (presently ignored)

Details

Note that the id column will be the 1-indexed order that the material appears in the surf$Region
list for hxsurf objects and the 0-indexed mask values for an image.

Presently only amiramesh images are supported since they have a standardised way of encoding
labels, whereas nrrds would have to use key-value pairs according to some ad hoc convention.
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Value

A data.frame with columns name,id,col

See Also

Other hxsurf: as.hxsurf(), as.mesh3d(), plot3d.hxsurf(), read.hxsurf(), subset.hxsurf(),
write.hxsurf()

MBL.surf Surface object (hxsurf) for the left mushroom body in FCWB template
space

Description

This surface object is in the same space as the 20 Kenyon cells in kcs20.

See Also

hxsurf

Other nat-data: Cell07PNs, kcs20

Examples

plot3d(kcs20)
plot3d(MBL.surf, alpha=0.3)

## Not run:
## originally generated as follows
library(nat.flybrains)
MBL.surf=subset(FCWBNP.surf, "MB.*_L", drop = T)

## End(Not run)

mirror Mirror 3D object about a given axis, optionally using a warping reg-
istration

Description

mirroring with a warping registration can be used to account e.g. for the asymmetry between brain
hemispheres.

mirror.character handles images on disk
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Usage

mirror(x, ...)

## S3 method for class 'character'
mirror(x, output, mirrorAxisSize = NULL, target = x, ...)

## Default S3 method:
mirror(
x,
mirrorAxisSize,
mirrorAxis = c("X", "Y", "Z"),
warpfile = NULL,
transform = c("warp", "affine", "flip"),
...

)

## S3 method for class 'neuronlist'
mirror(x, subset = NULL, OmitFailures = NA, ...)

Arguments

x Object with 3D points (with named cols X,Y,Z) or path to image on disk.

... additional arguments passed to methods or eventually to xform

output Path to the output image

mirrorAxisSize A single number specifying the size of the axis to mirror or a 2 vector (recommended)
or 2x3 matrix specifying the boundingbox (see details).

target Path to the image defining the target grid (defaults to the input image - hard to
see when this would not be wanted).

mirrorAxis Axis to mirror (default "X"). Can also be an integer in range 1:3.

warpfile Optional registration or reglist to be applied after the simple mirroring.. It is
called warpfile for historical reasons, since it is normally the path to a CMTK
registration that specifies a non-rigid transformation to correct asymmetries in
an image.

transform whether to use warp (default) or affine component of registration, or simply flip
about midplane of axis.

subset For mirror.neuronlist indices (character/logical/integer) that specify a subset
of the members of x to be transformed.

OmitFailures Whether to omit neurons for which FUN gives an error. The default value (NA)
will result in nlapply stopping with an error message the moment there is an
eror. For other values, see details.

Details

The mirrorAxisSize argument can be specified in 3 ways for the x axis with extreme values,
x0+x1:
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• a single number equal to x0+x1

• a 2-vector c(x0, x1) (recommended)

• the boundingbox for the 3D data to be mirrored: the relevant axis specified by mirrorAxis
will be extracted.

This function is agnostic re node vs cell data, but for node data BoundingBox should be supplied
while for cell, it should be bounds. See boundingbox for details of BoundingBox vs bounds.

See nlapply for details of the subset and OmitFailures arguments.

Value

Object with transformed points

See Also

xform,boundingbox

nlapply

Examples

nopen3d()
x=Cell07PNs[[1]]
mx=mirror(x,168)

plot3d(x,col='red')
plot3d(mx,col='green')

# also works with dotprops objects
clear3d()
y=kcs20[[1]]
my=mirror(y,mirrorAxisSize=564.2532,transform='flip')

plot3d(y, col='red')
plot3d(my, col='green')

## Not run:
## Example with an image
# note that we must specify an output image (obviously) but that as a
# convenience mirror calculates the mirrorAxisSize for us
mirror('myimage.nrrd', output='myimage-mirrored.nrrd',

warpfile='myimage_mirror.list')

# Simple flip along a different axis
mirror('myimage.nrrd', output='myimage-flipped.nrrd', mirrorAxis="Y",

transform='flip')

## End(Not run)
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ndigest Calculated normalised digest value for an object

Description

The normalised digest should exclude any fields or attributes irrelevant to the core contents of the
object (e.g. timestamps, absolute location of the input files on disk etc). In theory then, this value
should be constant for the same data regardless of the particular machine on which the digest is
being computed.

Usage

ndigest(x, ...)

## S3 method for class 'neuronlistfh'
ndigest(x, ...)

## S3 method for class 'dotprops'
ndigest(x, absoluteVectors = TRUE, ...)

## S3 method for class 'neuron'
ndigest(
x,
fieldsToExclude = c("InputFileName", "CreatedAt", "NodeName", "InputFileStat",

"InputFileMD5"),
...

)

Arguments

x Object for which a normalised digest will be computed.

... Additional arguments passed to methods and then on to digest

absoluteVectors

Whether to check only the absolute value of eigenvectors for equality (default
TRUE, see details)

fieldsToExclude

Character vector naming the neuron fields to exclude

Details

ndigest.neuronlistfh only considers the keyfilemap and df (metadata data.frame) when com-
puting the hash value. See neuronlistfh for the significance of these two fields.

ndigest.dotprops ignores any mtime or file attributes. It also converts tangent vectors to abso-
lute values (when absoluteVectors=TRUE) because the direction vectors are computed using an
eigenvector decomposition where the sign of the eigenvector is essentially random and subject to
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small numerical instabilities. Therefore it does not usually make sense to rely on the value of vect
exactly.

ndigest.neuron ignores the following fields:

• InputFileName

• CreatedAt

• NodeName

• InputFileStat

• InputFileMD5

Value

A character string containing the digest of the supplied object computed by digest.

See Also

digest

all.equal.dotprops

all.equal.neuron

Examples

stopifnot(all.equal(ndigest(kcs20[[1]]), "4c045b0343938259cd9986494fc1c2b0"))

neuron neuron: class to represent traced neurons

Description

neuron makes a neuron object from appropriate variables.

is.neuron will check if an object looks like a neuron.

as.neuron will convert a suitable object to a neuron

as.neuron.data.frame expects a block of SWC format data

as.neuron.ngraph converts a graph (typically an ngraph object) to a neuron

as.neuron.igraph will convert an ngraph compatible igraph object into a neuron.

as.neuron.default will add class "neuron" to a neuron-like object.
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Usage

neuron(
d,
NumPoints = nrow(d),
StartPoint,
BranchPoints = integer(),
EndPoints,
SegList,
SubTrees = NULL,
InputFileName = NULL,
NeuronName = NULL,
...,
MD5 = TRUE

)

is.neuron(x, Strict = FALSE)

as.neuron(x, ...)

## S3 method for class 'data.frame'
as.neuron(x, ...)

## S3 method for class 'ngraph'
as.neuron(x, vertexData = NULL, origin = NULL, Verbose = FALSE, ...)

## S3 method for class 'igraph'
as.neuron(x, ...)

## Default S3 method:
as.neuron(x, ...)

Arguments

d matrix of vertices and associated data in SWC format

NumPoints Number of points in master subtree

StartPoint, BranchPoints, EndPoints

Nodes of the neuron

SegList List where each element contains the vertex indices for a single segments of the
neuron, starting at root.

SubTrees List of SegLists where a neuron has multiple unconnected trees (e.g. because
the soma is not part of the graph, or because the neuronal arbour has been cut.)

InputFileName Character vector with path to input file

NeuronName Character vector containing name of neuron or a function with one argument
(the full path) which returns the name. The default (NULL) sets NeuronName to
the file name without the file extension.
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... Additional fields to be included in neuron. Note that if these include Create-
dAt, NodeName, InputFileStat or InputFileMD5, they will override fields of
that name that are calculated automatically.

MD5 Logical indicating whether to calculate MD5 hash of input

x A neuron or other object to test/convert

Strict Whether to check class of neuron or use a more relaxed definition based on
object being a list with a SegList component.

vertexData A dataframe with SWC fields especially X,Y,Z,W,PointNo, Parent.

origin Root vertex, matched against labels (aka PointNo) when available (see details)

Verbose Whether to be verbose (default: FALSE)

Details

neuron objects consist of a list containing multiple fields describing the 3D location and connectivity
of points in a traced neuron. The critical fields of a neuron, n, are n$d which contains a dataframe
in SWC format and n$SegList which contains a representation of the neuron’s topology used for
most internal calculations. For historical reasons, n$SegList is limited to a single fully-connected
tree. If the tree contains multiple unconnected subtrees, then these are stored in n$SubTrees and
nTrees will be >1; the "master" subtree (typically the one with the most points) will then be stored
in n$SegList and n$NumPoints will refer to the number of points in that subtree, not the whole
neuron.

StartPoint, BranchPoints, EndPoints are indices matching the rows of the vertices in d not arbitrary
point numbers typically encoded in d$PointNo.

Columns will be ordered c(’PointNo’,’Label’,’X’,’Y’,’Z’,’W’,’Parent’)

Uses a depth first search on the tree to reorder using the given origin.

When the graph contains multiple subgraphs, only one will be chosen as the master tree and used to
construct the SegList of the resultant neuron. However all subgraphs will be listed in the SubTrees
element of the neuron and nTrees will be set appropriately.

When the graph vertices have a label attribute derived from PointNo, the origin is assumed to be
specified with respect to the vertex labels rather than the raw vertex ids.

Value

A list with elements: (NumPoints,StartPoint,BranchPoints,EndPoints,nTrees,NumSegs,SegList, [Sub-
Trees]) NB SubTrees will only be present when nTrees>1.

See Also

neuronlist

graph.dfs,as.seglist

Other neuron: ngraph(), plot.neuron(), potential_synapses(), prune(), resample(), rootpoints(),
spine(), subset.neuron()
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Examples

## See help for functions listed in See Also for more detailed examples
## Basic properties
# a sample neuron
n = Cell07PNs[[1]]
# inspect its internal structure
str(n)
# summary of 3D points
summary(xyzmatrix(n))
# identify 3d location of endpoints
xyzmatrix(n)[endpoints(n),]

## Other methods
# plot
plot(n)
# all methods for neuron objects
methods(class = 'neuron')

## Neurons as graphs
# convert to graph and find longest paths by number of nodes
ng=as.ngraph(n)
hist(igraph::distances(ng))
# ... or in distances microns
ngw=as.ngraph(n, weights=TRUE)
hist(igraph::distances(ngw))

# converting back and forth between neurons and graphs
g=as.ngraph(Cell07PNs[[1]])
gstem=igraph::induced.subgraph(g, 1:10)
# this is fine
plot(gstem)
plot(as.neuron(gstem))

# but if you had an undirected graph
ug=igraph::as.undirected(gstem)
# you get a warning because there is no explicit origin for the graph
as.neuron(ug)

# If you need finer control of the conversion process
gstem2=as.ngraph(ug, root = 10)
plot(gstem2)
plot(as.neuron(gstem2))

neuronlist Create a neuronlist from zero or more neurons

Description

neuronlist objects consist of a list of neuron objects (usually of class neuron or dotprops) along
with an optional attached dataframe containing information about the neurons. neuronlist objects
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can be indexed using their name or the number of the neuron like a regular list. Both the list itself
and the attached data.frame must have the same unique (row)names. If the [ operator is used to
index the list, the attached dataframe will also be subsetted.

It is perfectly acceptable not to pass any parameters, generating an empty neuronlist

Usage

neuronlist(..., DATAFRAME = NULL)

Arguments

... objects to be turned into a list

DATAFRAME an optional data.frame to attach to the neuronlist containing information about
each neuron.

Value

A new neuronlist object.

See Also

as.data.frame.neuronlist, neuronlist-dataframe-methods, neuron, dotprops

Other neuronlist: *.neuronlist(), is.neuronlist(), neuronlist-dataframe-methods, neuronlistfh(),
nlapply(), read.neurons(), write.neurons()

Examples

# generate an empty neuronlist
nl=neuronlist()
# slice an existing neuronlist with regular indexing
kcs5=kcs20[1:5]

# extract a single neuron from a neuronlist
n1=Cell07PNs[[1]]

# list all methods for neuronlist objects
methods(class='neuronlist')

neuronlist-dataframe-methods

Methods for working with the dataframe attached to a neuronlist
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Description

[.neuronlist and [<-.neuronlist behave like the corresponding base methods ([.data.frame,
[<-.data.frame) allowing extraction or replacement of parts of the data.frame attached to the
neuronlist.

droplevels Remove redundant factor levels in dataframe attached to neuronlist

with Evaluate expression in the context of dataframe attached to a neuronlist

head Return the first part of data.frame attached to neuronlist

tail Return the last part of data.frame attached to neuronlist

Usage

## S3 method for class 'neuronlist'
x[i, j, drop]

## S3 replacement method for class 'neuronlist'
x[i, j] <- value

## S3 method for class 'neuronlist'
droplevels(x, except = NULL, ...)

## S3 method for class 'neuronlist'
with(data, expr, ...)

## S3 method for class 'neuronlist'
head(x, ...)

## S3 method for class 'neuronlist'
tail(x, ...)

Arguments

x A neuronlist object

i, j elements to extract or replace. Numeric or character or, for [ only, empty. Nu-
meric values are coerced to integer as if by as.integer. See [.data.frame for
details.

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

except indices of columns from which not to drop levels

... Further arguments passed to default methods (and usually ignored)

data A neuronlist object

expr The expression to evaluate
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Value

the attached dataframe with levels dropped (NB not the neuronlist)

See Also

[.data.frame, @seealso [<-.data.frame

droplevels

with

head

tail

Other neuronlist: *.neuronlist(), is.neuronlist(), neuronlistfh(), neuronlist(), nlapply(),
read.neurons(), write.neurons()

Examples

## treat kcs20 as data.frame
kcs20[1, ]
kcs20[1:3, ]
kcs20[, 1:4]
kcs20[, 'soma_side']
# alternative to as.data.frame(kcs20)
kcs20[, ]

## can also set columns
kcs13=kcs20[1:3]
kcs13[,'side']=as.character(kcs13[,'soma_side'])
head(kcs13)
# or parts of columns
kcs13[1,'soma_side']='R'
kcs13['FruMARCM-M001205_seg002','soma_side']='L'
# remove a column
kcs13[,'side']=NULL
all.equal(kcs13, kcs20[1:3])

# can even replace the whole data.frame like this
kcs13[,]=kcs13[,]
all.equal(kcs13, kcs20[1:3])

## get row/column names of attached data.frame
# (unfortunately implementing ncol/nrow is challenging)
rownames(kcs20)
colnames(kcs20)
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neuronlistfh neuronlistfh - List of neurons loaded on demand from disk or remote
website

Description

neuronlistfh objects consist of a list of neuron objects along with an optional attached dataframe
containing information about the neurons. In contrast to neuronlist objects the neurons are not
present in memory but are instead dynamically loaded from disk as required. neuronlistfh objects
also inherit from neuronlist and therefore any appropriate methods e.g. plot3d.neuronlist can
also be used on neuronlistfh objects.

neuronlistfh constructs a neuronlistfh object from a filehash, data.frame and keyfilemap.
End users will not typically use this function to make a neuronlistfh. They will usually read
them using read.neuronlistfh and sometimes create them by using as.neuronlistfh on a
neuronlist object.

is.neuronlistfh test if an object is a neuronlistfh

as.neuronlistfh generic function to convert an object to neuronlistfh

as.neuronlistfh.neuronlist converts a regular neuronlist to one backed by a filehash object
with an on disk representation

Usage

neuronlistfh(db, df, keyfilemap, hashmap = 1000L)

is.neuronlistfh(nl)

as.neuronlistfh(x, df, ...)

## S3 method for class 'neuronlist'
as.neuronlistfh(
x,
df = attr(x, "df"),
dbdir = NULL,
dbClass = c("RDS", "RDS2"),
remote = NULL,
WriteObjects = c("yes", "no", "missing"),
...

)

Arguments

db a filehash object that manages an on disk database of neuron objects. See
Implementation details.

df Optional dataframe, where each row describes one neuron
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keyfilemap A named character vector in which the elements are filenames on disk (managed
by the filehash object) and the names are the keys used in R to refer to the neuron
objects. Note that the keyfilemap defines the order of objects in the neuronlist
and will be used to reorder the dataframe if necessary.

hashmap A logical indicating whether to add a hashed environment for rapid object lookup
by name or an integer or an integer definining a threhsold number of objects
when this will happen (see Implementation details).

nl Object to test

x Object to convert

... Additional arguments for methods, eventually passed to neuronlistfh() con-
structor.

dbdir The path to the underlying filehash database on disk. By convention this
should be a path whose final element is ’data’

dbClass The filehash database class. Defaults to RDS.

remote The url pointing to a remote repository containing files for each neuron.

WriteObjects Whether to write objects to disk. Missing implies that existing objects will not
be overwritten. Default "yes".

Value

a neuronlistfh object which is a character vector with classes neuronlistfh,neuronlist and
attributes db,df. See Implementation details.

Implementation details

neuronlistfh objects are a hybrid between regular neuronlist objects that organise data and meta-
data for collections of neurons and a backing filehash object. Instead of keeping objects in mem-
ory, they are always loaded from disk. Although this sounds like it might be slow, for nearly all
practical purposes (e.g. plotting neurons) the time to read the neuron from disk is small compared
with the time to plot the neuron; the OS will cache repeated reads of the same file. The benefits in
memory and startup time (<1s vs 100s for our 16,000 neuron database) are vital for collections of
1000s of neurons e.g. for dynamic report generation using knitr or for users with <8Gb RAM or
running 32 bit R.

neuronlistfh objects include:

• attr("keyfilemap") A named character vector that determines the ordering of objects in the neu-
ronlist and translates keys in R to filenames on disk. For objects created by as.neuronlistfh
the filenames will be the md5 hash of the object as calculated using digest. This design
means that the same key can be used to refer to multiple distinct objects on disk. Objects
are effecitvely versioned by their contents. So if an updated neuronlistfh object is posted to
a website and then fetched by a user it will result in the automated download of any updated
objects to which it refers.

• attr("db") The backing database - typically of class filehashRDS. This manages the loading
of objects from disk.

• attr(x,"df") The data.frame of metadata which can be used to select and plot neurons. See
neuronlist for examples.
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• attr(x,"hashmap") (Optional) a hashed environment which can be used for rapid lookup using
key names (rather than numeric/logical indices). There is a space potential to pay for this
redundant lookup method, but it is normally worth while given that the dataframe object is
typically considerably larger. To give some numbers, the additional environment might occupy
~ 1 time from 0.5 ms to 1us. Having located the object, on my machine it can take as little as
0.1ms to load from disk, so these savings are relevant.

Presently only backing objects which extend the filehash class are supported (although in theory
other backing objects could be added). These include:

• filehash RDS

• filehash RDS2 (experimental)

We have also implemented a simple remote access protocol (currently only for the RDS format).
This allows a neuronlistfh object to be read from a url and downloaded to a local path. Subsequent
attempts to access neurons stored in this list will result in automated download of the requested
neuron to the local cache.

An alternative backend, the experimental RDS2 format is supported (available at https://github.
com/jefferis/filehash). This is likely to be the most effective for large (5,000-500,000) collec-
tions of neurons, especially when using network filesystems (nfs, afp) which are typically very slow
at listing large directories.

Note that objects are stored in a filehash, which by definition does not have any ordering of its
elements. However neuronlist objects (like lists) do have an ordering. Therefore the names of a
neuronlistfh object are not necessarily the same as the result of calling names() on the underlying
filehash object.

See Also

filehash-class

Other neuronlistfh: [.neuronlistfh(), read.neuronlistfh(), remotesync(), write.neuronlistfh()

Other neuronlist: *.neuronlist(), is.neuronlist(), neuronlist-dataframe-methods, neuronlist(),
nlapply(), read.neurons(), write.neurons()

Examples

## Not run:
kcnl=read.neuronlistfh('http://jefferislab.org/si/nblast/flycircuit/kcs20.rds',
'path/to/my/project/folder')
# this will automatically download the neurons from the web the first time
# it is run
plot3d(kcnl)

## End(Not run)
## Not run:
# create neuronlistfh object backed by filehash with one file per neuron
# by convention we create a subfolder called data in which the objects live
kcs20fh=as.neuronlistfh(kcs20, dbdir='/path/to/my/kcdb/data')
plot3d(subset(kcs20fh,type=='gamma'))
# ... and, again by convention, save the neuronlisfh object next to filehash
# backing database

https://github.com/jefferis/filehash
https://github.com/jefferis/filehash
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write.neuronlistfh(kcs20fh, file='/path/to/my/kcdb/kcdb.rds')

# in a new session
read.neuronlistfh("/path/to/my/kcdb/kcdb.rds")
plot3d(subset(kcs20fh, type=='gamma'))

## End(Not run)

ngraph ngraph: a graph to encode a neuron’s connectivity

Description

the ngraph class contains a (completely general) graph representation of a neuron’s connectivity in
an igraph object. It may additionally contain vertex label or position data. See details.

ngraph() creates an ngraph from edge and vertex information.

as.ngraph converts an object to an ngraph

as.ngraph.dataframe construct ngraph from a data.frame containing SWC format data

as.ngraph.neuron construct ngraph from a neuron

Usage

ngraph(
el,
vertexlabels,
xyz = NULL,
diam = NULL,
directed = TRUE,
weights = FALSE,
vertex.attributes = NULL,
graph.attributes = NULL

)

as.ngraph(x, ...)

## S3 method for class 'data.frame'
as.ngraph(x, directed = TRUE, ...)

## S3 method for class 'neuron'
as.ngraph(x, directed = TRUE, method = c("swc", "seglist"), ...)

Arguments

el A two columm matrix (start, end) defining edges. start means closer to the
root (soma) of the neuron.

vertexlabels Integer labels for graph - the edge list is specified using these labels.
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xyz 3D coordinates of vertices (optional, Nx3 matrix, or Nx4 matrix when 4th col-
umn is assumed to be diameter)

diam Diameter of neuron at each vertex (optional)

directed Whether the resultant graph should be directed (default TRUE)

weights Logical value indicating whether edge weights defined by the 3D distance be-
tween points should be added to graph (default FALSE) or a numeric vector of
weights.

vertex.attributes, graph.attributes

List of named attributes to be added to the graph. The elements of vertex.attributes
must be vectors whose length is compatible with the number of elements in the
graph. See set.vertex.attribute for details.

x Object to convert (see method descriptions)

... Arguments passed to methods

method Whether to use the swc data (x$d) or the seglist to define neuronal connectivity
to generate graph.

Details

Note that the as.ngraph.neuron method always keeps the original vertex labels (a.k.a. PointNo)
as read in from the original file.

Value

an igraph object with additional class ngraph, having a vertex for each entry in vertexlabels, each
vertex having a label attribute. All vertices are included whether connected or not.

Connectivity

We make the following assumptions about neurons coming in

• They have an integer vertex label that need not start from 1 and that may have gaps

• The edge list which defines connectivity specifies edges using pairs of vertex labels, _not_
raw vertex ids.

We make no attempt to determine the root points at this stage.

The raw vertex ids in the graph will be in the order of vertexlabels and can therefore be used to
index a block of vertex coordinates. The vertexlabels will be stored using the vertex attribute label

When the graph is directed (default) the edges will be from the root to the other tips of the neuron.

Morphology

The morphology of the neuron is encoded by the combination of connectivity information (i.e. the
graph) and spatial data encoded as the 3D position and diameter of each vertex. Position information
is stored as vertex attributes X, Y, and Z.
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See Also

igraph, set.vertex.attribute, subset.neuron for example of graph-based manipulation of a
neuron.

Other neuron: neuron(), plot.neuron(), potential_synapses(), prune(), resample(), rootpoints(),
spine(), subset.neuron()

Examples

g=as.ngraph(Cell07PNs[[1]])
library(igraph)
# check that vertex attributes of graph match X position
all.equal(V(g)$X, Cell07PNs[[1]]$d$X)

nlapply lapply and mapply for neuronlists (with optional parallelisation)

Description

versions of lapply and mapply that look after the class and attached dataframe of neuronlist objects.
nlapply can apply a function to only a subset of elements in the input neuronlist. Internally
nlapply uses plyr::llply thereby enabling progress bars and simple parallelisation (see plyr
section and examples).

Usage

nlapply(
X,
FUN,
...,
subset = NULL,
OmitFailures = NA,
.progress = getOption("nat.progress", default = "auto")

)

nmapply(
FUN,
X,
...,
MoreArgs = NULL,
SIMPLIFY = FALSE,
USE.NAMES = TRUE,
subset = NULL,
OmitFailures = NA

)
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Arguments

X A neuronlist

FUN Function to be applied to each element of X

... Additional arguments for FUN (see details)

subset Character, numeric or logical vector specifying on which subset of X the func-
tion FUN should be applied. Elements outside the subset are passed through
unmodified.

OmitFailures Whether to omit neurons for which FUN gives an error. The default value (NA)
will result in nlapply stopping with an error message the moment there is an
eror. For other values, see details.

.progress Character vector specifying the type of progress bar (see create_progress_bar
for options.) The default value of "auto" shows a progress bar in interactive use
when there are >=10 elements in X. The default value can be overridden for the
current session by setting the value of options(nat.progressbar) (see exam-
ples).

MoreArgs a list of other arguments to FUN.

SIMPLIFY logical or character string; attempt to reduce the result to a vector, matrix or
higher dimensional array; see the simplify argument of sapply.

USE.NAMES logical; use the names of the first . . . argument, or if that is an unnamed character
vector, use that vector as the names.

Details

When OmitFailures is not NA, FUN will be wrapped in a call to try to ensure that failure for any
single neuron does not abort the nlapply/nmapply call. When OmitFailures=TRUE the resultant
neuronlist will be subsetted down to return values for which FUN evaluated successfully. When
OmitFailures=FALSE, "try-error" objects will be left in place. In either of the last 2 cases error
messages will not be printed because the call is wrapped as try(expr,silent=TRUE).

Value

A neuronlist

plyr

The arguments of most interest from plyr are:

• .inform set to TRUE to give more informative error messages that should indicate which neu-
rons are failing for a given applied function.

• .progress set to "text" for a basic progress bar

• .parallel set to TRUE for parallelisation after registering a parallel backend (see below).

• .paropts Additional arguments for parallel computation. See llply for details.

Before using parallel code within an R session you must register a suitable parallel backend. The
simplest example is the multicore option provided by the doMC package that is suitable for a spread-
ing computational load across multiple cores on a single machine. An example is provided below.
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Note that the progess bar and parallel options cannot be used at the same time. You may want
to start a potentially long-running job with the progress bar option and then abort and re-run with
.parallel=TRUE if it looks likely to take a very long time.

See Also

lapply

mapply

Other neuronlist: *.neuronlist(), is.neuronlist(), neuronlist-dataframe-methods, neuronlistfh(),
neuronlist(), read.neurons(), write.neurons()

Examples

## nlapply example
kcs.reduced=nlapply(kcs20,function(x) subset(x,sample(nrow(x$points),50)))
open3d()
plot3d(kcs.reduced,col='red', lwd=2)
plot3d(kcs20,col='grey')
rgl.close()

## Not run:
# example of using plyr's .inform argument for debugging error conditions
xx=nlapply(Cell07PNs, prune_strahler)
# oh dear there was an error, let's get some details about the neuron
# that caused the problem
xx=nlapply(Cell07PNs, prune_strahler, .inform=TRUE)

## End(Not run)

## Not run:
## nlapply example with plyr
## dotprops.neuronlist uses nlapply under the hood
## the .progress and .parallel arguments are passed straight to
system.time(d1<-dotprops(kcs20,resample=1,k=5,.progress='text'))
## plyr+parallel
library(doMC)
# can also specify cores e.g. registerDoMC(cores=4)
registerDoMC()
system.time(d2<-dotprops(kcs20,resample=1,k=5,.parallel=TRUE))
stopifnot(all.equal(d1,d2))

## End(Not run)

## nmapply example
# flip first neuron in X, second in Y and 3rd in Z
xyzflip=nmapply(mirror, kcs20[1:3], mirrorAxis = c("X","Y","Z"),
mirrorAxisSize=c(400,20,30))

open3d()
plot3d(kcs20[1:3])
plot3d(xyzflip)
rgl.close()
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## Not run:
## Override default progress bar behaviour via options
sl=nlapply(Cell07PNs, FUN = seglengths)
options(nat.progress='none')
sl=nlapply(Cell07PNs, FUN = seglengths)
options(nat.progress=NULL)
sl=nlapply(Cell07PNs, FUN = seglengths)

## End(Not run)

nlscan Scan through a set of neurons, individually plotting each one in 3D

Description

Can also choose to select specific neurons along the way and navigate forwards and backwards.

Usage

nlscan(
neurons,
db = NULL,
col = "red",
Verbose = T,
Wait = T,
sleep = 0.1,
extrafun = NULL,
selected_file = NULL,
selected_col = "green",
yaml = TRUE,
...

)

Arguments

neurons a neuronlist object or a character vector of names of neurons to plot from the
neuronlist specified by db.

db A neuronlist to use as the source of objects to plot. If NULL, the default, will use
the neuronlist specified by options(’nat.default.neuronlist’)

col the color with which to plot the neurons (default 'red').

Verbose logical indicating that info about each selected neuron should be printed (default
TRUE).

Wait logical indicating that there should be a pause between each displayed neuron.

sleep time to pause between each displayed neuron when Wait=TRUE.
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extrafun an optional function called when each neuron is plotted, with two arguments:
the current neuron name and the current selected neurons.

selected_file an optional path to a yaml file that already contains a selection.

selected_col the color in which selected neurons (such as those specified in selected_file)
should be plotted.

yaml a logical indicating that selections should be saved to disk in (human-readable)
yaml rather than (machine-readable) rda format.

... extra arguments to pass to plot3d.

Value

A character vector of names of any selected neurons, of length 0 if none selected.

See Also

plot3d.character, plot3d.neuronlist

Examples

## Not run:
# scan a neuronlist
nlscan(kcs20)

# using neuron names
nlscan(names(kcs20), db=kcs20)
# equivalently using a default neuron list
options(nat.default.neuronlist='kcs20')
nlscan(names(kcs20))

## End(Not run)
# scan without waiting
nlscan(kcs20[1:4], Wait=FALSE, sleep=0)
## Not run:
# could select e.g. the gamma neurons with unbranched axons
gammas=nlscan(kcs20)
clear3d()
plot3d(kcs20[gammas])

# plot surface model of brain first
# nb depends on package only available on github
devtools::install_github(username = "jefferislab/nat.flybrains")
library(nat.flybrains)
plot3d(FCWB)
# could select e.g. the gamma neurons with unbranched axons
gammas=nlscan(kcs20)
clear3d()
plot3d(kcs20[gammas])

## End(Not run)
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nopen3d Open customised rgl window

Description

Pan with right button (Ctrl+click), zoom with middle (Alt/Meta+click) button. Defaults to a white
background and orthogonal projection (FOV=0)

Usage

nopen3d(bgcol = "white", FOV = 0, ...)

Arguments

bgcol background colour
FOV field of view
... additional options passed to open3d

Details

Note that sometimes (parts of) objects seem to disappear after panning and zooming. See help for
pan3d.

Value

current rgl device

See Also

open3d,pan3d

normalise_swc Normalise an SWC format block of neuron morphology data

Description

Normalise an SWC format block of neuron morphology data

Usage

normalise_swc(
x,
requiredColumns = c("PointNo", "Label", "X", "Y", "Z", "W", "Parent"),
ifMissing = c("usedefaults", "warning", "stop"),
includeExtraCols = TRUE,
defaultValue = list(PointNo = seq.int(nrow(x)), Label = 2L, X = NA_real_, Y =
NA_real_, Z = NA_real_, W = NA_real_, Parent = NA_integer_)

)
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Arguments

x A data.frame containing neuron morphology data
requiredColumns

Character vector naming columns we should have

ifMissing What to do if x is missing a required column
includeExtraCols

Whether to include any extra columns include in codex

defaultValue A list containing default values to use for any missing columns

Details

Note that row.names of the resultant data.frame will be set to NULL so that they have completely
standard values.

Value

A data.frame containing the normalised block of SWC data with standard columns in standard order.

See Also

as.neuron.data.frame, seglist2swc

npop3d Remove plotted neurons or other 3D objects

Description

The normal usage will not specify x in which case the last neurons plotted by plot3d.neuronlist
or any of its friends will be removed.

Usage

npop3d(x, slow = FALSE, type = "shapes")

Arguments

x rgl ids of objects to remove

slow Whether to remove neurons one by one (slowly) default: FALSE

type Type of objects to remove see pop3d.

See Also

pop3d, plot3d.neuronlist
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nrrd.voxdims Return voxel dimensions (by default absolute voxel dimensions)

Description

Return voxel dimensions (by default absolute voxel dimensions)

Usage

nrrd.voxdims(file, ReturnAbsoluteDims = TRUE)

Arguments

file path to nrrd/nhdr file or a list containing a nrrd header

ReturnAbsoluteDims

Defaults to returning absolute value of dims even if there are any negative space
directions

Details

NB Can handle off diagonal terms in space directions matrix, BUT assumes that space direction
vectors are orthogonal.

Will produce a warning if no valid dimensions can be found.

Value

numeric vector of voxel dimensions (NA_real_ when missing) of length equal to the image dimen-
sion.

Author(s)

jefferis

See Also

read.nrrd.header
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nvertices Find the number of vertices in an object (or each element of a neuron-
list)

Description

Find the number of vertices in an object (or each element of a neuronlist)

Usage

nvertices(x, ...)

## Default S3 method:
nvertices(x, ...)

## S3 method for class 'neuronlist'
nvertices(x, ...)

Arguments

x An object with 3d vertices (e.g. neuron, surface etc)
... Additional arguments passed to methods (currently ignored)

Value

an integer number of vertices (or a vector of length equal to a neuronlist)

Examples

nvertices(Cell07PNs[[1]])
nvertices(kcs20)

nview3d Set the 3D viewpoint of an RGL window using anatomical terms

Description

Set the 3D viewpoint of an RGL window using anatomical terms

Usage

nview3d(
viewpoint = c("frontal", "anterior", "dorsal", "ventral", "posterior", "left",

"right", "oblique_right", "oblique_left"),
FOV = 0,
extramat = NULL,
...

)
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Arguments

viewpoint Character vector specifying viewpoint

FOV The Field of View (defaults to 0 => orthographic projection) (see par3d for
details).

extramat An optional extra transformation matrix to be applied after the one implied by
the viewpoint argument.

... additional arguments passed to par3d

See Also

nopen3d, view3d

Examples

plot3d(kcs20, soma=TRUE)
nview3d('frontal')
nview3d('ant')
nview3d()
nview3d('posterior')
nview3d('oblique_right')
# a slightly oblique frontal view
nview3d('frontal', extramat=rotationMatrix(pi/10, 1, 1, 0))

origin Return the space origin of a 3D image object

Description

Defined as the first coordinates (x,y,z) of the bounding box, which in turn matches the nrrd definition
of the location of the "centre" of the first voxel.

Usage

origin(x, ...)

Arguments

x Object for which origin should be returned. See boundingbox.

... Additional arguments passed to boundingbox

See Also

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(),
imslice(), is.im3d(), mask(), projection(), threshold(), unmask(), voxdims()
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pan3d Some useful extensions / changes to rgl defaults

Description

Set up pan call back for current rgl device

Usage

pan3d(button)

Arguments

button Integer from 1 to 3 indicating mouse button

Details

Copied verbatim from ?rgl.setMouseCallbacks for rgl version 0.92.892 Mouse button 2 is right and
button 3 is middle (accessed by meta/alt key)

Note that sometimes (parts of) objects seem to disappear after panning and zooming. The example
in rgl.setMouseCallbacks from which this is copied includes a note that "this doesn’t play well
with rescaling"

Author(s)

Duncan Murdoch

See Also

rgl.setMouseCallbacks

Examples

## Not run:
open3d()
pan3d(2)

## End(Not run)
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plot.neuron Plot a 2D projection of a neuron

Description

Plot a 2D projection of a neuron

Usage

## S3 method for class 'neuron'
plot(
x,
WithLine = TRUE,
WithNodes = TRUE,
WithAllPoints = FALSE,
WithText = FALSE,
PlotSubTrees = TRUE,
soma = FALSE,
PlotAxes = c("XY", "YZ", "XZ", "ZY"),
axes = TRUE,
asp = 1,
main = x$NeuronName,
sub = NULL,
xlim = NULL,
ylim = NULL,
AxisDirections = c(1, -1, 1),
add = FALSE,
col = NULL,
PointAlpha = 1,
tck = NA,
lwd = par("lwd"),
boundingbox = NULL,
...

)

Arguments

x a neuron to plot.

WithLine whether to plot lines for all segments in neuron.

WithNodes whether points should only be drawn for nodes (branch/end points)

WithAllPoints whether points should be drawn for all points in neuron.

WithText whether to label plotted points with their id.

PlotSubTrees Whether to plot all sub trees when the neuron is not fully connected.

soma Whether to plot a circle at neuron’s origin representing the soma. Either a logical
value or a numeric indicating the radius (default FALSE). When soma=TRUE the
radius is hard coded to 2.
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PlotAxes the axes for the plot.

axes whether axes should be drawn.

asp the y/x aspect ratio, see plot.window.

main the title for the plot

sub sub title for the plot

xlim limits for the horizontal axis (see also boundingbox)

ylim limits for the vertical axis (see also boundingbox)

AxisDirections the directions for the axes. By default, R uses the bottom-left for the origin,
whilst most graphics software uses the top-left. The default value of c(1,-1,1)
makes the produced plot consistent with the latter.

add Whether the plot should be superimposed on one already present (default: FALSE).

col the color in which to draw the lines between nodes.

PointAlpha the value of alpha to use in plotting the nodes.

tck length of tick mark as fraction of plotting region (negative number is outside
graph, positive number is inside, 0 suppresses ticks, 1 creates gridlines).

lwd line width relative to the default (default=1).

boundingbox A 2 x 3 matrix (ideally of class boundingbox) that enables the plot axis limits
to be set without worrying about axis selection or reversal (see details)

... additional arguments passed to plot

Details

This functions sets the axis ranges based on the chosen PlotAxes and the range of the data in x. It
is still possible to use PlotAxes in combination with a boundingbox, for example to set the range
of a plot of a number of objects.

nat assumes the default axis convention used in biological imaging, where the origin of the y axis
is the top rather than the bottom of the plot. This is achieved by reversing the y axis of the 2D plot
when the second data axis is the Y axis of the 3D data. Other settings can be achieved by modfiying
the AxisDirections argument.

Value

list of plotted points (invisibly)

See Also

plot3d.neuron

Other neuron: neuron(), ngraph(), potential_synapses(), prune(), resample(), rootpoints(),
spine(), subset.neuron()
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Examples

# Draw first example neuron
plot(Cell07PNs[[1]])
# Overlay second example neuron
plot(Cell07PNs[[2]], add=TRUE)
# Clear the current plot and draw the third neuron from a different view
plot(Cell07PNs[[3]], PlotAxes="YZ")
# Just plot the end points for the fourth example neuron
plot(Cell07PNs[[4]], WithNodes=FALSE)
# Plot with soma (of default radius)
plot(Cell07PNs[[4]], WithNodes=FALSE, soma=TRUE)
# Plot with soma of defined radius
plot(Cell07PNs[[4]], WithNodes=FALSE, soma=1.25)

plot.neuronlist 2D plots of the elements in a neuronlist, optionally using a subset ex-
pression

Description

2D plots of the elements in a neuronlist, optionally using a subset expression

Usage

## S3 method for class 'neuronlist'
plot(
x,
subset = NULL,
col = NULL,
colpal = rainbow,
add = NULL,
boundingbox = NULL,
...,
SUBSTITUTE = TRUE

)

Arguments

x a neuron list or, for plot3d.character, a character vector of neuron names.
The default neuronlist used by plot3d.character can be set by using options(nat.default.neuronlist='mylist').
See ?nat for details.

subset Expression evaluating to logical mask for neurons. See details.

col An expression specifying a colour evaluated in the context of the dataframe
attached to nl (after any subsetting). See details.

colpal A vector of colours or a function that generates colours
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add Logical specifying whether to add data to an existing plot or make a new one.
The default value of NULL creates a new plot with the first neuron in the neuron-
list and then adds the remaining neurons.

boundingbox A 2 x 3 matrix (ideally of class boundingbox) that enables the plot axis limits
to be set without worrying about axis selection or reversal (see details)

... options passed on to plot (such as colours, line width etc)

SUBSTITUTE Whether to substitute the expressions passed as arguments subset and col.
Default: TRUE. For expert use only, when calling from another function.

Details

The col and subset parameters are evaluated in the context of the dataframe attribute of the neu-
ronlist. If col evaluates to a factor and colpal is a named vector then colours will be assigned by
matching factor levels against the named elements of colpal. If there is one unnamed level, this will
be used as catch-all default value (see examples).

If col evaluates to a factor and colpal is a function then it will be used to generate colours with the
same number of levels as are used in col.

Value

list of values of plot with subsetted dataframe as attribute 'df'

See Also

nat-package,plot3d.neuronlist

Examples

# plot 4 cells
plot(Cell07PNs[1:4])
# modify some default plot arguments
plot(Cell07PNs[1:4], ylim=c(140,75), main='First 4 neurons')
# plot one class of neurons in red and all the others in grey
plot(Cell07PNs, col=Glomerulus, colpal=c(DA1='red', 'grey'), WithNodes=FALSE)
# subset operation
plot(Cell07PNs, subset=Glomerulus%in%c("DA1", "DP1m"), col=Glomerulus,

ylim=c(140,75), WithNodes=FALSE)

plot3d plot3d methods for different nat objects

Description

These methods enable nat objects including neuronlists and dotprops objects to be plotted in 3D.
See the help for each individual method for details along with the help for the generic in the rgl
package.
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See Also

plot3d, plot3d.boundingbox, plot3d.character, plot3d.cmtkreg, plot3d.dotprops, plot3d.hxsurf,
plot3d.neuron, plot3d.neuronlist

Examples

# all known plot3d methods
methods("plot3d")

# up to date list of all plot3d nethods in this package
intersect(methods("plot3d"), ls(asNamespace("nat")))

plot3d.boundingbox Plot a bounding box in 3D

Description

Plot a bounding box in 3D

Usage

## S3 method for class 'boundingbox'
plot3d(x, ...)

Arguments

x the boundingbox object to plot.

... additional arguments to pass to segments3d.

Value

A list of RGL object IDs.

See Also

boundingbox

Examples

# find the bounding box of all the neurons in a list
boundingbox(kcs20)
boundingbox(kcs20[1:3])

# plot those neurons
plot3d(kcs20)
# ... with their bounding box
plot3d(boundingbox(kcs20))
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plot3d(kcs20)
# plot bounding box (in matching colours) for each neuron
# NB makes use of nlapply/neuronlist in slightly unsusual context -
# plot3d.neuronlist can cope with lists containing anything with
# a valid plot3d method.
plot3d(nlapply(kcs20,boundingbox))

plot3d.cmtkreg Plot the domain of a CMTK registration

Description

Plot the domain of a CMTK registration

Usage

## S3 method for class 'cmtkreg'
plot3d(x, ...)

Arguments

x A cmtk registration (the path to the registration folder on disk) or the resulting
of reading one in with read.cmtkreg.

... Additional arguments passed to plot3d

See Also

cmtkreg, read.cmtkreg, plot3d

Examples

## Not run:
testdatadir=system.file("tests/testthat/testdata/cmtk", package="nat")
regpath=file.path(testdatadir,'FCWB_JFRC2_01_warp_level-01.list/')
plot3d(cmtkreg(regpath))

# or read registration into memory if you want to work with it
reg=read.cmtkreg(regpath)
# nb calling plot3d.cmtkreg directly (rather than using the generic plot3d)
# is considered bad style but read.cmtkreg returns a plain list
# so method dispatch will fail
nat:::plot3d.cmtkreg(reg)

## End(Not run)
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plot3d.dotprops 3D plots of dotprops objects using rgl package

Description

3D plots of dotprops objects using rgl package

Usage

## S3 method for class 'dotprops'
plot3d(
x,
scalevecs = 1,
alpharange = NULL,
color = "black",
PlotPoints = FALSE,
PlotVectors = TRUE,
UseAlpha = FALSE,
...

)

Arguments

x A dotprops object

scalevecs Factor by which to scale unit vectors (numeric, default: 1.0)

alpharange Restrict plotting to points with alpha values in this range to plot (default: null
=> all points). See dotprops for definition of alpha.

color Character or numeric vector specifying colours for points/vectors. See details.
PlotPoints, PlotVectors

Whether to plot points and/or tangent vectors (logical, default: tangent vectors
only)

UseAlpha Whether to scale tangent vector length by the value of alpha

... Additional arguments passed to points3d and/or segments3d

Details

Tangent vectors are plotted by segments3d and centered on the relevant point. Points are plotted
by points3d.

color will be recycled by points3d and segments3d. However in the special case that color
has length equal to the number of points in x, then it will be duplicated before being passed to
segments3d so that the result is that each vector is coloured uniformly according to color (since
segments3d expects 2 colours for each line segment, blending them if they are different).

Value

invisible list of results of rgl plotting commands
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See Also

dotprops,plot3d,points3d,segments3d

Examples

open3d()
plot3d(kcs20[[1]])
clear3d()
plot3d(kcs20[[1]],col='red')
clear3d()
plot3d(kcs20[[1]],col='red',lwd=2)
plot3d(kcs20[[2]],col='green',lwd=2)

plot3d.hxsurf Plot amira surface objects in 3D using rgl

Description

Plot amira surface objects in 3D using rgl

Usage

## S3 method for class 'hxsurf'
plot3d(x, materials = NULL, col = NULL, ...)

Arguments

x An hxsurf surface object

materials Character vector or regex naming materials to plot (defaults to all materials in
x). See subset.hxsurf.

col Character vector specifying colors for the materials, or a function that will be
called with the number of materials to plot. When NULL (default) will use mete-
rial colours defined in Amira (if available), or rainbow otherwise.

... Additional arguments passed to

See Also

read.hxsurf

Other hxsurf: as.hxsurf(), as.mesh3d(), materials(), read.hxsurf(), subset.hxsurf(),
write.hxsurf()



plot3d.neuron 99

Examples

plot3d(kcs20)
plot3d(MBL.surf)

# plot only vertical lobe
clear3d()
plot3d(MBL.surf, materials="VL", alpha=0.3)

# everything except vertical lobe
clear3d()
plot3d(MBL.surf, alpha=0.3,

materials=grep("VL", MBL.surf$RegionList, value = TRUE, invert = TRUE))

plot3d.neuron Plot neurons in 3D using rgl library

Description

Plot neurons in 3D using rgl library

Usage

## S3 method for class 'neuron'
plot3d(
x,
WithLine = TRUE,
NeuronNames = FALSE,
WithNodes = TRUE,
WithAllPoints = FALSE,
WithText = FALSE,
PlotSubTrees = TRUE,
add = TRUE,
col = NULL,
soma = FALSE,
...

)

Arguments

x A neuron to plot

WithLine Whether to plot lines for all segments in neuron

NeuronNames Logical indicating whether to label the neuron in the plot using the NeuronName
field or a character vector of names.

WithNodes Whether to plot dots for branch and end points

WithAllPoints Whether to plot dots for all points in the neuron
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WithText Whether to label plotted points with their numeric id (see details)

PlotSubTrees Whether to plot all sub trees when the neuron is not fully connected.

add Whether to add the neuron to existing rgl plot rather than clearing the scene
(default TRUE)

col Colour specification (see rgl materials)

soma Whether to plot a sphere at neuron’s origin representing the soma. Either a log-
ical value or a numeric indicating the radius (default FALSE). When soma=TRUE
the radius is hard coded to 2.

... Additional arguments passed to rgl::lines3d

Details

Note that when WithText=TRUE, the numeric identifiers plotted are raw indices into the x$d array
of the neuron, not the values of the PointNo column.

Value

list of rgl plotting ids (invisibly) separated into lines, points, texts according to plot element.
See rgl::plot3d for details.

See Also

plot3d.neuronlist, plot3d.dotprops, nat::plot3d, rgl::plot3d

Examples

# A new plot would have been opened if required
open3d()
plot3d(Cell07PNs[[1]],col='red')
plot3d(Cell07PNs[[2]],col='green')

# clear the current plot
clear3d()
plot3d(Cell07PNs[[2]],col='blue',add=FALSE)
# plot the number of all nodes
clear3d()
plot3d(Cell07PNs[[2]],col='red',WithText=TRUE,add=FALSE)
# include cell bodies
plot3d(Cell07PNs[3:4], col='red', soma=TRUE)
plot3d(Cell07PNs[5], col='red', soma=3)
rgl.close()
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plot3d.neuronlist 3D plots of the elements in a neuronlist, optionally using a subset ex-
pression

Description

plot3d.character is a convenience method intended for exploratory work on the command line.

Usage

## S3 method for class 'neuronlist'
plot3d(
x,
subset = NULL,
col = NULL,
colpal = rainbow,
skipRedraw = ifelse(interactive(), 200L, TRUE),
WithNodes = FALSE,
soma = FALSE,
...,
SUBSTITUTE = TRUE

)

## S3 method for class 'character'
plot3d(x, db = NULL, ...)

Arguments

x a neuron list or, for plot3d.character, a character vector of neuron names.
The default neuronlist used by plot3d.character can be set by using options(nat.default.neuronlist='mylist').
See ?nat for details. nat-package.

subset Expression evaluating to logical mask for neurons. See details.

col An expression specifying a colour evaluated in the context of the dataframe
attached to nl (after any subsetting). See details.

colpal A vector of colours or a function that generates colours

skipRedraw When plotting more than this many (default 200) neurons skip redraw for in-
dividual neurons (this is much faster for large number of neurons). Can also
accept logical values TRUE (always skip) FALSE (never skip).

WithNodes Whether to plot points for end/branch points. Default: FALSE.

soma Whether to plot a sphere at neuron’s origin representing the soma. Either a log-
ical value or a numeric indicating the radius (default FALSE). When soma=TRUE
the radius is hard coded to 2.

... options passed on to plot3d (such as colours, line width etc)

SUBSTITUTE Whether to substitute the expressions passed as arguments subset and col.
Default: TRUE. For expert use only, when calling from another function.
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db A neuronlist to use as the source of objects to plot. If NULL, the default, will use
the neuronlist specified by options(’nat.default.neuronlist’)

Details

The col and subset parameters are evaluated in the context of the dataframe attribute of the neu-
ronlist. If col evaluates to a factor and colpal is a named vector then colours will be assigned by
matching factor levels against the named elements of colpal. If there is one unnamed level, this will
be used as catch-all default value (see examples).

If col evaluates to a factor and colpal is a function then it will be used to generate colours with the
same number of levels as are used in col.

WithNodes is FALSE by default when using plot3d.neuronlist but remains TRUE by default when
plotting single neurons with plot3d.neuron. This is because the nodes quickly make plots with
multiple neurons rather busy.

When soma is TRUE or a vector of numeric values (recycled as appropriate), the values are used
to plot cell bodies. For neurons the values are passed to plot3d.neuron for neurons. In contrast
dotprops objects still need special handling. There must be columns called X,Y,Z in the data.frame
attached to x, that are then used directly by code in plot3d.neuronlist.

Whenever plot3d.neuronlist is called, it will add an entry to an environment .plotted3d in nat that
stores the ids of all the plotted shapes (neurons, cell bodies) so that they can then be removed by a
call to npop3d.

plot3d.character will check if options(’nat.default.neuronlist’) has been set and then use x as an
identifier to find a neuron in that neuronlist.

Value

list of values of plot3d with subsetted dataframe as attribute 'df'

See Also

nat-package

Examples

open3d()
plot3d(kcs20,type=='gamma',col='green')

clear3d()
plot3d(kcs20,col=type)
plot3d(Cell07PNs,Glomerulus=="DA1",col='red')
plot3d(Cell07PNs,Glomerulus=="VA1d",col='green')
# Note use of default colour for non DA1 neurons
plot3d(Cell07PNs,col=Glomerulus, colpal=c(DA1='red', 'grey'))
# a subset expression
plot3d(Cell07PNs,Glomerulus%in%c("DA1",'VA1d'),

col=c("red","green")[factor(Glomerulus)])
# the same but not specifying colours explicitly
plot3d(Cell07PNs,Glomerulus%in%c("DA1",'VA1d'),col=Glomerulus)
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## Not run:
## more complex colouring strategies for a larger neuron set
# see https://github.com/jefferis/frulhns for details
library(frulhns)
# notice the sexually dimorphic projection patterns for these neurons
plot3d(jkn,cluster=='aSP-f' &shortGenotype=='JK1029',

col=sex,colpal=c(male='green',female='magenta'))

## colour neurons of a class by input resistance
jkn.aspg=subset(jkn, cluster=='aSP-g')
# NB this comes in as a factor
Ri=with(jkn.aspg,as.numeric(as.character(Ri..GOhm.)))
# the matlab jet palette
jet.colors<-colorRampPalette(c('navy','cyan','yellow','red'))
plot3d(jkn.aspg,col=cut(Ri,20),colpal=jet.colors)

## End(Not run)

pointsinside Find which points of an object are inside a surface

Description

Find which points of an object are inside a surface

Usage

pointsinside(x, surf, ...)

## Default S3 method:
pointsinside(x, surf, ..., rval = c("logical", "distance", "mesh3d"))

Arguments

x an object with 3D points.

surf The reference surface - either a mesh3d object or any object that can be converted
using as.mesh3d including hxsurf and ashape3d objects.

... additional arguments for methods, eventually passed to as.mesh3d.

rval what to return.

Details

Note that hxsurf surface objects will be converted to mesh3d before being passed to Rvcg::vcgClostKD,
so if you are testing repeatedly against the same surface, it may make sense to pre-convert.

pointsinside depends on the face normals for each face pointing out of the object (see example).
The face normals are defined by the order of the three vertices making up a triangular face. You
can flip the face normal for a face by permuting the vertices (i.e. 1,2,3 -> 1,3,2). If you find for a
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given surface that points are outside when you expect them to be inside then the face normals are
probably all the wrong way round. You can invert them yourself or use the Morpho::invertFaces
function to fix this.

If you find that some points but not all points are not behaving as you would expect, then it may be
that some faces are not coherently oriented. The Rvcg::vcgClean function can sometimes be used
to correct the orientation of the faces. Fixing more problematic cases may be possible by generating
a new surface using alphashape3d::ashape3d (see examples).

Value

A vector of logical values or distances (positive inside, negative outside) equal to the number of
points in x or the mesh3d object returned by Rvcg::vcgClostKD.

Examples

# check if the vertices in these neurons are inside the mushroom body calyx
# surface object
inout=pointsinside(kcs20, surf=subset(MBL.surf, "MB_CA_L"))
table(inout)

# be a bit more lenient and include points less than 5 microns from surface
MBCAL=subset(MBL.surf, "MB_CA_L")
inout5=pointsinside(kcs20, surf=MBCAL, rval='distance') > -5
table(inout5)

# show which points are in or out
# Hmm seems like there are a few red points in the vertical lobe
# that are well outside the calyx
points3d(xyzmatrix(kcs20), col=ifelse(inout5, 'red', 'black'))
plot3d(MBL.surf, alpha=.3)

# Let's try to make an alphashape for the mesh to clean it up
library(alphashape3d)
MBCAL.as=ashape3d(xyzmatrix(MBCAL), alpha = 10)
# Plotting the points, we can see that is much better behaved
points3d(xyzmatrix(kcs20),

col=ifelse(pointsinside(kcs20, MBCAL.as), 'red', 'black'))

## Not run:
# Show the face normals for a surface
if(require('Morpho')) {

# convert to a mesh3d object used by rgl and Morpho packge
MBCAL.mesh=as.mesh3d(subset(MBL.surf, "MB_CA_L"))
fn=facenormals(MBCAL.mesh)
wire3d(MBCAL.mesh)
# show that the normals point out of the object
plotNormals(fn, long=5, col='red')

# invert the faces of the mesh and show that normals point in
MBCAL.inv=invertFaces(MBCAL.mesh)



potential_synapses 105

plotNormals(facenormals(MBCAL.inv), long=5, col='cyan')
}

## End(Not run)

potential_synapses Calculate number of potential synapses between two neurons

Description

This implements the method of Stepanyants and Chklovskii

Usage

potential_synapses(a, b, s, ...)

## S3 method for class 'neuronlist'
potential_synapses(a, b, s, ...)

## S3 method for class 'neuron'
potential_synapses(
a,
b,
s,
sigma = s,
bounds,
method = c("direct", "approx"),
...

)

## S3 method for class 'dotprops'
potential_synapses(
a,
b,
s,
sigma = s,
seglength = 1,
bounds = NULL,
method = c("direct", "approx"),
...

)

Arguments

a, b neurons or neuronlists

s the approach distance to consider a potential synapse

... Additional arguments passed to methods (see details )
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sigma the smoothing parameter in the approximate method (see details)

bounds Optional bounding box to restrict comparison

method Whether to use the direct or approximate method (see details)

seglength how long to consider each distance between points.

Details

Note that potential_synapses.neuronlist uses nlapply to process its first argument (a). This
enables progress bars, robustness to errors and simple parallel execution. See the nlapply examples
for further details of these arguments in action.

For this reason if you have two neuronlists of unequal sizes, it is recommended to put the larger one
in argument a.

References

Neurogeometry and potential synaptic connectivity. Stepanyants A, Chklovskii DB. Trends Neu-
rosci. 2005 Jul;28(7):387-94. doi: 10.1016/j.tins.2005.05.006

See Also

Other neuron: neuron(), ngraph(), plot.neuron(), prune(), resample(), rootpoints(), spine(),
subset.neuron()

Examples

potential_synapses(Cell07PNs[1], Cell07PNs[1:3], s=2)
## Not run:
# if you have many neurons to calculate you should get a progress bar
potential_synapses(Cell07PNs[1:10], Cell07PNs[11:20], s=2)

# you can also use parallel execution, here over 7 cores
# doMC::registerDoMC(7)
potential_synapses(Cell07PNs[1:10], Cell07PNs[11:20], s=2, .parallel=TRUE)

## End(Not run)

projection Make 2D (orthogonal) projection of 3D image data

Description

Make 2D (orthogonal) projection of 3D image data

https://doi.org/10.1016/j.tins.2005.05.006
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Usage

projection(
a,
projdim = "z",
projfun = c("integrate", "mean", "sum"),
na.rm = T,
mask = NULL,
...

)

Arguments

a Array of image data (im3d format)

projdim The image dimension down which to project

projfun The function that collapses each vector of image data down to a single pixel.
Can be a character vector naming a function or a function. See details.

na.rm Logical indicating whether to ignore NA values in the image data when calculat-
ing function results. default: TRUE

mask A mask with the same extent as the image.

... Additional arguments for projfun

Details

Note that projfun must have an argument na.rm like the S3 Summary groupGeneric functions
such as sum,min etc.

Note also that the BoundingBox of a 2d projection is not well-defined for the axis along which the
projection was made. Presently both the evaluation location and the BoundingBox extremes are set
to 0 after a projection is made but FIXME this is not completely satisfactory. Perhaps defining this
to be NA or the midpoint of the orginal axis would be better justified.

See Also

groupGeneric, clampmax

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(),
imslice(), is.im3d(), mask(), origin(), threshold(), unmask(), voxdims()

Examples

## Not run:
LHMask=read.im3d(system.file('tests/testthat/testdata/nrrd/LHMask.nrrd',package='nat'))
d=unmask(rnorm(sum(LHMask),mean=5,sd=5),LHMask)
op=par(mfrow=c(1,2))
rval=image(projection(d,projfun=max))
image(projection(d,projfun=clampmax(0,10)),zlim=rval$zlim)
par(op)

## End(Not run)
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## Not run:
LHMask=read.im3d(system.file('tests/testthat/testdata/nrrd/LHMask.nrrd',package='nat'))
image(projection(LHMask),asp=TRUE)

## End(Not run)

prune prune an object by removing points near (or far) from a target object

Description

prune an object by removing points near (or far) from a target object

Usage

prune(x, target, ...)

## S3 method for class 'neuron'
prune(x, target, ...)

## S3 method for class 'dotprops'
prune(x, target, ...)

## S3 method for class 'neuronlist'
prune(x, target, ...)

## Default S3 method:
prune(x, target, maxdist, keep = c("near", "far"), return.indices = FALSE, ...)

Arguments

x The object to prune. (e.g. dotprops object, see details)

target Another object with 3D points that will determine which points in x are kept.

... Additional arguments for methods (eventually passed to prune.default)

maxdist The threshold distance for keeping points

keep Whether to keep points in x that are near or far from the target

return.indices Whether to return the indices that pass the test rather than the 3D object/points
(default FALSE)

Details

prune.neuron depends on a more basic function prune_vertices and is also related to subset.neuron.
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See Also

prune_strahler, spine, prune_vertices

subset.neuron

subset.dotprops

Other neuron: neuron(), ngraph(), plot.neuron(), potential_synapses(), resample(), rootpoints(),
spine(), subset.neuron()

Examples

## prune single neurons

plot3d(kcs20[[1]],col='blue')
plot3d(kcs20[[2]],col='red')

# prune neuron 2 down to points that are close to neuron 1
neuron2_close=prune(kcs20[[2]], target=kcs20[[1]], maxdist=10)

plot3d(neuron2_close, col='cyan', lwd=3)

neuron2_far=prune(kcs20[[2]], target=kcs20[[1]], maxdist=10, keep='far')

plot3d(neuron2_far, col='magenta', lwd=3)

## Prune a neuron with a neuronlist
pruned=prune(kcs20[[11]], kcs20[setdiff(1:20, 11)], maxdist=8)

plot3d(pruned, col='red', lwd=3)
plot3d(kcs20[[11]], col='green', lwd=3)
plot3d(kcs20,col='grey')

prune_strahler Prune a neuron by removing segments with a given Strahler order

Description

Prune a neuron by removing segments with a given Strahler order

Usage

prune_strahler(x, orderstoprune = 1:2, ...)

Arguments

x A neuron

orderstoprune Integer indices of which Strahler orders to prune - defaults to the lowest two
orders (1:2)

... Additional arguments passed to as.neuron.data.frame
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Value

The pruned neuron

See Also

strahler_order, spine, for finding the longest path in a neuron, prune for subsetting dotprops
style neurons by spatial proximity, as.neuron.data.frame, which is used to generate the new
neuron.

Examples

x=Cell07PNs[[1]]
pruned12=prune_strahler(x)
pruned1=prune_strahler(x, 1)
plot(x)
plot(pruned1, lwd=3, col='blue', add=TRUE)
plot(pruned12, lwd=3, col='red', add=TRUE)

prune_vertices Prune selected vertices or edges from a neuron

Description

prune_vertices removes vertices from a neuron

prune_edges removes edges (and any unreferenced vertices)

Usage

prune_vertices(x, verticestoprune, invert = FALSE, ...)

prune_edges(x, edges, invert = FALSE, ...)

Arguments

x A neuron to prune. This can be any object that can be converted by as.ngraph
— see details.

verticestoprune

An integer vector describing which vertices to remove.

invert Whether to keep vertices rather than dropping them (default FALSE).

... Additional arguments passed to as.neuron.ngraph

edges The edges to remove. One of i) an Nx2 matrix, each row specifying a single
edge defined by its raw edge id, ii) an integer vector defining a path of raw
vertex ids or iii) an igraph.es edge sequence — see detaiuls and the P and
path arguments of igraph::E.
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Details

These are relatively low-level functions and you will probably want to use subset.neuron or
prune.neuron and friends in many cases.

Note that prune_vertices and prune_edges both use raw vertex ids to specify the vertices/edges
to be removed. If you want to use the id in the PointNo field, then you must translate yourself (see
examples).

Both prune_vertices and prune_edges first convert their input x to the ngraph representation
of the neuron befor removing points. The input x can therefore be in any form compatible with
as.ngraph including an existing ngraph. There is an additional requirement that the input must be
compatible with xyzmatrix if invert=TRUE.

Note that the edges argument of prune_edges must specify a path traversing a set of vertices in
a valid order. However if the input is a matrix or vector the direction of each individual edge in
this path is ignored. So if your neuron has edges 2->1 2->3 3->4 then an edge sequence 1:3 would
successfully delete 2 edges.

Value

A pruned neuron

See Also

as.neuron.ngraph, subset.neuron, prune.neuron

Examples

n=prune_vertices(Cell07PNs[[1]], 1:25)
# original neuron
plot(Cell07PNs[[1]])
# with pruned neuron superimposed
plot(n, col='green', lwd=3, add=TRUE)

# use the PointNo field (= the original id from an SWC file)
n2=prune_vertices(n, match(26:30, n$d$PointNo))
y=prune_edges(Cell07PNs[[1]], edges=1:25)

# remove the spine of a neuron
spine_ids=spine(Cell07PNs[[1]], rval='ids')
pruned=prune_edges(Cell07PNs[[1]], spine_ids)

# NB this is subtly different from this, which removes vertices along the
# spine *even* if they are part of an edge that is outside the spine.
pruned2=prune_vertices(Cell07PNs[[1]], spine_ids)
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read.amiramesh Read AmiraMesh data in binary or ascii format

Description

Read AmiraMesh data in binary or ascii format

Read the header of an amiramesh file

Usage

read.amiramesh(
file,
sections = NULL,
header = FALSE,
simplify = TRUE,
endian = NULL,
ReadByteAsRaw = FALSE,
Verbose = FALSE

)

read.amiramesh.header(file, Parse = TRUE, Verbose = FALSE)

Arguments

file Name of file (or connection) to read

sections character vector containing names of sections

header Whether to include the full unprocessesd text header as an attribute of the re-
turned list.

simplify If there is only one datablock in file do not return wrapped in a list (default
TRUE).

endian Whether multibyte data types should be treated as big or little endian. Default
of NULL checks file or uses .Platform$endian

ReadByteAsRaw Logical specifying whether to read 8 bit data as an R raw vector rather than
integer vector (default: FALSE).

Verbose Print status messages

Parse Logical indicating whether to parse header (default: TRUE)

Details

reading byte data as raw arrays requires 1/4 memory but complicates arithmetic.

read.amiramesh.header will open a connection if file is a character vector and close it when
finished reading.
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Value

list of named data chunks

See Also

readBin,.Platform

Other amira: amiratype(), is.amiramesh(), read.hxsurf(), write.hxsurf()

read.cmtk Read CMTK TypedStream file to a list in memory

Description

This function is primarily of developer interest. End users will typically want to use more spe-
cialised functions for reading registrations and landmarks.

Usage

read.cmtk(con, CheckLabel = TRUE)

Arguments

con Path to (optionally gzipped) file or (open) connection.

CheckLabel Check, fix and warn for invalid or duplicate labels (default TRUE)

Details

This is the default format used by CMTK for registration, studylist, landmarks and image files.
Although this is largely a generic function, there is special handling of the coefficients and active
members of the spline warp component of a CMTK nonrigid registrartion.

Note that if an open connection is passed to read.cmtk the version number of the CMTK Typed-
Stream will not be checked or recorded.

See Also

Other cmtk-io: cmtk.extract_affine(), read.cmtkreg(), write.cmtkreg(), write.cmtk()
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read.cmtkreg Read a CMTK format registration

Description

Read a CMTK format registration

Usage

read.cmtkreg(filename, ReturnRegistrationOnly = FALSE, ...)

Arguments

filename Path to a CMTK registration file

ReturnRegistrationOnly

When FALSE (default) will not attempt to extract the registration element from
the registration file.

... Additional arguments passed to read.cmtk

See Also

Other cmtk-io: cmtk.extract_affine(), read.cmtk(), write.cmtkreg(), write.cmtk()

read.hxsurf Read Amira surface (aka HxSurface or HyperSurface) files into hxsurf
object

Description

Read Amira surface (aka HxSurface or HyperSurface) files into hxsurf object

Usage

read.hxsurf(
filename,
RegionNames = NULL,
RegionChoice = "both",
FallbackRegionCol = "grey",
Verbose = FALSE

)



read.hxsurf 115

Arguments

filename Character vector defining path to file

RegionNames Character vector specifying which regions should be read from file. Default
value of NULL => all regions.

RegionChoice Whether the Inner or Outer material, or both (default), should define the material
of the patch. See details.

FallbackRegionCol

Colour to set regions when no colour is defined

Verbose Print status messages during parsing when TRUE

Details

Note that when RegionChoice="both" or RegionChoice=c("Inner","Outer") both polygons in
inner and outer regions will be added to named regions. To understand the significance of this,
consider two adjacent regions, A and B, with a shared surface. For the polygons in both A and
B, Amira will have a patch with (say) InnerRegion A and OuterRegion B. This avoids duplication
in the file. However, it might be convenient to add these polygons to both regions when we read
them into R, so that regions A and B in our R object are both closed surfaces. To achieve this
when RegionChoice="both", read.hxsurf adds these polygons to region B (as well as region A)
but swaps the order of the vertices defining the polygon to ensure that the surface directionality is
correct.

As a rule of thumb, stick with RegionChoice="both". If you get more regions than you wanted,
then try switching to RegionChoice="Inner" or RegionChoice="Outer".

Value

A list with S3 class hxsurf with elements

• Vertices A data.frame with columns X,Y,Z,PointNo

• Regions A list with 3 column data.frames specifying triplets of vertices for each region (with
reference to PointNo column in Vertices element)

• RegionList Character vector of region names (should match names of Regions element)

• RegionColourList Character vector specifying default colour to plot each region in R’s rgb
format

See Also

plot3d.hxsurf,rgb

Other amira: amiratype(), is.amiramesh(), read.amiramesh(), write.hxsurf()

Other hxsurf: as.hxsurf(), as.mesh3d(), materials(), plot3d.hxsurf(), subset.hxsurf(),
write.hxsurf()
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Examples

## Not run:
read.hxsurf("my.surf", RegionChoice="both")

## End(Not run)

read.landmarks Generic functions to read/write landmarks in any supported format

Description

Generic functions to read/write landmarks in any supported format

Usage

read.landmarks(f, ...)

write.landmarks(
x,
file,
format = "amiralandmarks",
ext = NULL,
Force = FALSE,
MakeDir = TRUE,
...

)

Arguments

f Path to a file (can also be a URL)

... Additional arguments passed on to format specific functions

x The landmarks object to write. Can also be a plain matrix or data.frame.

file The path to the output file. If this does not end in an extension like .landmarksAscii,
then one will be added based on the value of the ext argument.

format Character vector specifying output format. Defaults to "amiralandmarks". Par-
tial matching is used (e.g. amira is sufficient).

ext Optional character vector specifying a new or non-standard extension to use for
output file, including the period (e.g. ext='.am'). When ext=NULL, the default,
the default extension for the selected format will be added if f does not have an
extension. When ext=NA, the extension will not be modified and no extension
will be appended if f does not have one.

Force Whether to overwrite an existing file

MakeDir Whether to create directory implied by file argument.
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Details

Presently the supported formats are

• Amira

• CMTK

• Fiji (see https://imagej.net/plugins/name-landmarks-and-register)

See examples section for how to produce a listing of all currently available formats with fileformats.

Value

for read.landmarks a matrix or list of additional class landmarks, where the rownames specify the
names of each landmark if available.

For write.landmarks the path to the written file, invisibly.

Paired landmarks

Only the amiralandmarks format supports the use of paired landmarks

See Also

fileformats

Examples

## Listing of supported fileformats for landmarks
fileformats(class = 'landmarks', rval = "info")

## round trip tests
m=matrix(rnorm(6), ncol=3)
rownames(m)=c("nose", "ear")
f=write.landmarks(m, file='knee', format='cmtk')
read.landmarks(f)

# write in amira format which does not support named landmarks
f2=write.landmarks(m, file='knee', format='amira')
read.landmarks(f2)

# clean up
unlink(c(f,f2))

https://imagej.net/plugins/name-landmarks-and-register
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read.morphml Return parsed XML or R list versions of a NeuroML file

Description

read.morphml is designed to expose the full details of the morphology information in a NeuroML
file either as a parsed XML structure processed by the XML package or as an extensively processed
R list object. To obtain a neuron object use read.neuron.neuroml.

Usage

read.morphml(f, ..., ReturnXML = FALSE)

Arguments

f Path to a file on disk or a remote URL (see xmlParse for details).

... Additional arguments passed to xmlParse

ReturnXML Whether to return a parsed XML tree (when ReturnXML=TRUE) or a more exten-
sively processed R list object when ReturnXML=FALSE, the default.

Details

NeuroML files consist of an XML tree containing one more or more cells. Each cell contains a tree
of segments defining the basic connectivity/position and an optional tree cables defining attributes
on groups of segments (e.g. a name, whether they are axon/dendrite/soma etc).

read.morphml will either provide the parsed XML tree which you can query using XPath state-
ments or a more heavily processed version which provides as much information as possible from
the segments and cables trees in two R data.frames. The latter option will inevitably drop some
information, but will probably be more convenient for most purposes.

Value

Either an R list of S3 class containing one morphml_cell object for every cell in the NeuroML
document or an object of class XMLDocument when ReturnXML=TRUE.

References

https://neuroml.org/specifications

See Also

link[XML]{xmlParse}, read.neuron.neuroml

https://neuroml.org/specifications
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read.neuron Read a single neuron from a file

Description

Read a single neuron from a file

Usage

read.neuron(f, format = NULL, class = c("neuron", "ngraph"), ...)

Arguments

f Path to file. This can be a URL, in which case the file is downloaded to a
temporary location before reading.

format The file format of the neuron. When format=NULL, the default, read.neuron
will infer the file format from the extension or file header (aka magic) using the
fileformats registry.

class The class of the returned object - presently either "neuron" or "ngraph"

... additional arguments passed to format-specific readers

Details

This function will handle neuron and dotprops objects saved in R .rds or .rda format by default.
Additional file formats can be registered using fileformats.

At the moment the following formats are supported using file readers already included with the nat
package:

• swc See read.neuron.swc. SWC files can also return an ngraph object containing the neuron
structure in a (permissive) general graph format that also contains the 3D positions for each
vertex.

• neuroml See read.neuron.neuroml

• fijitraces See read.neuron.fiji. The file format used by the Simple Neurite Tracer plugin
of Fiji/ImageJ.

• hxlineset,hxskel Two distinct fileformats used by Amira. hxlineset is the generic one,
hxskel is used by the hxskeletonize extension of Schmitt and Evers (see refs).

• rda,rds Native R cross-platform binary formats (see load,readRDS). Note that RDS only
contains a single unnamed neuron, whereas rda contains one or more named neurons.

References

Schmitt, S. and Evers, J. F. and Duch, C. and Scholz, M. and Obermayer, K. (2004). New methods
for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage
4, 1283–98. doi: 10.1016/j.neuroimage.2004.06.047

https://imagej.net/plugins/simple-neurite-tracer/
https://doi.org/10.1016/j.neuroimage.2004.06.047
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See Also

write.neuron, read.neurons, fileformats

Examples

## Not run:
# note that we override the default NeuronName field
n=read.neuron(system.file("tests/testthat/testdata","neuron","EBT7R.CNG.swc",package='nat'),

NeuronName="EBT7R")
# use a function to set the NeuronName field
n3=read.neuron(system.file("tests/testthat/testdata","neuron","EBT7R.CNG.swc",package='nat'),

NeuronName=function(x) sub("\\..*","",x))
# show the currently registered file formats that we can read
fileformats(class='neuron', read=TRUE)

## End(Not run)

read.neuron.fiji Read a neuron saved by Fiji’s Simple Neurite Tracer Plugin

Description

Read a neuron saved by Fiji’s Simple Neurite Tracer Plugin

Usage

read.neuron.fiji(f, ..., simplify = TRUE, Verbose = FALSE)

Arguments

f Path to a file

... Additional arguments passed to xmlParse.

simplify Whether to return a single neuron as a neuron object rather than a neuronlist
of length 1.

Verbose Whether to print status messages during parsing.

Details

This is an XML based format so parsing it depends on installation of the suggested XML package.

References

https://imagej.net/plugins/simple-neurite-tracer/ https://imagej.net/plugins/snt/
traces-file-format

https://imagej.net/plugins/simple-neurite-tracer/
https://imagej.net/plugins/snt/traces-file-format
https://imagej.net/plugins/snt/traces-file-format
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read.neuron.neuroml Read one or more neurons from a NeuroML v1 file

Description

Read one or more neurons from a NeuroML v1 file

Usage

read.neuron.neuroml(f, ..., AlwaysReturnNeuronList = FALSE)

Arguments

f Path to a NeuroML format XML file

... Additional arguments passed to read.morphml (and on to xmlParse)
AlwaysReturnNeuronList

See Value section (default FALSE)

Value

When the XML file contains only 1 cell and AlwaysReturnNeuronList=FALSE, a neuron object,
otherwise a neuronlist containing one or more neurons.

References

https://neuroml.org/specifications

See Also

read.morphml

read.neuron.swc Read a neuron in swc file format

Description

read.neuron.swc reads an SWC file on disk into a fully parsed neuron representation.

read.ngraph.swc reads an SWC file on disk into the more generic (and forgiving) ngraph repre-
sentation which provides a bridge to the igraph library.

Usage

read.neuron.swc(f, ...)

read.ngraph.swc(f, weights = FALSE, directed = TRUE, ...)

https://neuroml.org/specifications
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Arguments

f path to file

... Additional arguments. read.neuron.swc passes theseto as.neuron and then
on to neuron. read.neuron.swc passes them to ngraph.

weights Logical value indicating whether edge weights defined by the 3D distance be-
tween points should be added to graph (default FALSE) or a numeric vector of
weights.

directed Whether the resultant graph should be directed (default TRUE)

Details

These functions will accept SWC neurons with multiple trees and arbitrary point index order. How-
ever only read.ngraph.swc will accept SWC files with cycles.

These functions would normally be called from read.neuron(s) rather than used directly.

SWC Format

According to http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/
Spec.html SWC file format has a radius not a diameter specification

See Also

is.swc

read.neuronlistfh Read a local, or remote, neuronlistfh object saved to a file.

Description

Read a local, or remote, neuronlistfh object saved to a file.

Usage

read.neuronlistfh(file, localdir = NULL, update = FALSE, ...)

Arguments

file The file path of the neuronlistfh object. Can be local, or remote (via http or ftp).

localdir If the file is to be fetched from a remote location, this is the folder in which
downloaded RDS file will be saved. The default value of NULL will save to a
folder in the current R sessions temporary folder. See details.

update Whether to update local copy of neuronlistfh (default: FALSE, see details)

... Extra arguments to pass to download.file.

http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html
http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html
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Details

When reading a remote neuronlistfh object, it is downloaded and cached to localdir. If there
is already a cached file at the appropriate location and update=TRUE then the md5sums are checked
and the downloaded file will be copied on top of the original copy if they are different; if udpate=FALSE,
the default, then no action will be taken. After downloading a remote neuronlistfh object, a check
is made for the existence of the data directory that will be used to individual objects. If this does
not exist it will be created.

Note also that there is a strict convention for the layout of the files on disk. The neuronlistfh object
will be saved in R’s RDS format and will be placed next to a folder called data which will contain
the data objects, also saved in RDS format. For example if myneurons.rds is downloaded to
localdir="\path\to\localdir" the resultant file layout will be as follows:

• \path\to\localdir\myneurons.rds

• \path\to\localdir\data\2f88e16c4f21bfcb290b2a8288c05bd0

• \path\to\localdir\data\5b58e040ee35f3bcc6023fb7836c842e

• \path\to\localdir\data\... etc

Given this arrangment, the data directory should always be at a fixed location with respect to the
saved neuronlistfh object and this is enforced on download and the default behaviour on read and
write. However it does remain possible (if not recommended) to site the neuronlistfh and filehash
database directory in different relative locations; if the neuronlistfh object specified by file does
not have a filehash database with a valid dir slot and there is no ’data’ directory adjacent to the
neuronlistfh object, an error will result.

See Also

Other neuronlistfh: [.neuronlistfh(), neuronlistfh(), remotesync(), write.neuronlistfh()

read.neurons Read one or more neurons from file to a neuronlist in memory

Description

Read one or more neurons from file to a neuronlist in memory

Usage

read.neurons(
paths,
pattern = NULL,
neuronnames = basename,
format = NULL,
nl = NULL,
df = NULL,
OmitFailures = TRUE,
SortOnUpdate = FALSE,
...

)
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Arguments

paths Paths to neuron input files or a directory containing neurons or a neuronlistfh
object, or a zip archive containing multiple neurons.

pattern If paths is a directory, regex that file names must match.

neuronnames Character vector or function that specifies neuron names. See details.

format File format for neuron (see read.neuron)

nl An existing neuronlist to be updated (see details)

df Optional data frame containing information about each neuron

OmitFailures Omit failures (when TRUE) or leave an NA value in the list

SortOnUpdate When nl!=NULL the resultant neuronlist will be sorted so that neurons are or-
dered according to the value of the paths argument.

... Additional arguements to passed to read.neuron methods

Details

This function will cope with the same set of file formats offered by read.neuron.

If the paths argument specifies a (single) directory then all files in that directory will be read unless
an optional regex pattern is also specified. Similarly, if paths specifies a zip archive, all neurons
within the archive will be loaded.

neuronnames must specify a unique set of names that will be used as the names of the neurons in
the resultant neuronlist. If neuronnames is a a function then this will be applied to the path to each
neuron. The default value is the function basename which results in each neuron being named for
the input file from which it was read.

The optional dataframe (df) detailing each neuron should have rownames that match the names of
each neuron. It would also make sense if the same key was present in a column of the data frame. If
the dataframe contains more rows than neurons, the superfluous rows are dropped with a warning.
If the dataframe is missing rows for some neurons an error is generated. If SortOnUpdate is TRUE
then updating an existing neuronlist should result in a new neuronlist with ordering identical to
reading all neurons from scratch.

Value

neuronlist object containing the neurons

See Also

read.neuron, write.neurons, fileformats

Other neuronlist: *.neuronlist(), is.neuronlist(), neuronlist-dataframe-methods, neuronlistfh(),
neuronlist(), nlapply(), write.neurons()

Examples

## Not run:
## Read C. elegans neurons from OpenWorm github repository
vds=paste0("VD", 1:13)
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vdurls=paste0("https://raw.githubusercontent.com/openworm/CElegansNeuroML/",
"103d500e066125688aa7ac5eac7e9b2bb4490561/CElegans/generatedNeuroML/",vds,
".morph.xml")

vdnl=read.neurons(vdurls, neuronnames=vds)
plot3d(vdnl)

## The same, but this time add some metadata to neuronlist
# fetch table of worm neurons from wormbase
library(rvest)
nlurl="http://wormatlas.org/neurons/Individual%20Neurons/Neuronframeset.html"
wormneurons = html_table(html(nlurl), fill=TRUE)[[4]]
vddf=subset(wormneurons, Neuron%in%vds)
rownames(vddf)=vddf$Neuron
# attach metadata to neuronlist
vdnl=read.neurons(vdurls, neuronnames=vds, df=vddf)
# use metadata to plot a subset of neurons
clear3d()
plot3d(vdnl, grepl("P[1-6].app", Lineage))

## End(Not run)

read.nrrd Read nrrd file into an array in memory

Description

Read nrrd file into an array in memory

Read the (text) header of a NRRD format file

Usage

read.nrrd(
file,
origin = NULL,
ReadData = TRUE,
AttachFullHeader = TRUE,
Verbose = FALSE,
ReadByteAsRaw = c("unsigned", "all", "none")

)

read.nrrd.header(file, Verbose = FALSE)

Arguments

file Path to a nrrd (or a connection for read.nrrd.header)

origin Add a user specified origin (x,y,z) to the returned object

ReadData When FALSE just return attributes (i.e. the nrrd header)
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AttachFullHeader

Include the full nrrd header as an attribute of the returned object (default TRUE)

Verbose Status messages while reading

ReadByteAsRaw Either a character vector or a logical vector specifying when R should read 8 bit
data as an R raw vector rather than integer vector.

Details

read.nrrd reads data into a raw array. If you wish to generate a im3d object that includes spatial
calibration (but is limited to representing 3D data) then you should use read.im3d.

ReadByteAsRaw=unsigned (the default) only reads unsigned byte data as a raw array. This saves
quite a bit of space and still allows data to be used for logical indexing.

Value

An array object, optionally with attributes from the nrrd header.

A list with elements for the key nrrd header fields

See Also

write.nrrd, read.im3d

read.vaa3draw Read Vaa3d format image data

Description

Read Vaa3d format image data

Usage

read.vaa3draw(f, ReadData = TRUE, Verbose = FALSE, ReadByteAsRaw = FALSE)

Arguments

f Path to image to read

ReadData Whether to read in data or just parse header

Verbose Whether to print status messages

ReadByteAsRaw Can reduce memory footprint by reading 8 bit data as a raw rather than 4 byte
interegers.
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reglist A simple wrapper class for multiple transformations

Description

A reglist is read as a set of transformations to be applied sequentially starting with the first
element, then applying the second transformation to the result of the first and so on. Each individual
transformation is considered to map data from the sample (floating/moving) space to the reference
(fixed/template) space.

Each transformation may have an attribute "swap" indicating that the natural direction of the trans-
formation should be swapped (i.e. inverted). This can be done trivially in the case of affine transfor-
mations, expensively for others such as CMTK registrations (see cmtkreg) and not at all for others.
Note that the term ’swap’ is used to avoid a direct equivalence with inversion - many registration
tools use the term inverse for directions that one might naively think of as as the natural direction
of the transformation (see xformpoints.cmtkreg for discussion).

invert_reglist inverts a reglist object

c.reglist combines multiple reglists into a single reglist.

Usage

reglist(..., swap = NULL)

invert_reglist(x)

## S3 method for class 'reglist'
c(..., recursive = FALSE)

Arguments

... One or more transformations/reglists to combine

swap A vector of the same length as ... indicating whether the direction of each
transformation should be swapped (i.e. mapping reference -> sample).

x A reglist object to invert

recursive Presently ignored

Details

The swap argument is provided as a convenience, but an attribute 'swap' can also be set directly
on each registration.

Inversion

invert_reglist takes a minimal approach to inversion. It reverses the order of the individual
elements of the registration and tags each of them with a swap attribute (or changes the value of the
attribute if it already exists)
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See Also

xform

c

Examples

I=diag(4)
S=I
diag(S)=c(1, 2, 3, 1)
rl=reglist(S, I)
rli=invert_reglist(rl)

## We can check the inversion by simplifying
m=simplify_reglist(rl)[[1]]
mi=simplify_reglist(rli)[[1]]
# NB solve will invert a homogeneous affine matrix
all.equal(m, solve(mi))
I=diag(4)
S=I
diag(S)=c(1, 2, 3, 1)
rl=reglist(S, I)
rl2=c(rl, 'path/to/my/reg.list')
rl3=c(reglist('path/to/my/reg.list'), rl)

remotesync Synchronise a remote object

Description

Synchronise a remote object

Usage

remotesync(
x,
remote = attr(x, "remote"),
download.missing = TRUE,
delete.extra = FALSE,
...

)

## S3 method for class 'neuronlistfh'
remotesync(
x,
remote = attr(x, "remote"),
download.missing = FALSE,
delete.extra = FALSE,
indices = NULL,
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update.object = TRUE,
...

)

Arguments

x Object to synchronise with a remote URL

remote The remote URL to update from
download.missing

Whether to download missing objects (default TRUE)

delete.extra Whether to delete objects (default TRUE)

... Additional arguments passed to methods

indices Character vector naming neurons to update (default indices=NULL implies all
neurons).

update.object Whether to update the neuronlistfh object itself on disk (default TRUE). Note
that this assumes that the neuronlistfh object has not been renamed after it
was downloaded.

Value

The updated neuronlistfh object (invisibly)

See Also

Other neuronlistfh: [.neuronlistfh(), neuronlistfh(), read.neuronlistfh(), write.neuronlistfh()

Examples

## Not run:
kcs20=read.neuronlistfh('http://flybrain.mrc-lmb.cam.ac.uk/si/nblast/flycircuit/kcs20.rds')
# update object from the web
kcs20=remotesync(kcs20)
# download all neurons with significant innervation of the vertical lobe
mbvl_neurons=subset(kcs20, (MB_VL_R+MB_VL_L)>200, rval='names')
kcs20=remotesync(kcs20, indices=mbvl_neurons, download.missing=TRUE)

## End(Not run)

resample Resample an object with a new spacing

Description

Resample an object with a new spacing

resample a neuron with a new spacing
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Usage

resample(x, ...)

## S3 method for class 'neuron'
resample(x, stepsize, ...)

Arguments

x An object to resample

... Additional arguments passed to methods

stepsize The new spacing along the tracing

Details

resample.neuron Floating point columns including X,Y,Z,W will be interpolated using linear in-
terpolation, while integer or factor columns will be interpolated using constant interpolation. See
approx for details.

See Also

approx, seglengths

Other neuron: neuron(), ngraph(), plot.neuron(), potential_synapses(), prune(), rootpoints(),
spine(), subset.neuron()

rootpoints Return the root or branch points of a neuron or graph

Description

A neuron may have multiple subtrees and therefore multiple roots

Usage

rootpoints(x, ...)

## Default S3 method:
rootpoints(x, ...)

## S3 method for class 'neuron'
rootpoints(x, subtrees = 1, ...)

## S3 method for class 'igraph'
rootpoints(x, ...)

branchpoints(x, ...)
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## Default S3 method:
branchpoints(x, ...)

## S3 method for class 'neuron'
branchpoints(x, subtrees = 1, ...)

## S3 method for class 'igraph'
branchpoints(x, ...)

endpoints(x, ...)

## S3 method for class 'neuron'
endpoints(x, subtrees = 1, ...)

## S3 method for class 'igraph'
endpoints(x, ...)

## Default S3 method:
endpoints(x, ...)

Arguments

x Neuron or other object which might have roots

... Further arguments passed to methods

subtrees Integer index of the fully connected subtree in x$SubTrees. Only applicable
when a neuron consists of multiple unconnected subtrees.

Details

branchpoints.neuron returns a list if more than one subtree is specified

Value

Integer point number of root/branch point

See Also

Other neuron: neuron(), ngraph(), plot.neuron(), potential_synapses(), prune(), resample(),
spine(), subset.neuron()

scale.neuron Scale and centre neuron 3D coordinates

Description

note that scale.dotprops recalculates the tangent vectors after scaling the 3D coords. See dotprops
for details.
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Usage

## S3 method for class 'neuron'
scale(x, center = TRUE, scale = TRUE)

## S3 method for class 'dotprops'
scale(x, center = TRUE, scale = TRUE)

Arguments

x A neuron

center 3-vector to subtract from x,y,z coords

scale 3-vector used to divide x,y,z coords

Details

If scale=TRUE, the neuron will be rescaled to unit sd in each axis. If center=TRUE, the neuron will
be centred around the axis means. See base::scale.default for additional details.

Value

neuron with scaled coordinates

See Also

scale.default, *.neuron

Examples

n1.scaledown=scale(Cell07PNs[[1]],scale=c(2,2,3))
n1.scaleup=scale(Cell07PNs[[1]],scale=1/c(2,2,3))

seglengths Calculate length of all segments in neuron

Description

Calculate length of all segments in neuron

Usage

seglengths(x, all = FALSE, flatten = TRUE, sumsegment = TRUE)
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Arguments

x A neuron

all Whether to calculate lengths for all segments when there are multiple subtrees
(default: FALSE)

flatten Whether to flatten the lists of lists into a single list when all=TRUE

sumsegment Whether to return the length of each segment (when sumsegment=TRUE, the
default) or a list of vectors of lengths of each individual edge in the segment.

Details

A segment is an ubranched portion of neurite consisting of at least one vertex joined by edges.Only
segments in x$SegList will be calculated unless all=TRUE. Segments containing only one point will
have 0 length.

Value

A vector of lengths for each segment or when sumsegment=FALSE a list of vectors

See Also

as.seglist.neuron

Examples

summary(seglengths(Cell07PNs[[1]]))
hist(unlist(seglengths(Cell07PNs[[1]], sumsegment = FALSE)),

br=20, main='histogram of edge lengths', xlab='edge lengths /microns')

seglist Make/convert neuron connectivity information into a seglist object

Description

seglist makes a seglist object from a list of integer vectors of raw vertex ids. As a convenience if
a vector of numeric ids are passed these are assumed to specify a neuron with 1 segment.

as.seglist.neuron will extract the seglist from a neuron, optionally extracting all subtrees (all=TRUE)
and (in this case) flattening the list into a single hierarchy when flatten=TRUE. n.b. when all=TRUE
but flatten=FALSE the result will always be a list of seglist objects (even if the neuron has only
one subtree i.e. is fully connected).

as.seglist.igraph will convert a fully connected acyclic ngraph or igraph object into a seglist
consisting of exactly one subtree.
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Usage

seglist(...)

as.seglist(x, ...)

## S3 method for class 'neuron'
as.seglist(x, all = FALSE, flatten = FALSE, ...)

## S3 method for class 'igraph'
as.seglist(x, origin = NULL, Verbose = FALSE, ...)

Arguments

... for seglist integer vectors to convert to a seglist

x object passed to be converted to seglist

all Whether to include segments from all subtrees

flatten When all=TRUE flatten the lists of lists into a one-level list.

origin The origin of the tree (see details)

Verbose Whether to print progress updates to console (default FALSE)

Details

see neuron for further information about seglists.

If the graph vertices have vid attributes, typically defining the original vertex ids of a graph that
was then decomposed into subgraphs, then the origin is assumed to refer to one of these vids not a
raw vertex id of the current graph. The returned seglist will also contain these original vertex ids.

The head of the first segment in the seglist will be the origin.

Value

A list with additional class seglist.

a list with one entry for each unbranched segment.

See Also

neuron

ngraph,igraph

Examples

sl=seglist(c(1:2),c(2:6))
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seglist2swc Recalculate Neurons’s SWCData using SegList and point information

Description

Uses the SegList field (indices into point array) to recalculate point numbers and parent points for
SWC data field (d).

Usage

seglist2swc(x, d, RecalculateParents = TRUE, ...)

Arguments

x Neuron containing both the SegList and d fields or a plain seglist

d SWC data block (only expected if x is a SegList)

RecalculateParents

Whether to recalculate parent points (default T)

... Additional arguments passed to normalise_swc

Details

If any columns are missing then they are set to default values by normalise_swc. In particular

• PointNo integer 1:npoints

• Label = 0 (unknown)

• W NA_real

Note that each numeric entry in the incoming SegList is a raw index into the block of vertex data
defined by d.

Value

A neuron if x was a neuron otherwise dataframe of swc data

See Also

as.neuron.data.frame, normalise_swc, neuron
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segmentgraph Return a simplified segment graph for a neuron

Description

Return a simplified segment graph for a neuron

Usage

segmentgraph(
x,
weights = TRUE,
segids = FALSE,
exclude.isolated = FALSE,
include.xyz = FALSE,
reverse.edges = FALSE

)

Arguments

x neuron
weights Whether to include the original segment lengths as edge weights in the graph.
segids Whether to include the integer segment ids as an edge attribute in the graph
exclude.isolated

Whether to eliminate isolated nodes
include.xyz Whether to include 3D location as vertex attribute
reverse.edges Whether to reverse the direction of each edge in the output graph to point to-

wards (rather than away from) the root (default FALSE)

Details

The resultant graph will contain all branch and endpoints of the original neuron. This will be con-
structed from the SegList field, or where present, the SubTrees field (containing multiple SegLists
for each isolated graph in the neuron). Each edge in the output graph will match one segment in the
original SegList.

Value

igraph object containing only nodes of neuron keeping original labels (x$d$PointNo => V(g)$label)
and vertex indices (1:nrow(x$d) => V(g)$vid).

Examples

sg=segmentgraph(Cell07PNs[[1]])
str(sg)
library(igraph)
plot(sg, edge.arrow.size=.4, vertex.size=10)
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setdiff Find the (asymmetric) difference between two collections of objects

Description

Find the (asymmetric) difference between two collections of objects

Usage

setdiff(x, y, ...)

## Default S3 method:
setdiff(x, y, ...)

## S3 method for class 'neuronlist'
setdiff(x, y, ...)

Arguments

x the first collection to consider.

y the second collection to consider.

... additional arguments passed to methods

Details

Note that setdiff.default calls base::setdiff to ensure consistent behaviour for regular vectors.

As a convenience setdiff.neuronlist allows y, the second collection, to be a character vector of
names.

Value

A collection of the same mode as x that contains all elements of x that are not present in y.

See Also

setdiff
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simplify_reglist Simplify a registration list

Description

Simplify a registration list

Usage

simplify_reglist(reg, as.cmtk = NULL)

Arguments

reg A registration list (reglist) containing one or more transformations.

as.cmtk Whether to convert to a vector of CMTK format registrations (see cmtkreg).
The default value of as.cmtk=NULL converts all registrations to CMTK if any
one registration is in CMTK format (thus enabling them to be applied by CMTK
tools in a single call). See details.

Details

This function

• inverts any affine matrices with attribute "swap"

• collapses multiple affine matrices into a single affine

• optionally converts all registrations to CMTK on disk registrations when possible.

Note that if any of the registrations are in CMTK format, the default behaviour is to try to convert
all of the other registrations into CMTK format to enable them to be passed to CMTK in a single
command. If as.cmtk=TRUE then there will be an error if this is not possible.

See Also

reglist, xform, cmtkreg

smooth_neuron Smooth the 3D coordinates of a neuron skeleton

Description

smooth_neuron smooths a neuron.

Usage

smooth_neuron(n, method = c("gauss", "spline"), ...)

smooth_segment_gauss(xyz, sigma, ...)



spine 139

Arguments

n Neuron to smooth

method Smoothing method

... Additional parameters passed to segment smoothing functions

xyz A block of 3D coordinates defining an unbranched segment

sigma The standard deviation of the Gaussian smoothing kernel (which has the same
spatial units as the object being smoothed)

Value

A new neuron with smoothed 3d coordinates

Examples

ns=smooth_neuron(Cell07PNs[[1]], sigma=2)
# plot in 2D zooming in on axon terminals
plot(Cell07PNs[[1]], col='grey', xlim=c(260,290), ylim=c(115,90))
plot(ns, col='red', add=TRUE)

# 3D plot
plot3d(Cell07PNs[[1]], col='grey')
plot3d(ns, col='red')

spine Compute the longest path (aka spine or backbone) of a neuron

Description

Compute the longest path (aka spine or backbone) of a neuron

Usage

spine(
n,
UseStartPoint = FALSE,
SpatialWeights = TRUE,
invert = FALSE,
rval = c("neuron", "length", "ids")

)
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Arguments

n the neuron to consider.

UseStartPoint Whether to use the StartPoint of the neuron (often the soma) as the starting point
of the returned spine.

SpatialWeights logical indicating whether spatial distances (default) should be used to weight
segments instead of weighting each edge equally.

invert When invert=TRUE the spine is pruned away instead of being selected. This is
only valid when rval='neuron' or rval='ids'.

rval Character vector indicating the return type, one of 'neuron', 'length' or
'ids'. See Value section.

Value

Either

• a neuron object corresponding to the longest path or

• the length of the longest path (when rval="length") or

• an integer vector of raw point indices (when rval="ids").

See Also

diameter, shortest.paths, prune_strahler for removing lower order branches from a neuron,
prune for removing parts of a neuron by spatial criteria.

Other neuron: neuron(), ngraph(), plot.neuron(), potential_synapses(), prune(), resample(),
rootpoints(), subset.neuron()

Examples

pn.spine=spine(Cell07PNs[[1]])

plot3d(Cell07PNs[[1]])
plot3d(pn.spine, lwd=4, col='black')

# just extract length
spine(Cell07PNs[[1]], rval='length')
# same result since StartPoint is included in longest path
spine(Cell07PNs[[1]], rval='length', UseStartPoint=TRUE)

# extract everything but the spine
antispine=spine(Cell07PNs[[1]], invert=TRUE)

plot3d(Cell07PNs[[1]])
plot3d(antispine, lwd=4, col='red')
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strahler_order Find the Strahler order of each point in a neuron

Description

The Strahler order will be 1 for each tip segment and then 1 + the maximum of the Strahler order of
each parent segment for internal segments. Branch points will have the Strahler order of the closest
segment to the root of which they are part.

Usage

strahler_order(x)

Arguments

x A neuron

Details

It is vital that the root of the neuron is valid since this determines the flow direction for calculation
of the Strahler order. At present the function is not defined for neurons with multiple subtrees.

Internally, this function uses segmentgraph to find a reduced segmentgraph for the neuron.

Value

A list containing

• points Vector of integer Strahler orders for each point in the neuron

• segments Vector of integer Strahler orders for each segment in the neuron

References

https://en.wikipedia.org/wiki/Strahler_number

See Also

prune_strahler, a segmentgraph (a form of ngraph) representation is used to calculate the
Strahler order.

https://en.wikipedia.org/wiki/Strahler_number
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sub2ind Find 1D index given n-dimensional indices

Description

Emulates the MATLAB function sub2ind.

Usage

sub2ind(dims, indices)

Arguments

dims vector of dimensions of object to index into.

indices vector of n-dimensional indices.

subset Subset methods for different nat objects

Description

These methods enable subsets of some nat objects including neurons and neuronlists to be obtained.
See the help for each individual method for details.

See Also

subset.neuron, subset.dotprops, subset.hxsurf, subset.neuronlist

subset.dotprops Subset points in dotprops object that match given conditions

Description

Subset points in dotprops object that match given conditions

Usage

## S3 method for class 'dotprops'
subset(x, subset, invert = FALSE, ...)
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Arguments

x A dotprops object

subset A subset of points defined by indices, an expression or a function (see Details)

invert Whether to invert the subset criteria - a convenience when selecting by function
or indices.

... Additional parameters (currently ignored)

Details

subset defines either logical or numeric indices, in which case these are simply applied to the
matrices that define the points, vect fields of the dotprops object etc OR a function (which is
called with the 3D points array and returns T/F. OR an expression vector).

Value

subsetted dotprops object

See Also

prune.dotprops, subset.neuron

Examples

## subset using indices ...
dp=kcs20[[10]]
dp1=subset(dp, 1:50)

# ... or an expression
dp2=subset(dp, alpha>0.7)
front=subset(dp, points[,'Z']<40)
# use a helper function
between=function(x, lower, upper) x>=lower & x<=upper
middle=middle=subset(dp, between(points[,'Z'], 40, 60))

# plot results in 3D

plot3d(front, col='red')
plot3d(middle, col='green')
plot3d(dp, col='blue')

## Not run:

## subset using an selection function
s3d=select3d()
dp1=subset(dp, s3d(points))
# special case of previous version
dp2=subset(dp, s3d)
# keep the points that were removed from dp2
dp2.not=subset(dp, s3d, invert=TRUE)
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# (another way of doing the same thing)
dp2.not=subset(dp, Negate(s3d))
stopifnot(all.equal(dp1, dp2))
dp2=subset(dp, alpha>0.5 & s3d(pointd))
dp3=subset(dp, 1:10)

## subset each dotprops object in a whole neuronlist
plot3d(kcs20)
s3d=select3d()
kcs20.partial = nlapply(kcs20, subset, s3d)
clear3d()
plot3d(kcs20.partial, col='red')
plot3d(kcs20, col='grey')

## End(Not run)

subset.hxsurf Subset hxsurf object to specified regions

Description

Subset hxsurf object to specified regions

Usage

## S3 method for class 'hxsurf'
subset(x, subset = NULL, drop = TRUE, rval = c("hxsurf", "names"), ...)

Arguments

x A dotprops object

subset Character vector specifying regions to keep. Interpreted as regex if of length 1
and no fixed match.

drop Whether to drop unused vertices after subsetting (default: TRUE)

rval Whether to return a new hxsurf object or just the names of the matching regions

... Additional parameters (currently ignored)

Value

subsetted hxsurf object

See Also

Other hxsurf: as.hxsurf(), as.mesh3d(), materials(), plot3d.hxsurf(), read.hxsurf(),
write.hxsurf()
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Examples

# plot only vertical lobe
vertical_lobe=subset(MBL.surf, "VL")

plot3d(vertical_lobe, alpha=0.3)
plot3d(kcs20)

# there is also a shortcut for this
clear3d()
plot3d(MBL.surf, "VL", alpha=0.3)

subset.neuron Subset neuron by keeping only vertices that match given conditions

Description

Subset neuron by keeping only vertices that match given conditions

Usage

## S3 method for class 'neuron'
subset(x, subset, invert = FALSE, ...)

Arguments

x A neuron object

subset A subset of points defined by indices, an expression, or a function (see Details)

invert Whether to invert the subset criteria - a convenience when selecting by function
or indices.

... Additional parameters (passsed on to prune_vertices)

Details

subset defines which vertices of the neuron to keep and is one of

• logical or numeric indices, in which case these are simply used to index the vertices in the
order of the data.frame x$d. Note that any NA values are ignored.

• a function (which is called with the 3D points array and returns T/F vector)

• an expression evaluated in the context of the x$d data.frame containing the SWC specification
of the points and connectivity of the neuron. This can therefore refer e.g. to the X,Y,Z location
of vertices in the neuron.

Value

subsetted neuron
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See Also

prune.neuron, prune_vertices, subset.dotprops

Other neuron: neuron(), ngraph(), plot.neuron(), potential_synapses(), prune(), resample(),
rootpoints(), spine()

Examples

n=Cell07PNs[[1]]
# keep vertices if their X location is > 2000
n1=subset(n, X>200)
# diameter of neurite >1
n2=subset(n, W>1)
# first 50 nodes
n3=subset(n, 1:50)
# everything but first 50 nodes
n4=subset(n, 1:50, invert=TRUE)

## subset neuron by graph structure
# first plot neuron and show the point that we will use to divide the neuron
n=Cell07PNs[[1]]
plot(n)
# this neuron has a tag defining a point at which the neuron enters a brain
# region (AxonLHEP = Axon Lateral Horn Entry Point)
points(t(xyzmatrix(n)[n$AxonLHEP, 1:2]), pch=19, cex=2.5)

# now find the points downstream (distal) of that with respect to the root
ng=as.ngraph(n)
# use a depth first search
distal_points=igraph::graph.dfs(ng, root=n$AxonLHEP, unreachable=FALSE,

neimode='out')$order
distal_tree=subset(n, distal_points)
plot(distal_tree, add=TRUE, col='red', lwd=2)

# Find proximal tree as well
# nb this does not include the AxonLHEP itself as defined here
proximal_points=setdiff(igraph::V(ng), distal_points)
proximal_tree=subset(n, proximal_points)
plot(proximal_tree, add=TRUE, col='blue', lwd=2)

## Not run:
## subset using interactively defined spatial regions
plot3d(n)
# nb you can save this select3d object using save or saveRDS functions
# for future non-interactive use
s3d=select3d()
n4=subset(n, s3d(xyzmatrix(n)))
# special case of previous version
n5=subset(n, s3d)
stopifnot(all.equal(n4,n5))
# keep the points that were removed from n1
n4.not=subset(n,Negate(s3d))
# vertices with x position > 100 and inside the selector function
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n6=subset(n,X>100 & s3d(X,Y,Z))

## subset each neuron object in a whole neuronlist
n10=Cell07PNs[1:10]
plot3d(n10, lwd=0.5, col='grey')
n10.crop = nlapply(n10, subset, X>250)
plot3d(n10.crop, col='red')

## subset a neuron using a surface
library(nat.flybrains)
# extract left lateral horn surface and convert to mesh3d
lh=as.mesh3d(subset(IS2NP.surf, "LH_L"))
# subset neuron with this surface
x=subset(Cell07PNs[[1]], function(x) pointsinside(x, lh))
shade3d(lh, alpha=0.3)
plot3d(x, lwd=3, col='blue')
# Now find the parts of the neuron outside the surface
y=subset(Cell07PNs[[1]], function(x) Negate(pointsinside)(x, lh))
plot3d(y, col='red', lwd=2)

## End(Not run)

subset.neuronlist Subset neuronlist returning either new neuronlist or names of chosen
neurons

Description

Subset neuronlist returning either new neuronlist or names of chosen neurons

Usage

## S3 method for class 'neuronlist'
subset(
x,
subset,
filterfun,
rval = c("neuronlist", "names", "data.frame"),
...

)

Arguments

x a neuronlist
subset An expression that can be evaluated in the context of the dataframe attached to

the neuronlist. See details.
filterfun a function which can be applied to each neuron returning TRUE when that neuron

should be included in the return list.
rval What to return (character vector, default=’neuronlist’)
... additional arguments passed to filterfun
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Details

The subset expression should evaluate to one of

• character vector of names

• logical vector

• vector of numeric indices

Any missing names are dropped with a warning. The filterfun expression is wrapped in a try.
Neurons returning an error will be dropped with a warning.

You may also be interested in find.neuron, which enables objects in a neuronlist to be subsetted
by a 3D selection box. In addition subset.neuron, subset.dotprops methods exist: these are
used to remove points from neurons (rather than to remove neurons from neuronlists).

Value

A neuronlist, character vector of names or the attached data.frame according to the value of rval

See Also

neuronlist,find.neuron,subset.data.frame,subset.neuron,subset.dotprops

Examples

da1pns=subset(Cell07PNs,Glomerulus=='DA1')
with(da1pns,stopifnot(all(Glomerulus=='DA1')))
gammas=subset(kcs20,type=='gamma')
with(gammas,stopifnot(all(type=='gamma')))
# define a function that checks whether a neuron has points in a region in
# space, specifically the tip of the mushroom body alpha' lobe
aptip<-function(x) {xyz=xyzmatrix(x);any(xyz[,'X']>350 & xyz[,'Y']<40)}
# this should identify the alpha'/beta' kenyon cells only
apbps=subset(kcs20,filterfun=aptip)
# look at which neurons are present in the subsetted neuronlist
head(apbps)
# combine global variables with dataframe columns
odds=rep(c(TRUE,FALSE),10)
stopifnot(all.equal(subset(kcs20,type=='gamma' & odds),

subset(kcs20,type=='gamma' & rep(c(TRUE,FALSE),10))))
## Not run:
# make a 3D selection function using interactive rgl::select3d() function
s3d=select3d()
# Apply a 3D search function to the first 100 neurons in the neuronlist dataset
subset(dps[1:100],filterfun=function(x) {sum(s3d(xyzmatrix(x)))>0},

rval='names')
# combine a search by metadata, neuropil location and 3D location
subset(dps, Gender=="M" & rAL>1000, function(x) sum(s3d(x))>0, rval='name')
# The same but specifying indices directly, which can be considerably faster
# when neuronlist is huge and memory is in short supply
subset(dps, names(dps)[1:100],filterfun=function(x) {sum(s3d(xyzmatrix(x)))>0},

rval='names')
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## End(Not run)

summary.neuronlist Summary statistics for neurons (e.g. cable length, number of nodes)

Description

summary.neuronlist computes tree statistics for all the neurons in a neuronlist object

summary.neuron computes statistics for individual neurons

summary.dotprops computes statistics for individual neurons in dotprops format. Note the veclength
argument.

Usage

## S3 method for class 'neuronlist'
summary(object, ..., include.attached.dataframe = FALSE)

## S3 method for class 'neuron'
summary(object, ...)

## S3 method for class 'dotprops'
summary(object, veclength = 1, ...)

Arguments

object The neuron or neuronlist to summarise

... For summary.neuronlist additional arguments passed on to summary methods
for individual neurons

include.attached.dataframe

Whether to include the neuronlists attached metadata in the returned data.frame.

veclength The vector length to assume for each segment so that a cable length estimate can
be made.

Value

A data.frame summarising the tree properties of the neuron with columns

• root

• nodes

• segments

• branchpoints

• endpoints

• cable.length
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See Also

seglengths

Examples

# summary for a whole neuronlist
summary(Cell07PNs)
# including the attached data.frame with additional metadata
head(summary(Cell07PNs, include.attached.dataframe = FALSE))
# for a single regular format neuron
summary(Cell07PNs[[1]])
# for a single dotprops format neuron
summary(kcs20[[1]])
# specify a different estimate for the cable length associated with a single
# point in the neuron
summary(kcs20[[1]], veclength=1.2)

threshold Threshold an object, typically to produce a mask

Description

Threshold an object, typically to produce a mask

Usage

threshold(x, ...)

## S3 method for class 'im3d'
threshold(
x,
threshold = 0,
mode = c("logical", "integer", "raw", "numeric"),
...

)

Arguments

x Object to be thresholded

... Additional arguments passed to methods

threshold Either a numeric value that pixels must exceed in order to be included in the
mask or a logical vector defining foreground pixels.

mode The storage mode of the resultant object (see vector

Details

Note that threshold.im3d passes . . . arguments on to im3d
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Value

an oject with attributes matching x and elements with value as.vector(TRUE,mode=mode) i.e.
TRUE,1,0x01 and as.vector(FALSE,mode=mode) i.e. FALSE,0,0x00 as appropriate.

See Also

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(),
imslice(), is.im3d(), mask(), origin(), projection(), unmask(), voxdims()

Examples

x=im3d(rnorm(1000),dims=c(10,10,10), BoundingBox=c(20,200,100,200,200,300))
stopifnot(all.equal(threshold(x, 0), threshold(x, x>0)))

union Find the union of two collections of objects

Description

Find the union of two collections of objects

Usage

union(x, y, ...)

## Default S3 method:
union(x, y, ...)

## S3 method for class 'neuronlist'
union(x, y, ...)

Arguments

x the first collection to consider.
y the second collection to consider.
... additional arguments passed to methods

Details

Note that union.default calls base::union to ensure consistent behaviour for regular vectors.

Value

A collection of the same mode as x that contains all unique elements of x and y.

See Also

union
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unmask Make im3d image array containing values at locations defined by a
mask

Description

Make im3d image array containing values at locations defined by a mask

Usage

unmask(
x,
mask,
default = NA,
attributes. = attributes(mask),
copyAttributes = TRUE

)

Arguments

x the data to place on a regular grid

mask An im3d regular image array where non-zero voxels are the selected element.

default Value for regions outside the mask (default: NA)

attributes. Attributes to set on new object. Defaults to attributes of mask

copyAttributes Whether to copy over attributes (including dim) from the mask to the returned
object. default: TRUE

Details

The values in x will be placed into a grid defined by the dimensions of the mask in the order defined
by the standard R linear subscripting of arrays (see e.g. arrayInd).

Value

A new im3d object with attributes/dimensions defined by mask and values from x. If copyAttributes
is FALSE, then it will have mode of x and length of mask but no other attributes.

See Also

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(),
imslice(), is.im3d(), mask(), origin(), projection(), threshold(), voxdims()
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Examples

## Not run:
# read in a mask
LHMask=read.im3d(system.file('tests/testthat/testdata/nrrd/LHMask.nrrd', package='nat'))
# pick out all the non zero values
inmask=LHMask[LHMask!=0]
# fill the non-zero elements of the mask with a vector that iterates over the
# values 0:9
stripes=unmask(seq(inmask)%%10, LHMask)
# make an image from one slice of that result array
image(imslice(stripes,11), asp=TRUE)

## End(Not run)

voxdims Return voxel dimensions of an object

Description

This would properly be thought of as the voxel spacing when voxels are assumed not to have a
physical extent (only a location).

Usage

voxdims(x, ...)

## S3 method for class 'im3d'
voxdims(x, ...)

## S3 method for class 'character'
voxdims(x, ...)

## Default S3 method:
voxdims(x, dims, ...)

Arguments

x An im3d object with associated voxel dimensions, a path to or a 2 x 3 Bound-
ingBox matrix.

... Additional arguments for methods

dims The number of voxels in each dimension when x is a BoundingBox matrix.

Details

We follow Amira’s convention of returning a voxel dimension equal to the bounding box size (rather
than 0) for any dimension with only 1 voxel.
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Value

A numeric vector of length 3, NA when missing.

See Also

boundingbox

Other im3d: as.im3d(), boundingbox(), im3d-coords, im3d-io, im3d(), imexpand.grid(),
imslice(), is.im3d(), mask(), origin(), projection(), threshold(), unmask()

write.amiramesh Write a 3D data object to an amiramesh format file

Description

Write a 3D data object to an amiramesh format file

Usage

write.amiramesh(
x,
file,
enc = c("binary", "raw", "text", "hxzip"),
dtype = c("float", "byte", "short", "ushort", "int", "double"),
endian = .Platform$endian,
WriteNrrdHeader = FALSE

)

Arguments

x The image data to write (an im3d, or capable of being interpreted as such)

file Character vector describing a single file

enc Encoding of the data. NB "raw" and "binary" are synonyms.

dtype Data type to write to disk

endian Endianness of data block. Defaults to current value of .Platform$endian.
WriteNrrdHeader

Whether to write a separate detached nrrd header next to the amiramesh file
allowing it to be opened by a NRRD reader. See details.

Details

Note that only 'raw' or 'text' format data can accommodate a detached NRRD format header
since Amira’s HxZip format is subtly different from NRRD’s gzip encoding. There is a full de-
scription of the deteached NRRD format in the help for write.nrrd.
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See Also

.Platform,read.amiramesh,write.nrrd

Examples

d=array(rnorm(1000), c(10, 10, 10))
tf=tempfile(fileext='.am')
write.amiramesh(im3d(d, voxdims=c(0.5,0.5,1)), file=tf, WriteNrrdHeader=TRUE)
d2=read.nrrd(paste(tf, sep='', '.nhdr'))
all.equal(d, d2, tol=1e-6)

write.cmtk Write a suitable list to a CMTK TypedStream file on disk

Description

This is probaly only of interest to developers. End users will probably wish to use more specific
functions such as write.cmtkreg for writing out registrations.

Usage

write.cmtk(l, con, gzip = FALSE, version = NA_character_)

Arguments

l Appropriately formatted list

con A character string specifying a path or a connection

gzip Whether to gzip output file (default FALSE)

version TYPEDSTREAM version number, defaults to "1.1" if not specified in the ver-
sion attribute of l.

Details

NB a version specified on the command line overrides one encoded as an attribute in the input list.

See Also

Other cmtk-io: cmtk.extract_affine(), read.cmtkreg(), read.cmtk(), write.cmtkreg()
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write.cmtkreg Write out CMTK registration list to folder

Description

Write out CMTK registration list to folder

Usage

write.cmtkreg(reglist, foldername, version = "2.4")

Arguments

reglist List specifying CMTK registration parameters

foldername Path to registration folder (usually ending in .list)

version CMTK version for registration (default 2.4)

Details

Note that transformation in the forward direction (i.e. sample->ref) e.g. as calculated from a set of
landmarks where set 1 is the sample is considered an inverse transformation by the IGS software.
So in order to use such a transformation as an initial affine with the registration command the switch
–initial-inverse must be used specifying the folder name created by this function.

CMTK v2.4 fixed a long-standing bug in affine (de)composition to CMTK params. This resulted in
a non-backwards compatible change marked by writing the TYPEDSTREAM as version 2.4. The
R code in this package implements both the new and old compose/decompose functions, using the
new by default.

See Also

Other cmtk-io: cmtk.extract_affine(), read.cmtkreg(), read.cmtk(), write.cmtk()

write.hxsurf Write Amira surface (aka HxSurface or HyperSurface) into .surf file.

Description

Write Amira surface (aka HxSurface or HyperSurface) into .surf file.

Usage

write.hxsurf(surf, filename)
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Arguments

surf hxsurf object to write to file.

filename character vector defining path to file.

Value

NULL or integer status from close.

See Also

plot3d.hxsurf,read.hxsurf, rgb

Other amira: amiratype(), is.amiramesh(), read.amiramesh(), read.hxsurf()

Other hxsurf: as.hxsurf(), as.mesh3d(), materials(), plot3d.hxsurf(), read.hxsurf(),
subset.hxsurf()

write.neuron Write out a neuron in any of the file formats we know about

Description

If file is not specified the neuron’s InputFileName field will be checked (for a dotprops object it
will be the 'file' attribute). If this is missing there will be an error. If dir is specified it will be
combined with basename(file). If file is specified but format is not, it will be inferred from file’s
extension.

Usage

write.neuron(
n,
file = NULL,
dir = NULL,
format = NULL,
ext = NULL,
Force = FALSE,
MakeDir = TRUE,
...

)

Arguments

n A neuron

file Path to output file

dir Path to directory (this will replace dirname(file) if specified)

format Unique abbreviation of one of the registered file formats for neurons including
’swc’, ’hxlineset’, ’hxskel’
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ext Will replace the default extension for the filetype and should include the period
eg ext='.amiramesh' or ext='_reg.swc'. The special value of ext=NA will
prevent the extension from being changed or added e.g. if the desired file name
does not have an extension.

Force Whether to overwrite an existing file

MakeDir Whether to create directory implied by file argument.

... Additional arguments passed to selected writer function

Details

Note that if file does not have an extension then the default extension for the specified format will
be appended. This behaviour can be suppressed by setting ext=NA.

Value

return value

See Also

write.neuron, fileformats, saveRDS

Examples

# show the currently registered file formats that we can write
fileformats(class='neuron', write=TRUE)
## Not run:
write.neuron(Cell07PNs[[1]], file='myneuron.swc')
# writes out "myneuron.swc" in SWC format
write.neuron(Cell07PNs[[1]], format = 'hxlineset', file='myneuron.amiramesh')
# writes out "myneuron.amiramesh" in Amira hxlineset format
write.neuron(Cell07PNs[[1]], format = 'hxlineset', file='myneuron')
# writes out "myneuron.am" in Amira hxlineset format

## End(Not run)

write.neuronlistfh Write out a neuronlistfh object to an RDS file

Description

Write out a neuronlistfh object to an RDS file

Usage

write.neuronlistfh(x, file = attr(x, "file"), overwrite = FALSE, ...)
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Arguments

x The neuronlistfh object to write out

file Path where the file will be written (see details)

overwrite Whether to overwrite an existing file

... Additional paramaters passed to saveRDS

Details

This function writes the main neuronlistfh object to disk, but makes no attempt to touch/verify the
associated object files.

if file is not specified, then the function will first check if x has a 'file' attribute. If that does not
exist, then attr(x,'db')@dir, the backing filehash database directory, is inspected. The save
path file will then be constructed by taking the directory one up from the database directory and
using the name of the neuronlistfh object with the suffix ’.rds’. e.g. write.neuronlistfh(kcs20) with
db directory ’/my/path/dps/data’ will be saved as ’/my/path/dps/kcs20.rds’

Note that if x has a 'file' attribute (set by read.neuronlistfh) then this will be removed before
the file is saved (since the file attribute must be set on read to ensure that we know exactly which
file on disk was the source of the object in memory).

See Also

saveRDS

Other neuronlistfh: [.neuronlistfh(), neuronlistfh(), read.neuronlistfh(), remotesync()

write.neurons Write neurons from a neuronlist object to individual files, or a zip
archive

Description

Write neurons from a neuronlist object to individual files, or a zip archive

Usage

write.neurons(
nl,
dir,
format = NULL,
subdir = NULL,
INDICES = names(nl),
files = NULL,
Force = FALSE,
...

)
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Arguments

nl neuronlist object

dir directory to write neurons, or path to zip archive (see Details).

format Unique abbreviation of one of the registered file formats for neurons including
’swc’, ’hxlineset’, ’hxskel’

subdir String naming field in neuron that specifies a subdirectory OR expression to
evaluate in the context of neuronlist’s df attribute

INDICES Character vector of the names of a subset of neurons in neuronlist to write.

files Character vector or expression specifying output filenames. See examples and
write.neuron for details.

Force Whether to overwrite an existing file

... Additional arguments passed to write.neuron

Details

See write.neuron for details of how to specify the file format/extension/name of the output files
and how to establish what output file formats are available. A zip archive of files can be written by
specifying a value of dir that ends in .zip.

Value

the path to the output file(s), absolute when this is a zip file.

Author(s)

jefferis

See Also

write.neuron, read.neurons, fileformats

Other neuronlist: *.neuronlist(), is.neuronlist(), neuronlist-dataframe-methods, neuronlistfh(),
neuronlist(), nlapply(), read.neurons()

Examples

## Not run:
# write some neurons in swc format
write.neurons(Cell07PNs, dir="testwn", format='swc')
# write some neurons in Amira hxlineset format
write.neurons(Cell07PNs, dir="testwn", format='hxlineset')

# organise new files in directory hierarchy by glomerulus and Scored.By field
write.neurons(Cell07PNs,dir="testwn",

subdir=file.path(Glomerulus,Scored.By),format='hxlineset')
# ensure that the neurons are named according to neuronlist names
write.neurons(Cell07PNs, dir="testwn", files=names(Cell07PNs),

subdir=file.path(Glomerulus,Scored.By),format='hxlineset')
# only write a subset
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write.neurons(subset(Cell07PNs, Scored.By="ACH"),dir="testwn2",
subdir=Glomerulus,format='hxlineset')

# The same, but likely faster for big neuronlists
write.neurons(Cell07PNs, dir="testwn3",

INDICES=subset(Cell07PNs,Scored.By="ACH",rval='names'),
subdir=Glomerulus,format='hxlineset')

# set file name explicitly using a field in data.frame
write.neurons(subset(Cell07PNs, Scored.By="ACH"),dir="testwn4",

subdir=Glomerulus, files=paste0(ID,'.am'), format='hxlineset')

## End(Not run)

write.nrrd Write data and metadata to NRRD file or create a detached NRRD
(nhdr) file.

Description

write.nrrd writes an array, vector or im3d object to a NRRD file. When x is an im3d object,
appropriate spatial calibration fields are added to the header.

write.nrrd.header writes a nrrd header file.

write.nrrd.header.for.file makes a detached NRRD (nhdr) file that points at another image
file on disk, making it NRRD compatible. This can be a convenient way to make NRRD inputs for
other tools e.g. CMTK and also allows the same data block to pointed to by different nhdr files with
different spatial calibration.

Usage

write.nrrd(
x,
file,
enc = c("gzip", "raw", "text"),
dtype = c("float", "byte", "short", "ushort", "int", "double"),
header = attr(x, "header"),
endian = .Platform$endian,
datafile = NULL

)

write.nrrd.header(header, file)

write.nrrd.header.for.file(infile, outfile = NULL)

Arguments

x Data to write as an array, vector or im3d object.

file Character string naming an output file (a detached nrrd header when file has
extension ’nhdr’).
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enc One of three supported nrrd encodings ("gzip", "raw", "text")

dtype The data type to write. One of "float","byte", "short", "ushort", "int", "double"

header List containing fields of nrrd header - see Header section.

endian One of "big" or "little". Defaults to .Platform$endian.

datafile Optional name of separate file into which data should be written (see details).
infile, outfile

Path to input and output file for write.nrrd.header.for.file. If outfile is
NULL (the default) then it will be set to <infilestem.nhdr>.

Detached NRRDs

NRRD files can be written in detached format (see http://teem.sourceforge.net/nrrd/format.
html#detached) in which a text nhdr file is used to described the contents of a separate (usually bi-
nary) data file. This means that the nhdr file can be inspected and edited with a text editor, while the
datablock can be in a completely raw format that can be opened even by programs that do not un-
derstand the NRRD format. Furthermore detached NRRD header files can be written to accompany
non-NRRD image data so that it can be opened by nrrd readers.

If file has extension .nhdr or datafile is non-NULL, then write.nrrd will write a separate
datafile. If datafile is set, then it is interpeted as specifying a path relative to the nhdr file. If
datafile is not specified then default filenames will be chosen according to the encoding following
the conventions of the teem library:

• raw '<nhdrstem>.raw'

• gzip '<nhdrstem>.raw.gz'

• text '<nhdrstem>.ascii'

Data file paths

When a detached NRRD is written, the datafile can be specified either as relative or absolute
path. Relative paths are strongly recommended - the best place is right next to the datafile. Relative
paths are always specified with respect to the location of the nhdr file.

The datafile argument is not processed by write.nrrd so it is up to the caller to decide whether
a relative or absolute path will be used.

For write.nrrd.header.for.file if outfile is not specified then the nhdr file will be placed
next to the original image stack and the datafile field will therefore just be basename(infile).
If outfile is specified explicitly, then datafile will be set to the full path in the infile argument.
Therefore if you wish to specify outfile, you must set the current working directory (using setwd)
to the location in which outfile will be written to ensure that the path to the datafile is correct. A
future TODO would add the ability to convert an absolute datafile path to a relaive one (by finding
the common path between datafile and nhdr folders).

Header

For write.nrrd, arguments enc, dtype, and endian along with the dimensions of the input (x)
will override the corresponding NRRD header fields from any supplied header argument. See
http://teem.sourceforge.net/nrrd/format.html for details of the NRRD fields.

http://teem.sourceforge.net/nrrd/format.html#detached
http://teem.sourceforge.net/nrrd/format.html#detached
http://teem.sourceforge.net/nrrd/format.html
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See Also

read.nrrd,.Platform

write.vtk Write object to VTK file

Description

Write object to VTK file

Usage

write.vtk(x, file, ...)

## S3 method for class 'neuron'
write.vtk(
x,
file,
datatype = c("float", "double"),
title = file,
WriteAllSubTrees = TRUE,
...

)

Arguments

x Object to write

file Path to output file

... Additional arguments to methods

datatype The VTK data type (one of float or double)

title Title of the .vtk file (defaults to file)
WriteAllSubTrees

Whether to write all subtrees in the neuron or just the main tree.

Examples

## Not run:
n=Cell07PNs[[1]]
write.vtk(n, paste0(n$NeuronName, ".vtk"))
write.neuron(n, paste0(n$NeuronName, ".vtk"))

## End(Not run)
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xform Transform the 3D location of objects such as neurons

Description

xform is designed to operate on a variety of data types, especially objects encapsulating neurons.
xform depends on two specialised downstream functions xformpoints and xformimage. These are
user visible any contain some useful documentation, but should only be required for expert use; in
almost all circumstances, you should use only xform.

xform.character is designed to work with files on disk. Presently it is restricted to images, al-
though other datatypes may be supported in future.

Usage

xform(x, reg, ...)

## Default S3 method:
xform(x, reg, na.action = c("warn", "none", "drop", "error"), ...)

## S3 method for class 'character'
xform(x, reg, ...)

## S3 method for class 'list'
xform(x, reg, FallBackToAffine = TRUE, na.action = "error", ...)

## S3 method for class 'shape3d'
xform(x, reg, FallBackToAffine = TRUE, na.action = "error", ...)

## S3 method for class 'neuron'
xform(x, reg, FallBackToAffine = TRUE, na.action = "error", ...)

## S3 method for class 'data.frame'
xform(x, reg, subset = NULL, ...)

## S3 method for class 'dotprops'
xform(x, reg, FallBackToAffine = TRUE, ...)

## S3 method for class 'neuronlist'
xform(
x,
reg,
subset = NULL,
...,
OmitFailures = NA,
VectoriseRegistrations = FALSE,
TransformDFCoords = TRUE

)
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Arguments

x an object to transform

reg A registration defined by a matrix, a function, a cmtkreg object, or a character
vector specifying a path to one or more registrations on disk (see Registrations
section).

... additional arguments passed to methods and eventually to xformpoints

na.action How to handle NAs. NB drop may not work for some classes.

FallBackToAffine

Whether to use an affine transform when a cmtk warping transformation fails.

subset For xform.neuronlist indices (character/logical/integer) that specify a subset
of the members of x to be transformed.

OmitFailures Whether to omit neurons for which FUN gives an error. The default value (NA)
will result in nlapply stopping with an error message the moment there is an
eror. For other values, see details.

VectoriseRegistrations

When FALSE, the default, each element of reg will be applied sequentially to
each element of x. When TRUE, it is assumed that there is one element of reg
for each element of x.

TransformDFCoords

If the metadata data.frame attached to x includes columns that look like x,y,z
coordinates, transform those as well.

Details

Methods are provided for some specialised S3 classes. Further methods can of course be constructed
for user-defined S3 classes. However this will probably not be necessary if the xyzmatrix and
`xyzmatrix<-` generics are suitably overloaded and the S3 object inherits from list.

Note that given the behaviour of the xyzmatrix functions, the xform.data.frame method will
transform the x,y,z or X,Y,Z columns of a data.frame if the data.frame has more than 3 columns,
erroring out if no such unique columns exist.

TODO get this to work for matrices with more than 3 columns by working on xyzmatrix definition.

For the xform.dotprops method, dotprops tangent vectors will be recalculated from scratch after
the points have been transformed (even though the tangent vectors could in theory be transformed
more or less correctly). When there are multiple transformations, xform will take care to carry out
all transformations before recalculating the vectors.

With xform.neuronlist, if you want to apply a different registration to each object in the neuron-
list x, then you should use VectoriseRegistrations=TRUE.

When x’s attached data.frame contains columns called x,y,z or X,Y,Z then these are assumed to
be coordinates and also transformed when TransformDFCoords=TRUE (the default). This provides
a mechanism for transforming the soma positions of neuronlist objects containing dotprops
objects (which do not otherwise store the soma position). Note that if transformation fails, a warning
will be issued and the points will be replaced with NA values.
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Registrations

When reg is a character vector, xform’s specialised downstream functions will check to see if it
defines a path to one (or more) registrations on disk. These can be of two classes

• CMTK registrations

• reglist objects saved in R’s RDS format (see readRDS) which can contain any sequence of
registrations supported by nat.

If the path does indeed point to a CMTK registration, this method will hand off to xformpoints.cmtkreg
or xformimages.cmtkreg. In this case, the character vector may optionally have an attribute,
’swap’, a logical vector of the same length indicating whether the transformation direction should
be swapped. At the moment only CMTK registration files are supported.

If reg is a character vector of length >=1 defining a sequence of registration files on disk they should
proceed from sample to reference.

Where reg is a function, it should have a signature like myfun(x,),... where the ... must be
provided in order to swallow any arguments passed from higher level functions that are not relevant
to this particular transformation function.

See Also

xformpoints

Examples

## Not run:
kc1=kcs20[[1]]
kc1.default=xform(kc1,function(x,...) x)
stopifnot(isTRUE(all.equal(kc1,kc1.default)))
kc1.5=xform(kc1,function(x,...) x, k=5)
stopifnot(isTRUE(all.equal(kc1.5,kc1.default)))
kc1.20=xform(kc1,function(x,...) x, k=20)
stopifnot(!isTRUE(all.equal(kc1,kc1.20)))

# apply two registrations converting sample->IS2->JFRC2
reg_seq=c("IS2_sample.list", "JFRC2_IS2.list")
xform(kc1, reg_seq)
# apply two registrations, swapping the direction of the second one
# i.e. sample -> IS2 -> FCWB
reg_seq=structure(c("IS2_sample.list", "IS2_FCWB.list"), swap=c(FALSE, TRUE))
xform(kc1, reg_seq)

## End(Not run)
## Not run:
# apply reg1 to Cell07PNs[[1]], reg2 to Cell07PNs[[2]] etc
regs=c(reg1, reg2, reg3)
nx=xform(Cell07PNs[1:3], reg=regs, VectoriseRegistrations=TRUE)

## End(Not run)
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xformimage Transform image files using a registration or affine matrix

Description

You should almost always call xform rather calling thanxformimage directly.

Usage

xformimage(reg, image, ...)

## S3 method for class 'character'
xformimage(reg, image, ...)

## S3 method for class 'cmtkreg'
xformimage(
reg,
image,
transformtype = c("warp", "affine"),
direction = NULL,
...

)

## S3 method for class 'reglist'
xformimage(reg, image, ...)

## Default S3 method:
xformimage(reg, image, ...)

Arguments

reg A registration defined by a matrix or a cmtkreg object, or a character vector
specifying a path to a CMTK registration on disk (see details). If reg is a char-
acter vector of length >1 defining a sequence of registration files on disk they
should proceed from sample to reference.

image Nx3 matrix of image

... Additional arguments passed to methods (and then eventually to cmtk.reformatx)

transformtype Which transformation to use when the CMTK file contains both warp (default)
and affine (TODO)

direction Whether to transform image from sample space to reference space (called for-
ward by CMTK) or from reference to sample space (called inverse by CMTK).
Default (when NULL is forward).
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Details

When passed a character vector, xformimage will check to see if it defines a path containing CMTK
registration erroring out if this is not the case. If the path does indeed point to a CMTK registra-
tion, this method will hand off to xformimage.cmtkreg. A future TODO would be to provide a
mechanism for extending this behaviour for other registration formats. If a list of transformations
is passed in, these transformations are passed to the cmtk reformatx tool in the order received. Note
that there is presently no support for

• using the inverse of a registration

• specifying a mask

• passing additional arguments to reformatx

Note that the direction of CMTK registrations can be the source of much confusion. This is because
CMTK defines the forward direction as the transform required to reformat an image in sample
(floating) space to an image in template space. Since this operation involves filling a regular grid
in template space by looking up the corresponding positions in sample space, the transformation
that is required is (somewhat counterintuitively) the one that maps template to sample. However in
neuroanatomical work, one often has points in sample space that one would like to transform into
template space. Here one needs CMTK’s inverse transformation.

A second source of confusion is that when there are multiple transformations, CMTK’s reformatx
tool (wrapped by cmtk.reformatx) expects them to be listed:

ref_intermediate.list intermediate_sample.list

where ref_intermediate.list is the CMTK registration obtained with ref as target/reference and
intermediate as sample/floating image.

For consistency, all xform.* methods expect multiple registrations to be listed from sample to
reference and this order is then swapped when they are passed on to cmtk.reformatx.

whereas CMTK’s streamxform tool (wrapped by xformpoints) expects them in the opposite order.

Value

Character vector with path to xformed image.

See Also

cmtk.reformatx, xformpoints, xform

xformpoints Transform 3D points using a registration, affine matrix or function

Description

You should almost always call xform rather calling thanxformpoints directly.
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Usage

xformpoints(reg, points, ...)

## S3 method for class 'character'
xformpoints(reg, points, ...)

## S3 method for class 'cmtkreg'
xformpoints(
reg,
points,
transformtype = c("warp", "affine"),
direction = NULL,
FallBackToAffine = FALSE,
...

)

## S3 method for class 'reglist'
xformpoints(reg, points, ...)

## Default S3 method:
xformpoints(reg, points, ...)

Arguments

reg A registration defined by a matrix, a function, a cmtkreg object, a reglist ob-
ject containing a sequence of arbitrary registrations, or a character vector speci-
fying path(s) to registrations on disk (see details).

points Nx3 matrix of points

... Additional arguments passed to methods

transformtype Which transformation to use when the CMTK file contains both warp (default)
and affine

direction Whether to transform points from sample space to reference space (called in-
verse by CMTK) or from reference to sample space (called forward by CMTK).
Default (when NULL is inverse).

FallBackToAffine

Whether to use the affine transformation for points that fail to transform under a
warping transformation.

Details

If a list of transformations is passed in, these transformations are performed in sequence order, such
that xformpoints(c(a,b,c),x) == xformpoints(c,(xformpoints(b,xformpoints(a,x))))

Note that the direction of CMTK registrations can be the source of much confusion. This is because
CMTK defines the forward direction as the transform required to reformat an image in sample
(floating) space to an image in template space. Since this operation involves filling a regular grid
in template space by looking up the corresponding positions in sample space, the transformation
that is required is (somewhat counterintuitively) the one that maps template to sample. However in
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neuroanatomical work, one often has points in sample space that one would like to transform into
template space. Here one needs the inverse transformation.

xyzmatrix Get and assign coordinates for classes containing 3D vertex data

Description

xyzmatrix gets coordinates from objects containing 3D vertex data

xyzmatrix<- assigns xyz elements of neuron or dotprops object and can also handle matrix like
objects with columns named X, Y, Z or x, y, z.

Usage

xyzmatrix(x, ...)

## Default S3 method:
xyzmatrix(x, y = NULL, z = NULL, ...)

## S3 method for class 'neuron'
xyzmatrix(x, ...)

## S3 method for class 'neuronlist'
xyzmatrix(x, ...)

## S3 method for class 'dotprops'
xyzmatrix(x, ...)

## S3 method for class 'hxsurf'
xyzmatrix(x, ...)

## S3 method for class 'igraph'
xyzmatrix(x, ...)

## S3 method for class 'mesh3d'
xyzmatrix(x, ...)

xyzmatrix(x) <- value

## S3 replacement method for class 'neuron'
xyzmatrix(x) <- value

## S3 replacement method for class 'dotprops'
xyzmatrix(x) <- value

## S3 replacement method for class 'hxsurf'
xyzmatrix(x) <- value
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## S3 replacement method for class 'igraph'
xyzmatrix(x) <- value

## S3 replacement method for class 'shape3d'
xyzmatrix(x) <- value

## S3 replacement method for class 'neuronlist'
xyzmatrix(x) <- value

Arguments

x object containing 3D coordinates

... additional arguments passed to methods

y, z separate y and z coordinates

value Nx3 matrix specifying new xyz coords

Details

Note that xyzmatrix can extract or set 3D coordinates in a matrix or data.frame that either has
exactly 3 columns or has 3 columns named X,Y,Z or x,y,z.

Value

For xyzmatrix: Nx3 matrix containing 3D coordinates

For xyzmatrix<-: Original object with modified coords

See Also

xyzmatrix

Examples

# see all available methods for different classes
methods('xyzmatrix')
# ... and for the assignment method
methods('xyzmatrix<-')
n=Cell07PNs[[1]]
xyzmatrix(n)<-xyzmatrix(n)
stopifnot(isTRUE(

all.equal(xyzmatrix(n),xyzmatrix(Cell07PNs[[1]]))
))
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[.neuronlistfh Extract from neuronlistfh object or its attached data.frame

Description

[.neuronlistfh extracts either a sublist from a neuronlistfh (converting it to a regular in memory
list in the process) or its attached data.frame.

Usage

## S3 method for class 'neuronlistfh'
x[i, j, drop]

Arguments

x A neuronlistfh object

i, j elements to extract or replace. Numeric, logical or character or, for the [ get
method, empty. See details and the help for [.data.frame.

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

Details

Note that if i is a numeric or logical indexing vector, it will be converted internally to a vector of
names by using the (sorted) names of the objects in x (i.e. names(x)[i])

Value

A new in-memory neuronlist or when using two subscripts, a data.frame - see examples.

See Also

neuronlistfh, [.neuronlist, [.data.frame, [<-.data.frame,

Other neuronlistfh: neuronlistfh(), read.neuronlistfh(), remotesync(), write.neuronlistfh()

Examples

# make a test neuronlistfh backed by a temporary folder on disk
tf=tempfile('kcs20fh')
kcs20fh<-as.neuronlistfh(kcs20, dbdir=tf)

# get first neurons as an in memory neuronlist
class(kcs20fh[1:3])

# extract attached data.frame
str(kcs20fh[,])
# or part of the data.frame
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str(kcs20fh[1:2,1:3])

# data.frame assignment (this one changes nothing)
kcs20fh[1:2,'gene_name'] <- kcs20fh[1:2,'gene_name']

# clean up
unlink(tf, recursive=TRUE)
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rasterImage, 52
raw, 50
rbind.fill, 23
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157
read.cmtk, 29, 113, 114, 155, 156
read.cmtkreg, 29, 96, 113, 114, 155, 156
read.hxsurf, 6, 7, 14, 16, 19, 57, 64, 98, 113,

114, 144, 157
read.im3d, 6, 126
read.im3d (im3d-io), 50
read.landmarks, 116
read.morphml, 118, 121
read.neuron, 60, 119, 124
read.neuron.fiji, 119, 120

read.neuron.neuroml, 118, 119, 121
read.neuron.swc, 119, 121
read.neuronlistfh, 77, 122, 129, 159, 172
read.neurons, 6, 7, 10, 59, 72, 74, 77, 82,

120, 123, 160
read.ngraph.swc (read.neuron.swc), 121
read.nrrd, 51, 125, 163
read.nrrd.header, 87
read.vaa3draw, 126
readBin, 113
readRDS, 119, 166
rect, 54
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registerformat (fileformats), 41
reglist, 65, 127, 138, 166, 169
remotesync, 77, 123, 128, 159, 172
resample, 70, 80, 92, 106, 109, 129, 131, 140,

146
resample.neuron, 41
rgb, 115, 157
rgl, 6, 7, 19
rgl.setMouseCallbacks, 90
rgl.useNULL, 7
rootpoints, 70, 80, 92, 106, 109, 130, 130,

140, 146
RunCmdForNewerInput, 32

sapply, 81
saveRDS, 158, 159
scale (scale.neuron), 131
scale.default, 132
scale.neuron, 131
seglengths, 130, 132, 150
seglist, 133
seglist2swc, 86, 135
segmentgraph, 136, 141
segments3d, 95, 98
select3d, 6, 44–46
set.vertex.attribute, 79, 80
setdiff, 137, 137
shortest.paths, 140
simplify_reglist, 138
smooth_neuron, 138
smooth_segment_gauss (smooth_neuron),

138
spine, 70, 80, 92, 106, 109, 110, 130, 131,

139, 146
strahler_order, 110, 141
sub2ind, 39, 55, 142
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subset, 142
subset.data.frame, 148
subset.dotprops, 5, 109, 142, 142, 146, 148
subset.hxsurf, 16, 19, 64, 98, 115, 142, 144,

157
subset.neuron, 5, 70, 80, 92, 106, 108, 109,

111, 130, 131, 140, 142, 145, 148
subset.neuronlist, 6, 44, 46, 142, 147
summary (summary.neuronlist), 149
summary.neuronlist, 149
system2, 27, 28

tail, 74
tail (neuronlist-dataframe-methods), 72
terrain.colors, 52
threshold, 18, 23, 48, 49, 51, 53, 55, 58, 63,

89, 107, 150, 152, 154
tmesh3d, 19
topo.colors, 52

union, 151, 151
unmask, 18, 23, 48, 49, 51, 53, 55, 58, 63, 89,

107, 151, 152, 154

vcgClean, 104
vector, 150
view3d, 89
voxdims, 6, 18, 23, 48, 49, 51, 53, 55, 58, 63,

89, 107, 151, 152, 153

with, 74
with (neuronlist-dataframe-methods), 72
with.neuronlist, 24, 61
write.amiramesh, 154
write.cmtk, 29, 113, 114, 155, 156
write.cmtkreg, 29, 38, 113, 114, 155, 156
write.hxsurf, 14, 16, 19, 57, 64, 98, 113,

115, 144, 156
write.im3d, 6
write.im3d (im3d-io), 50
write.landmarks (read.landmarks), 116
write.neuron, 43, 120, 157, 158, 160
write.neuronlistfh, 77, 123, 129, 158, 172
write.neurons, 6, 10, 59, 72, 74, 77, 82, 124,

159
write.nrrd, 51, 126, 154, 155, 161
write.vtk, 163

xform, 6, 7, 65, 66, 128, 138, 164, 167, 168

xformimage, 164, 167
xformpoints, 164–166, 168, 168
xformpoints.cmtkreg, 127
xmlParse, 118, 120, 121
xyzmatrix, 22, 111, 170, 171
xyzmatrix<- (xyzmatrix), 170
xyzpos, 6, 55
xyzpos (im3d-coords), 49
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