
Combining Matches Within Subgroups

Josh Errickson, Mark Fredrickson, Josh Buckner, Peter Solenberger and Ben B. Hansen, with embedded F

2022-03-14

When utilizing full matching, a user may want to introduce restrictions to the potential match sets. There
are two main reasons to do this.

• There may be certain variables which matches should either always or never agree upon. For example,
if there is a binary gender variable, you may wish to only match treatment members to control members
of the same gender.

• When matching on a medium-to-large data set, speed concerns can become paramount. By splitting
the matching problem into a series of smaller subproblems, we can realize substantial performance
improvements.

Combining matches

In optmatch 0.9-11 and above, optmatch objects can be easily combined to facilitate breaking a problem
into smaller sub-problems and reconstituting a matched structure on the entire data set. To demonstrate
this, letŠs consider the infert data set.

> data(infert)

> head(infert)

education age parity induced case spontaneous stratum pooled.stratum

1 0-5yrs 26 6 1 1 2 1 3

2 0-5yrs 42 1 1 1 0 2 1

3 0-5yrs 39 6 2 1 0 3 4

4 0-5yrs 34 4 2 1 0 4 2

5 6-11yrs 35 3 1 1 1 5 32

6 6-11yrs 36 4 2 1 1 6 36

The ŞcaseŤ variable indicates treatment (1) versus control (0) status. WeŠll want to match upon ŞageŤ.

> table(infert$case)

##

0 1

165 83

> table(infert$education, infert$case)

##

0 1

0-5yrs 8 4

6-11yrs 80 40

12+ yrs 77 39

Due to the sample size, if we were to compute matches on the entire data set, the fullmatch call would
generate a distance matrix of size 165 × 83 = 13, 695. However, if we were instead to compute a match
within each level of the ŞeducationŤ variable, weŠd compute three different distance matrices, of total size
8 × 4 + 80 × 40 + 77 × 39 = 6, 235, a reduction of 55%.

1

WeŠll do this by splitting the data within each match.

> f1 <- fullmatch(case ~ age, data = infert[infert$education == "0-5yrs",])

> f2 <- fullmatch(case ~ age, data = infert[infert$education == "6-11yrs",])

> f3 <- fullmatch(case ~ age, data = infert[infert$education == "12+ yrs",])

> summary(f1)

Structure of matched sets:

1:2

4

Effective Sample Size: 5.3

(equivalent number of matched pairs).

> summary(f2)

Structure of matched sets:

1:1 1:2 1:3 1:4 1:5+

20 8 6 4 2

Effective Sample Size: 49.4

(equivalent number of matched pairs).

> summary(f3)

Structure of matched sets:

1:1 1:2 1:3 1:4 1:5+

23 5 6 2 3

Effective Sample Size: 47

(equivalent number of matched pairs).

Some of the matched sets are quite large (1:5+) so letŠs put some restrictions.

> f2 <- fullmatch(case ~ age, data = infert[infert$education == "6-11yrs",],

+ max.controls = 4)

> f3 <- fullmatch(case ~ age, data = infert[infert$education == "12+ yrs",],

+ max.controls = 4)

> summary(f2)

Structure of matched sets:

1:1 1:2 1:3 1:4

18 10 6 6

Effective Sample Size: 49.9

(equivalent number of matched pairs).

> summary(f3)

Structure of matched sets:

1:1 1:2 1:3 1:4

20 6 7 6

Effective Sample Size: 48.1

(equivalent number of matched pairs).

Now we simply combine the three matches.

> fcombine <- c(f1, f2, f3)

> summary(fcombine)

Structure of matched sets:

1:1 1:2 1:3 1:4

38 20 13 12

Effective Sample Size: 103.4

(equivalent number of matched pairs).

> infert$match <- fcombine

2

Using the within argument

An alternative approach would be using the within argument and the exactMatch function to deĄne sub-
problems.

> fwithin <- fullmatch(case ~ age, data = infert, max.controls = 4,

+ within = exactMatch(case ~ education, data = infert))

> summary(fwithin)

Structure of matched sets:

1:1 1:2 1:3 1:4

38 20 13 12

Effective Sample Size: 103.4

(equivalent number of matched pairs).

Observe that we obtain equivalent matched structure. A few notes comparing the two approaches:

1. When using the within argument, restrictions must be the same across subproblems. That is,
max.controls, min.controls and omit.fraction will be equivalent. By running the subproblems
separately, you can set different restrictions per subproblem. E.g.,

> f1 <- fullmatch(z ~ x, data = d[d$group == 1,], max.controls = 2)

> f2 <- fullmatch(z ~ x, data = d[d$group == 2,], min.controls = 1/3)

> c(f1, f2)

2. While the matched structures will be equivalent between these two approaches (if the restrictions are
the same across subproblems), the actual matched sets themselves may differ if you have observations
of equal distance. In general this should not be considered a problem.

3

	Combining matches
	Using the within argument

