
Package ‘needy’
August 29, 2016

Type Package

Title needy

Description needy is a small utility library designed to make testing function
inputs less difficult. R is a dynamically typed language, but larger
projects need input checking for scalabity. needy offers a single
function, require_a(), which lets you specify the traits an input object
should have, such as class, size, numerical properties or number of
parameters, while reducing boilerplate code and aiding debugging.

Version 0.2

Depends R (>= 2.14.0)

Date 2013-06-05

Author Ryan Grannell

Maintainer Ryan Grannell <r.grannell2@gmail.com>

Contact Ryan Grannell <r.grannell2@gmail.com>

BugReports <r.grannell2@gmail.com>

Suggests testthat, combinat

License MIT + file LICENSE

Collate 'report.R' 'require_a.R' 'tools.R' 'trait_tests.R'

NeedsCompilation no

Repository CRAN

Date/Publication 2013-07-31 21:17:45

R topics documented:

require_a . 2

Index 5

1

2 require_a

require_a Ensure a value has a desired set of traits.

Description

Ensure a value has a desired set of traits.

Usage

require_a(traits, value, pcall = NULL)

implemented_traits()

add_trait(name, trait_test)

Arguments

traits a character vector, with each element being a space-seperated string of properties
to test the value for. See "traits". required.

value an arbitrary R object to test for certain properties. required.

pcall an call or string that provides the call to be displayed when an error is thrown by
require_a. See details. optional, defaults to displaying the call to require_a().

name a string giving the name of the test to add. required.

trait_test a unary function that returns a true or false value. This function should tests for
a particular trait.required.

Details

the option pcall is included so that it is possible to customise where the errors seem to originate
from. for example,

myfunc <- function (x) require_a("integer", x, sys.call(sys.parent(1)))

will display the following if called with a string "a":

Error: myfunc("a"): the value "a" didn\'t match any of the following compound traits: integer

In this example, the user-facing function myfun is shown to throw the error rather than an obscure
inner function, making debugging easier. For cases in which working with the call stack directly
(sys.call()) is too difficult a string can be passed to pcall, and this string is printed in front of
the error message

Traits

The traits parameter is a character vector of whitespace-seperated traits. For example, the fol-
lowing are syntactically valid

"integer"

"positive integer"

require_a 3

c("positive integer", "na")

c("na", "null", "length_one pairlist")

while the following are not

"positive && integer" # just use whitespace to 'and' traits

"positive || integer" # use two elements to 'or' traits

The latter two examples, correctly implemented, would be:

"positive integer"

c("positive", "integer")

As suggested above, whitespace between traits is interpreted as "trait a AND trait b", while seperate
elements are intepreted as c("trait one", OR "trait two") the order of traits in a
compound trait is not significant; a "positive integer" is equivelant to "integer positive".

If a test corresponding to an atomic trait is not found, an error is thrown:

require_a("white-whale", 1)

Error: require_a("white-whale", 1): unrecognised trait(s): (white-whale)

Similarily, if a value doesn’t have any other desired compound traits then an error is thrown:

require_a(c("length_one list", "null"), 1)

Error: require_a(c("length_one list", "null"), 1): the value 1 didn't match any of the following compound
traits: length_one and list, or null'

As of version 0.2 trait negation is also supported:

require_a("!null", NULL)

Error: require_a("!null", NULL): the value NULL didn't match any of the following compound traits:
!null'

Examples

safeMap <- function (f, x) {
map, with verification by require_a

pcall <- "safeMap(f, x)"
require_a('unary function', f, pcall)
require_a('listy', x)

Map(f, x)
}

safeSum <- function (a, b) {

pcall <- sys.call()
require_a("finite numeric", a, pcall)
require_a("finite numeric", b, pcall)

a + b
}

4 require_a

definitelyNotNull <- function (x) {

pcall <- sys.call()
require_a("!null", x, pcall)

x
}

safeMatchFun <- function (f) {
match.fun with arg checking

pcall <- sys.call()
require_a(c("string", "function", "symbol"), f, pcall)
require_a("functionable") #my prefered shorthand for the above

match.fun(f)
}

Index

add_trait (require_a), 2

implemented_traits (require_a), 2

require_a, 2

5

	require_a
	Index

