otsad: Online Time Series Anomaly Detectors
Implements a set of online fault detectors for time-series, called: PEWMA see M. Carter
             et al. (2012) <doi:10.1109/SSP.2012.6319708>, SD-EWMA and TSSD-EWMA see H. Raza et al. 
             (2015) <doi:10.1016/j.patcog.2014.07.028>, KNN-CAD see E. Burnaev et al. (2016)
             <arXiv:1608.04585>, KNN-LDCD see V. Ishimtsev et al. (2017) <arXiv:1706.03412> and 
             CAD-OSE see M. Smirnov (2018) <https://github.com/smirmik/CAD>. The first three 
             algorithms belong to prediction-based techniques and the last three belong to 
             window-based techniques. In addition, the SD-EWMA and PEWMA algorithms are algorithms 
             designed to work in stationary environments, while the other four 
             are algorithms designed to work in non-stationary environments.
| Version: | 
0.2.0 | 
| Depends: | 
R (≥ 3.4.0) | 
| Imports: | 
stats, ggplot2, plotly, sigmoid, reticulate | 
| Suggests: | 
testthat, stream, knitr, rmarkdown | 
| Published: | 
2019-09-06 | 
| Author: | 
Alaiñe Iturria [aut, cre],
  Jacinto Carrasco [aut],
  Francisco Herrera [aut],
  Santiago Charramendieta [aut],
  Karmele Intxausti [aut] | 
| Maintainer: | 
Alaiñe Iturria  <aiturria at ikerlan.es> | 
| BugReports: | 
https://github.com/alaineiturria/otsad/issues | 
| License: | 
AGPL (≥ 3) | 
| URL: | 
https://github.com/alaineiturria/otsad | 
| NeedsCompilation: | 
no | 
| SystemRequirements: | 
Python (>= 3.0.1); bencode-python3 (1.0.2) | 
| Citation: | 
otsad citation info  | 
| Materials: | 
README NEWS  | 
| In views: | 
TimeSeries | 
| CRAN checks: | 
otsad results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=otsad
to link to this page.