Package 'ncappc'

August 24, 2018
Title NCA Calculations and Population Model Diagnosis
Version 0.3.0
Description A flexible tool that can perform (i) traditional non-compartmental analysis (NCA) and (ii) Simulation-based posterior predictive checks for population pharmacokinetic (PK) and/or pharmacodynamic (PKPD) models using NCA metrics.
Depends R (>= $2.15.3$),
Imports scales, gtable, knitr, xtable, reshape2, dplyr, Cairo, readr (>= 0.2.2), lazyeval, PopED, magrittr, rlang, purrr, tibble, rmarkdown, tidyr, ggplot2 (>= 2.0.0), grid, gridExtra (>= 2.0.0), grDevices, stats, bookdown
Suggests testthat
License GPL-3
LazyData true
VignetteBuilder knitr
RoxygenNote 6.1.0
NeedsCompilation no
Author Chayan Acharya [aut], Andrew C. Hooker [aut, cre], Gulbeyaz Y. Turkyilmaz [aut], Siv Jonsson [aut], Mats O. Karlsson [aut]
Maintainer Andrew C. Hooker <andrew.hooker@farmbio.uu.se></andrew.hooker@farmbio.uu.se>
Repository CRAN
Date/Publication 2018-08-24 20:30:03 UTC
R topics documented:
calc.stat

2 calc.stat

calc	. stat Calculates a set of statistics for a given array of numbers.	
Index		25
	reau_nni_table	24
	out.digits	
	nca_ind_data	
	ncappc	
	nca.read.sim	
	nca.pde.deviation.outlier	
	nca.npde.plot	
	nca.npde	
	nca.ind.data	
	nca.deviation.plot	
	nca.check.sim	
	nca.check.obs	9
	histpop.plot	8
	histobs.plot	7

Description

calc.stat calculates a set of statistics for a given array of numbers.

Usage

```
calc.stat(x)
```

Arguments

Х

a numeric array

Details

calc.stat calculates a set of statistics for a given array of numbers. The calculated statistics are

- Ntot = length of the array
- Nunique = Number of unique elements
- Min = Minimum value of the array
- Max = Maximum value of the array
- Mean = Mean value of the array
- Median = Median value of the array
- SD = Standard deviation value of the array
- SE = Standard error value of the array
- CVp = Percent coefficient of variation of the array
- CI95u = Upper limit of the 95% confidence interval of the array

dv.plot 3

- cI951 = Lower limit of the 95% confidence interval of the array
- gMean = Geometric mean value of the array
- gCVp = Geometric percent coefficient of variation of the array

Value

An array of calculated statistics of a given set of numbers

dv.plot

Plots drug plasma concentration vs time data

Description

dv.plot plots DV vs Time data.

Usage

```
dv.plot(df, xvar = "Time", yvar = "Conc", obsLog = FALSE,
  myXlab = "Time", myYlab = "Concentration", color = NULL,
  group = NULL, guide = TRUE, onlyLin = FALSE, onlyLog = FALSE,
  XYlog = FALSE, STRATY = ".", STRATX = ".", myYBr = waiver(),
  myXBr = waiver(), myYBrLog = waiver(), myXBrLog = waiver(),
  myYlim = NULL, myXlim = NULL, myYlimLog = NULL, myXlimLog = NULL,
  title = NULL)
```

df	A data frame to be used for the plot
xvar	is the independent variable, default is "TIME"
yvar	is the dependent variable, default is "DV"
obsLog	is a logical variable (TRUE, FALSE). If TRUE, concentration in observed data is assumed to be in logarithmic scale. Default is FALSE
myXlab	is the x-axis label, default is "Time"
myYlab	is the y-axis label, defaults is "Concentration"
color	is the column name of the color stratification variable, e.g. "DOSEF". Default is $\mbox{\bf NULL}$
group	is the column name of the variable used to group data, default is "ID
guide	if TRUE, show guide, default is TRUE
onlyLin	if TRUE, presents only the linear version of the plot, default is FALSE
onlyLog	if TRUE, presents only the log version of the plot, default is FALSE
XYlog	if TRUE , both X and Y axes of the log version of the plot is shown on the logarithmic scale; if FALSE , only the Y-axis is shown on the logarithmic scale. Default is FALSE .

4 est.nca

STRATY	is the row stratification variable, default is "."
STRATX	is the column stratification variable, default is "."
myYBr	are the breaks for the Y-axis for the linear plot
myXBr	are the breaks for the X-axis for the linear plot
myYBrLog	are the breaks for the Y-axis for the log plot
myXBrLog	are the breaks for the X-axis for the log plot
myYlim	sets Y-axis limits for the linear plot
myXlim	sets X-axis limits for the linear plot
myYlimLog	sets the Y-axis limit for the log plot
myXlimLog	sets the X-axis limit for the log plot
title	The title of the plot.

Details

dv.plot plots DV vs Time data

Value

returns a graphical object created by arrangeGrob function

est.nca	Estimate individual NCA metrics.	

Description

Estimates a comprehensive set of NCA metrics for a given individual using concentration vs. time data.

Usage

```
est.nca(time, conc, backExtrp = FALSE, negConcExcl = FALSE,
  doseType = "ns", adminType = "extravascular", doseAmt = NULL,
  method = "linearup-logdown", AUCTimeRange = NULL,
  LambdaTimeRange = NULL, LambdaExclude = NULL, doseTime = doseTime,
  Tau = NULL, TI = NULL, simFile = NULL, dset = "obs",
  onlyNCA = FALSE, extrapolate = FALSE, sparse_compute = FALSE,
  force_extrapolate = FALSE, ...)
```

est.nca 5

Arguments

time Numeric array for time

conc Numeric array for concentration

backExtrp If back-extrapolation is needed for AUC (TRUE or FALSE) (FALSE)

negConcExcl Exclude -ve conc (FALSE)

doseType Steady-state (ss) or non-steady-state (ns) dose ("ns")

adminType Route of administration (iv-bolus,iv-infusion,extravascular) ("extravascular")

doseAmt Dose amounts ("NULL")

method Method to estimate AUC. The "linear" method applies the linear trapezoidal

rule to estimate the area under the curve. The "log" method applies the logarithmic trapezoidal rule to estimate the area under the curve. The "linearup-logdown" method applies the linear trapezoidal rule to estimate the area under the curve for the ascending part of the curve and the logarithmic trapezoidal rule to estimate

the area under the curve for the descending part of the curve.

AUCTimeRange User-defined window of time used to estimate AUC ("NULL")

LambdaTimeRange

User-defined window of time to estimate elimination rate-constant ("NULL")

LambdaExclude User-defined excluded observation time points for estimation of elimination

rate-constant ("NULL")

doseTime Dose time prior to the first observation for steady-state data (NULL)

Tau Dosing interval for steady-state data ("NULL")

TI Infusion duration ("NULL")

simFile Name of the simulated concentration-time data if present ("NULL")

dset Type, i.e., observed or simulated concentration-time data set ("obs" or "sim")

("obs")

onlyNCA If TRUE only NCA is performed and ppc part is ignored although simFile is not

NULL. Default is FALSE

extrapolate Should the function extrapolate from the last observation to infinity?

sparse_compute Should NCA metrics be computed even with only one sample?

force_extrapolate

Extrapolate AUC_inf with sparse data. Sparse data is defined as fewer than 3 points after Cmax for non-bolus input. In that case, Cmax is included in the

extrapolation and only one extra point in required for extrapolation.

... Arguments passed from other functions. Not used.

Details

est.nca estimates a comprehensive set of NCA metrics using the concentration-time profile of an individual. NCA metrics are estimated according to traditional PK calculations. The names of the various NCA metrics estimated in this package are assigned mainly following the names used in WinNonlin. This package accepts any of the three different types of drug administration, (i) iv-bolus, (ii) iv-infusion and (iii) extravascular; **ncappc** also can accept both non-steady state and steady-state data. The NCA metrics that are estimated and reported by **ncappc** are listed below.

6 est.nca

• **C0** is the initial concentration at the dosing time. It is the observed concentration at the dosing time, if available. Otherwise it is approximated using the following rules.

- Cmax, Tmax and Cmax_D are the value and the time of maximum observed concentration, respectively. If the maximum concentration is not unique, the first maximum is used. For steady state data, The maximum value between the dosing intervals is considered. Cmax_D is the dose normalized maximum observed concentration.
- Clast and Tlast are the last measurable positive concentration and the corresponding time, respectively.
- AUClast is the area under the concentration vs. time curve from the first observed to last measurable concentration.
- AUMClast is the first moment of the concentration vs. time curve from the first observed to last measurable concentration.
- MRTlast is the mean residence time from the first observed to last measurable concentration.
- **No_points_Lambda_z** is the number of observed data points used to determine the best fitting regression line in the elimination phase.
- AUC_pBack_Ext_obs is the percentage of AUCINF_obs that is contributed by the back extrapolation to estimate C0.
- AUC_pBack_Ext_pred is the percentage of AUCINF_pred that is contributed by the back extrapolation to estimate C0.
- AUClower_upper is the AUC under the concentration-time profile within the user-specified window of time provided as the "AUCTimeRange" argument. In case of empty "AUCTimeRange" argument, AUClower_upper is the same as AUClast.
- Rsq, Rsq_adjusted and Corr_XY are regression coefficient of the regression line used to estimate the elimination rate constant, the adjusted value of Rsq and the square root of Rsq, respectively.
- Lambda_z is the elimination rate constant estimated from the regression line representing the terminal phase of the concentration-time data.
- Lambda_lower and Lambda_upper are the lower and upper limit of the time values from the concentration-time profile used to estimate Lambda_z, respectively, in case the "Lambda-TimeRange" is used to specify the time range.
- **HL_Lambda_z** is terminal half-life of the drug.
- AUCINF_obs and AUCINF_obs_D are AUC estimated from the first sampled data extrapolated to infinity and its dose normalized version, respectively. The extrapolation in the terminal phase is based on the last observed concentration Clast obs.
- AUC_pExtrap_obs is the percentage of the AUCINF_obs that is contributed by the extrapolation from the last sampling time to infinity.
- **AUMCINF_obs** is AUMC estimated from the first sampled data extrapolated to infinity. The extrapolation in the terminal phase is based on the last observed concentration.
- AUMC_pExtrap_obs is the percentage of the AUMCINF_obs that is contributed by the extrapolation from the last sampling time to infinity.
- Vz_obs is the volume of distribution estimated based on total AUC
- Cl_obs is total body clearance.

histobs.plot 7

• AUCINF_pred and AUCINF_pred_D are AUC from the first sampled data extrapolated to infinity and its dose normalized version, respectively. The extrapolation in the terminal phase is based on the last predicted concentration obtained from the regression line used to estimate Lambda_z (Clast_pred).

- AUC_pExtrap_pred is the percentage of the AUCINF_pred that is contributed by the extrapolation from the last sampling time to infinity.
- AUMCINF_pred is AUMC estimated from the first sampled data extrapolated to infinity. The extrapolation in the terminal phase is based on the last predicted concentration obtained from the regression line used to estimate Lambda_z (Clast_pred).
- AUMC_pExtrap_pred is the percentage of the AUMCINF_pred that is contributed by the extrapolation from the last sampling time to infinity.
- Vz_pred is the volume of distribution estimated based on AUCINF_pred.
- Cl_pred is the total body clearance estimated based on AUCINF_pred.
- **MRTINF_obs** is the mean residence time from the first sampled time extrapolated to infinity based on the last observed concentration (Clast_obs).
- **MRTINF_pred** is the mean residence time from the first sampled time extrapolated to infinity based on the last predicted concentration obtained from the regression line used to estimate Lambda_z (Clast_pred).
- Tau is the dosing interval for steady-state data.
- Cmin and Tmin are the minimum concentration between 0 and Tau and the corresponding time, respectively.
- Cavg is the average concentration between 0 and Tau for steady-state data.
- AUCtau and AUMCtau are AUC and AUMC between 0 and Tau for steady-state data.
- Clss is an estimate of the total body clearance for steady-state data.
- **Vss_obs and Vss_pred** are estimated volume of distribution at steady-state based on Clast_obs and Clast_pred, respectively.
- **p_Fluctuation** is the percentage of the fluctuation of the concentration between 0 and Tau for steady-state data.
- Accumulation_Index is $1/(1-e^{(-\lambda_z * \tau)})$

Value

An array of estimated NCA metrics

histobs.plot

Plots histogram of selected set of NCA metrics.

Description

histobs.plot plots histogram of selected set of NCA metrics (e.g. AUClast, AUCINF_obs, Cmax and Tmax).

8 histpop.plot

Usage

```
histobs.plot(plotData, figlbl = NULL, param = c("AUClast",
   "AUCINF_obs", "Cmax", "Tmax"), cunit = NULL, tunit = NULL,
   spread = "npi")
```

Arguments

plotData	A data frame with the estimated NCA metrics
figlbl	Figure label based on dose identifier and/or population stratifier (NULL)
A character array of the NCA metrics. The allowed NCA metrics for the tograms are "AUClast", "AUClower_upper", "AUCINF_obs", "AUCINF_" AUMClast", "Cmax", "Tmax" and "HL_Lambda_z". (c("AUClast", "Al" "Cmax", "Tmax"))	
cunit	Unit for concentration (default is NULL)
tunit	Unit for time (default is NULL)
spread	Measure of the spread of simulated data (ppi (95% parametric prediction interval) or npi (95% nonparametric prediction interval)) ("npi")

Details

histobs.plot plots histogram of selected set of NCA metrics. The allowed NCA metrics for this histograms are "AUClast", "AUClower_upper", "AUCINF_obs", "AUCINF_pred", "AUMClast", "Cmax", "Tmax" and "HL_Lambda_z". By default, this function produces histogram of AUClast, AUCINF_obs, Cmax and Tmax.

Value

returns a graphical object created by arrangeGrob function

histpop.plot	Plots population histogram of the NCA metrics selected for model diagnosis.
--------------	---

Description

histpop.plot plots population histogram of the NCA metrics selected for model diagnosis (e.g. AUClast, AUCINF_obs, Cmax and Tmax).

Usage

```
histpop.plot(obsdata = outData, simdata = smedianData, figlbl = NULL,
  param = c("AUClast", "Cmax"), cunit = NULL, tunit = NULL,
  spread = "npi")
```

nca.check.obs 9

Arguments

obsdata	Data frame with the values of the NCA metrics estimated from the observed data
simdata	Data frame with the values of the NCA metrics estimated from the simulated data
figlbl	Figure label based on dose identifier and/or population stratifier (NULL)
param	A character array of the NCA metrics. The allowed NCA metrics for this histograms are "AUClast", "AUClower_upper", "AUCINF_obs", "AUCINF_pred", "AUMClast", "Cmax", "Tmax" and "HL_Lambda_z". (c("AUClast", "Cmax"))
cunit	Unit for concentration (default is NULL)
tunit	Unit for time (default is NULL)
spread	Measure of the spread of simulated data (ppi (95% parametric prediction interval) or npi (95% nonparametric prediction interval)) ("npi")

Details

histpop.plot plots histogram of the NCA metrics selected for the model diagnosis and compares with the corresponding metrics estimated from the observed data. The allowed NCA metrics for this histograms are "AUClast", "AUClower_upper", "AUCINF_obs", "AUCINF_pred", "AUMClast", "Cmax", "Tmax" and "HL_Lambda_z". By default, this function produces histogram of AUClast and Cmax.

Value

returns a graphical object created by arrangeGrob function

nca.check.obs	Check observed data

Description

nca.check.obs Checks observed data for compatibility with ncappc and processes the data with various filtering criteria.

Usage

```
nca.check.obs(obsData, idNmObs = "ID", timeNmObs = "TIME",
  concNmObs = "DV", doseType = "ns", doseTime = NULL, Tau = NULL,
  filterNm = NULL, filterExcl = NULL, str1Nm = NULL, str1 = NULL,
  str2Nm = NULL, str2 = NULL, str3Nm = NULL, str3 = NULL,
  AUCTimeRange = NULL, LambdaTimeRange = NULL,
  adminType = "extravascular", TI = NULL, doseAmtNm = NULL,
  dateColNm = NULL, dateFormat = NULL, timeFormat = "number",
  concUnit = NULL, timeUnit = NULL, doseUnit = NULL, blqNm = NULL,
  blqExcl = 1, evid = TRUE, evidIncl = 0, mdv = FALSE)
```

10 nca.check.obs

Arguments

obsData Observed concentration-time data.

idNmObs Column name for ID in observed data. Default is "ID"

timeNmObs Column name for time in observed data. Default is "TIME"

concNmObs Column name for concentration in observed data. Default is "DV"

doseType Steady-state (ss) or non-steady-state (ns) dose. Default is "ns"

doseTime Dose time prior to the first observation for steady-state data. Default is NULL

Tau Dosing interval for steady-state data. Default is NULL

filterNm Column name to filter data. Default is NULL

filterExcl Row exclusion criteria based on the column defined by filterNm. This can

be numeric value or logical condition (e.g. c(1, 2, "<20", ">=100", "!=100")).

Default is NULL

str1Nm Column name for 1st level population stratifier. Default is NULL

str1 Stratification ID of the members within 1st level stratification (e.g c(1,2)). De-

fault is NULL

str2Nm Column name for 2nd level population stratifier. Default is NULL

str2 Stratification ID of the members within 2nd level stratification (e.g c(1,2)). De-

fault is NULL

str3Nm Column name for 3rd level population stratifier. Default is NULL

str3 Stratification ID of the members within 3rd level stratification (e.g c(1,2)). De-

fault is NULL

AUCTimeRange User-defined window of time used to estimate AUC. Default is NULL

 ${\tt LambdaTimeRange}$

User-defined window of time to estimate elimination rate-constant. This argument lets the user to choose a specific window of time to be used to estimate the elimination rate constant (Lambda) in the elimination phase. The accepted format for the input to this argument is a numeric array of two elements; c(14,24) will estimate the Lambda using the data within the time units 14 to 24. Default

is NULL

adminType Route of administration. Allowed options are iv-bolus, iv-infusion or extravas-

cular. Default is "extravascular"

TI Infusion duration. If TI is a single numeric value, TI is the same for all individ-

uals. If TI is the name of a column with numeric data present in the data set, TI is set to the unique value of the column for a given individual. Default is NULL

doseAmtNm Column name to specify dose amount. Default is NULL

dateColNm column name for date if used (e.g. "Date", "DATE"). Default is NULL

dateFormat date format (D-M-Y, D/M/Y or any other combination of D,M,Y). Default is

NULL

timeFormat time format (number, H:M, H:M:S). Default is "number" concUnit Unit of concentration (e.g. "ng/mL"). Default is NULL

timeUnit Unit of time (e.g. "h"). Default is NULL

nca.check.sim 11

doseUnit	Unit of dose amount (e.g. "ng"). Default is NULL
blqNm	Name of BLQ column if used to exclude data. Default is NULL
blqExcl	Excluded BLQ value; either a numeric value or a logical condition (e.g. 1 or ">=1" or $c(1,">3")$). Used only if the blqNm is not NULL. Default is "1"
evid	If TRUE EVID is used to filter data. Default is TRUE
evidIncl	Included values in EVID. Default is "0"
mdv	If TRUE MDV is used to include data when MDV=0. Default is FALSE

Details

nca.check.obs Checks observed data for compatibility with ncappc.

Value

A list of objects

nca.check.sim	Check simulated data	

Description

nca.check.sim Checks simulated data for compatibility with ncappc and processes the data with various filtering criteria.

Usage

```
nca.check.sim(simData, idNmSim = "ID", timeNmSim = "TIME",
  concNmSim = "DV", filterNm = NULL, filterExcl = NULL,
  str1Nm = NULL, str1 = NULL, str2Nm = NULL, str2 = NULL,
  str3Nm = NULL, str3 = NULL, adminType = "extravascular",
  TI = NULL, doseAmtNm = NULL, blqNm = NULL, blqExcl = 1,
  evid = TRUE, evidIncl = 0, mdv = FALSE)
```

simData	Simulated concentration-time data.
idNmSim	Column name for ID in simulated data. Default is "ID"
timeNmSim	Column name for time in simulated data. Default is "TIME"
concNmSim	Column name for concentration in simulated data. Default is "DV"
filterNm	Column name to filter data. Default is NULL
filterExcl	Row exclusion criteria based on the column defined by filterNm. This can be numeric value or logical condition (e.g. $c(1, 2, "<20", ">=100", "!=100")$). Default is NULL
str1Nm	Column name for 1st level population stratifier. Default is NULL

nca.deviation.plot

str1	Stratification ID of the members within 1st level stratification (e.g $c(1,2)$). Default is NULL
str2Nm	Column name for 2nd level population stratifier. Default is NULL
str2	Stratification ID of the members within 2nd level stratification (e.g $c(1,2)$). Default is NULL
str3Nm	Column name for 3rd level population stratifier. Default is NULL
str3	Stratification ID of the members within 3rd level stratification (e.g $c(1,2)$). Default is NULL
adminType	Route of administration. Allowed options are iv-bolus, iv-infusion or extravascular. Default is "extravascular"
TI	Infusion duration. If TI is a single numeric value, TI is the same for all individuals. If TI is the name of a column with numeric data present in the data set, TI is set to the unique value of the column for a given individual. Default is NULL
doseAmtNm	Column name to specify dose amount. Default is NULL
blqNm	Name of BLQ column if used to exclude data. Default is NULL
blqExcl	Excluded BLQ value; either a numeric value or a logical condition (e.g. 1 or ">=1" or $c(1,">3")$). Used only if the blqNm is not NULL. Default is "1"
evid	If TRUE EVID is used to filter data. Default is TRUE
evidIncl	Included values in EVID. Default is "0"
md∨	If TRUE MDV is used to include data when MDV=0. Default is FALSE

Details

nca.check.sim Checks simulated data for compatibility with ncappc.

Value

A list of objects

simulated data	nca.deviation.plot	Plot individual deviation of NCA metrics estimated from observed and simulated data
----------------	--------------------	---

Description

nca.deviation.plot plots individual deviation of selected NCA metrics estimated from observed and simulated data.

Usage

```
nca.deviation.plot(plotdata, xvar = NULL, devcol = NULL,
  figlbl = NULL, spread = "npi", cunit = NULL, tunit = NULL)
```

nca.ind.data

Arguments

plotdata	A data frame containing the scaled deviation values of the NCA metrics
xvar	x-variable against which the deviation data will be plotted (NULL)
devcol	column names/numbers of the data frame containing deviation data (NULL)
figlbl	Figure label based on dose identifier and/or population stratifier (NULL)
spread	Measure of the spread of simulated data (ppi (95% parametric prediction interval) or npi (95% nonparametric prediction interval)) ("npi")
cunit	Unit for concentration (default is NULL)
tunit	Unit for time (default is NULL)

Details

nca.deviation.plot plots individual deviation of selected NCA metrics estimated from observed and simulated data. This function requires three mandatory arguments, (i) deviation data, (ii) independent variable and (iii) dependent variables. The deviation of the NCA metrics values estimated from the observed and simulated data are scaled by the "spread" of the simulated metrics values. The "speed" of the simulated data is measured either by the standard deviation or the 95

Value

returns the data frame with the NPDE values based on the input data.

Description

nca.ind.data Extracts time-conc data for a given individual.

Usage

```
nca.ind.data(pkData, ID, dvLog = FALSE, dataType = "obs",
  idNm = "ID", timeNm = "TIME", concNm = "DV",
  adminType = "extravascular", TI = NULL, dateColNm = NULL,
  dateFormat = NULL, timeFormat = "number")
```

pkData	PK concentration-time data.	
ID	ID number of the individual.	
dvLog	If TRUE concentration is in logarithmic scale. Default is FALSE	
dataType	Indicates if the data is observed ("obs") or simulated ("sim"). Since the simulated data is assumed to be obtained from NONMEM output, DATE and clock time (dateColNm, dateFormat, timeFormat) are not used for time data. Default is "obs".	

14 nca.npde

Column name for ID in PK data. Default is "ID" idNm Column name for time in PK data. Default is "TIME" timeNm Column name for concentration in PK data. Default is "DV" concNm Route of administration. Allowed options are iv-bolus, iv-infusion or extravasadminType cular. Default is "extravascular" ΤI Infusion duration. If TI is a single numeric value, TI is the same for all individuals. If TI is the name of a column with numeric data present in the data set, TI is set to the unique value of the column for a given individual. Default is NULL column name for date if used (e.g. "Date", "DATE"). Default is NULL dateColNm date format (D-M-Y, D/M/Y or any other combination of D,M,Y). Default is dateFormat time format (number, H:M, H:M:S). Default is "number"

Details

timeFormat

nca.ind.data Extracts time-conc data for a given individual.

Value

A list of objects with time-cone data and individual infusion duration for iv-infusion data

nca.npde	Calculates	individual	normalized	prediction	distribution	errors
	(NPDE) fro	m PDE data	<i>ı</i> .			

Description

nca.npde calculates individual normalized prediction distribution errors (NPDE) of selected NCA metrics from the PDE data.

Usage

```
nca.npde(pdedata, pdecol)
```

Arguments

pdedata	A data frame containing the prediction distribution errors (PDE) of NCA metrics
pdecol	The range of column numbers in the data frame containing the PDE values,
	which will be used to calculate the corresponding NPDE

Details

nca.npde calculates individual normalized prediction distribution errors (NPDE) of selected NCA metrics from PDE data. The The deviation of each estimated NCA metrics is scaled by the "spread" of the simulated values. By default, this function calculates the NPDE values of all columns of the input data frame.

nca.npde.plot

Value

returns the data frame with the NPDE values based on the input data.

nca.npde.plot	Plots population histogram of the NCA metrics selected for model diagnosis.
---------------	---

Description

nca.npde.plot plots individual NPDE values and histogram of the NPDE values within a population group

Usage

```
nca.npde.plot(plotdata, xvar = NULL, npdecol = NULL, fig1b1 = NULL,
    cunit = NULL, tunit = NULL)
```

Arguments

plotdata	Data frame with the values of the NPDE values of each individual for the NCA metrics
xvar	Name of the independent variable column against which NPDE values will be plotted
npdecol	Column names or column numbers of containing the NPDE values
figlbl	Figure label based on dose identifier and/or population stratifier (NULL)
cunit	Unit for concentration (default is NULL)
tunit	Unit for time (default is NULL)

Details

nca.npde.plot individual NPDE values and histogram of the NPDE values of NCA metrics within a population group.

Value

returns a data frame with the mean and SD of population NPDE values of each NCA metric and two graphical objects created by arrangeGrob function for the individual and population histogram of the NPDE values

nca.pde.deviation.outlier

Calculates individual prediction distribution errors (PDE) and scaled deviation of NCA metrics estimated from observed and simulated data. Identifies outlier to population PK model.

Description

nca.pde.deviation.outlier calculates individual prediction distribution errors (PDE) and scaled deviation of NCA metrics estimated from observed and simulated data. Identifies outlier to population PK model.

Usage

```
nca.pde.deviation.outlier(obsdata, simdata, idNm = "ID", id = NULL,
    spread = "npi", figlbl = NULL, calcparam = c("AUClast", "Cmax"),
    diagparam = c("AUClast", "Cmax"), cunit = NULL, tunit = NULL,
    noPlot = FALSE, onlyNCA = onlyNCA)
```

NULL. Default is FALSE

0	bbsdata	A data frame containing the NCA metrics values estimated from the observed data
S	simdata	A data frame containing the NCA metrics values estimated from the simulated data
i	.dNm	Column name for ID ("ID")
i	.d	ID of the individual whose data is being evaluated
S	spread	Measure of the spread of simulated data (ppi (95% parametric prediction interval) or npi (95% nonparametric prediction interval)) (''npi'')
f	figlbl	Figure label based on dose identifier and/or population stratifier, in addition to ID (NULL)
C	calcparam	A character array of the NCA metrics used for calculations of PDE and deviation. The allowed NCA metrics for this histograms are "AUClast", "AU-Clower_upper", "AUCINF_obs", "AUCINF_pred", "AUMClast", "Cmax", "Tmax" and "HL_Lambda_z". (c("AUClast", "Cmax"))
d	liagparam	A character array of the NCA metrics used for diagnostic test to detect outliers. The allowed NCA metrics for this histograms are "AUClast", "AUClower_upper", "AUCINF_obs", "AUCINF_pred", "AUMClast", "Cmax", "Tmax" and "HL_Lambda_z". (c("AUClast", "Cmax"))
C	cunit	Unit for concentration (default is NULL)
t	unit	Unit for time (default is NULL)
n	oPlot	Perform only NCA calculations without any plot generation (TRUE, FALSE) (FALSE)
0	onlyNCA	If TRUE only NCA is performed and ppc part is ignored although simFile is not

nca.read.sim 17

Details

nca.pde.deviation.outlier calculates individual prediction distribution errors (PDE) and scaled deviation of NCA metrics estimated from observed and simulated data. The deviation of each estimated NCA metrics is scaled by the "spread" of the simulated values. The "spread" is measured either by the 95% parametric prediction interval or 95% non-parametric prediction interval. Any individual yielding an absolute value of the scaled deviation for any of the selected NCA metrics greater than 1, is assigned as an outlier to the corresponding population PK model. The allowed NCA metrics for this diagnostic tests are "AUClast", "AUClower_upper", "AUCINF_obs", "AUCINF_pred", "AUMClast", "Cmax", "Tmax" and "HL_Lambda_z". By default, this function uses AUClast and Cmax metrics for the comparison.

Value

returns the observed data frame with added distance and simulation mean of the nCA metrics, and a data frame with the PDE values of the NCA metrics. If the individual is identified as an outlier for the PK model, histograms of the diagnostic NCA metrics are produced and a graphical object created by arrangeGrob function is returned.

nca.read.sim

Check observed data

Description

nca.read.sim Reads NONMEM simulation output file.

Usage

```
nca.read.sim(simFile = "nca_simulation.1.npctab.dta", MDV.rm = FALSE)
```

Arguments

simFile NONMEM simulation output with the simulated concentration-time data from

an internal data frame or an external table. Default is "nca_simulation.1.npctab.dta".

MDV.rm If TRUE MDV column is used to remove non-observation rows. Default is FALSE

Details

nca.read.sim Reads NONMEM simulation output file.

Value

A list of objects

18 ncappc

ncappc

Performs NCA calculations and population PK model diagnosis.

Description

ncappc is a flexible tool, to

- 1. perform a traditional NCA
- perform simulation-based posterior predictive checks for a population PK model using NCA metrics.

Usage

```
ncappc(obsFile = "nca_original.npctab.dta",
  simFile = "nca_simulation.1.npctab.dta.zip", str1Nm = NULL,
  str1 = NULL, str2Nm = NULL, str2 = NULL, str3Nm = NULL,
  str3 = NULL, concUnit = NULL, timeUnit = NULL, doseUnit = NULL,
 obsLog = FALSE, simLog = obsLog, psnOut = TRUE, idNmObs = "ID",
  timeNmObs = "TIME", concNmObs = "DV", idNmSim = idNmObs,
  timeNmSim = timeNmObs, concNmSim = concNmObs, onlyNCA = FALSE,
  AUCTimeRange = NULL, backExtrp = FALSE, LambdaTimeRange = NULL,
 LambdaExclude = NULL, doseAmtNm = NULL,
  adminType = "extravascular", doseType = "ns", doseTime = NULL,
  Tau = NULL, TI = NULL, method = "linearup-logdown", blqNm = NULL,
 blqExcl = 1, evid = TRUE, evidIncl = 0, mdv = FALSE,
  filterNm = NULL, filterExcl = NULL, negConcExcl = FALSE,
  param = c("AUClast", "Cmax"), timeFormat = "number",
  dateColNm = NULL, dateFormat = NULL, spread = "npi",
  tabCol = c("AUClast", "Cmax", "Tmax", "AUCINF_obs", "Vz_obs", "Cl_obs",
  "HL_Lambda_z"), figFormat = "tiff", noPlot = FALSE,
  printOut = TRUE, studyName = NULL, new_data_method = TRUE,
 overwrite_SIMDATA = NULL, overwrite_sim_est_file = NULL,
  outFileNm = NULL, out_format = "html", gg_theme = theme_bw(),
  parallel = FALSE, extrapolate = FALSE, timing = FALSE, ...)
```

obsFile	Observed concentration-time data from an internal data frame or an external table with comma, tab or space as separators.
simFile	NONMEM simulation output with the simulated concentration-time data from an internal data frame or an external table. NULL produces just the NCA output, a filename or data frame produces the NCA output as well as the PopPK diagnosis. If new_data_method=TRUE then this can be a compressed file as well.
str1Nm	Column name for 1st level population stratifier. Default is NULL
str1	Stratification ID of the members within 1st level stratification (e.g $c(1,2)$). Default is NULL

ncappc 19

str2Nm	Column name for 2nd level population stratifier. Default is NULL
str2	Stratification ID of the members within 2nd level stratification (e.g $c(1,2)$). Default is NULL
str3Nm	Column name for 3rd level population stratifier. Default is NULL
str3	Stratification ID of the members within 3rd level stratification (e.g $c(1,2)$). Default is NULL
concUnit	Unit of concentration (e.g. "ng/mL"). Default is NULL
timeUnit	Unit of time (e.g. "h"). Default is NULL
doseUnit	Unit of dose amount (e.g. "ng"). Default is NULL
obsLog	If TRUE concentration in observed data is in logarithmic scale. Default is FALSE
simLog	If TRUE concentration in simulated data is in logarithmic scale. Default is FALSE
psnOut	If TRUE observed data is an output from PsN or in NONMEM output format. Default is TRUE $$
idNmObs	Column name for ID in observed data. Default is "ID"
timeNmObs	Column name for time in observed data. Default is "TIME"
concNmObs	Column name for concentration in observed data. Default is "DV"
idNmSim	Column name for ID in simulated data. Default is "ID"
timeNmSim	Column name for time in simulated data. Default is "TIME"
concNmSim	Column name for concentration in simulated data. Default is "DV"
onlyNCA	If TRUE only NCA is performed and ppc part is ignored although simFile is not NULL. Default is FALSE
AUCTimeRange	User-defined window of time used to estimate AUC. Default is NULL
backExtrp LambdaTimeRange	If TRUE back-extrapolation is performed while estimating AUC. Default is FALSE e
ū	User-defined window of time to estimate elimination rate-constant. This argument lets the user to choose a specific window of time to be used to estimate the elimination rate constant (Lambda) in the elimination phase. The accepted format for the input to this argument is a numeric array of two elements; c(14,24) will estimate the Lambda using the data within the time units 14 to 24. Default is NULL
LambdaExclude	User-defined excluded observation time points for estimation of Lambda. This can be numeric value or logical condition (e.g. $c(1, 2, "<20", ">=100", "!=100")$). Default is NULL
doseAmtNm	Column name to specify dose amount. Default is NULL
adminType	Route of administration. Allowed options are iv-bolus, iv-infusion or extravascular. Default is "extravascular"
doseType	Steady-state (ss) or non-steady-state (ns) dose. Default is "ns"
doseTime	Dose time prior to the first observation for steady-state data. Default is NULL
Tau	Dosing interval for steady-state data. Default is NULL
TI	Infusion duration. If TI is a single numeric value, TI is the same for all individuals. If TI is the name of a column with numeric data present in the data set, TI is set to the unique value of the column for a given individual. Default is NULL

20 ncappe

method Method to estimate AUC. linear method applies the linear trapezoidal rule to

estimate the area under the curve. log method applies the logarithmic trapezoidal rule to estimate the area under the curve. linearup-logdown method applies the linear trapezoidal rule to estimate the area under the curve for the ascending part of the curve and the logarithmic trapezoidal rule to estimate the area under the curve for the descending part of the curve. Default is "linearup-

logdown"

blqNm Name of BLQ column if used to exclude data. Default is NULL

blqExcl Excluded BLQ value; either a numeric value or a logical condition (e.g. 1 or

">=1" or c(1,">3")). Used only if the blqNm is not NULL. Default is "1"

evid If TRUE EVID is used to filter data. Default is TRUE

evidIncl Included values in EVID. Default is "0"

mdy If TRUE MDV is used to include data when MDV=0. Default is FALSE

filterNm Column name to filter data. Default is NULL

filterExcl Row exclusion criteria based on the column defined by filterNm. This can

be numeric value or logical condition (e.g. c(1, 2, "<20", ">=100", "!=100")).

Default is NULL

negConcExcl If TRUE negative concentrations are excluded. Default is FALSE

param NCA parameters (AUClast, AUClower_upper, AUCINF_obs, AUCINF_pred,

AUMClast, Cmax, Tmax, HL Lambda z). Default is (c"AUClast", "Cmax")

timeFormat time format (number, H:M, H:M:S). Default is "number"

dateColNm column name for date if used (e.g. "Date", "DATE"). Default is NULL

dateFormat date format (D-M-Y, D/M/Y or any other combination of D,M,Y). Default is

NULL

spread Measure of the spread of simulated data ("ppi" (95% parametric prediction

interval) or "npi" (95% nonparametric prediction interval)). Default is "npi"

tabCol Output columns to be printed in the report in addition to ID, dose and pop-

ulation strata information (list of NCA metrics in a string array). Default is c("AUClast", "Cmax", "Tmax", "AUCINF_obs", "Vz_obs", "Cl_obs",

"HL_Lambda_z")

figFormat format of the produced figures (bmp, jpeg, tiff, png). Default is "tiff"

noPlot If TRUE only NCA calculations are performed without any plot generation. De-

fault is FALSE

printOut If TRUE tabular and graphical outputs are saved on the disk. Default is TRUE

studyName Name of the study to be added as a description in the report. Default is NULL

new_data_method

If TRUE a faster method of reading data is tested. Default is TRUE

overwrite_SIMDATA

If TRUE new information is created in the SIMDATA directory. If FALSE the information in the SIMDATA directory is used. If NULL a dialog will come up to ask the user what to do. Default is NULL

ncappe 21

overwrite_sim_est_file

If TRUE The NCA metrics are created again based on the simulation data. If FALSE the information in the ncaSimEst file is used. If NULL a dialog will come

up to ask the user what to do. Default is NULL

outFileNm Additional tag to the name of the output html and pdf output file hyphenated to

the standard ncappc report file name standard ncappc report file name. Default

is NULL

out_format What type of output format should the NCA report have? Pass "all" to render all

formats defined within the rmarkdown file. Pass "first" to render the first format defined within the rmarkdown file. Pass "html" to render in HTML. Pass "pdf"

to render in PDF.

gg_theme Which ggplot theme should be used for the plots?

parallel Should the nca computations for the simulated data be run in parallel? See

start_parallel for a description and additional arguments that can be added

to this function and passed to start_parallel.

extrapolate Should the NCA calculations extrapolate from the last observation to infinity?

timing Should timings of calculations be reported to the screen?

... Additional arguments passed to other functions, including start_parallel.

Details

Non-compartmental analysis (NCA) calculates pharmacokinetic (PK) metrics related to the systemic exposure to a drug following administration, e.g. area under the concentration-time curve and peak concentration. ncappc performs a traditional NCA using the observed plasma concentrationtime data. In the presence of simulated plasma concentration-time data, **ncappc** also performs simulation-based posterior predictive checks (ppc) using NCA metrics for the corresponding population PK (PopPK) model used to generate the simulated data. The diagnostic analysis is performed at the population as well as the individual level. The distribution of the simulated population means of each NCA metric is compared with the corresponding observed population mean. The individual level comparison is performed based on the deviation of the mean of any NCA metric based on simulations for an individual from the corresponding NCA metric obtained from the observed data. Additionally, **ncappc** reports the normalized prediction distribution error (NPDE) of the simulated NCA metrics for each individual and their distribution within a population. **ncappc** produces two default outputs depending on the type of analysis performed, i.e., traditional NCA and PopPK diagnosis. The PopPK diagnosis feature of **ncappc** produces 7 sets of graphical outputs to assess the ability of a population model to simulate the concentration-time profile of a drug and thereby identify model misspecification. In addition, tabular outputs are generated showing the values of the NCA metrics estimated from the observed and the simulated data, along with the deviation, NPDE, regression parameters used to estimate the elimination rate constant and the related population statistics. The default values of the arguments used in **ncappc** are shown in the **Usage** section of this document and/or in **bold** in the **Arguments** section.

Value

NCA results and diagnostic test results

22 nca_ind_data

Examples

```
out <- ncappc(obsFile=system.file("extdata", "pkdata.csv", package="ncappc"),</pre>
 onlyNCA = TRUE,
 extrapolate = TRUE,
 printOut = FALSE,
 evid = FALSE,
 psnOut=FALSE)
data_1 <- data.frame(</pre>
 ID=1,
 TIME = c(0,0.25,0.5,1,1.5,2,3,4,6,8,12,16,24),
 DV=c(0, 0.07, 0.14, 0.21, 0.24, 0.27, 0.26, 0.25, 0.22, 0.19, 0.13, 0.081, 0.033)
)
out_1 <- ncappc(obsFile=data_1,</pre>
                 onlyNCA = TRUE,
                 extrapolate = TRUE,
                 printOut = FALSE,
                 evid = FALSE,
                 timing=TRUE)
data_2 <- dplyr::filter(data_1,TIME>17|TIME<3)</pre>
out_2 <- ncappc(obsFile=data_2,</pre>
                 onlyNCA = TRUE,
                 extrapolate = TRUE,
                 printOut = FALSE,
                 evid = FALSE,
                 force_extrapolate=TRUE)
```

nca_ind_data

Prepare individual PK data

Description

Extracts time-conc data for a given individual.

Usage

```
nca_ind_data(pkData, dvLog = FALSE, dataType = "obs", idNm = "ID",
    timeNm = "TIME", concNm = "DV", adminType = "extravascular",
    TI = NULL, dateColNm = NULL, dateFormat = NULL,
    timeFormat = "number")
```

Arguments

pkData PK concentration-time data.

dvLog If TRUE concentration is in logarithmic scale. Default is FALSE

out.digits 23

dataType	Indicates if the data is observed ("obs") or simulated ("sim"). Since the simu-
	lated data is assumed to be obtained from NONMEM output, DATE and clock
	time (dateColNm, dateFormat, timeFormat) are not used for time data. Default
	is "obs" .
i dNm	Column name for ID in PK data. Default is "ID"

timeNm Column name for time in PK data. Default is "TIME"

concNm Column name for concentration in PK data. Default is "DV"

adminType Route of administration. Allowed options are iv-bolus, iv-infusion or extravas-

cular. Default is "extravascular"

TI Infusion duration. If TI is a single numeric value, TI is the same for all individ-

uals. If TI is the name of a column with numeric data present in the data set, TI is set to the unique value of the column for a given individual. Default is NULL

dateColNm column name for date if used (e.g. "Date", "DATE"). Default is NULL

dateFormat date format (D-M-Y, D/M/Y or any other combination of D,M,Y). Default is

NULL

timeFormat time format (number, H:M, H:M:S). Default is "number"

Details

Extracts time-conc data for a given individual.

Value

A list of objects with time-cone data and individual infusion duration for iv-infusion data

out.digits output value with correct digits and trailing zero

Description

Function to present a value with correct digits and trailing zero

Usage

```
out.digits(x, dig = 3)
```

Arguments

x is the value

dig is the number of significant digits

Details

This is a function to present a value with correct digits and trailing zero. Numbers >= 10000, or <= 0.0001 will be presented in scientific format

24 read_nm_table

Examples

```
## Not run:
out.digits(1234)
## End(Not run)
```

read_nm_table

Read NONMEM table files produced.

Description

The function reads in NONMEM table files. The files can be created from the \$EST line or from the \$SIM line in a NONMEM model file.

Usage

```
read_nm_table(nm_table, only_obs = FALSE, method = "default",
  quiet = TRUE, sim_num = FALSE, sim_name = "NSIM")
```

Arguments

nm_table	The NONMEM table file to read. A text string. If dplyr and readr are available and method="default" or method="readr_*" then nm_table can either a path to a file, a connection, or literal data (either a single string or a raw vector). Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed. Files starting with http://, https://, ftp://, or ftps:// will be automatically downloaded. Remote gz files can also be automatically downloaded & decompressed.
only_obs	Should the non-observation lines in the data set be removed? Currently filtered using the expected MDV column. TRUE or FALSE.
method	Can be one of default, readr_1, readr_2, readr_3, slow. readr_1 should be fastest. All but slow require dplyr and readr (version >= 0.2.2).
quiet	Should there be verbose messages about what the function is doing?
sim_num	Should the function add a column to the returned data frame that identifies the simulation number (if present)?
sim_name	The name of the resulting column in the returned data frame if sim_num is true.

Details

Currently the function searches the \$TABLE for multiple header lines, and uses that to identify multiple simulations. The function expects at least one header line (NOHEADER option is not allowed in NONMEM table files).

Value

Returns a data frame of the simulated table with an added column for the simulation number. The data frame is given class c("tbl_df", "tbl", "data.frame") for easy use with dplyr.

Index

```
{\tt calc.stat, 2}
dplyr, 24
dv.plot, 3
\operatorname{est.nca}, 4
\verb|histobs.plot|, 7
\verb|histpop.plot|, 8
\mathsf{nca.check.obs}, 9
nca.check.sim, 11
nca.deviation.plot, 12
nca.ind.data, 13
nca.npde, 14
nca.npde.plot, 15
\verb|nca.pde.deviation.outlier|, 16
nca.read.sim, 17
nca_ind_data, 22
ncappc, 18
out.digits, 23
read_nm_table, 24
start_parallel, 21
```