
Package ‘optrees’
February 20, 2015

Type Package

Title Optimal Trees in Weighted Graphs

Version 1.0

Date 2014-09-01

Author Manuel Fontenla [aut, cre]

Maintainer Manuel Fontenla <manu.fontenla@gmail.com>

Depends R (>= 2.7.0), igraph (>= 0.7.1)

Description Finds optimal trees in weighted graphs. In
particular, this package provides solving tools for minimum cost spanning
tree problems, minimum cost arborescence problems, shortest path tree
problems and minimum cut tree problem.

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2014-09-02 06:14:11

R topics documented:
optrees-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ArcList2Cmat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
checkArbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
checkGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Cmat2ArcList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
compactCycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
findMinCut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
findstCut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
getCheapArcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
getComponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
getMinCostArcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
getMinimumArborescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
getMinimumCutTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
getMinimumSpanningTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



2 optrees-package

getShortestPathTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
getZeroArcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ghTreeGusfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
maxFlowFordFulkerson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
msArborEdmonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
msTreeBoruvka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
msTreeKruskal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
msTreePrim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
removeLoops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
removeMultiArcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
repGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
searchFlowPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
searchWalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
searchZeroCycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
spTreeBellmanFord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
spTreeDijkstra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
stepbackArbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Index 31

optrees-package Optimal Trees in Weighted Graphs

Description

Finds optimal trees in weighted graphs. In particular, this package provides solving tools for min-
imum cost spanning tree problems, minimum cost arborescence problems, shortest path tree prob-
lems and minimum cut tree problem.

Details

Package: optrees
Type: Package
Version: 1.0
Date: 2014-09-01
License: GPL-3

The most important functions are getMinimumSpanningTree, getMinimumArborescence, getShort-
estPathTree and getMinimumCutTree. The other functions included in the package are auxiliary
ones that can be used independently.

Author(s)

Manuel Fontenla <manu.fontenla@gmail.com>



ArcList2Cmat 3

ArcList2Cmat Builds the cost matrix of a graph from its list of arcs

Description

The ArcList2Cmat function constructs the cost matrix of a graph from a list that contains the arcs
and its associated weights.

Usage

ArcList2Cmat(nodes, arcs, directed = TRUE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).

Value

ArcList2Cmat returns a n×n matrix that contains the weights of the arcs. It means that the element
(i, j) of the matrix returns the weight of the arc (i, j). If the value of an arc (i, j) is NA or Inf, then
it means this arc does not exist in the graph.

checkArbor Checks if there is at least one arborescence in the graph

Description

Given a directed graph, checkArbor searchs for an arborescence from the list of arcs. An arbores-
cence is a directed graph with a source node and such that there is a unique path from the source to
any other node.

Usage

checkArbor(nodes, arcs, source.node = 1)



4 checkGraph

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

source.node source node of the graph. Its default value is 1.

Value

If checkArbor found an arborescence it returns TRUE, otherwise it returns FALSE. If there is an
arborescence the function also returns the list of arcs of the arborescence.

See Also

This function is an auxiliar function used in msArborEdmonds and getMinimumArborescence.

checkGraph Checks if the graph contains at least one tree or one arborescence

Description

The checkGraph function checks if it is possible to find at least one tree (or arborescence, if it is
the case) in the graph. It only happens when the graph is connected and it is posible to find a walk
from the source to any other node.

Usage

checkGraph(nodes, arcs, source.node = 1, directed = TRUE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

source.node number pointing the source node of the graph.

directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).

Value

checkGraph returns the value TRUE if the graph meets the requirements and FALSE otherwise. If the
graph is not acceptable this functions also prints the reason.



Cmat2ArcList 5

Examples

# Graph
nodes <- 1:4
arcs <- matrix(c(1,2,2, 1,3,15, 2,3,1, 2,4,9, 3,4,1),

byrow = TRUE, ncol = 3)
# Check graph
checkGraph(nodes, arcs)

Cmat2ArcList Builds the list of arcs of a graph from its cost matrix

Description

The Cmat2ArcList function builds the list of arcs of a graph from a cost matrix that contains the
weights of all the arcs.

Usage

Cmat2ArcList(nodes, Cmat, directed = TRUE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

Cmat n× n matrix that contains the weights or costs of the arcs. Row i and column j
represents the endpoints of an arc, and the value of the index ij is its weight or
cost. If this value is NA or Inf means that there is no arc ij.

directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).

Value

Cmat2ArcList returns a matrix with the list of arcs of the graph. Each row represents one arc. The
first two columns contain the two endpoints of each arc and the third column contains their weights.

compactCycle Compacts the nodes in a cycle into a single node

Description

Given a directed graph with a cycle, compactCycle compacts all the nodes in the cycle to a single
node called supernode. The function uses the first and the last node of the cycle as a fusion point
and obtains the costs of the incoming and outgoing arcs of the new node.

Usage

compactCycle(nodes, arcs, cycle)



6 findMinCut

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

cycle vector with the original nodes in the cycle.

Value

compactCycle returns the nodes and the list of arcs forming a new graph with the compressed cycle
within a supernode. Also returns a list of the correspondences between the nodes of the new graph
and the nodes of the previous graph.

See Also

This function is an auxiliar function used in msArborEdmonds and getMinimumArborescence.

findMinCut Finds the minimum cut of a given graph

Description

The findMinCut function can find the minimum cut of a given graph. For that, this function com-
putes the maximum flow of the network and applies the max-flow min-cut theorem to determine the
cut with minimum weight between the source and the sink nodes.

Usage

findMinCut(nodes, arcs, algorithm = "Ford-Fulkerson", source.node = 1,
sink.node = nodes[length(nodes)], directed = FALSE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

algorithm denotes the algorithm used to compute the maximum flow: "Ford-Fulkerson".

source.node number pointing to the source node of the graph. It’s node 1 by default.

sink.node number pointing to the sink node of the graph. It’s the last node by default.

directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).



findstCut 7

Details

The max-flow min-cut theorem proves that, in a flow network, the maximum flow between the
source node and the sink node and the weight of any minimum cut between them is equal.

Value

findMinCut returns a list with:

s.cut vector with the nodes of the s cut.
t.cut vector with the nodes of the t cut.
max.flow value with the maximum flow in the flow network.
cut.set list of arcs of the cut set founded.

See Also

This function is an auxiliar function used in ghTreeGusfield and getMinimumCutTree.

Examples

# Graph
nodes <- 1:6
arcs <- matrix(c(1,2,1, 1,3,7, 2,3,1, 2,4,3, 2,5,2, 3,5,4, 4,5,1, 4,6,6,

5,6,2), byrow = TRUE, ncol = 3)
# Find minimum cut
findMinCut(nodes, arcs, source.node = 2, sink.node = 6)

findstCut Determines the s-t cut of a graph

Description

findstCut reviews a given graph with a cut between two nodes with the bread-first search strategy
and determines the two cut set of the partition. The cut is marked in the arc list with an extra column
that indicates the remaining capacity of each arc.

Usage

findstCut(nodes, arcs, s = 1, t = nodes[length(nodes)])

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

s number pointing one node of the s cut in a given graph. It’s node 1 by default.
t number pointing one node of the t cut in a given graph. It’s the last node by

default.



8 getCheapArcs

Value

findstCut returns a list with two elements:

s.cut vector with the nodes of the s cut.

t.cut vector with the nodes of the t cut.

See Also

This function is an auxiliar function used in ghTreeGusfield and getMinimumCutTree.

getCheapArcs Substracts the minimum weight of the arcs pointing to each node

Description

The getCheapArcs function substracts to each arc of a given graph the value of the minimum
weight of the arcs pointing to the same node.

Usage

getCheapArcs(nodes, arcs)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

Value

getCheapArcs returns a matrix with a new list of arcs.

See Also

This function is an auxiliar function used in msArborEdmonds and getMinimumArborescence.



getComponents 9

getComponents Connected components of a graph

Description

The getComponents function returns all the connected components of a graph.

Usage

getComponents(nodes, arcs)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

Value

getComponents returns a list with all the components and the nodes of each one ($components)
and a matrix with all the arcs of the graph and its component ($components.arcs).

Examples

# Graph
nodes <- 1:4
arcs <- matrix(c(1,2,1, 1,6,1, 3,4,1, 4,5,1), ncol = 3, byrow = TRUE)
# Components
getComponents(nodes, arcs)

getMinCostArcs Selects the minimum cost of the arcs pointing to each node

Description

Given a directed graph, getMinCostArcs selects the minimum cost arcs entering each node and
removes the others.

Usage

getMinCostArcs(nodes, arcs)



10 getMinimumArborescence

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

Value

The getMinCostArcs function returns a matrix with the list of the minimum cost arcs pointing to
each node of the graph.

See Also

This function is an auxiliar function used in msArborEdmonds and getMinimumArborescence.

getMinimumArborescence

Computes a minimum cost arborescence

Description

Given a connected weighted directed graph, getMinimumArborescence computes a minimum cost
arborescence. This function provides a method to find the minimum cost arborescence with Ed-
monds’ algorithm.

Usage

getMinimumArborescence(nodes, arcs, source.node = 1, algorithm = "Edmonds",
stages.data = FALSE, show.data = TRUE, show.graph = TRUE,
check.graph = FALSE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

source.node number pointing to the source node of the graph. It’s node 1 by default.

algorithm denotes the algorithm used to find a minimum cost arborescence: "Edmonds".

check.graph logical value indicating if it is necesary to check the graph. Is FALSE by default.

show.data logical value indicating if the function displays the console output (TRUE) or not
(FALSE). The default is TRUE.



getMinimumArborescence 11

show.graph logical value indicating if the function displays a graphical representation of the
graph and its minimum arborescence (TRUE) or not (FALSE). The default is TRUE.

stages.data logical value indicating if the function returns data of each stage. The default is
FALSE.

Details

Given a connected weighted directed graph, a minimum cost arborescence is an arborescence such
that the sum of the weight of its arcs is minimum. In some cases, it is possible to find several
minimum cost arborescences, but the proposed algorithm only finds one of them.

Edmonds’ algorithm was developed by the mathematician and computer scientist Jack R. Edmonds
in 1967. Although, it was previously proposed in 1965 by Yoeng-jin Chu and Tseng-hong Liu. This
algorithm decreases the weights of the arcs in a graph and compacts cycles of zero weight until it
can find an arborescence. This arborescence has to be a minimum cost arborescence of the graph.

Value

getMinimumArborescence returns a list with:

tree.nodes vector containing the nodes of the minimum cost arborescence.

tree.arcs matrix containing the list of arcs of the minimum cost arborescence.

weight value with the sum of weights of the arcs.

stages number of stages required.

time time needed to find the minimum cost arborescence.

This function also represents the graph and the minimum arborescence and prints to the console the
results with additional information (number of stages, computational time, etc.).

References

Chu, Y. J., and Liu, T. H., "On the Shortest Arborescence of a Directed Graph", Science Sinica, vol.
14, 1965, pp. 1396-1400.

Edmonds, J., "Optimum Branchings", Journal of Research of the National Bureau of Standards, vol.
71B, No. 4, October-December 1967, pp. 233-240.

Examples

# Graph
nodes <- 1:4
arcs <- matrix(c(1,2,2, 1,3,3, 1,4,4, 2,3,3, 2,4,4, 3,2,3,

3,4,1, 4,2,1, 4,3,2),byrow = TRUE, ncol = 3)
# Minimum cost arborescence
getMinimumArborescence(nodes, arcs)



12 getMinimumCutTree

getMinimumCutTree getMinimumCutTree ———————————————————-
Computes a minimum cut tree

Description

Given a connected weighted undirected graph, getMinimumCutTree computes a minimum cut tree,
also called Gomory-Hu tree. This function uses the Gusfield’s algorithm to find it.

Usage

getMinimumCutTree(nodes, arcs, algorithm = "Gusfield", show.data = TRUE,
show.graph = TRUE, check.graph = FALSE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

algorithm denotes the algorithm to use for find a minimum cut tree or Gomory-Hu tree:
"Gusfield".

check.graph logical value indicating if it is necesary to check the graph. Is FALSE by default.

show.data logical value indicating if the function displays the console output (TRUE) or not
(FALSE). The default is TRUE.

show.graph logical value indicating if the function displays a graphical representation of the
graph and its minimum cut tree (TRUE) or not (FALSE). The default is TRUE.

Details

The minimum cut tree or Gomory-Hu tree was introduced by R. E. Gomory and T. C. Hu in 1961.
Given a connected weighted undirected graph, the Gomory-Hu tree is a weighted tree that contains
the minimum s-t cuts for all s-t pairs of nodes in the graph. Gomory and Hu developed an algorithm
to find this tree, but it involves maximum flow searchs and nodes contractions.

In 1990, Dan Gusfield proposed a new algorithm that can be used to find the Gomory-Hu tree
without any nodes contraction and simplifies the implementation.

Value

getMinimumCutTree returns a list with:

tree.nodes vector containing the nodes of the minimum cut tree.

tree.arcs matrix containing the list of arcs of the minimum cut tree.

weight value with the sum of weights of the arcs.



getMinimumSpanningTree 13

stages number of stages required.

time time needed to find the minimum cut tree.

This function also represents the graph and the minimum cut tree and prints in console the results
whit additional information (number of stages, computational time, etc.).

References

R. E. Gomory, T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial and
Applied Mathematics, vol. 9, 1961.

Dan Gusfield (1990). "Very Simple Methods for All Pairs Network Flow Analysis". SIAM J.
Comput. 19 (1): 143-155.

Examples

# Graph
nodes <- 1:6
arcs <- matrix(c(1,2,1, 1,3,7, 2,3,1, 2,4,3, 2,5,2, 3,5,4, 4,5,1, 4,6,6,

5,6,2), byrow = TRUE, ncol = 3)
# Minimum cut tree
getMinimumCutTree(nodes, arcs)

getMinimumSpanningTree

Computes a minimum cost spanning tree

Description

Given a connected weighted undirected graph, getMinimumSpanningTree computes a minimum
cost spanning tree. This function provides methods to find a minimum cost spanning tree with the
three most commonly used algorithms: "Prim", "Kruskal" and "Boruvka".

Usage

getMinimumSpanningTree(nodes, arcs, algorithm, start.node = 1,
show.data = TRUE, show.graph = TRUE, check.graph = FALSE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

algorithm denotes the algorithm used to find a minimum spanning tree: "Prim", "Kruskal"
or "Boruvka".

check.graph logical value indicating if it is necesary to check the graph. Is FALSE by default.



14 getMinimumSpanningTree

start.node number which indicates the first node in Prim’s algorithm. If none is specified
node 1 is used by default.

show.data logical value indicating if the function displays the console output (TRUE) or not
(FALSE). The default is TRUE.

show.graph logical value indicating if the function displays a graphical representation of the
graph and its minimum spanning tree (TRUE) or not (FALSE). The default is TRUE.

Details

Given a connected weighted undirected graph, a minimum spanning tree is a spanning tree such
that the sum of the weights of the arcs is minimum. There may be several minimum spanning trees
of the same weight in a graph. Several algorithms were proposed to find a minimum spanning tree
in a graph.

Prim’s algorithm was developed in 1930 by the mathematician Vojtech Jarnik, independently pro-
posed by the computer scientist Robert C. Prim in 1957 and rediscovered by Edsger Dijkstra in
1959. This is a greedy algorithm that can find a minimum spanning tree in a connected weighted
undirected graph by adding minimum cost arcs leaving visited nodes recursively.

Kruskal’s algorithm was published for first time in 1956 by mathematician Joseph Kruskal. This
is a greedy algorithm that finds a minimum cost spanning tree in a connected weighted undirected
graph by adding, without form cycles, the minimum weight arc of the graph in each iteration.

Boruvka’s algorithm was published for first time in 1926 by mathematician Otakar Boruvka. This
algorithm go through a connected weighted undirected graph, reviewing each component and adding
the minimum weight arcs without repeat it until one minimum spanning tree is complete.

Value

getMinimumSpanningTree returns a list with:

tree.nodes vector containing the nodes of the minimum cost spanning tree.
tree.arcs matrix containing the list of arcs of the minimum cost spanning tree.
weight value with the sum of weights of the arcs.
stages number of stages required.
stages.arcs stages in which each arc was added.
time time needed to find the minimum cost spanning tree.

This function also represents the graph and the minimum spanning tree and prints to the console the
results whit additional information (number of stages, computational time, etc.).

References

Prim, R. C. (1957), "Shortest Connection Networks And Some Generalizations", Bell System Tech-
nical Journal, 36 (1957), pp. 1389-1401.

Kruskal, Joshep B. (1956), "On the Shortest Spanning Subtree of a Graph and the Traveling Sales-
man Problem", Proceedings of the American Mathematical Society, Vol. 7, No. 1 (Feb., 1956), pp.
48-50.

Boruvka, Otakar (1926). "O jistem problemu minimalnim (About a certain minimal problem)".
Prace mor. prirodoved. spol. v Brne III (in Czech, German summary) 3: 37-58.



getShortestPathTree 15

Examples

# Graph
nodes <- 1:4
arcs <- matrix(c(1,2,2, 1,3,15, 1,4,3, 2,3,1, 2,4,9, 3,4,1),

ncol = 3, byrow = TRUE)
# Minimum cost spanning tree with several algorithms
getMinimumSpanningTree(nodes, arcs, algorithm = "Prim")
getMinimumSpanningTree(nodes, arcs, algorithm = "Kruskal")
getMinimumSpanningTree(nodes, arcs, algorithm = "Boruvka")

getShortestPathTree Computes a shortest path tree

Description

Given a connected weighted graph, directed or not, getShortestPathTree computes the shortest
path tree from a given source node to the rest of the nodes the graph, forming a shortest path tree.
This function provides methods to find it with two known algorithms: "Dijkstra" and "Bellman-
Ford".

Usage

getShortestPathTree(nodes, arcs, algorithm, check.graph = FALSE,
source.node = 1, directed = TRUE, show.data = TRUE, show.graph = TRUE,
show.distances = TRUE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

algorithm denotes the algorithm used to find a shortest path tree: "Dijkstra" or "Bellman-
Ford".

check.graph logical value indicating if it is necesary to check the graph. Is FALSE by default.

source.node number indicating the source node of the graph. It’s node 1 by default.

directed logical value indicating wheter the graph is directed (TRUE) or not (FALSE).

show.data logical value indicating if the function displays the console output (TRUE) or not
(FALSE). The default is TRUE.

show.graph logical value indicating if the function displays a graphical representation of the
graph and its shortest path tree (TRUE) or not (FALSE). The default is TRUE.

show.distances logical value indicating if the function displays in the console output the dis-
tances from source to all the other nodes. The default is TRUE.



16 getShortestPathTree

Details

Given a connected weighted graph, directed or not, a shortest path tree rooted at a source node is
a spanning tree such thtat the path distance from the source to any other node is the shortest path
distance between them. Differents algorithms were proposed to find a shortest path tree in a graph.

One of these algorithms is Dijkstra’s algorithm. Developed by the computer scientist Edsger Di-
jkstra in 1956 and published in 1959, it is an algorithm that can compute a shortest path tree from
a given source node to the others nodes in a connected, directed or not, graph with non-negative
weights.

The Bellman-Ford algorithm gets its name for two of the developers, Richard Bellman y Lester
Ford Jr., and it was published by them in 1958 and 1956 respectively. The same algorithm also was
published independently in 1957 by Edward F. Moore. This algorithm can compute the shortest
path from a source node to the rest of nodes in a connected, directed or not, graph with weights that
can be negatives. If the graph is connected and there isn’t negative cycles, the algorithm always
finds a shortest path tree.

Value

getShortestPathTree returns a list with:

tree.nodes vector containing the nodes of the shortest path tree.

tree.arcs matrix containing the list of arcs of the shortest path tree.

weight value with the sum of weights of the arcs.

distances vector with distances from source to other nodes

stages number of stages required.

time time needed to find the shortest path tree.

This function also represents the graph with the shortest path tree and prints to the console the
results with additional information (number of stages, computational time, etc.).

References

Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische Mathe-
matik 1, 269-271.

Bellman, Richard (1958). "On a routing problem". Quarterly of Applied Mathematics 16, 87-90.

Ford Jr., Lester R. (1956). Network Flow Theory. Paper P-923. Santa Monica, California: RAND
Corporation.

Moore, Edward F. (1959). "The shortest path through a maze". Proc. Internat. Sympos. Switching
Theory 1957, Part II. Cambridge, Mass.: Harvard Univ. Press. pp. 285-292.

Examples

# Graph
nodes <- 1:5
arcs <- matrix(c(1,2,2, 1,3,2, 1,4,3, 2,5,5, 3,2,4, 3,5,3, 4,3,1, 4,5,0),

ncol = 3, byrow = TRUE)
# Shortest path tree



getZeroArcs 17

getShortestPathTree(nodes, arcs, algorithm = "Dijkstra", directed=FALSE)
getShortestPathTree(nodes, arcs, algorithm = "Bellman-Ford", directed=FALSE)

# Graph with negative weights
nodes <- 1:5
arcs <- matrix(c(1,2,6, 1,3,7, 2,3,8, 2,4,5, 2,5,-4, 3,4,-3, 3,5,9, 4,2,-2,

5,1,2, 5,4,7), ncol = 3, byrow = TRUE)
# Shortest path tree
getShortestPathTree(nodes, arcs, algorithm = "Bellman-Ford", directed=TRUE)

getZeroArcs Selects zero weight arcs of a graph

Description

Given a directed graph, getZeroArcs returns the list of arcs with zero weight. Removes other arcs
by assign them infinite value.

Usage

getZeroArcs(nodes, arcs)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

Value

The getZeroArcs function returns a matrix with the list of zero weight arcs of the graph.

See Also

This function is an auxiliar function used in msArborEdmonds and getMinimumArborescence.



18 ghTreeGusfield

ghTreeGusfield Gomory-Hu tree with the Gusfield’s algorithm

Description

Given a connected weighted and undirected graph, the ghTreeGusfield function builds a Gomory-
Hu tree with the Gusfield’s algorithm.

Usage

ghTreeGusfield(nodes, arcs)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

Details

The Gomory-Hu tree was introduced by R. E. Gomory and T. C. Hu in 1961. Given a connected
weighted and undirected graph, the Gomory-Hu tree is a weighted tree that contains the minimum
s-t cuts for all s-t pairs of nodes in the graph. Gomory and Hu also developed an algorithm to find
it that involves maximum flow searchs and nodes contractions.

In 1990, Dan Gusfield proposed a new algorithm that can be used to find a Gomory-Hu tree without
nodes contractions and simplifies the implementation.

Value

ghTreeGusfield returns a list with:

tree.nodes vector containing the nodes of the Gomory-Hu tree.
tree.arcs matrix containing the list of arcs of the Gomory-Hu tree.
stages number of stages required.

References

R. E. Gomory, T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial and
Applied Mathematics, vol. 9, 1961.

Dan Gusfield (1990). "Very Simple Methods for All Pairs Network Flow Analysis". SIAM J.
Comput. 19 (1): 143-155.

See Also

A more general function getMinimumCutTree.



maxFlowFordFulkerson 19

maxFlowFordFulkerson Maximum flow with the Ford-Fulkerson algorithm

Description

The maxFlowFordFulkerson function computes the maximum flow in a given flow network with
the Ford-Fulkerson algorithm.

Usage

maxFlowFordFulkerson(nodes, arcs, directed = FALSE, source.node = 1,
sink.node = nodes[length(nodes)])

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

directed logical value indicating wheter the graph is directed (TRUE) or not (FALSE).

source.node number pointing to the source node of the graph. It’s node 1 by default.

sink.node number pointing to the sink node of the graph. It’s the last node by default.

Details

The Ford-Fulkerson algorithm was published in 1956 by L. R. Ford, Jr. and D. R. Fulkerson. This
algorithm can compute the maximum flow between source and sink nodes of a flow network.

Value

maxFlowFordFulkerson returns a list with:

s.cut vector with the nodes of the s cut.

t.cut vector with the nodes of the t cut.

max.flow value with the maximum flow in the flow network.

References

Ford, L. R.; Fulkerson, D. R. (1956). "Maximal flow through a network". Canadian Journal of
Mathematics 8: 399.

See Also

This function is an auxiliar function used in ghTreeGusfield and getMinimumCutTree.



20 msArborEdmonds

Examples

# Graph
nodes <- 1:6
arcs <- matrix(c(1,2,1, 1,3,7, 2,3,1, 2,4,3, 2,5,2, 3,5,4, 4,5,1, 4,6,6,

5,6,2), byrow = TRUE, ncol = 3)
# Maximum flow with Ford-Fulkerson algorithm
maxFlowFordFulkerson(nodes, arcs, source.node = 2, sink.node = 6)

msArborEdmonds Minimum cost arborescence with Edmonds’ algorithm

Description

Given a connected weighted and directed graph, msArborEdmonds uses Edmonds’ algorithm to find
a minimum cost arborescence.

Usage

msArborEdmonds(nodes, arcs, source.node = 1, stages.data = FALSE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

source.node source node of the graph. It’s node 1 by default.

stages.data logical value indicating if the function returns data of each stage. Is FALSE by
default.

Details

Edmonds’ algorithm was developed by the mathematician and computer scientist Jack R. Edmonds
in 1967. Previously, it was proposed in 1965 by Yoeng-jin Chu and Tseng-hong Liu.

Value

msArborEdmonds returns a list with:

tree.nodes vector containing the nodes of the minimum cost arborescence.

tree.arcs matrix containing the list of arcs of the minimum cost arborescence.

stages number of stages required.



msTreeBoruvka 21

References

Chu, Y. J., and Liu, T. H., "On the Shortest Arborescence of a Directed Graph", Science Sinica, vol.
14, 1965, pp. 1396-1400.

Edmonds, J., "Optimum Branchings", Journal of Research of the National Bureau of Standards, vol.
71B, No. 4, October-December 1967, pp. 233-240.

See Also

A more general function getMinimumSpanningTree.

msTreeBoruvka Minimum cost spanning tree with Boruvka’s algorithm.

Description

msTreeBoruvka computes a minimum cost spanning tree of an undirected graph with Boruvka’s
algorithm.

Usage

msTreeBoruvka(nodes, arcs)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

Details

Boruvka’s algorithm was firstly published in 1926 by the mathematician Otakar Boruvka. This
algorithm works in a connected, weighted and undirected graph, checking each component and
adding the minimum weight arcs that connect the component to other components until one mini-
mum spanning tree is complete.

Value

msTreeBoruvka returns a list with:

tree.nodes vector containing the nodes of the minimum cost spanning tree.

tree.arcs matrix containing the list of arcs of the minimum cost spanning tree.

stages number of stages required.

stages.arcs stages in which each arc was added.



22 msTreeKruskal

References

Boruvka, Otakar (1926). "O jistem problemu minimalnim (About a certain minimal problem)".
Prace mor. prirodoved. spol. v Brne III (in Czech, German summary) 3: 37-58.

See Also

A more general function getMinimumSpanningTree.

msTreeKruskal Minimum cost spanning tree with Kruskal’s algorithm

Description

msTreeKruskal computes a minimum cost spanning tree of an undirected graph with Kruskal’s
algorithm.

Usage

msTreeKruskal(nodes, arcs)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

Details

Kruskal’s algorithm was published for first time in 1956 by mathematician Joseph Kruskal. This
is a greedy algorithm that finds a minimum cost spanning tree in a connected weighted undirected
graph by adding, without forming cycles, the minimum weight arc of the graph at each stage.

Value

msTreeKruskal returns a list with:

tree.nodes vector containing the nodes of the minimum cost spanning tree.
tree.arcs matrix containing the list of arcs of the minimum cost spanning tree.
stages number of stages required.
stages.arcs stages in which each arc was added.

References

Kruskal, Joshep B. (1956), "On the Shortest Spanning Subtree of a Graph and the Traveling Sales-
man Problem", Proceedings of the American Mathematical Society, Vol. 7, No. 1 (Feb., 1956), pp.
48-50



msTreePrim 23

See Also

A more general function getMinimumSpanningTree.

msTreePrim Minimum cost spanning tree with Prim’s algorithm

Description

msTreePrim computes a minimum cost spanning tree of an undirected graph with Prim’s algorithm.

Usage

msTreePrim(nodes, arcs, start.node = 1)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

start.node number associated with the first node in Prim’s algorithm. By default, node 1 is
the first node.

Details

Prim’s algorithm was developed in 1930 by the mathematician Vojtech Jarnik, later proposed by the
computer scientist Robert C. Prim in 1957 and rediscovered by Edsger Dijkstra in 1959. This is a
greedy algorithm that can find a minimum spanning tree in a connected, weighted and undirected
graph by adding recursively minimum cost arcs leaving visited nodes.

Value

msTreePrim returns a list with:

tree.nodes vector containing the nodes of the minimum cost spanning tree.
tree.arcs matrix containing the list of arcs of the minimum cost spanning tree.
stages number of stages required.
stages.arcs stages in which each arc was added.

References

Prim, R. C. (1957), "Shortest Connection Networks And Some Generalizations", Bell System Tech-
nical Journal, 36 (1957), pp. 1389-1401

See Also

A more general function getMinimumSpanningTree.



24 removeMultiArcs

removeLoops Remove loops of a graph

Description

This function reviews the arc list of a given graph and check if exists loops in it. A loop is an arc
that connect a node with itself. If removeLoops find a loop remove it from the list of arcs.

Usage

removeLoops(arcs)

Arguments

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

Value

removeLoops returns a new list of arcs without any of the loops founded.

removeMultiArcs Remove multi-arcs with no minimum cost

Description

The removeMultiArcs function go through the arcs list of a given graph and check if there are more
than one arc between two nodes. If exist more than one, the function keeps one with minimum cost
and remove the others.

Usage

removeMultiArcs(arcs, directed = TRUE)

Arguments

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).

Value

removeMultiArcs returns a new list of arcs without any of the multi-arcs founded.



repGraph 25

repGraph Visual representation of a graph

Description

The repGraph function uses igraph package to represent a graph.

Usage

repGraph(nodes, arcs, tree = NULL, directed = FALSE, plot.title = NULL,
fix.seed = NULL)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

tree matrix with the list of arcs of a tree, if there is one. Is NULL by default.

directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).

plot.title string with main title of the graph. Is NULL by default.

fix.seed number to set a seed for the representation.

Value

repGraph returns a plot with the given graph.

Examples

# Graph
nodes <- c(1:4)
arcs <- matrix(c(1,2,2, 1,3,15, 2,3,1, 2,4,9, 3,4,1),

byrow = TRUE, ncol = 3)
# Plot graph
repGraph(nodes, arcs)



26 searchWalk

searchFlowPath Find a maximum flow path

Description

searchFlowPath go through a given graph and obtains a maximum flow path between source and
sink nodes. The function uses a deep-first search estrategy.

Usage

searchFlowPath(nodes, arcs, source.node = 1,
sink.node = nodes[length(nodes)])

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

source.node number pointing to the source node of the graph. It’s node 1 by default.

sink.node number pointing to the sink node of the graph. It’s the last node by default.

Value

searchFlowPath returns a list with two elements:

path.nodes vector with nodes of the path.

path.arcs matrix with the list of arcs that form the maximum flow path.

See Also

This function is an auxiliar function used in ghTreeGusfield and getMinimumCutTree.

searchWalk Finds an open walk in a graph

Description

This function walks a given graph, directed or not, searching for a walk from a starting node to a
final node. The searchWalk function uses a deep-first search strategy to returns the first open walk
found, regardless it has formed cycles or repeated nodes.



searchZeroCycle 27

Usage

searchWalk(nodes, arcs, directed = TRUE, start.node = nodes[1],
end.node = nodes[length(nodes)], method = NULL)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).

start.node number with one node from which a walk start.

end.node number with final node of the walk.

method character string specifying which method use to select the arcs that will form
the open walk: "min" if the function chooses the minimum weight arcs, "max"
if chooses the maximum weight arcs, or NULL if chooses the arcs by their order
in the list of arcs.

Value

If searchWalk found an open walk in the graph returns TRUE, a vector with the nodes of the walk
and a matrix with the list of arcs of it.

searchZeroCycle Zero weight cycle in a graph

Description

Given a directed graph, searchZeroCycle search paths in it that forms a zero weight cycle. The
function finishes when found one cycle.

Usage

searchZeroCycle(nodes, arcs)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.



28 spTreeBellmanFord

Value

searchZeroCycle returns a vector with the nodes and a matrix with a list of arcs of the cycle found.

See Also

This function is an auxiliar function used in msArborEdmonds and getMinimumArborescence.

spTreeBellmanFord Shortest path tree with Bellman-Ford algorithm

Description

The spTreeBellmanFord function computes the shortest path tree of an undirected or directed
graph with the Bellman-Ford algorithm.

Usage

spTreeBellmanFord(nodes, arcs, source.node = 1, directed = TRUE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

source.node number pointing the source node of the graph. It’s node 1 by default.

directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).

Details

The Bellman-Ford algorithm gets its name for two of the developers, Richard Bellman y Lester
Ford Jr., that published it in 1958 and 1956 respectively. The same algorithm also was published
independently in 1957 by Edward F. Moore.

The Bellman-Ford algorithm can compute the shortest path from a source node to the rest of nodes
that make a connected graph, directed or not, with weights that can be negatives. If the graph is
connected and there isn’t negative cycles, the algorithm always finds a shortest path tree.

Value

spTreeBellmanFord returns a list with:

tree.nodes vector containing the nodes of the shortest path tree.

tree.arcs matrix containing the list of arcs of the shortest path tree.

stages number of stages required.

distances vector with distances from source to other nodes



spTreeDijkstra 29

References

Bellman, Richard (1958). "On a routing problem". Quarterly of Applied Mathematics 16, 87-90.

Ford Jr., Lester R. (1956). Network Flow Theory. Paper P-923. Santa Monica, California: RAND
Corporation.

Moore, Edward F. (1959). "The shortest path through a maze". Proc. Internat. Sympos. Switching
Theory 1957, Part II. Cambridge, Mass.: Harvard Univ. Press. pp. 285-292.

See Also

A more general function getShortestPathTree.

spTreeDijkstra Shortest path tree with Dijkstra’s algorithm

Description

The spTreeDijkstra function computes the shortest path tree of an undirected or directed graph
with Dijkstra’s algorithm.

Usage

spTreeDijkstra(nodes, arcs, source.node = 1, directed = TRUE)

Arguments

nodes vector containing the nodes of the graph, identified by a number that goes from
1 to the order of the graph.

arcs matrix with the list of arcs of the graph. Each row represents one arc. The first
two columns contain the two endpoints of each arc and the third column contains
their weights.

source.node number pointing the source node of the graph. It’s node 1 by default.
directed logical value indicating whether the graph is directed (TRUE) or not (FALSE).

Details

Dijkstra’s algorithm was developed by the computer scientist Edsger Dijkstra in 1956 and published
in 1959. This is an algorithm that can computes a shortest path tree from a given source node to the
others nodes that make a connected graph, directed or not, with non-negative weights.

Value

spTreeDijkstra returns a list with:

tree.nodes vector containing the nodes of the shortest path tree.
tree.arcs matrix containing the list of arcs of the shortest path tree.
stages number of stages required.
distances vector with distances from source to other nodes



30 stepbackArbor

References

Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische Mathe-
matik 1, 269-271.

See Also

A more general function getShortestPathTree.

stepbackArbor Go back between two stages of the Edmond’s algorithm

Description

The stepbackArbor function rebuilds an arborescence present in earlier stage of Edmonds’s algo-
rithm to find a minimum cost arborescence.

Usage

stepbackArbor(before, after)

Arguments

before list with elements of the previous stage

after list with elements of the next stage

Value

A updated list of elements of the earlier stage with a new arborescence

See Also

This function is an auxiliar function used in msArborEdmonds and getMinimumArborescence.



Index

ArcList2Cmat, 3

checkArbor, 3
checkGraph, 4
Cmat2ArcList, 5
compactCycle, 5

findMinCut, 6
findstCut, 7

getCheapArcs, 8
getComponents, 9
getMinCostArcs, 9
getMinimumArborescence, 2, 4, 6, 8, 10, 10,

17, 28, 30
getMinimumCutTree, 2, 7, 8, 12, 18, 19, 26
getMinimumSpanningTree, 2, 13, 21–23
getShortestPathTree, 2, 15, 29, 30
getZeroArcs, 17
ghTreeGusfield, 7, 8, 18, 19, 26

maxFlowFordFulkerson, 19
msArborEdmonds, 4, 6, 8, 10, 17, 20, 28, 30
msTreeBoruvka, 21
msTreeKruskal, 22
msTreePrim, 23

optrees (optrees-package), 2
optrees-package, 2

removeLoops, 24
removeMultiArcs, 24
repGraph, 25

searchFlowPath, 26
searchWalk, 26
searchZeroCycle, 27
spTreeBellmanFord, 28
spTreeDijkstra, 29
stepbackArbor, 30

31


	optrees-package
	ArcList2Cmat
	checkArbor
	checkGraph
	Cmat2ArcList
	compactCycle
	findMinCut
	findstCut
	getCheapArcs
	getComponents
	getMinCostArcs
	getMinimumArborescence
	getMinimumCutTree
	getMinimumSpanningTree
	getShortestPathTree
	getZeroArcs
	ghTreeGusfield
	maxFlowFordFulkerson
	msArborEdmonds
	msTreeBoruvka
	msTreeKruskal
	msTreePrim
	removeLoops
	removeMultiArcs
	repGraph
	searchFlowPath
	searchWalk
	searchZeroCycle
	spTreeBellmanFord
	spTreeDijkstra
	stepbackArbor
	Index

