Package 'nsgp'

August 29, 2016

Title Non-Stationary Gaussian Process Regression

Version 1.0.5

Date 2014-10-14

Author Markus Heinonen

Maintainer Markus Heinonen <markus.heinonen@gmail.com>

Depends R (>= 3.0.0)

Imports MASS

Description A Gaussian process regression using a Gaussian kernel for both one-sample and two-sample cases. Includes non-stationary Gaussian kernel (exponential decay function) and several likelihood ratio tests for differential testing along target points.

License GPL-2

URL http://amis-group.fr/software/nsgp

NeedsCompilation no

Repository CRAN

Date/Publication 2014-10-15 06:54:09

R topics documented:

pr1sample	2
pr2sample	4
gp	5
ot.gp	6
ot.gppack	7
int.gp	8
int.gppack	9
mulategp	9
mulategp.perturbed	10
ımmary.gp	11
ımmary.gppack	11
ydata	12
ygps	12

gpr1sample

Index

gpr1sample

Perform one-sample GP regression

Description

Computes the optimal GP model by optimizing the marginal likelihood

Usage

```
gpr1sample(x, y, x.targets, noise = NULL, nsnoise = TRUE, nskernel = TRUE,
expectedmll = FALSE, params = NULL, defaultparams = NULL,
lbounds = NULL, ubounds = NULL, optim.restarts = 3,
derivatives = FALSE)
```

Arguments

х	input points
У	output values (same length as x)
x.targets	target points
noise	observational noise (variance), either NULL, a constant scalar or a vector
nsnoise	estimate non-stationary noise from replicates, if possible (default)
nskernel	use non-stationary kernel
expectedmll	use an alternative expected mll optimization criteria
params	gaussian kernel parameters: (sigma.f, sigma.n, l, lmin, c)
defaultparams	initial parameters for optimization (5-length vector)
lbounds	lower bounds for parameters (5-length vector)
ubounds	upper bounds for parameters (5-length vector)
optim.restarts	restarts in the gradient ascent (default=3)
derivatives	compute also GP derivatives

Details

Parameter optimization performed through L-BFGS using analytical gradients with restarts. The input points x and output values y need to be matching length vectors. If replicates are provided, they are used to estimate dynamic observational noise.

The resulting GP model is encapsulated in the return object. The estimated posterior is in targets\$pmean and targets\$pstd for target points x.targets. Use plot.gp to visualize the GP.

13

gpr1sample

Value

A gp-object (list) containing following elements

targets	data frame of predictions with points as rows and columns
_\$x	points
_\$pmean	posterior mean of the gp
_\$pstd	posterior standard deviation of the gp
_\$noisestd	noises (variance)
_\$mll	the MLL log likelihood ratio
_\$emll	the EMLL log likelihood ratio
_\$pc	the posterior concentration log likelihood ratio
_\$npc	the noisy posterior concentration log likelihood ratio
cov	learned covariance matrix
mll	marginal log likelihood value
emll	expected marginal log likelihood value
kernel	the kernel matrix used
ekernel	the EMLL kernel matrix
params	the learned parameter vector:
_\$sigma.f	kernel variance
_\$sigma.n	kernel noise
_\$1	maximum lengthscale
_\$lmin	minimum lengthscale
_\$c	curvature
х	the input points
У	the output values

See Also

gpr2sample plot.gp

Examples

```
# load example data
data(toydata)
```

```
## Not run: can take sevaral minutes
    # perform gpr
    res = gpr1sample(toydata$ctrl$x, toydata$ctrl$y, seq(0,22,0.1))
    print(res)
## End(Not run)
# pre-computed toydata model
```

```
data(toygps)
print(toygps$ctrlmodel)
```

```
gpr2sample
```

Description

Performs gaussian process regression for two time-series: control and case. A third null GP model is learned that assumes both data coming from same process. Various likelihood ratios between the null and individual models are estimated to distinguish when case and control processes are significantly different. Use plot.gppack to visualize the models.

Usage

```
gpr2sample(x.ctrl, y.ctrl, x.case = NULL, y.case, x.targets,
noise.ctrl = NULL, noise.case = NULL, nsnoise = TRUE, nskernel = TRUE,
expectedmll = FALSE, params.ctrl = NULL, params.case = NULL,
defaultparams = NULL, lbounds = NULL, ubounds = NULL,
lockatzero = FALSE, optim.restarts = 3, derivatives = FALSE)
```

Arguments

x.ctrl	input points (control)
y.ctrl	output values (control)
x.case	input points (case)
y.case	output values (case)
x.targets	target points
noise.ctrl	observational noise
noise.case	observational noise
nsnoise	estimate non-stationary noise function from replicates, if available
nskernel	use non-stationary kernel (default)
expectedmll	use expected MLL optimization criteria
params.ctrl	kernel parameters (control)
params.case	kernel parameters (case)
defaultparams	initial parameters for optimization
lbounds	lower bounds for parameter optimization
ubounds	upper bounds for parameter optimization
lockatzero	estimate a pseudo-observation for time 0
optim.restarts	restarts in the gradient ascent (default=3)
derivatives	compute also GP derivatives

Details

The control and case do not need have same amount of points. The resulting gppack object contains the three learned models and the likelihood ratios along x.targets.

nsgp

Value

a gppack-object that contains

ctrlmodel	the gp-object corresponding to the control data
casemodel	the gp-object corresponding to the case data
nullmodel	the gp-object corresponding to the shared null data
ratios	the log likelihood ratios between the control and case against the null model, contains
\$mll	marginal log likelihood ratio
\$eml1	expected marginal log likelihood ratio
\$pc	log posterior concentration ratio
\$npc	log noisy posterior concentration ratio

See Also

gpr1sample plot.gppack

Examples

```
# read toy data
data(toydata)
## Not run: can take several minutes
# perform two-sample regression
res = gpr2sample(toydata$ctrl$x, toydata$ctrl$y, toydata$case$x, toydata$case$y, seq(0,22,0.1))
print(res)
## End(Not run)
# pre-computed model for toydata
```

data(toygps)
print(toygps)

nsgp

Gaussian process regression and statistical testing

Description

This package implements the non-stationary gaussian processes for one- and two-sample cases, and statistical likelihood ratio tests for distinguishing when two time-series are significantly different. The package offers two main functions: gpr1sample and gpr2sample.

Details

The function gpr1sample learns a gaussian process model that uses either stationary or non-stationary gaussian kernel, which assumes a perturbation at (time) point 0. The non-stationarity is controlled by a time-dependent lengthscale in the gaussian kernel. The time-dependency $l - (l - l_{min})e^{-ct}$ follows exponential decay, such that it starts at value 1.min and grows logarithmically to 1 by curvature parameter c.

In gpr2sample we compare control and case time-series by building GP models for both of them individually, while also building a third null model for joint data (assume that data come from the same process). The null model and the case/control models are then compared with likelihood ratios for significant different along time. The package includes standard marginal log likelihood (MLL) ratio, and three novel ones: expected marginal log likelihood (EMLL) measures the ratio between the models while discarding data; posterior concentration (PC) ratio measures the difference of variance between null and individual models; and noisy posterior concentration (NPC) ratio also compares observational noises.

plot.gp	Plot a gaussian process	
---------	-------------------------	--

Description

Plots a gaussian process. Several boolean parameters for modifying the plot. By default plots the data, posterior mean and 95% interval.

Usage

```
## S3 method for class 'gp'
plot(x, y = NULL, plotdata = TRUE, plotmean = TRUE,
    plotcov = TRUE, plotnoise = FALSE, samples = 0, sigma = 2,
    title = NULL, legend = FALSE, plotgradient = TRUE, plotls = FALSE,
    ...)
```

Х	the gp-object
У	placeholder variable
plotdata	plot the data (default)
plotmean	plot the GP mean (default)
plotcov	plot the GP covariances (default)
plotnoise	plot the observational noise (default)
samples	plot N samples from the GP
sigma	variance level to plot
title	plot title
legend	plot legend
plotgradient	use gradient graphics
plotls	plot lengthscale function

plot.gppack

Examples

```
# read toy data
data(toydata)
## Not run: can take several minutes
# perform one-sample regression
res = gpr2sample(toydata$ctrl$x, toydata$ctrl$y, seq(0,22,0.1))
# pre-computed model for toydata
data(toygps)
res = toygps$ctrlmodel
# basic plot with data, estimated mean and 95\%
plot(res)
# don't plot the data, plot some samples drawn from the learned gp
plot(res, plotdata=FALSE, samples=3)
## End(Not run)
```

plot.gppack

Plots several GP's simultaneously

Description

Plots the GP's corresponding to the control and case data, as well as the null model. Visualizes the log likelihood ratios between the null and individual models. Several boolean parameters for modifying the plot. By default plots the data, posterior mean and 95% interval for CASE and CONTROL.

Usage

```
## S3 method for class 'gppack'
plot(x, y = NULL, plotdata = TRUE, plotmeans = TRUE,
plotcovs = TRUE, plotnoises = FALSE, plotnull = FALSE,
plotratios = "emll", thr = 1, samples = 0, sigma = 2, title = NULL,
legend = FALSE, plotgradient = TRUE, ...)
```

х	the gppack-object
У	placeholder variable
plotdata	plot the data (default)
plotmeans	plot the GP mean (default)
plotcovs	plot the GP covariances (default)
plotnoises	plot the observational noise (default)
plotnull	plots also the null model

print.gp

plotratios	plots the ratios, choices are emll, mll, npc, pc
thr	ratio threshold
samples	plot N samples from the GP
sigma	variance level to plot
title	plot title
legend	plot legend
plotgradient	use gradient graphics

Details

The threshold thr is the logarithmic likelihood ratio between null and control+case models. The default value 1 hence corresponds to a likelihood ratio of 2.72.

Examples

```
# read toy data
data(toydata)
## Not run: can take several minutes
# perform two-sample regression
res = gpr2sample(toydata$ctrl$x, toydata$ctrl$y, toydata$case$x, toydata$case$y, seq(0,22,0.1))
# pre-computed model for toydata
data(toygps)
res = toygps
# basic plot
plot(res)
# plot also the null model, don't plot data, means or noise
plot(res, plotnull=TRUE, plotdata=FALSE, plotmeans=FALSE, plotnoise=FALSE)
## End(Not run)
```

```
print.gp
```

prints the one-sample GP summary

Description

prints the one-sample GP summary

Usage

S3 method for class 'gp'
print(x, ...)

print.gppack

Arguments

х	the estimated GP-object
	for compatibility

print.gppack prints

prints the two-sample GP summary

Description

prints the two-sample GP summary

Usage

S3 method for class 'gppack'
print(x, ...)

Arguments

х	the estimated gppack-object containing ctrlmodel, casemodel and nullmodel
	for compability

simulategp Generate simulated GP models

Description

Generate simulated GP models

Usage

```
simulategp(N = 100, reps = 3, obs = c(0, 5, 10, 15, 20), xs = seq(0, 20,
0.2), filename = NULL, l.noise = 12, l.shape = 4, l.scale = 4,
sigmaf.noise = 0.25, sigmaf.shape = 1.5, sigmaf.scale = 0.3)
```

Ν	number of gp's
reps	replicate observations
obs	observation timepoints
xs	target timepoints
filename	file to save the results
l.noise	Noise model lengthscale
l.shape	shape of lengthscale Gamma distribution

l.scale	scale of lengthscale Gamma distribution
sigmaf.noise	Noise model sigma.f
sigmaf.shape	shape of sigma.f Gamma distribution
sigmaf.scale	scale of sigma.f Gamma distribution

Value

List with	
simdata	Simulated datamatrix
gps	Simulated GPs

See Also

simulategp.perturbed

simulategp.perturbed Generate simulated perturbed GP models

Description

Takes pregenerated simulated GP models as input, and models both the perturbation and additional perturbation variance as GP models, that are all combined into a perturbed GP model. We sample reps data points from this at timepoints obs

Usage

simulategp.perturbed(N = 100, reps = 3, obs = c(0, 5, 10, 15, 20),
gps.ctrl = NULL, filename = NULL, xs = seq(0, 20, 0.2), l.noise = 12,
l.shape = 2, l.scale = 2.5, sigmaf.noise = 0.25, sigmaf.shape = 4,
sigmaf.scale = 0.5)

Ν	number of gp's
reps	replicate observations
obs	observation timepoints
gps.ctrl	the GPS models to be perturbed
filename	file to save the results
xs	target timepoints
l.noise	Noise model lengthscale
1.shape	shape of lengthscale Gamma distribution
l.scale	scale of lengthscale Gamma distribution
sigmaf.noise	Noise model sigma.f
sigmaf.shape	shape of sigma.f Gamma distribution
<pre>sigmaf.scale</pre>	scale of sigma.f Gamma distribution

summary.gp

Value

List with	
simdata	Simulated datamatrix
gps	Simulated GPs

See Also

simulategp

summary.gp prints the one-sample GP summary

Description

identical to print.gp

Usage

S3 method for class 'gp'
summary(object, ...)

Arguments

object	the estimated GP-object
	for compatibility

summary.gppack prints the two-sample GP summary

Description

identical to print.gppack

Usage

```
## S3 method for class 'gppack'
summary(object, ...)
```

object	the estimated gppack-object containing ctrlmodel, casemodel and nullmodel
	for compability

toydata

Description

Toy time-series data for testing, contains two time-series, case and control

Usage

data(toydata)

Format

A list of two dataframes containing 24 (x,y) pairs both, i.e. toydata\$ctrl and toydata\$case

Source

randomly generated data

toygps

Toy time-series model for testing

Description

contains the GP models for the 'toydata'

Usage

data(toygps)

Format

A gppack object

Source

prelearned model with gpr2sample

Index

*Topic **datasets** toydata, 12 toygps, 12 gpr1sample, 2, 5, 6 gpr2sample, 3, 4, 5, 6, 12 nsgp, 5 nsgp-package (nsgp), 5 plot.gp, 2, 3, 6 plot.gppack, 4, 5, 7 print.gppack, 9, 11 simulategp, 9, 11 simulategp, perturbed, 10

simulategp.perturbed, 10, 10
summary.gp, 11
summary.gppack, 11

toydata, 12 toygps, 12