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Abstract

Nonlinear regression models are applied in a broad variety of scientific fields. Various R functions

are already dedicated to fitting such models, among which the function nls() has a prominent position.

Unlike linear regression fitting of nonlinear models relies on non-trivial assumptions and therefore users

are required to carefully ensure and validate the entire modelling. Parameter estimation is carried out

using some variant of the least-squares criterion involving an iterative process that ideally leads to the

determination of the optimal parameter estimates. Therefore, users need to have a clear understanding of

the model and its parameterization in the context of the application and data considered, an a priori

idea about plausible values for parameter estimates, knowledge of model diagnostics procedures available

for checking crucial assumptions, and, finally, an understanding of the limitations in the validity of the

underlying hypotheses of the fitted model and its implication for the precision of parameter estimates.

Current nonlinear regression modules lack dedicated diagnostic functionality. So there is a need to provide

users with an extended toolbox of functions enabling a careful evaluation of nonlinear regression fits. To

this end, we introduce a unified diagnostic framework with the R package nlstools. In this paper, the

various features of the package are presented and exemplified using a worked example from pulmonary

medicine.
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1 Introduction

Nonlinear regression is used routinely in a wide range of biological disciplines including pharmacology,
toxicology, biochemistry, ecology, microbiology and medicine [e.g., Bates and Watts, 1988, Seber and Wild,
1989, Huet et al., 2003, Ritz and Streibig, 2008]. However, statistical software programs do not always include
user-friendly routines or modules for fitting nonlinear regression models; this means that researchers often
choose to use inappropriate approaches such as polynomial regression or data segmentation (with arbitrary
trimming of data), i.e., approaches easily carried out in any statistical software by means of linear regression.
On the other hand, specialized commercial programs are available, but they are not always sufficiently flexible
or intuitive [Motulsky and Ransnas, 1987].

In addition to limitations in software availability, several other difficulties arise when using nonlinear regression.
Like in linear regression, nonlinear regression provides parameter estimates based on the least-squares criterion.
However, unlike linear regression, no explicit mathematical solution is available and specific algorithms are
needed to solve the minimization problem, involving iterative numerical approximations. Unfortunately,
minimization, or optimization in general, is not always a straightforward exercise for such models due to
the nonlinear relationships between parameters [Nash and Varadhan, 2011]. Consequently, obtaining useful
nonlinear regression model fits may often require careful specification of model details, critical appraisal of
the resulting output, and perhaps also use of summary statistics that do not rely too heavily on the model
assumptions.

Therefore nonlinear regression may appear to be more daunting than linear regression. It requires a higher
degree of user interaction, both for initializing the estimation procedure and for interpreting the results.
The package nlstools offers tools for addressing these steps when fitting nonlinear regression models using
nls() (function implemented in the R package stats). nlstools is available on the Comprehensive R Archive
Network at https://cran.r-project.org/package=nlstools.

Specifically, there are three key issues that are often causing problems when using nonlinear regression in
practice:

1. The iterative estimation procedure requires initial values of the model parameters. These so-called start-
ing values need to be relatively close to the unknown parameter estimates in order to avoid convergence
problems where the iterative procedure fails to approach the optimal parameter values. Consequently,
a clear understanding of the model features and, in particular, the meaning or interpretation of its
parameters would be desirable for ensuring uncomplicated model fitting. In practice researchers may
find it difficult to convert such knowledge into an operational format suitable for statistical software
programs. Within the statistical environment R [R Core Team, 2013], a number of extension packages
provide ways to get around having to come up with starting values. The package nls2 provides a
number of ways to do grid search among candidate starting values and the resulting object may be
fed directly into nls() [Grothendieck, 2013]. Although the use of a grid search gives the user some
flexibility in the definition of the starting values, a range for each model parameter still has to be
provided and this may still be a challenge when balancing against the computational burden of an
exhaustive search. Specifically for dose-response and growth curve modeling, the packages drc [Ritz and
Streibig, 2005], drfit [Ranke, 2006], and grofit [Kahm et al., 2010] among others offer infrastructure
for automatically providing data-driven, informed starting values so that the user need not think about
providing suitable starting values. The idea behind such self starter routines is explained by Watkins
and Venables [2006]. To our knowledge this idea has not been implemented in any other statistical
software. However, in many cases no self starter routines are available. This means users may often
need to adopt a manual trial-and-error approach in order to ensure an optimal model fit. nlstools

provides functionality to assist in fitting models.

2. The validity of nonlinear regression model fits must be carefully evaluated by means of appropriate
diagnostic and graphical tools. One of the reasons is that sometimes the algorithms used for parameter
estimation return sub-optimal estimates, simply because the iterative procedure was not successful in
converging to the optimal estimates (often caused by poor starting values or too complex model equations
for the data at hand). However, these after-fitting validation steps, which cannot be easily automated,
are often neglected because of the lack of dedicated functionality. The package FSA (the fishR
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project: http://derekogle.com/fishR/) provides some model checking functionality for specific nonlinear
regression models (e.g., function residPlot()). nlstools provides a range of model diagnostics that
will work with any nls() model fit.

3. Moreover, the standard confidence intervals for model parameters in nonlinear regression models are
derived assuming local linearity and normally distributed parameter estimates, e.g., confint2() [Ritz
and Streibig, 2008, p. 99]. In practice, these assumptions may not always be satisfied; this may in
particular be the case for small data sets. For deriving confidence intervals, the confint() method in
the package MASS provides likelihood profiling that does not rely on the linearization step [Venables
and Ripley, 2002]. The use of non-parametric resampling techniques for assessing the uncertainty of
parameter estimates will even rely less on asymptotic distributions [Shao and Tu, 1996]. nlstools

provides such a non-parametric alternative.

In a nonlinear regression context there are several other ways to put less emphasis on the distributional
assumptions. One is the use of sandwich estimators for the standard errors (in case of suspicion of mis-
specification of the distribution in general) [Ritz and Streibig, 2008, pp. 83–85]. Another is to use a robust
estimation procedure to avoid that singleton data points get to much influence on the model fit, e.g., using
the function nlrob() in the package robustbase [Rousseeuw et al., 2014]. There are also several ways to
accommodate non-standard distributional assumptions. The packages gnm and nlme (the model fitting
functions have the same names) allow flexible fitting of various extensions of the nonlinear regression model
in terms of the distributions considered for the response as well as the correlation structures needed to
describe dependencies between response values, respectively [Turner and Firth, 2007, Pinheiro and Bates,
2000]. However, the challenges in particular related to choosing starting values but also partly concerning
model checking (points 2) and 3) above) remain. So nlstools offers supplementary functionality that is
generally applicable for nonlinear regression analysis.

Section 2 briefly outlines the background for nonlinear regression. In Section 3 we give a detailed introduction
to the salient features of nlstools using an example from pulmonary medicine. In Section 4 we provide some
concluding remarks.

2 Methodology and implementation

2.1 Nonlinear regression

We consider standard nonlinear regression models of the following form:

y = f(θ, x) + ǫ, ǫ ∼ N (0, σ2) (1)

with y being the response (the dependent variable), x the (possibly multivariate) independent variable, which
is often controlled by the experimenter, θ the vector of model parameters characterizing the relationship
between x and y through the function f , and ǫ the residual error term that is assumed to be normally
distributed, centered around 0 and with unknown variance (σ2). Furthermore, we assume that the residual
error terms are mutually independent as is usually assumed for standard nonlinear regression analysis [Bates
and Watts, 1988]. In R, this nonlinear regression model may be fitted using nls() in the standard R

installation (the package stats). Parameter estimation is based on an iterative procedure that involves a
linearization approximation leading to a least-squares problem at each step.

Note that functions gnls() and nlme() in nlme allow fitting of nonlinear regression models for several curves
corresponding to different covariate configurations (such as different treatments) and thus necessitating the
use of correlation structures (e.g., random effects) [Pinheiro and Bates, 2000]. However, for building these
more complex models (i.e., obtaining model fits that converge), nls() is often used initially to produce fits of
individual curves, which may then subsequently be combined and supplied to enable fitting more complex
nonlinear regression models (e.g., through the use of the wrapper nlsList()).
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2.2 About nlstools

The package nlstools provides a number of tools to facilitate fitting standard nonlinear regression models
(Equation (1)) and is specifically designed to work directly with nls(). The package contains functions and
graphical tools that will help users to create nls() objects and carry out various diagnostic tests. More
specifically, the nlstools toolbox will assist users in:

• fitting nonlinear models using function nls() by means of graphical tools;

• getting a summary of parameter estimates, confidence intervals, residual standard error and sum of
squares, and correlation matrix of the estimates;

• visualizing the fitted curve superimposed on the observations;

• checking the validity of the error model by carrying out tests and graphical checks of residuals;

• inspecting the contours of the residual sum of squares (likelihood contours) to detect possible structural
correlations between parameters and the presence of potential local minimum;

• visualizing the projection of confidence regions and investigate the nature of correlations;

• using resampling techniques in order to detect influential observations and obtain non-parametric
confidence intervals of the parameter estimates.

We will elaborate on these features in the next section, using a concrete data example from pulmonary
medicine.

3 Application in pulmonary medicine

3.1 Oxygen kinetics during 6-minute walk tests

In order to illustrate the features of the package nlstools, a worked example is taken from pulmonary
medicine [another nonlinear regression example from pulmonary medicine can be found in Skjodt et al., 2008].
Exercise testing is carried out on patients with a broad range of pulmonary diseases [Schalcher et al., 2003].
The clinical relevance of exercise testing is well established. For instance, the 6-minute walk test (6MWT) is
performed, allowing to monitor the change in oxygen uptake over time. It is well known that exercise capacity
as assessed by 6MWT correlates with impairment of daily life activities and patients prognosis in several
pulmonary conditions [Solway et al., 2001, Tueller et al., 2010]. Peak oxygen uptake has predictive value in
patients with pulmonary hypertension and is an indicator of operability in patients with pulmonary diseases.

Data from a typical oxygen uptake kinetics profile are shown in Figure 1. The change of oxygen uptake
(VO2) during exercise testing is classically monitored in 3 distinct phases including a resting phase, the
6-minute exercise testing period, and a recovery period. VO2 kinetics are classically characterized by a
series of parameters including the oxygen uptake in the resting phase (VO2rest), the maximum oxygen
uptake during exercise (VO2peak), the rate of oxygen increase between VO2rest and VO2peak. Subsequent
parameters of clinical importance are derived from these initial parameters. Oxygen deficit (O2def) is defined
as the area between an instantaneous increase of oxygen to the maximum upper limit and the observed
asymptotic rise of oxygen (Figure 1). Mean response time (MRT) is the time constant of an exponential
function describing the rate of oxygen increase. It corresponds to the time needed to attain approximately
63% of the asymptotic value VO2peak [Sietsema et al., 1994], and is defined as follows: MRT = O2def/∆V O2,
with ∆V O2 = V O2peak − V O2rest.

3.2 Model equation

The length of the resting phase (λ) is controlled by the experimenter and does not need to be estimated.
Considering λ constant, the following 3-parameter asymptotic regression model with a lag period (Equation 2)
is suitable for describing the first 2 phases of the VO2 kinetics:
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Figure 1: Oxygen uptake kinetics during a 6-minute walk test. This kinetics is characterized by three phases:
a resting phase where oxygen is measured at a basal level prior exercise; an exercise phase where oxygen is
rising asymptotically until reaching a plateau; a recovery phase where the oxygen uptake is declining towards
the baseline asymptotic level.
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V O2(t) =

{

if t ≤ λ : V O2rest,
if t > λ : V O2rest + (V O2peak − V O2rest)(1 − e−(t−λ)/µ)

(2)

with VO2rest the oxygen level during the resting phase, VO2peak, the maximum oxygen uptake during
exercise testing, µ > 0 the rate of change characterizing the steepness of the increase as time (t) elapses (the
larger the more steep is the curve), and λ the duration of the resting time controlled by the experimenter.
Other examples of segmented regression models are the hockey stick model and the no-effect-concentration
model occasionally used in ecotoxicology [Pires et al., 2002]. For the latter, a self-starter routine is available
in package drc but for the former the user will need to provide starting values by himself as explained by
Weisberg [2005, pp. 244–248]. For that specific purpose, the functionality provided by nlstools may prove
particularly useful.

3.3 Model fitting in R

As mentioned in the introduction, fitting nonlinear regression models requires the provision of starting values
for model parameters. A poor choice of starting values may cause non-convergence or convergence to an
unwanted local (rather than global) minimum when trying to minimize the least-squares criterion. Biologically
interpretable parameter often allows the user to guess adequate starting values by assessing (often graphically)
a set of plausible candidate model parameter values. For this purpose, nlstools provides the graphical
function preview(), which can be used to assess the suitability of the chosen starting values, prior to fitting
the model. This graphical approach for assessing candidate starting values is also used by Ritz and Streibig
[2008, pp. 23–27], but it was not wrapped up in a single function. Below is an example of usage. First, you
should specify the model equation to be used in the nonlinear regression as a formula in R. Use this formula
as first argument of the function preview(), then supply the name of your dataset as second argument, and
finally provide a list of values for the model parameters as third argument. An additional argument variable

can be used to specify which independent variable is plotted against the dependent variable (column index of
the original dataset; default is 1) when more than one independent variable is modeled.

library("nlstools")

##

## 'nlstools' has been loaded.

## IMPORTANT NOTICE: Most nonlinear regression models and data set examples

## related to predictive microbiolgy have been moved to the package 'nlsMicrobio'

formulaExp <- as.formula(VO2 ~ (t <= 5.883) * VO2rest + (t > 5.883) *

(VO2rest + (VO2peak - VO2rest) *

(1 - exp(-(t - 5.883) / mu))))

preview(formulaExp, data = O2K,

start = list(VO2rest = 400, VO2peak = 1600, mu = 1))

##

## RSS: 149000

Both the oxygen levels during the resting phase (the parameter VO2rest) and the maximum oxygen level
reached during the 6MWT (the parameter VO2peak) can be retrieved directly in an approximate fashion
from Figure 1, whereas µ is simply initially set to 1. Note that the length of the resting phase (λ = 5.883 min)
was hardcoded into the above formula. Figure 2 shows good agreement between the data and the theoretical
model based on the provided set of starting values. Judged by the figure, the chosen starting values seem
to be suitable for initializing nls(). Note that next to the plot, the residual sum of squares measuring the
discrepancy between the model (based on the chosen starting values) and the observed data is provided. This
value gives an idea of the magnitude of the residual sum of squares to expect from the model fit based on
nls().
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Figure 2: Graphically assessing the starting values prior the fit of a nonlinear model.

O2K.nls1 <- nls(formulaExp, start = list(VO2rest = 400, VO2peak = 1600,

mu = 1), data = O2K)

Once suitable starting values are obtained, the model may be fitted using nls() and then the function
overview() in nlstools may be used for providing a single display with all relevant pieces of information
about the model fit.

Specifically, overview() returns output containing:

• The parameter estimates with the corresponding estimated standard errors, t-test statistics (esti-
mate/standard error) for evaluating null hypotheses that the model parameters could be equal to
0 (H0 : θ = 0) along with the corresponding p−values calculated using a t distribution as reference
distribution (for the present example the t distribution with 33 degrees of freedom was used). The
residual sum of squares RSSmin = 81200 and the residual standard error (

√

RSSmin/33 = 49.6) are
also reported, reflecting the variation within the walk test that is due to the device used. The number
of steps needed for finding the parameters is also reported (numbers > 10 − 20 are often indicative of
poor starting values and/or too complex model equation in view of the sample size). This output is
similar to the one from the summary() method available for nls() fits [Ritz and Streibig, 2008, p. 12].

• The corresponding 95% t-based confidence intervals (in this case percentiles from the t distribution
with 33 degrees of freedom), similar to the intervals obtained using the default confint2() method in
the package nlrwr. Accordingly reported p-values and confidence intervals are in agreement. We refer
to Huet et al. [2003, pp. 32-33] for a detailed derivation.

• The estimated correlation matrix is reported. This piece of output allows assessment of the degree of
correlation between the parameter estimates in order to detect highly correlated parameters that may
indicate redundancies and perhaps point towards simplification of the model equation. In our example,
the highest correlation (between µ and V O2peak) is 0.76, which does not indicate any problems, but
merely is a consequence of these two parameters being entangled in the same term in Equation 2.

overview(O2K.nls1)

##
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## ------

## Formula: VO2 ~ (t <= 5.883) * VO2rest + (t > 5.883) * (VO2rest + (VO2peak -

## VO2rest) * (1 - exp(-(t - 5.883)/mu)))

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## VO2rest 3.568e+02 1.141e+01 31.26 <2e-16 ***

## VO2peak 1.631e+03 2.149e+01 75.88 <2e-16 ***

## mu 1.186e+00 7.661e-02 15.48 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 49.59 on 33 degrees of freedom

##

## Number of iterations to convergence: 5

## Achieved convergence tolerance: 7.598e-06

##

## ------

## Residual sum of squares: 81200

##

## ------

## t-based confidence interval:

## 2.5% 97.5%

## VO2rest 333.537401 379.980302

## VO2peak 1587.155300 1674.611703

## mu 1.030255 1.342002

##

## ------

## Correlation matrix:

## VO2rest VO2peak mu

## VO2rest 1.00000000 0.07907046 0.1995377

## VO2peak 0.07907046 1.00000000 0.7554924

## mu 0.19953773 0.75549241 1.0000000

In order to facilitate the visualization of the model fit together with the data, nlstools provides the
function plotfit(), which offers functionality similar to abline() with a simple linear regression model
fit as argument. Thus plotfit() avoids manual definition of a grid of values for the independent variable,
subsequent prediction, and use of lines().

plotfit(O2K.nls1, smooth = TRUE)

The function superimposes the fitted curve on top of the plot of the data (Figure 3).

Notice that the argument smooth = TRUE provides a smoothed representation of the fitted regression curve.
This option is only available when one single (one-dimensional) independent variable is involved. For plots of
a model fit involving more than one independent variable (e.g., see worked example michaelis in nlstools),
it is necessary to specify the argument variable in the function plotfit() to indicate which variable is
used for the x axis. In such a case, no smoothing is possible as it would also depend on the other independent
variables, i.e., smooth = FALSE.

3.4 Assessing the goodness of fit through the residuals

An examination of the quality of the obtained nonlinear regression model fit may be based on the residuals
calculated from the fit as follows:
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Figure 3: Plot of the data (dependent vs. independent variable) with the fitted model superimposed.

ǫ̂ = y − f(θ̂, x)

Standardized residuals are obtained by dividing the centered residuals by the residual standard error. nlstools

provides the function nlsResiduals(), which extracts the residuals from an nls object.

The corresponding plot() method allows a convenient display of the diagnostic plots outlined by Ritz and
Streibig [2008]. Specifically, plot() produces by default a four-panel display:

• Top left panel: The plot of raw residuals against fitted values is useful for assessing whether or not the
chosen model equation is appropriate (the scatter is similar above and below the horizontal axis along
the range of fitted values in case of an appropriate model equation). This plot is similar to the one
obtained for linear models by using plot(lmFit, which = 1).

• Top right panel: The plot of the standardized residuals vs. the fitted values is useful for evaluation if
there is any indication of variance inhomogeneity, which would show up as an uneven spread across the
range of the fitted values.

• Bottom left panel: The plot of each raw residual vs. the previous raw residual (lag one) may be useful
to detect correlation along the scale of the independent variable (to be meaningful it requires the data
to be order in increasing order according to the independent variable). A systematic departure away
from a random scatter around the x axis is indicative of correlation among the values of the dependent
variable. This may often be the case if the independent variable corresponds to some kind of time scale.
For more details we refer to Glasbey [1979] and Ritz and Streibig [2008, pp. 69–70].

• Bottom right panel: The normal probability plot (or QQ plot) compares the standardized residuals vs.
the theoretical values from a standard normal distribution, both of which are expected to range from -2
and -2 for most of the values. This functionality is similar to what is available for linear models, e.g.,
using plot(lmFit, which = 2).

The argument which may be used to choose which diagnostic plots should be shown (there are 6 options in
total as explained in the help page). For the model fit O2K.nls1 the resulting plots are shown in Figure 4.
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O2K.res1 <- nlsResiduals(O2K.nls1)

plot(O2K.res1)

400 600 800 1000 1200 1400 1600

−
1
5
0

−
1
0
0

−
5
0

0
5
0

Residuals

Fitted values

R
e
s
id

u
a
ls

400 600 800 1000 1200 1400 1600

−
3

−
2

−
1

0
1

2

Standardized Residuals

Fitted values

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

−150 −100 −50 0 50

−
1
5
0

−
1
0
0

−
5
0

0
5
0

Autocorrelation

Residuals i

R
e
s
id

u
a
ls

 i
+

1

−2 −1 0 1 2

−
3

−
2

−
1

0
1

Normal Q−Q Plot of
 Standardized Residuals

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Figure 4: Plot of residuals. The top left panel shows the raw residuals vs. the fitted values. The top right
panel shows the standardized residuals (with mean µ = 0 and standard deviation σ = 1) vs. the fitted
values. The bottom left panel shows the autocorrelation plot and the bottom right panel the QQ plot of the
standardized residuals.

Figure 4 shows no indication of problems with the model assumptions as the residuals seem to be approxi-
mately normally distributed (a clear alignment along the diagonal in the QQ plot) and without evidence of
autocorrelation or heteroscedastic variance.

In addition to the visual assessment of the model assumptions, the normality of residuals may be evaluated
using the Shapiro-Wilk test [Ritz and Streibig, 2008, p. 69]. This test is one of the most powerful tests
of normality (the function shapiro.test() is part of the package stats in the standard R installation).
Similarly, the lack of autocorrelation in residuals may be assessed by means of the runs test [e.g., Motulsky
and Ransnas, 1987, López et al., 2000, Motulsky and Christopoulos, 2004], using the function runs.test()

in the package tseries [Trapletti and Hornik, 2013]. However, note that this is not a very strong test as it
essentially only utilizes the signs of the residuals but not their actual values [Ritz and Martinussen, 2011].
We consider these tests as supplements that are occasionally useful next to the routine visual assessment of
the model assumptions. Both tests are available through the function test.nlsResiduals().
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test.nlsResiduals(O2K.res1)

##

## ------

## Shapiro-Wilk normality test

##

## data: stdres

## W = 0.95205, p-value = 0.1214

##

##

## ------

##

## Runs Test

##

## data: as.factor(run)

## Standard Normal = 0.76123, p-value = 0.4465

## alternative hypothesis: two.sided

In our example, the null hypothesis of normal distribution could not be rejected (Shapiro-Wilk test: p = 0.12)
and there was also no indication of autocorrelation (runs test: p = 0.45).

3.5 Confidence regions

We define the 1 − α joint confidence region for the model parameters by means of the following inequality. A
given set of parameters θ is included in the confidence region if the corresponding residual sum of squares
(RSS) is lying within the margin defined in the following Equation 3 (often referred to as Beale’s criterion).

RSS(θ) < RSSmin

[

1 +
p

n − p
F1−α(p, n − p)

]

(3)

with RSSmin the minimum residual sum of squares obtained from the least-squares estimation (previously
defined for the function overview()), F1−α the appropriate quantile of the F -distribution with (p, n − p)
degrees of freedom, where n is the number of observations and p the number of model parameters in f [Beale,
1960, Bates and Watts, 1988]. Two functions are implemented in nlstools for visualizing the joint confidence
region defined in Equation (3), one for showing contours and another one for showing projections.

For each pair of parameters the function nlsContourRSS() provides two-dimensional contours of the p-
dimensional joint confidence region using a grid while keeping the remaining p − 2 parameters fixed at their
least-squares estimates. The number of contour levels is defined by the user using the argument nlev. The
RSS contours can be used both to assess the structural correlation among model parameters (a graphical
analog to the correlation matrix) and to detect the presence of unexpected multiple minima, which could
indicate that sub-optimal parameter estimates were obtained and perhaps the model should be fitted again
with different starting values.

For the model fit O2K.nls1, Figure 5 (left panel) shows the RSS contours for the three pairs of two model
parameters. The resulting two-dimensional 95% confidence regions, which correspond to specific contours
are also shown (in dotted red lines). These contours, which are expected to be close to elliptical curves as
long as the error model is valid, allow an evaluation of the two-dimensional confidence regions as compared
to the one-dimensional confidence intervals that are routinely used. In particular, we get an insight on the
extent of overlap between one-dimensional intervals and two-dimensional regions. For instance, for the pair µ
and V O2peak, the projections of the elliptical confidence region onto the axes result in marginal confidence
intervals that are wider as compared to the standard one-dimensional confidence intervals shown in the output
from overview() on page 7. This means that standard one-dimensional confidence intervals seem to be too
narrow (insufficient coverage).
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O2K.cont1 <- nlsContourRSS(O2K.nls1)

plot(O2K.cont1, col = FALSE, nlev = 5)

O2K.conf1 <- nlsConfRegions(O2K.nls1, exp = 2, length = 2000)

plot(O2K.conf1, bounds = TRUE)
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Figure 5: The left panel displays the contours based on the residual sum of squares. The contours represented
by a red dotted line correspond to the section of the Beale’s 95% confidence region. The right panel shows
the projections of the confidence region according to the Beale’s criterion. The dashed red frames around the
confidence regions correspond to the limits of the sampling regions.

The function nlsConfRegions() allows users to plot another representation of the Beale’s confidence region,
also known as joint parameter likelihood region [Bates and Watts, 1988]. The method consists in randomly
sampling parameter values in a hypercube centered around the least-squares estimates. A set of parameters
is acceptable if the resulting residual sum of squares satisfies Beale’s criterion (Equation 3). As soon as the
specified number of points to be in the confidence region is reached (argument length in nlsConfRegions()),
the iterative sampling is stopped. The confidence region is then plotted by projection of the sampled points
in planes defined by each pair of model parameters (Figure 5, right panel). It is often necessary to zoom
in or out the sampling region in order to get a better view of the overall projected region. This is done by
changing argument exp of function nlsConfRegions(). The sampling region can be visualized by setting
argument bound = TRUE in the generic plotting function plot.nlsConfRegions().

It is worth noticing that the representation of the confidence region by contours does not provide exactly
the same information as the representation by projections when the number of parameters is greater than
two. Representations of confidence regions by contours provide smaller confidence regions than confidence
regions based on projections, because the former does not incorporate the uncertainty in the p − 2 parameter
estimates left out. Therefore, representations by contours tend to slightly underestimate the size of the
confidence region.

In our example, contours are perfectly elliptical with a global minimum at the center, which is an indication
of a good nonlinear regression model fit. The narrower elliptic shape of Beale’s confidence region between
VO2peak and µ reflects the relatively high correlation between these two parameters (correlation: 0.76).

3.6 Resampling techniques

This section was revised by Florent Baty and Marie Laure Delignette-Muller since the publication of this
vignette in the Journal of Statistical Software in order to include the new function nlsBootPredict().
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Both jackknife and bootstrap procedures applied to nonlinear regression are implemented in nlstools.
Jackknife is implemented via the function nlsJack(). By using a leave-one-out procedure, it produces
jackknife parameter estimates together with confidence intervals [Quenouille, 1956, Fox et al., 1980, Seber
and Wild, 1989]. It can also be used to assess the influence of each observation on each parameter estimates.

O2K.jack1 <- nlsJack(O2K.nls1)

summary(O2K.jack1)

##

## ------

## Jackknife statistics

## Estimates Bias

## VO2rest 356.531533 0.227317890

## VO2peak 1628.736188 2.147313511

## mu 1.184515 0.001613564

##

## ------

## Jackknife confidence intervals

## Low Up

## VO2rest 342.2881464 370.774920

## VO2peak 1560.1022374 1697.370138

## mu 0.9923505 1.376679

##

## ------

## Influential values

## * Observation 21 is influential on VO2peak

## * Observation 34 is influential on VO2peak

## * Observation 35 is influential on VO2peak

## * Observation 20 is influential on mu

## * Observation 21 is influential on mu

## * Observation 35 is influential on mu

The generic function summary(), applied to an object produced by the function nlsJack(), returns the
jackknife parameter estimates together with the associated bias and confidence intervals and, if applicable, a
list of influential observations that are identified based on DFBETAs defined as follows:

DFBETA(i, j) =
|θ̂−i

j − θ̂j |

se(θ̂j)
(4)

with θ̂j the estimate of the jth parameter based on the original dataset, θ̂−i
j the estimate of the jth parameter

based on the dataset without the ith observation, and se(θ̂j) the standard error of the jth parameter estimate
based on the original dataset.

An observation is empirically denoted as influential for one parameter if the absolute difference between
parameter estimates with and without this observation exceeds twice the standard error of the estimate
divided by the square root of the number of observations [Belsley et al., 1980]. Applied to our dataset,
three observations appear to have a substantial influence on VO2peak estimate and, similarly, three other
observations are influencing µ estimate (Figure 6, left panel).

The function nlsBoot() uses non-parametric bootstrap of mean centered residuals to obtain a given number
(argument niter) of bootstrap estimates [Venables and Ripley, 2002, Chapter 8]. Bootstrap estimates,
standard errors together with median and percentile confidence intervals (2.5% and 97.5% percentiles of
bootstrapped estimates) [Venables and Ripley, 2002, pp. 225-226] are displayed by the generic function
summary(). The associated plotting function can be used both for a pairwise representation of the bootstrap
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estimates or, as shown in Figure 6 (right panel), for a boxplot representation of the distribution of each
bootstrapped parameter.

O2K.boot1 <- nlsBoot(O2K.nls1)

summary(O2K.boot1)

##

## ------

## Bootstrap statistics

## Estimate Std. error

## VO2rest 356.983602 11.02443961

## VO2peak 1630.286635 20.86596026

## mu 1.187585 0.07281485

##

## ------

## Median of bootstrap estimates and percentile confidence intervals

## Median 2.5% 97.5%

## VO2rest 357.488253 333.809086 377.471665

## VO2peak 1631.263834 1587.364064 1669.955959

## mu 1.183706 1.052634 1.339225

plot(O2K.jack1)

plot(O2K.boot1, type = "boxplot")
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Figure 6: Resampling procedures. The left panel shows the influence of each observation on each parameter
estimate according to a jackknife procedure using nlsJack(). The right panel shows the boxplot distribution
of the bootstrapped parameter estimates obtained using nlsBoot().

In some cases, problems of convergence may arise during the bootstrap resampling procedure, when the model
cannot be fitted to the resampled data. If the fitting procedure fails less than 50% of cases, the bootstrap
statistic is provided with a warning indicating the percentage of times the procedure successfully converged;
otherwise the procedure is interrupted with an error message and no result is given.

The comparison of confidence intervals based on the t-based approximation, previously obtained using
overview(), and based on resampling procedures (jackknife or bootstrap) is illustrated in Figure 7. In that
case, it shows that bootstrap confidence intervals are comparable to the t-based ones, providing slightly
narrower confidence intervals for all three parameters. On the other hand, jackknife confidence intervals
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noticeably differ from the other two intervals. This was to be expected considering that jackknife is using only
limited information about the statistic and is therefore less efficient than bootstrap [Efron, 1979]. In addition,
jackknife is resampling sequentially individuals whereas bootstrap resamples residuals with replacement.
Therefore, we tentatively recommend to use the bootstrap procedure for the assessment of confidence intervals
of parameter estimates, whereas the jackknife procedure should be specifically used for the detection of
influential observations. It is worth noting that function confint() from the default R package stats [R
Core Team, 2013] can also be used to build confidence intervals by profiling the residual sum of squares.
However, this method often fails to give any result due the lack of convergence of the optimization algorithm
for at least one explored value of one of the parameters. Unlike the function confint(), nlsBoot() provides
confidence intervals even if the optimization algorithm fails to converge for some of the bootstrapped samples.
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Figure 7: Comparison of parameter confidence intervals obtained by t-based and resampling (jack-
knife/bootstrap) methods.

From the results of nlsBoot() it is now possible to compute confidence or prediction bootstrap intervals as
in Figure 8 representing confidence intervals on the fitted curve (see ?nlsBootPredict for details}). A great
number of bootstrap iterations (greater than the default value) should generally be used for the computation
of prediction intervals.

newdata <- data.frame(t = seq(0, 12, length.out = 50))

pred.clim <- nlsBootPredict(O2K.boot1, newdata = newdata, interval = "confidence")

plotfit(O2K.nls1, smooth = TRUE)

lines(newdata$t, pred.clim[, 2], col = "red", lty = 2)

lines(newdata$t, pred.clim[, 3], col = "red", lty = 2)

4 Concluding remarks

We have shown the usefulness of nlstools for the important steps in a nonlinear regression analysis. The
proposed functionality is generally applicable as seen from the variety of different areas where it has already
been used successfully: biological chemistry [Slupe et al., 2013], environmental toxicology [Devos et al., 2012],
forest ecology [Kapeller et al., 2012, Bošeľa et al., 2013], marine science [Cabral et al., 2013, Villegas-Ríos
et al., 2013], microbiology [Baty and Delignette-Muller, 2004, Delignette-Muller, 2009, Ohkochi et al., 2013,
Kiermeier et al., 2013, Tang et al., 2013], limnology [Volta et al., 2013], and plant biology [Matter et al.,
2012].

Further developments of nlstools are envisaged, including support for self-starting nonlinear regression
models. It would also be useful to provide additional sensitivity procedures in order to allow users to further
minimize the risk of undesirable convergence results towards local minima during the optimization procedure
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Figure 8: Plot of the data with the model superimposed and 95 percent bootstrap conifdence intervals
represented as a confidence band

(e.g., an annotated and detailed report of the entire convergence process). We would also like to extend
the diagnostic tools to situations where high-throughput nonlinear regression analyses are carried out, [e.g.,
Stanzel et al., 2013], through the implementation of some automatic diagnostic checks.
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