
Package ‘nlt’
July 10, 2018

Type Package

Title A Nondecimated Lifting Transform for Signal Denoising

Version 2.2-1

Date 2018-07-10

Author Marina Knight, Matt Nunes

Maintainer Matt Nunes <nunesrpackages@gmail.com>

Depends EbayesThresh, adlift (>= 1.3)

Description Uses a modified lifting algorithm on which it builds the
nondecimated lifting transform. It has applications in wavelet
shrinkage.

License GPL

Repository CRAN

Date/Publication 2018-07-10 15:20:02 UTC

NeedsCompilation no

R topics documented:

denoiseperm . 1
fwtnpperm . 4
nlt . 7
transmatdualperm . 9

Index 11

denoiseperm Denoise a signal using the modified lifting transform and empirical
Bayes thresholding

1

2 denoiseperm

Description

Denoises an input signal contaminated by noise. First the signal is decomposed using the modified
lifting scheme (coded in fwtnpperm) using a prespecified order, known as path or trajectory, of point
removal. Once the signal is decomposed into wavelet coefficients (or details), these are subjected
to an empirical Bayes shrinkage procedure in order to remove the noise, the transform is inverted
and an estimate of the noisy signal is obtained.

Usage

denoiseperm(x, f, pred=LinearPred, neigh=1, int=TRUE, clo=FALSE, keep=2,
rule = "median", per = sample(1:length(x),(length(x)-keep),FALSE),returnall=FALSE)

Arguments

x Vector of any length (not necessarily equally spaced) that gives the grid on which
the signal is observed.

f Vector of the same length as x that gives the signal values corresponding to the
x-locations.

pred The type of regression to be used in the prediction step of the modified lift-
ing algorithm. Choices are linear, quadratic or cubic (respectively, LinearPred,
QuadPred or CubicPred), or two adaptive procedure which automatically choose
the degree used in regression, (AdaptPred or AdaptNeigh).

neigh Number of neighbours to be used in order to construct the neighbourhood of
each point that has to be removed. If ’clo=FALSE’, this gives the number of
neighbours on each side of the removed point.

int Specifies whether (int=TRUE) or not (int=FALSE) an intercept is to be used
in the regression curve. For pred=AdaptPred or AdaptNeigh, the algorithm
automatically makes this choice.

clo If (clo=TRUE) or (clo=FALSE), then at each step the neighbours are in closest,
respectively symmetrical configuration.

keep Number of scaling points we want at the end of the transform. The usual choice
is keep=2.

rule The type of Bayesian shrinkage technique, with possible choices posterior me-
dian ("median") or posterior mean ("mean").

per Vector of length (length(x)-keep) which gives the order of point removal in the
lifting algorithm.

returnall Indicates whether the function returns useful variables or just the denoised dat-
apoints.

Details

Once the modified lifting transform is applied, the wavelet coeficients are divided into artificial lev-
els. The details obtained by means of a lifting scheme have different variances, and will therefore
be normalized to have the same variance as the noise. Those normalized details falling into the
finest artificial level will be used for estimating the standard deviation of the noise that contami-
nated the signal. Using this estimate, the normalized details can then be shrunk and un-normalized

denoiseperm 3

(using package ’EbayesThresh’), and the transform inverted (using the function invtnp of package
’adlift’) to give an estimate of the signal. The choices for pred can be found in the package ’adlift’.

Value

If returnall=FALSE, the estimate of the function after denoising. If returnall=TRUE, a list with
components:

fhat Estimated signal after removing the noise.

w This is the matrix associated to the modified lifting transform.

indsd Vector giving the standard deviations of the detail and scaling coefficients.

al List giving the split of points between the artificial levels.

sd Estimated standard deviation of the noise.

Note

Use this function together with the "adlift" and "EbayesThresh" packages available from CRAN.

Author(s)

Marina Knight (marina.knight@bristol.ac.uk)

References

See the paper ’A "nondecimated" lifting transform’ by Knight, M.I. and Nason, G.P. (2008) for
further details.

See Also

fwtnpperm, fwtnpperm, and also invtnp of package ’adlift’

Examples

construct a grid
x<-runif(256)

construct a true, normally unknown, signal
g<-make.signal2("bumps",x=x)

now generate noise (here with mean 0 and signal-to-noise ratio 3)
noise<-rnorm(256,mean=0,sd=sqrt(var(g))/3)

obtain a noisy version of the true signal g
f<-g+noise

construct the trajectory which will indicate the order of point removal that will be followed by
the modified lifting algorithm
vec below gives the first (length(x)-keep) entries of a random permutation of (1:length(x))
vec<-sample(1:256,254,FALSE)

4 fwtnpperm

denoise the signal (x,f) by applying the modified lifting transform following the removal order
in vec and using adaptive prediction
and neighbourhoods of size 2 in symmetrical configuration
the details are then thresholded using posterior medians and the algorithm inverted
the proposed estimate of g is given by out$fhat$coeff

out<-denoiseperm(x,f,pred=AdaptPred,neigh=1,int=TRUE,clo=FALSE,keep=2,rule="median",per=vec)

fwtnpperm fwtnpperm

Description

Performs the lifting transform on a signal with grid input and corresponding function values f.
There is a unique correspondence between the grid values and the function values. Can also cope
with length vector input instead of gridpoint vector input.

Usage

fwtnpperm (input, f, LocalPred = LinearPred, neighbours = 1,
intercept = TRUE,closest = FALSE, nkeep = 2, initboundhandl = "reflect", mod =

sample(1:length(input), (length(input) - nkeep), FALSE),
do.W = FALSE, varonly = FALSE)

Arguments

input A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to input. Must be of the same length
as input.

LocalPred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

neighbours The number of neighbours over which the regression is performed at each step.
If closest is false, then this in fact denotes the number of neighbours on each
side of the removed point.

intercept Indicates whether or not the regression curve includes an intercept.

closest Refers to the configuration of the chosen neighbours. If closest is false, the
neighbours will be chosen symmetrically around the removed point. Otherwise,
the closest neighbours will be chosen.

nkeep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

initboundhandl variable specifying how to handle the boundary at the start of the transform.
Possible values are "reflect" - the intervals corresponding to the first and last
datapoints are taken to have the respective grid values as midpoints; and "stop"
- the first and last intervals have the first and last grid values (respectively) as
outer endpoints.

fwtnpperm 5

mod Vector of length (length(x)-keep). It gives the trajectory for the modified lifting
algorithm to follow, i.e. it gives the order of point removal.

do.W A boolean indicating whether the transform matrix should be computed and
returned.

varonly A boolean indicating whether only the coefficient variances should be returned
(if do.W=TRUE).

Details

Given n points on a line, input, each with a corresponding envf value this algorithm computes a
lifting transform of the (input,f) data. If lengths are inputted (inputtype="lengths"), then the
gridpoints are taken to be the left endpoints of the intervals defined by the lengths inputted. Step
One. Order the grid values so that corresponding intervals can be constructed.

Step Two. Compute "integrals" for each point. For each point its integral is the length of the interval
associated to the gridpoint.

Step Three. Identify the point to remove as that with the smallest integral. Generally, we remove
points in order of smallest to largest integral. The integrals of neighbours of removed points change
at each step.

Step Four(a). The neighbours of the removed point are identified using the specified neighbour
configuration. The value of f at the removed point is predicted using the specified regression curve
over the neighbours, unless an adaptive procedure is chosen. In this case, the algorithm adjusts
itself. The difference between the removed point’s f value and the prediction is computed: this
is the wavelet coefficient for the removed point. The difference replaces the function value in the
vector coeff at the removed point’s location. In this way wavelet coefficients gradually overwrite
(scaling) function values in coeff.

Step Four(b). The integrals and the scaling function values (other coeff values) of neighbours of
the removed point are updated. The values of the rest of the scaling coefficients are unaffected.

Step Five. Return to step 3 but in the identification of a point to remove the updated integrals are
used.

The algorithm continues until as many points as desired are removed. If do.W=TRUE, the predict
and update lifting steps are used to propogate coefficient contributions to the transform matrix W. If
varonly=TRUE, only the (detail and scaling) coefficient variances are returned. After each lifting
step, the coefficient variance is computed and the transform matrix row corresponding to the lifted
coefficient is deleted for the next stage (minimal storage efficiency). The transform matrix is not
returned (i.e. W=NULL).

Value

X data vector of the grid used in the transform.

coeff vector of detail and scaling coefficients in the wavelet decomposition of the
signal.

origlengths vector of initial interval lengths corresponding to the gridpoints.

lengths vector of (updated) interval lengths at the end of the transform. This is of length
nkeep.

lengthsremove vector of interval lengths corresponding to the points removed during the trans-
form (in removelist).

6 fwtnpperm

pointsin indices into X of the scaling coefficients in the wavelet decomposition. These
are the indices of the X values which remain after all points in removelist have
been predicted and removed. This has length nkeep.

removelist a vector of indices into X of the lifted coefficients during the transform (in the
order of removal).

neighbrs a list of indices into X. Each list entry gives the indices of the neighbours of the
removed point used at that particular step of the transform.

neighbours the user-specified number of neighbours used in the prediction step of the trans-
form.

gamlist a list of all the prediction weights used at each step of the transform.

alphalist a list of the update coefficients used in the update step of the decomposition.

schemehist a vector of character strings indicating the type of regression used at each step
of the transform.

interhist a boolean vector indicating whether or not an intercept was used in the regres-
sion curve at each step.

clolist a boolean vector showing whether or not the neighbours were symmetrical (FALSE)
about the removed point during the transform. This is NULL except when
LocalPred=AdaptNeigh.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina.Knight

See Also

AdaptNeigh, AdaptPred, CubicPred, fwtnpmp, invtnp, LinearPred, QuadPred

Examples

#
Generate some one-dimensional data: 100 observations.
#
input <- runif(100)
f <- input^2 - 3*input
#
Compute fwtnp function on this data
#
vec<-sample(1:100,98,FALSE)

out <- fwtnpperm(input,f,LocalPred=AdaptPred,neighbours=2,closest=TRUE,mod=vec)
#
That's it.
#

nlt 7

nlt Denoise a signal using a nondecimated lifting transform

Description

Starting with a noise-contaminated signal, we decompose it using a ’nondecimated’ lifting algo-
rithm (i.e. by applying the modified lifting transform following several random paths), shrink all
the obtained detail coefficients and invert each transform to give an estimated signal. The average
of all these estimates is the final proposal for estimating the true (unknown) signal.

Usage

nlt(x, f, J, Pred = AdaptPred, neighbours = 1, closest = FALSE, intercept = TRUE,
nkeep = 2, trule = "median",verbose = TRUE,do.orig = FALSE, returnall = FALSE)

Arguments

x Vector of any length (possibly irregularly spaced) that gives the grid locations
where the signal is observed.

f Vector of the same length as x that gives the signal values corresponding to the
x-locations.

J Number of trajectories to be used by the nondecimated lifting algorithm.

Pred The type of regression to be used in the prediction step of the modified lift-
ing algorithm. Choices are linear, quadratic or cubic (respectively, LinearPred,
QuadPred or CubicPred), or two adaptive procedures which automatically choose
the degree used in regression, (AdaptPred or AdaptNeigh).

neighbours Number of neighbours to be used for defining the neighbourhood of each point
that has to be removed. If (closest=FALSE), then this gives the number of
neighbours to be used on each side of the removed point.

closest If (closest=TRUE) or (closest=FALSE), then at each step the neighbours are
in closest, respectively symmetrical configuration.

intercept Specifies whether (intercept=TRUE) or not (intercept=FALSE) an intercept
is to be used in the regression curve. For Pred=AdaptPred or AdaptNeigh, the
algorithm automatically makes this choice.

nkeep Number of scaling points we want at the end of the application of the transform.
The usual choice is nkeep=2.

trule The type of Bayesian shrinkage technique, with possible choices posterior me-
dian ("median") or posterior mean ("mean").

verbose A boolean indicating whether extra information should be printed.

do.orig A boolean indicating whether the original adlift algorithm should also be com-
puted.

returnall A boolean indicating whether the function returns useful variables or just the
denoised datapoints.

8 nlt

Details

Essentially, this function applies J times the modified lifting algorithm (that can be found in fwtnpperm),
and removes the noise from all sets of detail coefficients by using empirical Bayes shrinkage (of
package ’EbayesThresh’). Inverting (by means of the function invtnp of the package ’adlift’) each
transform consequently results in J estimates of the (unknown) true signal. The average of these
estimators is our proposed estimator. The functions that appear as choices for Pred can be found in
the package ’adlift’.

Value

vec Matrix whose rows give the trajectories to be used by the nondecimated lifting
algorithm.

ghatnat Vector that gives the estimated true signal given by denoising using the lifting
scheme that establishes its own order for removing the points (but with the same
specification for prediction stage and neighbourhood as the modified algorithm),
rather than a randomly generated order.

aveghat Estimated signal, obtained as the average of the individual estimates from the
random trajectory runs.

Note

Use this function together with the "adlift" and "EbayesThresh" packages available from CRAN.

Author(s)

Marina Knight (marina.knight@bristol.ac.uk)

References

See the paper ’A "nondecimated" lifting transform.’ by Knight, M.I. and Nason, G.P. (2009) for
further details.

See Also

denoiseperm, fwtnpperm, fwtnpperm, and also invtnp of package ’adlift’

Examples

construct the grid
x<-runif(256)

construct the true, normally unknown, signal
g<-make.signal2("blocks",x=x)

generate noise with mean 0 and signal-to-noise ratio 5
noise<-rnorm(256,mean=0,sd=sqrt(var(g))/5)

generate a noisy version of g
f<-g+noise

transmatdualperm 9

decide on a number of random trajectories to be used (below J=100, in paper J=20,30), and apply
the nondecimated lifting transform to the noisy signal (x,f)
#
below we apply the modified lifting transform J times, each time following a different path,
and using adaptive prediction with neighbourhoods of size 2 in closest configuration;
all details are then thresholded using posterior medians and the algorithms inverted
the aggregate estimator of g proposed by our method is found in out$aveghat
out<-nlt(x,f,J=10,Pred=AdaptPred,neighbours=2,closest=TRUE,intercept=TRUE,nkeep=2,trule="median")

transmatdualperm transmatdualperm

Description

Works out the transform matrix for a particular prediction scheme and neighbourhood structure.

Usage

transmatdualperm(x, f, Pred = AdaptNeigh, neigh = 1, int = TRUE, clo =
TRUE, keep = 2,perm =
sample(1:length(x),(length(x)-keep),FALSE),varonly=FALSE)

Arguments

x A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to x. Must be of the same length as
x.

Pred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

neigh The number of neighbours over which the regression is performed at each step.
If clo is false, then this in fact denotes the number of neighbours on each side
of the removed point.

int Indicates whether or not the regression curve includes an intercept.

clo Refers to the configuration of the chosen neighbours. If clo is false, the neigh-
bours will be chosen symmetrically around the removed point. Otherwise, the
closest neighbours will be chosen.

keep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

perm Vector of length (length(x)-keep). It gives the trajectory for the modified lifting
algorithm to follow, i.e. it gives the order of point removal.

varonly A boolean variable indicating whether only the coefficient variances should be
returned, i.e. just the diagonal of the transform matrix Wnew.

10 transmatdualperm

Details

The function uses Amatdual to form the refinement matrices Aj , from which the augmented matri-
ces Tj are constructed. This process is iterated, to find the transform matrix (the top level augmented
matrix). The rows and columns of this matrix are then reordered to be in the order of out$coeff,
i.e. so that the columns correspond to f1 . . . fn.

Value

out the output from the forward transform.

Wnew the matrix associated to the wavelet transform.

x the original gridpoint vector.

Note

This function has been left in the package for completeness. However, the transform matrix is
(optionally) computed within the forward lifting transform function fwtnp.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

fwtnp

Examples

x1<-runif(10)
y1<-make.signal2("doppler",x=x1)
#
vec<-sample(1:10,8,FALSE)

a<-transmatdualperm(x1,y1,AdaptNeigh,2,TRUE,TRUE,2,perm=vec)
#
a$Wnew
#
#the transform matrix for this adaptive lifting scheme

Index

∗Topic array
transmatdualperm, 9

∗Topic methods
fwtnpperm, 4

∗Topic nonparametric
denoiseperm, 1
nlt, 7

AdaptNeigh, 6, 9
AdaptPred, 6, 9

CubicPred, 6, 9

denoiseperm, 1, 8

fwtnp, 10
fwtnpmp, 6
fwtnpperm, 2, 3, 4, 8

invtnp, 6

LinearPred, 6, 9

nlt, 7

QuadPred, 6, 9

transmatdualperm, 9

11

	denoiseperm
	fwtnpperm
	nlt
	transmatdualperm
	Index

