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nloptr-package R interface to NLopt

Description

nloptr is an R interface to NLopt, a free/open-source library for nonlinear optimization started by
Steven G. Johnson, providing a common interface for a number of different free optimization rou-
tines available online as well as original implementations of various other algorithms. The NLopt
library is available under the GNU Lesser General Public License (LGPL), and the copyrights are
owned by a variety of authors. Most of the information here has been taken from the NLopt website,
where more details are available.

Details

NLopt addresses general nonlinear optimization problems of the form:
min f(x) X in R*n
s.t. gx) <=0h(x)=01b<=x<=ub

where f is the objective function to be minimized and x represents the n optimization parameters.
This problem may optionally be subject to the bound constraints (also called box constraints), 1b
and ub. For partially or totally unconstrained problems the bounds can take -Inf or Inf. One may
also optionally have m nonlinear inequality constraints (sometimes called a nonlinear programming
problem), which can be specified in g(x), and equality constraints that can be specified in h(x). Note
that not all of the algorithms in NLopt can handle constraints.

An optimization problem can be solved with the general nloptr interface, or using one of the wrapper
functions for the separate algorithms; auglag, bobyqa, cobyla, crs2lm, direct, 1bfgs, mlsl, mma,
neldermead, newuoa, sbplx, slsqp, stogo, tnewton, varmetric.

Package: nloptr
Type: Package
Version: 0.9.9

Date: 2013-11-22

License: L-GPL
LazyLoad: yes

Note

See ?nloptr for more examples.

Author(s)

Steven G. Johnson and others (C code)
Jelmer Ypma (R interface)
Hans W. Borchers (wrappers)


https://nlopt.readthedocs.io/en/latest/
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References
Steven G. Johnson, The NLopt nonlinear-optimization package, https://nlopt.readthedocs.
io/en/latest/

See Also
optimnlmnlminb Rsolnp: :RsolnpRsolnp: :solnpnloptr auglagbobyqgacobylacrs2lmdirect
isres 1lbfgs mlsl mma neldermead newuoa sbplx slsqgp stogo tnewton varmetric

Examples

Example problem, number 71 from the Hock-Schittkowsky test suite.

\min_{x} x1#x4*(x1 + x2 + x3) + x3
s.t.
X1*x2xx3*x4 >= 25
X142 + x2%2 + x3"2 + x4*2 = 40
1 <= x1,x2,x3,x4 <=5

we re-write the inequality as
25 - x1*x2*x3*x4 <= 0@

and the equality as
X142 + x2%2 + x3"2 + x4%"2 - 40 = 0

x0 = (1,5,5,1)

e E E E E E E E R E

optimal solution = (1.00000000, 4.74299963, 3.82114998, 1.37940829)

library('nloptr")

#

# f(x) = xT*x4x(x1 + x2 + x3) + x3

#

eval_f <- function( x ) {

return( list( "objective” = x[11*x[41x(x[1] + x[2] + x[3]1) + x[3],
"gradient” = c( x[1] * x[4] + x[4] = (x[1] + x[2] + x[3D),

x[11 % x[41],
x[1] = x[4] + 1.0,
x[1] = (x[1]1 + x[2] + x[31) ) ) )

3

# constraint functions
# inequalities
eval_g_ineq <- function( x ) {
constr <- c( 25 - x[1] » x[2] = x[3] * x[4] )

grad <- c( -x[2]xx[3]1*x[4],
-x[11*x[3]*x[4],
-x[1I*xx[2]*x[4],


https://nlopt.readthedocs.io/en/latest/
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-x[1]*x[2]*x[3] )
return( list( "constraints”=constr, "jacobian”=grad ) )

}

# equalities
eval_g_eq <- function( x ) {
constr <- c( x[11%2 + x[2]*2 + x[3]*2 + x[4]1*2 - 40 )

grad <- c( 2.0*x[1],
2.0%x[2],
2.0xx[3],
2.0*x[4] )
return( list( "constraints”=constr, "jacobian”=grad ) )

}

# initial values
X0 <-c(1, 5,5, 1)

# lower and upper bounds of control
b <= c(C1, 1,1, 1)
ub <-c(5, 5,5, 5)

local_opts <- list( "algorithm” "NLOPT_LD_MMA",

"xtol_rel” = 1.0e-7 )
opts <- list( "algorithm” = "NLOPT_LD_AUGLAG",
"xtol_rel” = 1.0e-7,
"maxeval” = 1000,

"local_opts” = local_opts )

res <- nloptr( x0=x0,
eval_f=eval_f,
1b=1b,
ub=ub,
eval_g_ineqg=eval_g_ineq,
eval_g_eg=eval_g_eq,
opts=opts)

print( res )

auglag Augmented Lagrangian Algorithm

Description
The Augmented Lagrangian method adds additional terms to the unconstrained objective function,
designed to emulate a Lagrangian multiplier.

Usage

auglag(
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X0,

fn,

gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,
hinjac = NULL,
heg = NULL,

heqjac = NULL,

localsolver = c("COBYLA"),
localtol = 1e-06,
ineq2local = FALSE,
nl.info = FALSE,

control = list(),

)
Arguments
X0 starting point for searching the optimum.
fn objective function that is to be minimized.
gr gradient of the objective function; will be provided provided is NULL and the
solver requires derivatives.
lower, upper lower and upper bound constraints.
hin, hinjac defines the inequality constraints, hin(x) >= 0
heq, heqjac defines the equality constraints, heq(x) = @.
localsolver available local solvers: COBYLA, LBFGS, MMA, or SLSQP.
localtol tolerance applied in the selected local solver.
ineg2local logical; shall the inequality constraints be treated by the local solver?; not pos-
sible at the moment.
nl.info logical; shall the original NLopt info been shown.
control list of options, see nl.opts for help.
additional arguments passed to the function.
Details

This method combines the objective function and the nonlinear inequality/equality constraints (if
any) in to a single function: essentially, the objective plus a ‘penalty’ for any violated constraints.

This modified objective function is then passed to another optimization algorithm with no nonlinear
constraints. If the constraints are violated by the solution of this sub-problem, then the size of
the penalties is increased and the process is repeated; eventually, the process must converge to the
desired solution (if it exists).

Since all of the actual optimization is performed in this subsidiary optimizer, the subsidiary algo-
rithm that you specify determines whether the optimization is gradient-based or derivative-free.
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The local solvers available at the moment are COBYLA" (for the derivative-free approach) and LBFGS”,
MMA", or SLSQP” (for smooth functions). The tolerance for the local solver has to be provided.

There is a variant that only uses penalty functions for equality constraints while inequality con-
straints are passed through to the subsidiary algorithm to be handled directly; in this case, the sub-
sidiary algorithm must handle inequality constraints. (At the moment, this variant has been turned
off because of problems with the NLOPT library.)

Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.

global_solver the global NLOPT solver used.
local_solver the local NLOPT solver used, LBFGS or COBYLA.

convergence integer code indicating successful completion (> 0) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

Birgin and Martinez provide their own free implementation of the method as part of the TANGO
project; other implementations can be found in semi-free packages like LANCELOT.

Author(s)
Hans W. Borchers

References

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint, “A globally convergent augmented
Lagrangian algorithm for optimization with general constraints and simple bounds,” SIAM J. Nu-
mer. Anal. vol. 28, no. 2, p. 545-572 (1991).

E. G. Birgin and J. M. Martinez, “Improving ultimate convergence of an augmented Lagrangian
method," Optimization Methods and Software vol. 23, no. 2, p. 177-195 (2008).

See Also

alabama: :auglag, Rsolnp: :solnp

Examples

X0 <- c(1, 1)

fn <- function(x) (x[1]-2)*2 + (x[2]-1)"2

hin <- function(x) -0.25*x[1]1%2 - x[2]*2 + 1 # hin >= 0
heq <- function(x) x[1] - 2*x[2] + 1 # heq == 0
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gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
hegjac <- function(x) nl.jacobian(x, heq)
auglag(x@, fn, gr = NULL, hin = hin, heq = heq) # with COBYLA
# $par: 0.8228761 0.9114382
# $value: 1.393464
# $iter: 1001
auglag(x@, fn, gr = NULL, hin = hin, heq = heq, localsolver = "SLSQP")
# $par: 0.8228757 0.9114378
# $value: 1.393465
# $iter 173
## Example from the alabama::auglag help page
fn <- function(x) (x[1] + 3xx[2] + x[31)*2 + 4 %= (x[1] - x[2])*2
heq <- function(x) x[1] + x[2] + x[3] - 1
hin <- function(x) c(6*x[2] + 4*x[3] - x[11*3 - 3, x[11, x[2], x[31)
auglag(runif(3), fn, hin = hin, heq = heq, localsolver="1lbfgs")
# $par: 2.380000e-09 1.086082e-14 1.000000e+00
# $value: 1
# $iter: 289
## Powell problem from the Rsolnp::solnp help page
X0 <- c(-2, 2, 2, -1, -1)
fnl <= function(x) exp(x[11*x[2]1*x[3]1*x[4]1*x[5]1)
eqn1 <-function(x)
c(x[1I*x[1]+x[2]*x[2]+x[3]*x[3]+x[4]*x[4]+x[5]1*x[5],
x[2]*x[3]-5*x[4]*x[5],
x[11#x[1]xx[1]1+x[2]%x[2]*x[2])
auglag(x@, fnl, heq = eqnl, localsolver = "mma")
# $par: -3.988458e-10 -1.654201e-08 -3.752028e-10 8.904445e-10 8.926336e-10
# $value: 1
# $iter: 1001
bobyga Bound Optimization by Quadratic Approximation
Description
BOBYQA performs derivative-free bound-constrained optimization using an iteratively constructed
quadratic approximation for the objective function.
Usage

bobyga(
X0,



bobyqa 9

fn,
lower = NULL,
upper = NULL,

nl.info = FALSE,
control = list(),

Arguments
X0 starting point for searching the optimum.
fn objective function that is to be minimized.
lower, upper lower and upper bound constraints.
nl.info logical; shall the original NLopt info been shown.
control list of options, see nl.opts for help.
additional arguments passed to the function.
Details

This is an algorithm derived from the BOBYQA Fortran subroutine of Powell, converted to C and
modified for the NLOPT stopping criteria.

Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 0) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

Because BOBYQA constructs a quadratic approximation of the objective, it may perform poorly
for objective functions that are not twice-differentiable.
References

M. J. D. Powell. “The BOBYQA algorithm for bound constrained optimization without deriva-
tives,” Department of Applied Mathematics and Theoretical Physics, Cambridge England, technical
reportNA2009/06 (2009).

See Also

cobyla, newuoa
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Examples

ccsaq

fr <- function(x) { ## Rosenbrock Banana function
100 * (x[2] - x[11*2)*2 + (1 - x[1I])*2

}

(S <- bobyga(c(o, 0, @), fr, lower = c(@, @, @), upper = c(0.5, 0.5, 0.5)))

ccsaq

Conservative Convex Separable Approximation with Affine Approxi-
mation plus Quadratic Penalty

Description

This is a variant of CCSA ("conservative convex separable approximation") which, instead of con-
structing local MMA approximations, constructs simple quadratic approximations (or rather, affine
approximations plus a quadratic penalty term to stay conservative)

Usage
ccsaq(

X0,

fn,

gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,

hinjac = NULL,

nl.info =

FALSE,

control = 1list(),

)
Arguments
X0 starting point for searching the optimum.
fn objective function that is to be minimized.
gr gradient of function fn; will be calculated numerically if not specified.

lower, upper

lower and upper bound constraints.

hin function defining the inequality constraints, that is hin>=@ for all components.
hinjac Jacobian of function hin; will be calculated numerically if not specified.
nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.

additional arguments passed to the function.
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Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 1) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

“Globally convergent” does not mean that this algorithm converges to the global optimum; it means
that it is guaranteed to converge to some local minimum from any feasible starting point.

References

Krister Svanberg, “A class of globally convergent optimization methods based on conservative con-
vex separable approximations,” SIAM J. Optim. 12 (2), p. 555-573 (2002).

See Also

mma

Examples

## Solve the Hock-Schittkowski problem no. 100 with analytic gradients
x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {
(x[11-10)72 + 5*%(x[2]-12)*2 + x[3]1*4 + 3*x(x[4]-11)*2 + 10*x[5]"6 +
7xx[61%2 + x[7]1"4 - 4xx[6]1*x[7] - 10xx[6] - 8*x[7]
3
hin.hs100 <- function(x) {
h <- numeric(4)
h[1] <= 127 - 2*x[1]*2 - 3*xx[2]%4 - x[3] - 4%*x[4]*2 - 5*x[5]
h[2] <- 282 - 7*xx[1] - 3*x[2] - 10*x[3]*2 - x[4] + x[5]
h[3] <- 196 - 23xx[1] - x[2]1*2 - 6xx[6]1"2 + 8xx[7]
h[4] <- -4*xx[1]*2 - x[2]*2 + 3*x[1]*x[2] -2*x[3]*2 - 5*x[6] +11*x[7]

return(h)
3
gr.hs100 <- function(x) {
c( 2 x[1] - 2o,
10 * x[2] - 120,
4 x x[3]*3,
6 * x[4] - 66,
60 * x[5]%5,
14 x x[6] -4 x x[7] - 10,
4 x x[7]1%3 - 4 x x[6] - 8 )}

hinjac.hs100 <- function(x) {
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matrix(c(4*x[1], 12xx[2]*3, 1, 8xx[4], 5, 0, 0,
7, 3, 20%x[31, 1, -1, o, o,
23, 2xx[2], o, 0, 0, 12xx[6], -8,
8xx[1]1-3xx[2], 2*x[2]-3*x[1], 4xx[3]1, @, @, 5, -11), 4, 7, byrow=TRUE)
3

# incorrect result with exact jacobian
S <- ccsaq(x0.hs100, fn.hs100, gr = gr.hs100,
hin = hin.hs100, hinjac = hinjac.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8))

S <- ccsaq(x@.hs100, fn.hs100, hin = hin.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8))

check.derivatives Check analytic gradients of a function using finite difference approxi-
mations

Description

This function compares the analytic gradients of a function with a finite difference approximation
and prints the results of these checks.

Usage
check.derivatives(
X,
func,
func_grad,
check_derivatives_tol = 1e-04,
check_derivatives_print = "all"”,
func_grad_name = "grad_f",
)
Arguments
X point at which the comparison is done.
func function to be evaluated.
func_grad function calculating the analytic gradients.

check_derivatives_tol
option determining when differences between the analytic gradient and its finite
difference approximation are flagged as an error.

check_derivatives_print
option related to the amount of output. ’all’ means that all comparisons are
shown, ’errors’ only shows comparisons that are flagged as an error, and 'none’
shows the number of errors only.
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func_grad_name option to change the name of the gradient function that shows up in the output.

further arguments passed to the functions func and func_grad.

Value

The return value contains a list with the analytic gradient, its finite difference approximation, the
relative errors, and vector comparing the relative errors to the tolerance.

Author(s)

Jelmer Ypma

See Also

nloptr

Examples

library('nloptr")

# example with correct gradient
f <- function( x, a ) {
return( sum( ( x - a )*2 ) )

}

f_grad <- function( x, a ) {
return( 2x( x - a ) )
3

check.derivatives( .x=1:10, func=f, func_grad=f_grad,
check_derivatives_print="none', a=runif(10) )

# example with incorrect gradient
f_grad <- function( x, a ) {

return( 2x( x - a ) + c(0,.1,rep(0,8)) )
3

check.derivatives( .x=1:10, func=f, func_grad=f_grad,
check_derivatives_print='errors', a=runif(10) )

# example with incorrect gradient of vector-valued function
g <- function( x, a ) {
return( c( sum(x-a), sum( (x-a)*2 ) ) )

}

g_grad <- function( x, a ) {
return( rbind( rep(1,length(x)) + c(@,.01,rep(0,8)), 2*(x-a) + c(0,.1,rep(0,8)) ) )
3

check.derivatives( .x=1:10, func=g, func_grad=g_grad,
check_derivatives_print="all', a=runif(10) )
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cobyla Constrained Optimization by Linear Approximations

Description

COBYLA is an algorithm for derivative-free optimization with nonlinear inequality and equality
constraints (but see below).

Usage
cobyla(
X0,
fn,
lower = NULL,
upper = NULL,
hin = NULL,

nl.info = FALSE,
control = 1list(),

)
Arguments
X0 starting point for searching the optimum.
fn objective function that is to be minimized.
lower, upper lower and upper bound constraints.
hin function defining the inequality constraints, that is hin>=@ for all components.
nl.info logical; shall the original NLopt info been shown.
control list of options, see nl.opts for help.
additional arguments passed to the function.
Details

It constructs successive linear approximations of the objective function and constraints via a simplex
of n+1 points (in n dimensions), and optimizes these approximations in a trust region at each step.

COBYLA supports equality constraints by transforming them into two inequality constraints. As
this does not give full satisfaction with the implementation in NLOPT, it has not been made available
here.
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Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 0) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

The original code, written in Fortran by Powell, was converted in C for the Scipy project.

Author(s)
Hans W. Borchers

References

M. J. D. Powell, “A direct search optimization method that models the objective and constraint
functions by linear interpolation,” in Advances in Optimization and Numerical Analysis, eds. S.
Gomez and J.-P. Hennart (Kluwer Academic: Dordrecht, 1994), p. 51-67.

See Also

bobyga, newuoa

Examples

### Solve Hock-Schittkowski no. 100
x0.hs100 <- c(1, 2, @, 4, 0, 1, 1)
fn.hs100 <- function(x) {
(x[1]-10)*2 + 5%(x[2]-12)"2 + x[3]*4 + 3x(x[4]-11)*2 + 10*x[5]*6 +
7xx[61%2 + x[71"4 - 4xx[6]1*x[7] - 10*xx[6] - 8*x[7]
3
hin.hs100 <- function(x) {
h <- numeric(4)
h[1] <= 127 - 2*%x[1]*2 - 3*x[2]*4 - x[3] - 4xx[4]1*2 - 5*x[5]
h[2] <- 282 - 7*x[1] - 3*x[2] - 10*x[3]*2 - x[4] + x[5]
h[3] <- 196 - 23xx[1] - x[2]*2 - 6*xx[6]*2 + 8*x[7]
h[4] <- -4*x[1]*2 - x[2]*2 + 3*x[1]*x[2] -2*x[3]"2 - 5%x[6] +11*x[7]
returnch)
3

S <- cobyla(x0.hs100, fn.hs100, hin = hin.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8, maxeval = 2000))
## Optimal value of objective function: 680.630057374431
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crs2lm Controlled Random Search

Description

The Controlled Random Search (CRS) algorithm (and in particular, the CRS2 variant) with the
‘local mutation’ modification.

Usage

crs21m(
X0,
fn,
lower,
upper,
maxeval = 10000,
pop.size = 10 * (length(x@) + 1),
ranseed = NULL,
xtol_rel = 1e-06,
nl.info = FALSE,

Arguments
X0 initial point for searching the optimum.
fn objective function that is to be minimized.
lower, upper lower and upper bound constraints.
maxeval maximum number of function evaluations.
pop.size population size.
ranseed prescribe seed for random number generator.
xtol_rel stopping criterion for relative change reached.
nl.info logical; shall the original NLopt info been shown.
additional arguments passed to the function.
Details

The CRS algorithms are sometimes compared to genetic algorithms, in that they start with a random
population of points, and randomly evolve these points by heuristic rules. In this case, the evolution
somewhat resembles a randomized Nelder-Mead algorithm.

The published results for CRS seem to be largely empirical.
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Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(<0).

message character string produced by NLopt and giving additional information.

Note

The initial population size for CRS defaults to 10x(n+1) in n dimensions, but this can be changed;
the initial population must be at least n+1.

References

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40 (3), p.
333-348 (1983).

P. Kaelo and M. M. Ali, “Some variants of the controlled random search algorithm for global opti-
mization,” J. Optim. Theory Appl. 130 (2), 253-264 (2006).

Examples

### Minimize the Hartmann6 function
hartmanné <- function(x) {

n <- length(x)

a<-c(l.0, 1.2, 3.0, 3.2)

A <- matrix(c(10.0, ©.05, 3.0, 17.0,
3.0, 10.0, 3.5, 8.0,
17.0, 17.0, 1.7, 0.05,
3.5, 0.1, 10.0, 10.0,
1.7, 8.0, 17.0, 0.1,

8.0, 14.0, 8.0, 14.0), nrow=4, ncol=6)
B <- matrix(c(.1312,.2329,.2348,.4047,
.1696,.4135,.1451, .8828,
.5569, .8307, .3522,.8732,
.0124,.3736,.2883,.5743,
.8283,.1004, .3047, .1091,
.5886,.9991, .6650,.0381), nrow=4, ncol=6)
fun <- 0.0
for (i in 1:4) {
fun <- fun - ali] * exp(-sum(A[i,I*(x-B[i,]1)"*2))
3
return(fun)

}

S <- mlsl(x@ = rep(@, 6), hartmann6, lower = rep(0,6), upper = rep(1,6),
nl.info = TRUE, control=list(xtol_rel=1e-8, maxeval=1000))
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#it
#it
#it
#it
#it
#it
#it

Number of Iterations

....1 4050

Termination conditions: maxeval: 10000 xtol_rel: 1e-06
Number of inequality constraints: @
Number of equality constraints: 0
Optimal value of objective function: -3.32236801141328
Optimal value of controls:
0.2016893 0.1500105 ©0.4768738 ©.2753326 0.3116516 0.6573004

direct

direct

Dlviding RECTangles Algorithm for Global Optimization

Description

DIRECT is a deterministic search algorithm based on systematic division of the search domain into
smaller and smaller hyperrectangles. The DIRECT_L makes the algorithm more biased towards
local search (more efficient for functions without too many minima).

Usage
di

di

rect(

fn,

lower,

upper,

scaled = TRUE,
original = FALSE,
nl.info = FALSE,
control = 1list(),

rectL(
fn,

lower,
upper,

randomized = FALSE,

original = FALSE,
nl.info = FALSE,
control = 1list(),

)
Arguments
fn objective function that is to be minimized.
lower, upper lower and upper bound constraints.
scaled logical; shall the hypercube be scaled before starting.
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original logical; whether to use the original implementation by Gablonsky — the perfor-
mance is mostly similar.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.

additional arguments passed to the function.

randomized logical; shall some randomization be used to decide which dimension to halve
next in the case of near-ties.

Details

The DIRECT and DIRECT-L algorithms start by rescaling the bound constraints to a hypercube,
which gives all dimensions equal weight in the search procedure. If your dimensions do not have
equal weight, e.g. if you have a “long and skinny” search space and your function varies at about
the same speed in all directions, it may be better to use unscaled variant of the DIRECT algorithm.

The algorithms only handle finite bound constraints which must be provided. The original versions
may include some support for arbitrary nonlinear inequality, but this has not been tested.

The original versions do not have randomized or unscaled variants, so these options will be disre-
garded for these versions.

Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 0) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

The DIRECT_L algorithm should be tried first.

Author(s)
Hans W. Borchers

References
D. R. Jones, C. D. Perttunen, and B. E. Stuckmann, “Lipschitzian optimization without the lipschitz
constant,” J. Optimization Theory and Applications, vol. 79, p. 157 (1993).

J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm," J. Global
Optimization, vol. 21 (1), p. 27-37 (2001).
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See Also

is.nloptr

The dfoptim package will provide a pure R version of this algorithm.

Examples

### Minimize the Hartmann6é function
hartmanné <- function(x) {
n <- length(x)
a<-c(l.0, 1.2, 3.0, 3.2)
A <- matrix(c(10.0, 5,
3.0 ,
0
5

’

—_
0O NS
[SEESENS BN IS

17.

3.

1.7, ,

8.0, 14.0, 9, 14

B <- matrix(c(.1312,.2329,.2348,.
.1696,.4135,.1451, .

.5569,.8307, .3522,
.0124,.3736,.2883,

.8283,.1004, .3047,

.5886,.9991, .6650,

) ’

’ ’

3.
3.
1.
10.
17.
8.

fun <- 0.0
for (i in 1:4) {
fun <- fun - al[i] * exp(-sum(A
3
return(fun)
3
S <- directL(hartmann6, rep(@,6), rep(
nl.info = TRUE, control=1
Number of Iterations....: 500
Termination conditions: stopval: -
xtol_rel: 1e-08, maxeval: 500,
Number of inequality constraints:
Number of equality constraints:
Current value of objective function
Current value of controls:
0.2016884 0.1500025 0.4768667 @

#it
#it
#i#
#it
#it
#i#t
#it
#it

17.

10.

@), nrow=4, ncol=6)
4047,
8828,

.8732,
.5743,
.1091,
.0381), nrow=4, ncol=6)

[i,1*(x-B[i,1)"2))

1’6)’
ist(xtol_rel=1e-8, maxeval=1000))

Inf

ftol_rel: 0,
0
0

ftol_abs: @

-3.32236800687327

.2753391 0.311648 0.6572931

is.nloptr

R interface to NLopt

Description

is.nloptr preforms checks to see if a fully specified problem is supplied to nloptr. Mostly for internal

use.
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Usage

is.nloptr(x)

Arguments

X object to be tested.

Value

Logical. Return TRUE if all tests were passed, otherwise return FALSE or exit with Error.

Author(s)

Jelmer Ypma

See Also

nloptr

isres Improved Stochastic Ranking Evolution Strategy

Description

The Improved Stochastic Ranking Evolution Strategy (ISRES) algorithm for nonlinearly constrained
global optimization (or at least semi-global: although it has heuristics to escape local optima.

Usage

isres(
X0,
fn,
lower,
upper,
hin = NULL,
heq = NULL,
maxeval = 10000,
pop.size = 20 * (length(x@) + 1),
xtol_rel = 1e-06,
nl.info = FALSE,
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Arguments

X0

fn

lower, upper
hin

heq

maxeval
pop.size
xtol_rel

nl.info

Details

isres

initial point for searching the optimum.

objective function that is to be minimized.

lower and upper bound constraints.

function defining the inequality constraints, that is hin>=0 for all components.
function defining the equality constraints, that is heq==0 for all components.
maximum number of function evaluations.

population size.

stopping criterion for relative change reached.

logical; shall the original NLopt info been shown.

additional arguments passed to the function.

The evolution strategy is based on a combination of a mutation rule (with a log-normal step-size
update and exponential smoothing) and differential variation (a Nelder-Mead-like update rule). The
fitness ranking is simply via the objective function for problems without nonlinear constraints, but
when nonlinear constraints are included the stochastic ranking proposed by Runarsson and Yao is

employed.

This method supports arbitrary nonlinear inequality and equality constraints in addition to the bound

constraints.

Value

List with components:

par
value
iter

convergence

message

Note

the optimal solution found so far.
the function value corresponding to par.
number of (outer) iterations, see maxeval.

integer code indicating successful completion (> 0) or a possible error number
(<0).

character string produced by NLopt and giving additional information.

The initial population size for CRS defaults to 20x(n+1) in n dimensions, but this can be changed;
the initial population must be at least n+1.

Author(s)

Hans W. Borchers

References

Thomas Philip Runarsson and Xin Yao, “Search biases in constrained evolutionary optimization,”
IEEE Trans. on Systems, Man, and Cybernetics Part C: Applications and Reviews, vol. 35 (no. 2),
pp. 233-243 (2005).
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Examples

### Rosenbrock Banana objective function
fn <- function(x)
return( 100 * (x[2] - x[1] = x[1])*2 + (1 - x[1])*2 )

X0 <- c( -1.2, 1)
1b <- c( -3, -3)
ub <- c( 3, 3)

isres(x@ = x@, fn = fn, lower = lb, upper = ub)
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1bfgs Low-storage BFGS

Description

Low-storage version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

Usage
1bfgs(
X0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,

nl.info = FALSE,
control = 1list(),

Arguments
X0 initial point for searching the optimum.
fn objective function to be minimized.
gr gradient of function fn; will be calculated numerically if not specified.
lower, upper lower and upper bound constraints.
nl.info logical; shall the original NLopt info been shown.
control list of control parameters, see nl.opts for help.

further arguments to be passed to the function.
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Details

The low-storage (or limited-memory) algorithm is a member of the class of quasi-Newton optimiza-
tion methods. It is well suited for optimization problems with a large number of variables.

One parameter of this algorithm is the number m of gradients to remember from previous optimiza-
tion steps. NLopt sets m to a heuristic value by default. It can be changed by the NLopt function
set_vector_storage.

Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 0) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

Based on a Fortran implementation of the low-storage BFGS algorithm written by L. Luksan, and
posted under the GNU LGPL license.

Author(s)
Hans W. Borchers

References

J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Math. Comput. 35, 773-782
(1980).

D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,”
Math. Programming 45, p. 503-528 (1989).

See Also

optim
Examples

flb <- function(x) {
p <- length(x)
sum(c(1, rep(4, p-1)) * (x - c(1, x[-p1)*2)*2)
3
# 25-dimensional box constrained: par[24] is *notx at the boundary
S <- lbfgs(rep(3, 25), flb, lower=rep(2, 25), upper=rep(4, 25),
nl.info = TRUE, control = list(xtol_rel=1e-8))
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## Optimal value of objective function: 368.105912874334

## Optimal value of controls: 2 ... 2 2.109093 4
mlsl Multi-level Single-linkage
Description

The “Multi-Level Single-Linkage” (MLSL) algorithm for global optimization searches by a se-
quence of local optimizations from random starting points. A modification of MLSL is included
using a low-discrepancy sequence (LDS) instead of pseudorandom numbers.

Usage

mlsl(
X0,
fn,
gr = NULL,
lower,
upper,
local.method = "LBFGS",
low.discrepancy = TRUE,
nl.info = FALSE,
control = list(),

)
Arguments
X0 initial point for searching the optimum.
fn objective function that is to be minimized.
gr gradient of function fn; will be calculated numerically if not specified.
lower, upper lower and upper bound constraints.

local.method only BFGS for the moment.

low.discrepancy
logical; shall a low discrepancy variation be used.

nl.info logical; shall the original NLopt info been shown.
control list of options, see nl.opts for help.

additional arguments passed to the function.
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Details

MLSL is a multistart' algorithm: it works by doing a sequence of local optimizations (using some other lo-
cal optimization algorithm) from random or low-discrepancy starting points. MLSL is distin-
guished, however by a clustering’ heuristic that helps it to avoid repeated searches of the same
local optima, and has some theoretical guarantees of finding all local optima in a finite number of
local minimizations.

The local-search portion of MLSL can use any of the other algorithms in NLopt, and in particular
can use either gradient-based or derivative-free algorithms. For this wrapper only gradient-based
L-BFGS is available as local method.

Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 0) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

If you don’t set a stopping tolerance for your local-optimization algorithm, MLSL defaults to
ftol_rel=1e-15 and xtol_rel=1e-7 for the local searches.

Author(s)
Hans W. Borchers

References

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods” Mathematical
Programming, vol. 39, p. 27-78 (1987).

Sergei Kucherenko and Yury Sytsko, “Application of deterministic low-discrepancy sequences in
global optimization,” Computational Optimization and Applications, vol. 30, p. 297-318 (2005).
See Also

direct

Examples

### Minimize the Hartmanné function
hartmann6é <- function(x) {

n <- length(x)

a<-c(l.0, 1.2, 3.0, 3.2)
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A <- matrix(c(10.0, ©.05, 3.0, 17.0,
3.0, 10.0, 3.5, 8.0,
17.0, 17.0, 1.7, ©.05,
3.5, 0.1, 10.0, 10.0,
1.7, 8.0, 17.0, 0.1,

8.0, 14.0, 8.0, 14.0), nrow=4, ncol=6)
B <- matrix(c(.1312,.2329,.2348,.4047,
.1696, .4135, .1451,.8828,
.5569, .8307, .3522,.8732,
.0124,.3736,.2883,.5743,
.8283,.1004,.3047,.1091,
.5886,.9991, .6650,.0381), nrow=4, ncol=6)
fun <- 0.0
for (i in 1:4) {
fun <- fun - ali] * exp(-sum(A[i,I*(x-B[i,])"*2))
3
return(fun)
3
S <- mlsl(x@ = rep(@, 6), hartmann6, lower = rep(0,6), upper = rep(1,6),
nl.info = TRUE, control=list(xtol_rel=1e-8, maxeval=1000))
## Number of Iterations....: 1000
## Termination conditions:
##  stopval: -Inf, xtol_rel: 1e-08, maxeval: 1000, ftol_rel: @, ftol_abs: @
## Number of inequality constraints: @
## Number of equality constraints: 0
## Current value of objective function: -3.32236801141552
## Current value of controls:
## 0.2016895 0.1500107 0.476874 ©.2753324 0.3116516 0.6573005

mma Method of Moving Asymptotes

Description

Globally-convergent method-of-moving-asymptotes (MMA) algorithm for gradient-based local op-
timization, including nonlinear inequality constraints (but not equality constraints).

Usage

mma
X0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,

hinjac = NULL,
nl.info = FALSE,
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control = list(),

Arguments
X0 starting point for searching the optimum.
fn objective function that is to be minimized.
gr gradient of function fn; will be calculated numerically if not specified.
lower, upper lower and upper bound constraints.
hin function defining the inequality constraints, that is hin>=@ for all components.
hinjac Jacobian of function hin; will be calculated numerically if not specified.
nl.info logical; shall the original NLopt info been shown.
control list of options, see nl.opts for help.
additional arguments passed to the function.
Details

This is an improved CCSA ("conservative convex separable approximation") variant of the original
MMA algorithm published by Svanberg in 1987, which has become popular for topology optimiza-
tion. Note:

Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 1) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

“Globally convergent” does not mean that this algorithm converges to the global optimum; it means
that it is guaranteed to converge to some local minimum from any feasible starting point.

Author(s)
Hans W. Borchers

References

Krister Svanberg, “A class of globally convergent optimization methods based on conservative con-
vex separable approximations,” SIAM J. Optim. 12 (2), p. 555-573 (2002).
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See Also

slsqgp

Examples

## Solve the Hock-Schittkowski problem no. 100 with analytic gradients
x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {
(x[11-10)"2 + 5%(x[2]-12)*2 + x[3]1*4 + 3x(x[4]-11)*2 + 10xx[5]"6 +
7xx[61%2 + x[7]1*4 - 4xx[6]1*x[7] - 10xx[6] - 8xx[7]
3
hin.hs100 <- function(x) {
h <- numeric(4)
h[1] <= 127 - 2*x[1]*2 - 3*xx[2]1%4 - x[3] - 4*x[4]1*2 - 5*x[5]
h[2] <- 282 - 7*x[1] - 3*x[2] - 10*x[3]1*2 - x[4] + x[5]
h[3] <- 196 - 23*x[1] - x[2]1*2 - 6xx[6]1"2 + 8xx[7]
h[4] <- -4%x[1]"2 - x[2]*2 + 3*x[1]*x[2] -2*x[3]*2 - 5xx[6] +11*x[7]

return(h)
3
gr.hs100 <- function(x) {
c( 2 x x[1] - 20,
10 x x[2] - 120,
4 x x[3]*3,
6 * x[4] - 66,
60 *x x[5]*5,
14 % x[6] -4 x x[7] - 10,

4 % x[7]1%3 - 4 x x[6] - 8 )}
hinjac.hs100 <- function(x) {
matrix(c(4xx[1], 12xx[2]*3, 1, 8%x[4], 5, 0, O,
7, 3, 20%x[31, 1, -1, @, 0,
23, 2*xx[2], @, 0, 0, 12xx[6], -8,
8xx[1]1-3xx[2], 2xx[2]-3xx[1], 4xx[3], @, @, 5, -11), 4, 7, byrow=TRUE)

# incorrect result with exact jacobian
S <- mma(x0.hs10@, fn.hs100, gr = gr.hs100,
hin = hin.hs100, hinjac = hinjac.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8))

This example is put in donttest because it runs for more than
40 seconds under 32-bit Windows. The difference in time needed
to execute the code between 32-bit Windows and 64-bit Windows
can probably be explained by differences in rounding/truncation
on the different systems. On Windows 32-bit more iterations
are needed resulting in a longer runtime.
correct result with inexact jacobian
<- mma(x@.hs100, fn.hs100, hin = hin.hs100,

nl.info = TRUE, control = list(xtol_rel = 1e-8))

EEEEEE R
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neldermead

neldermead

Nelder-Mead Simplex

Description

An implementation of almost the original Nelder-Mead simplex algorithm.

Usage
neldermead(
X0,
fn,
lower = NULL,
upper = NULL,
nl.info =

FALSE,

control = list(),

Arguments
X0
fn
lower, upper
nl.info

control

Details

starting point for searching the optimum.
objective function that is to be minimized.

lower and upper bound constraints.

logical; shall the original NLopt info been shown.
list of options, see nl.opts for help.

additional arguments passed to the function.

Provides explicit support for bound constraints, using essentially the method proposed in Box.
Whenever a new point would lie outside the bound constraints the point is moved back exactly onto

the constraint.

Value

List with components:

par
value
iter

convergence

message

the optimal solution found so far.
the function value corresponding to par.
number of (outer) iterations, see maxeval.

integer code indicating successful completion (> 0) or a possible error number
(<0).

character string produced by NLopt and giving additional information.
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Note

The author of NLopt would tend to recommend the Subplex method instead.

Author(s)

Hans W. Borchers

References

J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer Journal
7, p. 308-313 (1965).

’9

M. J. Box, “A new method of constrained optimization and a comparison with other methods,
Computer J. 8 (1), 42-52 (1965).

See Also

dfoptim: :nmk

Examples

# Fletcher and Powell's helic valley
fphv <- function(x)
100x(x[3] - 10*atan2(x[2], x[11)/(2*pi))*2 +
(sgrt(x[1]1*2 + x[2]*2) - 1)*2 +x[3]1*2
X0 <- c(-1, 0, @)
neldermead(x@, fphv) # 100

# Powell's Singular Function (PSF)
psf <- function(x) (x[1]1 + 10*x[2]1)*2 + 5%x(x[3] - x[4]1)*2 +
(x[2] - 2*x[31)*4 + 10*(x[1] - x[41)*4
X0 <- ¢c(3, -1, 0, 1)
neldermead(x@, psf) # 0 0 0 0, needs maximum number of function calls

## Not run:

# Bounded version of Nelder-Mead

lower <- c(-Inf, 0, 0)

upper <- c( Inf, 0.5, 1)

X0 <- c(0, 0.1, 0.1)

S <- neldermead(c(@, ©.1, @.1), rosenbrock, lower, upper, nl.info = TRUE)
# $xmin = c(0.7085595, 0.5000000, 0.2500000)

# $fmin = 0.3353605

## End(Not run)
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newuoa

newuoa

New Unconstrained Optimization with quadratic Approximation

Description

NEWUOA solves quadratic subproblems in a spherical trust regionvia a truncated conjugate-gradient
algorithm. For bound-constrained problems, BOBYQA shold be used instead, as Powell developed
it as an enhancement thereof for bound constraints.

Usage

newuoa(x@, fn,

Arguments

X0
fn
nl.info

control

Details

nl.info = FALSE, control = list(), ...)

starting point for searching the optimum.
objective function that is to be minimized.
logical; shall the original NLopt info been shown.
list of options, see nl.opts for help.

additional arguments passed to the function.

This is an algorithm derived from the NEWUOA Fortran subroutine of Powell, converted to C and
modified for the NLOPT stopping criteria.

Value

List with components:

par
value
iter

convergence

message

Note

the optimal solution found so far.
the function value corresponding to par.
number of (outer) iterations, see maxeval.

integer code indicating successful completion (> 0) or a possible error number
(<0).

character string produced by NLopt and giving additional information.

NEWUOA may be largely superseded by BOBYQA.

Author(s)

Hans W. Borchers
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References

M. J. D. Powell. “The BOBYQA algorithm for bound constrained optimization without deriva-
tives,” Department of Applied Mathematics and Theoretical Physics, Cambridge England, technical
reportNA2009/06 (2009).

See Also

bobyqa, cobyla

Examples

fr <- function(x) { ## Rosenbrock Banana function
100 x (x[2] - x[11*2)*2 + (1 - x[1I])*2

3

(S <- newuoa(c(1, 2), fr))

nl.grad Numerical Gradients and Jacobians

Description

Provides numerical gradients and jacobians.

Usage
nl.grad(x@, fn, heps = .Machine$double.eps*(1/3), ...)
Arguments
X0 point as a vector where the gradient is to be calculated.
fn scalar function of one or several variables.
heps step size to be used.
additional arguments passed to the function.
Details
Both functions apply the “central difference formula” with step size as recommended in the litera-
ture.
Value

grad returns the gradient as a vector; jacobian returns the Jacobian as a matrix of usual dimensions.

Author(s)
Hans W. Borchers
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Examples

fn1 <- function(x) sum(x"2)
nl.grad(seq(@, 1, by = 0.2), fn1)
## [1]1 0.0 0.4 0.8 1.2 1.6 2.0
nl.grad(rep(1, 5), fn1)

# 112 2 2 2 2

fn2 <- function(x) c(sin(x), cos(x))
X <= (0:1)*2*pi

nl.jacobian(x, fn2)

## [,11 [,2]

## [1,] 1 %}

## [2,]
## [3,]
## [4,]

[SENSSRNGS]

1
4
4

nl.opts

nl.opts Setting NL Options

Description

Sets and changes the NLOPT options.

Usage

nl.opts(optlist = NULL)

Arguments

optlist list of options, see below.

Details

The following options can be set (here with default values):

stopval = -Inf,# stop minimization at this value
xtol_rel =1e-6,# stop on small optimization step
maxeval = 1000,# stop on this many function evaluations
ftol_rel =0.0,# stop on change times function value
ftol_abs =0.0,# stop on small change of function value
check_derivatives = FALSE

Value

returns a list with default and changed options.
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Note

There are more options that can be set for solvers in NLOPT. These cannot be set through their
wrapper functions. To see the full list of options and algorithms, type nloptr.print.options().

Author(s)
Hans W. Borchers

Examples

nl.opts(list(xtol_rel = 1e-8, maxeval = 2000))

nloptr R interface to NLopt

Description

nloptr is an R interface to NLopt, a free/open-source library for nonlinear optimization started by
Steven G. Johnson, providing a common interface for a number of different free optimization rou-
tines available online as well as original implementations of various other algorithms. The NLopt
library is available under the GNU Lesser General Public License (LGPL), and the copyrights are
owned by a variety of authors. Most of the information here has been taken from the NLopt website,
where more details are available.

Usage

nloptr(
X0,
eval_f,
eval_grad_f = NULL,
1b = NULL,
ub = NULL,
eval_g_ineq = NULL,
eval_jac_g_ineq = NULL,
eval_g_eq = NULL,
eval_jac_g_eq = NULL,
opts = list(),

)
Arguments
X0 vector with starting values for the optimization.
eval_f function that returns the value of the objective function. It can also return gradi-

ent information at the same time in a list with elements "objective" and "gradi-
ent" (see below for an example).


https://nlopt.readthedocs.io/en/latest/
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eval_grad_f function that returns the value of the gradient of the objective function. Not all
of the algorithms require a gradient.

1b vector with lower bounds of the controls (use -Inf for controls without lower
bound), by default there are no lower bounds for any of the controls.

ub vector with upper bounds of the controls (use Inf for controls without upper
bound), by default there are no upper bounds for any of the controls.

eval_g_ineq function to evaluate (non-)linear inequality constraints that should hold in the
solution. It can also return gradient information at the same time in a list with
elements "constraints" and "jacobian" (see below for an example).
eval_jac_g_ineq
function to evaluate the jacobian of the (non-)linear inequality constraints that
should hold in the solution.

eval_g_eq function to evaluate (non-)linear equality constraints that should hold in the so-
lution. It can also return gradient information at the same time in a list with
elements "constraints" and "jacobian" (see below for an example).

eval_jac_g_eq function to evaluate the jacobian of the (non-)linear equality constraints that
should hold in the solution.

opts list with options. The option "algorithm" is required. Check the NLopt website
for a full list of available algorithms. Other options control the termination
conditions (minf_max, ftol_rel, ftol_abs, xtol_rel, xtol_abs, maxeval, maxtime).
Default is xtol_rel = le-4. More information here. A full description of all
options is shown by the function nloptr.print.options().
Some algorithms with equality constraints require the option local_opts, which
contains a list with an algorithm and a termination condition for the local algo-
rithm. See ?nloptr-package for an example.
The option print_level controls how much output is shown during the optimiza-
tion process. Possible values:

0 (default) no output

1 show iteration number and value of objective function
2 1 + show value of (in)equalities
3 2 + show value of controls

The option check_derivatives (default = FALSE) can be used to run to com-
pare the analytic gradients with finite difference approximations. The option
check_derivatives_print ("all’ (default), ’errors’, *none’) controls the output of
the derivative checker, if it is run, showing all comparisons, only those that re-
sulted in an error, or none. The option check_derivatives_tol (default = 1e-04),
determines when a difference between an analytic gradient and its finite differ-
ence approximation is flagged as an error.

arguments that will be passed to the user-defined objective and constraints func-
tions.

Details

NLopt addresses general nonlinear optimization problems of the form:


https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://nlopt.readthedocs.io/en/latest/NLopt_Introduction/#termination-conditions
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min f(x) x in R*n

s.t. gx) <=0h(x)=01b<=x<=ub

where f is the objective function to be minimized and x represents the n optimization parameters.
This problem may optionally be subject to the bound constraints (also called box constraints), 1b
and ub. For partially or totally unconstrained problems the bounds can take -Inf or Inf. One may
also optionally have m nonlinear inequality constraints (sometimes called a nonlinear programming

problem), which can be specified in g(x), and equality constraints that can be specified in h(x). Note
that not all of the algorithms in NLopt can handle constraints.

Value

The return value contains a list with the inputs, and additional elements

call the call that was made to solve
status integer value with the status of the optimization (0 is success)
message more informative message with the status of the optimization
iterations number of iterations that were executed
objective value if the objective function in the solution
solution optimal value of the controls
version version of NLopt that was used
Note

See nloptr-package for an extended example.

Author(s)
Steven G. Johnson and others (C code)
Jelmer Ypma (R interface)
References

Steven G. Johnson, The NLopt nonlinear-optimization package, https://nlopt.readthedocs.
io/en/latest/

See Also

nloptr.print.options check.derivatives optimnlmnlminbRsolnp::RsolnpRsolnp::solnp

Examples

library('nloptr')

## Rosenbrock Banana function and gradient in separate functions
eval_f <- function(x) {

return( 100 * (x[2] - x[1] * x[1])*2 + (1 - x[1])*2 )
3


https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/
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eval_grad_f <- function(x) {
return( c( -400 * x[1] * (x[2] - x[1] = x[11) - 2 » (1 - x[1]),
200 * (x[2] - x[11 * x[11)) )

# initial values
X0 <- c( -1.2, 1)

opts <- list("algorithm"="NLOPT_LD_LBFGS",
"xtol_rel”=1.0e-8)

# solve Rosenbrock Banana function

res <- nloptr( x0=x9,
eval_f=eval_f,
eval_grad_f=eval_grad_f,
opts=opts)

print( res )

## Rosenbrock Banana function and gradient in one function
# this can be used to economize on calculations
eval_f_list <- function(x) {
return( list( "objective” = 100 x (x[2] - x[1] * x[11)*2 + (1 - x[1])*2,
"gradient” = c( -400 * x[1] * (x[2] - x[1] * x[11) - 2 = (1 - x[1]),
200 * (x[2] - x[11 * x[11)) ) )
}

# solve Rosenbrock Banana function using an objective function that
# returns a list with the objective value and its gradient
res <- nloptr( x0=x0,
eval_f=eval _f_list,
opts=opts)
print( res )

Example showing how to solve the problem from the NLopt tutorial.

min sgrt( x2 )
s.t. x2>=0
x2 >= (al*xx1 + bl )*3
x2 >= ( a2xx1 + b2 )*3
where
al =2, bl =0, a2 = -1, b2 =1

#
#
#
#
#
#
#
#
#
# re-formulate constraints to be of form g(x) <= 0
# ( alxx1 + bl )*3 - x2 <=0

# ( a2xx1 + b2 )*3 - x2 <=0

library('nloptr')
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# objective function

eval_f@ <- function( x, a, b ){
return( sqrt(x[2]) )

3

# constraint function

eval_g0 <- function( x, a, b ) {
return( (a*x[1] + b)*3 - x[2] )

3

# gradient of objective function
eval_grad_fe <- function( x, a, b ){

return( c( @, .5/sqrt(x[2]) ) )
}

# jacobian of constraint
eval_jac_g@ <- function( x, a, b ) {
return( rbind( c( 3*al1]*(al1Ixx[1] + b[11)*2, -1.0 ),
c( 3*xa[2]*(al2]*x[1] + b[21)*2, -1.0 ) ) )

# functions with gradients in objective and constraint function
# this can be useful if the same calculations are needed for
# the function value and the gradient
eval_f1 <- function( x, a, b ){
return( list("objective”=sqrt(x[2]),
"gradient”=c(@, .5/sqrt(x[2]1)) ) )
3

eval_gl1 <- function( x, a, b ) {
return( list( "constraints”"=(a*x[1] + b)*3 - x[2],
"jacobian”=rbind( c( 3*a[1]1x(al1]*x[1] + b[11)*2, -1.0 ),
c( 3%al[2]x(al2]*x[1] + b[21)*2, -1.0 ) ) ) )

# define parameters
a <- c(2,-1)
b <- c(o, 1)

# Solve using NLOPT_LD_MMA with gradient information supplied in separate function
res@ <- nloptr( x@=c(1.234,5.678),
eval_f=eval_fo,
eval_grad_f=eval_grad_fo,
lb = c(-Inf,0),
ub = c(Inf,Inf),
eval_g_ineq = eval_go,
eval_jac_g_ineq = eval_jac_go,
opts = list("algorithm”="NLOPT_LD_MMA"),
a=a,
b=>b)
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print( res@ )

# Solve using NLOPT_LN_COBYLA without gradient information
res1l <- nloptr( x0=c(1.234,5.678),
eval_f=eval_fo,
lb = c(-Inf,0),
ub = c(Inf,Inf),
eval_g_ineq = eval_go,
opts = list("algorithm”="NLOPT_LN_COBYLA"),
a-=a,
b=Db)
print( resl )

# Solve using NLOPT_LD_MMA with gradient information in objective function
res2 <- nloptr( x0=c(1.234,5.678),
eval_f=eval_f1,
1b = c(-Inf,0),
ub = c(Inf,Inf),
eval_g_ineq = eval_gl,
opts = list("algorithm”="NLOPT_LD_MMA", "check_derivatives"=TRUE),
a-=a,
b=Db)
print( res2 )

nloptr.get.default.options
Return a data.frame with all the options that can be supplied to nloptr.

Description

This function returns a data.frame with all the options that can be supplied to nloptr. The data.frame
contains the default values of the options and an explanation. A user-friendly way to show these
options is by using the function nloptr.print.options.

Usage

nloptr.get.default.options()

Value

The return value contains a data. frame with the following elements

name name of the option
type type (numeric, logical, integer, character)
possible_values

string explaining the values the option can take

default default value of the option (as a string)
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is_termination_condition
is this option part of the termination conditions?

description description of the option (taken from NLopt website if it’s an option that is
passed on to NLopt).

Author(s)

Jelmer Ypma

See Also

nloptr nloptr.print.options

nloptr.print.options  Print description of nloptr options

Description

This function prints a list of all the options that can be set when solving a minimization problem
using nloptr.

Usage

nloptr.print.options(opts.show = NULL, opts.user = NULL)

Arguments
opts.show list or vector with names of options. A description will be shown for the options
in this list. By default, a description of all options is shown.
opts.user object containing user supplied options. This argument is optional. It is used
when nloptr.print.options is called from nloptr. In that case options are
listed if print_options_doc is set to TRUE when passing a minimization prob-
lem to nloptr.
Author(s)

Jelmer Ypma

See Also

nloptr
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Examples
library('nloptr')
nloptr.print.options()
nloptr.print.options( opts.show = c("algorithm”, "check_derivatives”) )
opts <- list("algorithm”="NLOPT_LD_LBFGS",

"xtol_rel"=1.0e-8)
nloptr.print.options( opts.user = opts )

print.nloptr Print results after running nloptr

Description

This function prints the nloptr object that holds the results from a minimization using nloptr.

Usage
## S3 method for class 'nloptr'
print(x, show.controls = TRUE, ...)
Arguments
X object containing result from minimization.

show.controls Logical or vector with indices. Should we show the value of the control vari-
ables in the solution? If show.controls is a vector with indices, it is used to
select which control variables should be shown. This can be useful if the model
contains a set of parameters of interest and a set of nuisance parameters that are
not of immediate interest.

further arguments passed to or from other methods.

Author(s)

Jelmer Ypma

See Also

nloptr
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Subplex Algorithm

Description

Subplex is a variant of Nelder-Mead that uses Nelder-Mead on a sequence of subspaces.

Usage
sbplx(
X0,
fn,
lower = NULL,
upper = NULL,
nl.info = FALSE,
control = list(),
)
Arguments
X0 starting point for searching the optimum.
fn objective function that is to be minimized.
lower, upper lower and upper bound constraints.
nl.info logical; shall the original NLopt info been shown.
control list of options, see nl.opts for help.
additional arguments passed to the function.
Details

SUBPLEX is claimed to be much more efficient and robust than the original Nelder-Mead, while
retaining the latter’s facility with discontinuous objectives.

This implementation has explicit support for bound constraints (via the method in the Box paper as
described on the neldermead help page).

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(<0).

message character string produced by NLopt and giving additional information.
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Note

It is the request of Tom Rowan that reimplementations of his algorithm shall not use the name
‘subplex’.

References

T. Rowan, “Functional Stability Analysis of Numerical Algorithms”, Ph.D. thesis, Department of
Computer Sciences, University of Texas at Austin, 1990.

See Also

subplex: : subplex

Examples

# Fletcher and Powell's helic valley
fphv <- function(x)
100%(x[3] - 10*atan2(x[2], x[11)/(2*pi))*2 +
(sqrt(x[1]*2 + x[2]*2) - 1)*2 +x[3]"2
X0 <- c(-1, 0, @)
sbplx(x@, fphv) # 100

# Powell's Singular Function (PSF)
psf <- function(x) (x[1] + 10*x[2]1)*2 + 5x(x[3] - x[4]1)"2 +
(x[2] - 2*%x[31)*4 + 10*(x[1] - x[41)*4
X0 <- c(3, -1, 0, 1)
sbplx(x@, psf, control = list(maxeval = Inf, ftol_rel = 1e-6)) # @ 0 0 @ (?)

slsqgp Sequential Quadratic Programming (SQP)

Description

Sequential (least-squares) quadratic programming (SQP) algorithm for nonlinearly constrained,
gradient-based optimization, supporting both equality and inequality constraints.

Usage
slsqgp(

X0,

fn,

gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,

hinjac = NULL,
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heqjac = NULL,
nl.info = FALSE,
control = list(),

Arguments

X0

fn

gr

lower, upper
hin

hinjac

heq

heqjac
nl.info

control

Details

starting point for searching the optimum.

objective function that is to be minimized.

gradient of function fn; will be calculated numerically if not specified.

lower and upper bound constraints.

function defining the inequality constraints, that is hin>=@ for all components.
Jacobian of function hin; will be calculated numerically if not specified.
function defining the equality constraints, that is heq==0 for all components.
Jacobian of function heq; will be calculated numerically if not specified.
logical; shall the original NLopt info been shown.

list of options, see nl.opts for help.

additional arguments passed to the function.

The algorithm optimizes successive second-order (quadratic/least-squares) approximations of the
objective function (via BFGS updates), with first-order (affine) approximations of the constraints.

Value

List with components:

par
value
iter

convergence

message

Note

the optimal solution found so far.
the function value corresponding to par.
number of (outer) iterations, see maxeval.

integer code indicating successful completion (> 1) or a possible error number
(<0).

character string produced by NLopt and giving additional information.

See more infos at https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/.

Author(s)
Hans W. Borchers


https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
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References

Dieter Kraft, “A software package for sequential quadratic programming”, Technical Report DFVLR-
FB 88-28, Institut fuer Dynamik der Flugsysteme, Oberpfaffenhofen, July 1988.

See Also
alabama: :auglag, Rsolnp: :solnp, Rdonlp2: :donlp2

Examples

## Solve the Hock-Schittkowski problem no. 100
x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {
(x[11-10)*2 + 5%(x[2]-12)"2 + x[3]1*4 + 3x(x[4]-11)*2 + 10*x[5]*6 +
7xx[6]1%2 + x[7]*4 - 4xx[6]*x[7] - 10xx[6] - 8*x[7]
3
hin.hs100 <- function(x) {
h <- numeric(4)
h[1] <= 127 - 2*%x[1]*2 - 3*x[2]*4 - x[3] - 4xx[4]1*2 - 5*x[5]
h[2] <- 282 - 7*x[1] - 3*x[2] - 10*x[3]*2 - x[4] + x[5]
h[3] <- 196 - 23*x[1] - x[2]*2 - 6*x[6]*2 + 8xx[7]
h[4] <- -4*%x[1]*2 - x[2]*2 + 3*xx[1]*x[2] -2*x[3]*2 - 5%x[6] +11%xx[7]

return(h)
3
S <- slsgp(x@.hs100, fn = fn.hs100, # no gradients and jacobians provided
hin = hin.hs100,
control = list(xtol_rel = 1e-8, check_derivatives = TRUE))
S

## Optimal value of objective function: 690.622270249131 %% WRONG #*x*

# Even the numerical derivatives seem to be too tight.
# Let's try with a less accurate jacobian.

hinjac.hs100 <- function(x) nl.jacobian(x, hin.hs100, heps = 1e-2)
S <- slsgp(x@.hs10@, fn = fn.hs100,

hin = hin.hs100, hinjac = hinjac.hs100,

control = list(xtol_rel = 1e-8))

S
## Optimal value of objective function: 680.630057392593  **x CORRECT **x

stogo Stochastic Global Optimization

Description

StoGO is a global optimization algorithm that works by systematically dividing the search space
into smaller hyper-rectangles.
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initial point for searching the optimum.

objective function that is to be minimized.

stogo
Usage
stogo(
X0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
maxeval = 10000,
xtol_rel = 1e-06,
randomized = FALSE,
nl.info = FALSE,
)
Arguments
X0
fn
gr

lower, upper
maxeval
xtol_rel
randomized

nl.info

Details

StoGO is a global

optional gradient of the objective function.

lower and upper bound constraints.

maximum number of function evaluations.
stopping criterion for relative change reached.
logical; shall a randomizing variant be used?
logical; shall the original NLopt info been shown.

additional arguments passed to the function.

optimization algorithm that works by systematically dividing the search space

(which must be bound-constrained) into smaller hyper-rectangles via a branch-and-bound tech-
nique, and searching them by a gradient-based local-search algorithm (a BFGS variant), optionally
including some randomness.

Value

List with components:

par
value
iter

convergence

message

the optimal solution found so far.
the function value corresponding to par.
number of (outer) iterations, see maxeval.

integer code indicating successful completion (> 0) or a possible error number
(<0).

character string produced by NLopt and giving additional information.



48

Note

tnewton

Only bound-constrained problems are supported by this algorithm.

Author(s)

Hans W. Borchers

References

S. Zertchaninov and K. Madsen, “A C++ Programme for Global Optimization,” IMM-REP-1998-
04, Department of Mathematical Modelling, Technical University of Denmark.

Examples

### Rosenbrock Banana objective function
fn <= function(x)
return( 100 * (x[2] - x[1] * x[1])*2 + (1 - x[11)*2 )

X0 <- c( -1.2, 1)
1b <- ¢c( -3, -3 )
3)

ub <- c( 3,
stogo(x@ = x@, fn = fn, lower = lb, upper = ub)
tnewton Preconditioned Truncated Newton
Description

Truncated Newton methods, also calledNewton-iterative methods, solve an approximating Newton
system using a conjugate-gradient approach and are related to limited-memory BFGS.

Usage
tnewton(

X0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
precond = TRUE,
restart = TRUE,
nl.info = FALSE,
control = list(),
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Arguments
X0 starting point for searching the optimum.
fn objective function that is to be minimized.
gr gradient of function fn; will be calculated numerically if not specified.
lower, upper lower and upper bound constraints.
precond logical; preset L-BFGS with steepest descent.
restart logical; restarting L-BFGS with steepest descent.
nl.info logical; shall the original NLopt info been shown.
control list of options, see nl.opts for help.
additional arguments passed to the function.
Details

Truncated Newton methods are based on approximating the objective with a quadratic function and
applying an iterative scheme such as the linear conjugate-gradient algorithm.

Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 1) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note

Less reliable than Newton’s method, but can handle very large problems.

Author(s)

Hans W. Borchers

References
R. S. Dembo and T. Steihaug, “Truncated Newton algorithms for large-scale optimization,” Math.
Programming 26, p. 190-212 (1982).

See Also
lbfgs
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Examples

flb <- function(x) {
p <- length(x)
sum(c(1, rep(4, p-1)) * (x - c(1, x[-p1)"2)*2)
3
# 25-dimensional box constrained: par[24] is *not* at boundary
S <- tnewton(rep(3, 25), flb, lower=rep(2, 25), upper=rep(4, 25),
nl.info = TRUE, control = list(xtol_rel=1e-8))
## Optimal value of objective function: 368.105912874334

## Optimal value of controls: 2 ... 2 2.109093 4
varmetric Shifted Limited-memory Variable-metric
Description

Shifted limited-memory variable-metric algorithm.

Usage
varmetric(

X0,

fn,

gr = NULL,
rank2 = TRUE,
lower = NULL,
upper = NULL,

nl.info = FALSE,
control = list(),

)
Arguments
X0 initial point for searching the optimum.
fn objective function to be minimized.
gr gradient of function fn; will be calculated numerically if not specified.
rank2 logical; if true uses a rank-2 update method, else rank-1.
lower, upper lower and upper bound constraints.
nl.info logical; shall the original NLopt info been shown.
control list of control parameters, see nl.opts for help.

further arguments to be passed to the function.
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Details
Variable-metric methods are a variant of the quasi-Newton methods, especially adapted to large-
scale unconstrained (or bound constrained) minimization.

Value

List with components:

par the optimal solution found so far.
value the function value corresponding to par.
iter number of (outer) iterations, see maxeval.
convergence integer code indicating successful completion (> 0) or a possible error number
(<0).
message character string produced by NLopt and giving additional information.
Note
Based on L. Luksan’s Fortran implementation of a shifted limited-memory variable-metric algo-
rithm.
Author(s)

Hans W. Borchers

References

J. Vlcek and L. Luksan, “Shifted limited-memory variable metric methods for large-scale uncon-
strained minimization,” J. Computational Appl. Math. 186, p. 365-390 (2006).

See Also
lbfgs

Examples

flb <- function(x) {
p <- length(x)
sum(c(1, rep(4, p-1)) * (x - c(1, x[-p1)"2)*2)
3
# 25-dimensional box constrained: par[24] is *notx at the boundary
S <- varmetric(rep(3, 25), flb, lower=rep(2, 25), upper=rep(4, 25),
nl.info = TRUE, control = list(xtol_rel=1e-8))
## Optimal value of objective function: 368.105912874334
## Optimal value of controls: 2 ... 2 2.109093 4
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