
Package ‘packrat’
August 20, 2021

Type Package

Title A Dependency Management System for Projects and their R Package
Dependencies

Version 0.7.0

Author Kevin Ushey, Jonathan McPherson, Joe Cheng, Aron Atkins, JJ Allaire

Maintainer Aron Atkins <aron@rstudio.com>

Description Manage the R packages your project depends
on in an isolated, portable, and reproducible way.

License GPL-2

Depends R (>= 3.0.0)

Imports tools, utils

Suggests testthat (>= 3.0.0), devtools, httr, knitr, rmarkdown

URL https://github.com/rstudio/packrat/

BugReports https://github.com/rstudio/packrat/issues

RoxygenNote 7.1.1

Encoding UTF-8

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2021-08-20 15:20:02 UTC

R topics documented:
bundle . 2
clean . 3
disable . 4
init . 5
install . 6
install_local . 7

1

https://github.com/rstudio/packrat/
https://github.com/rstudio/packrat/issues

2 bundle

lockfile-metadata . 8
packify . 9
packrat . 10
packrat-external . 11
packrat-mode . 12
packrat-options . 13
packrat-resources . 15
repository-management . 15
repos_create . 16
repos_upload . 17
restore . 17
search_path . 19
snapshot . 19
status . 20
unbundle . 21
unused_packages . 22

Index 23

bundle Bundle a Packrat Project

Description

Bundle a packrat project, for easy sharing.

Usage

bundle(
project = NULL,
file = NULL,
include.src = TRUE,
include.lib = FALSE,
include.bundles = TRUE,
include.vcs.history = FALSE,
overwrite = FALSE,
omit.cran.src = FALSE,
...

)

Arguments

project The project directory. Defaults to the currently activate project. By default, the
current project active under packratMode is checked.

file The path to write the bundle. By default, we write the bundle to packrat/bundles/<project>-<date>.tar.gz,
with <date> as returned by Sys.date().

include.src Include the packrat sources?

clean 3

include.lib Include the packrat private library?
include.bundles

Include other packrat bundle tarballs (as in packrat/bundles/)?
include.vcs.history

Include version control history (ie, .git/ or .svn/ folders)?
overwrite Boolean; overwrite the file at file if it already exists?
omit.cran.src Boolean; when TRUE, packages whose sources can be retrieved from CRAN are

excluded from the bundle.
... Optional arguments passed to tar.

Details

The project is bundled as a gzipped tarball (.tar.gz), which can be unbundled either with packrat::unbundle
(which restores the project as well), R’s own utils::untar, or through most system tar imple-
mentations.

Value

The path (invisibly) to the bundled project.

clean Remove Packages from the Library

Description

Remove packages from the given library.

Usage

clean(
packages = NULL,
project = NULL,
lib.loc = libDir(project),
dry.run = FALSE,
force = FALSE

)

Arguments

packages A set of package names to remove from the project. When NULL, unused_packages
is used to find packages unused in the project.

project The project directory. Defaults to current working directory.
lib.loc The library to clean. Defaults to the private package library associated with the

project directory.
dry.run Perform a dry run, returning records on which packages would have been moved

by the current clean action.
force Force package removal, even if they are still in use within the project?

4 disable

Examples

Not run:

Get unused package records
unused_packages()

Clean all unused packages
clean()

Clean specific packages
clean("foo")

End(Not run)

disable Disable the use of Packrat in a Project

Description

Disable packrat within a project, reverting to the use of standard user package libraries.

Usage

disable(project = NULL, restart = TRUE)

Arguments

project The directory in which packrat will be disabled (defaults to the current working
directory)

restart If TRUE, restart the R session after disabling packrat.

Note

Disabling packrat for a project removes the packrat initialization code from the .Rprofile file, re-
sulting in the use of standard user package libraries. Note that the packrat directory is not deleted,
but remains unused.

To re-enable the use of packrat for a project you can call the init function.

The restart parameter will only result in a restart of R when the R environment packrat is running
within makes available a restart function via getOption("restart").

init 5

init Initialize Packrat on a new or existing R project

Description

Given a project directory, makes a new packrat project in the directory.

Usage

init(
project = ".",
options = NULL,
enter = TRUE,
restart = enter,
infer.dependencies = TRUE

)

Arguments

project The directory that contains the R project.

options An R list of options, as specified in packrat-options.

enter Boolean, enter packrat mode for this project after finishing a init?

restart If TRUE, restart the R session after init.
infer.dependencies

If TRUE, infer package dependencies by examining the R code.

Details

init works as follows:

1. Application dependencies are computed by examining the R code throughout the project for
library and require calls. You can opt out of this behavior by setting infer.dependencies
to FALSE.

2. A snapshot is taken of the version of each package currently used by the project as described
in snapshot, and each package’s sources are downloaded.

3. A private library is created in the directory.

4. The snapshot is applied to the directory as described in restore.

When init is finished, all the packages on which the project depends are installed in a new, private
library located inside the project directory.

You must restart your R session in the given project directory after running init in order for
the changes to take effect!
When R is started in the directory, it will use the new, private library. Calls to require and library
will load packages from the private library (except for ’base’ or ’recommended’ R packages, which
are found in the system library), and functions such as install.packages will modify that private
library. You can sync this private library with packrat using snapshot and restore.

6 install

Note

The restart parameter will only result in a restart of R when the R environment packrat is running
within makes available a restart function via getOption("restart").

See Also

packrat for a description of the files created by init.

Examples

Not run:

initialize a project using a local repository of packages
packrat::init(options = list(local.repos = "~/projects/R"))

End(Not run)

install Install a local development package.

Description

Uses R CMD INSTALL to install the package. Will also try to install dependencies of the package from
CRAN, if they’re not already installed.

Usage

install(
pkg = ".",
reload = TRUE,
quick = FALSE,
local = TRUE,
args = getOption("devtools.install.args"),
quiet = FALSE,
dependencies = NA,
build_vignettes = !quick,
keep_source = getOption("keep.source.pkgs")

)

Arguments

pkg package description, can be path or package name.

reload if TRUE (the default), will automatically reload the package after installing.

quick if TRUE skips docs, multiple-architectures, demos, and vignettes, to make instal-
lation as fast as possible.

install_local 7

local if FALSE builds the package first: this ensures that the installation is completely
clean, and prevents any binary artefacts (like ‘.o’, .so) from appearing in your
local package directory, but is considerably slower, because every compile has
to start from scratch.

args An optional character vector of additional command line arguments to be passed
to R CMD install. This defaults to the value of the option "devtools.install.args".

quiet if TRUE suppresses output from this function.

dependencies logical indicating to also install uninstalled packages which this pkg depends
on/links to/suggests. See argument dependencies of install.packages.

build_vignettes

if TRUE, will build vignettes. Normally it is build that’s responsible for creating
vignettes; this argument makes sure vignettes are built even if a build never
happens (i.e. because local = TRUE.

keep_source If TRUE will keep the srcrefs from an installed package. This is useful for debug-
ging (especially inside of RStudio). It defaults to the option "keep.source.pkgs".

Details

By default, installation takes place using the current package directory. If you have compiled code,
this means that artefacts of compilation will be created in the src/ directory. If you want to avoid
this, you can use local = FALSE to first build a package bundle and then install it from a temporary
directory. This is slower, but keeps the source directory pristine.

If the package is loaded, it will be reloaded after installation.

install_local Install a Package from a Local Repository

Description

This function can be used to install a package from a local ’repository’; i.e., a directory containing
package tarballs and sources.

Usage

install_local(pkgs, ..., lib = .libPaths()[1], repos = get_opts("local.repos"))

Arguments

pkgs A character vector of package names.

... Optional arguments passed to install.

lib The library in which the package should be installed.

repos The local repositories to search for the package names specified.

8 lockfile-metadata

lockfile-metadata Get / Set packrat lockfile metadata

Description

Get and set metadata in the current packrat-managed project lockfile packrat.lock

Usage

set_lockfile_metadata(repos = NULL, r_version = NULL, project = NULL)

get_lockfile_metadata(metadata = NULL, simplify = TRUE, project = NULL)

Arguments

repos A named character vector of the form c(<repoName> = "<pathToRepo>").

r_version A length-one character vector with suitable numeric version string. See package_version.

project The project directory. When in packrat mode, defaults to the current project;
otherwise, defaults to the current working directory.

metadata The lockfile field name(s) to draw from.

simplify Boolean; if TRUE the returned metadata will be un-listed.

Details

Project’s packrat.lock contains some metadata before packages dependencies informations. The
project’s lockfile is created and updated programmatically by snapshot. However it could be nec-
essary sometimes to modify manually some of those values. For example, it could be useful to set
another repository CRAN url when deploying to a offline environnement.

available metadata

• r_version: R version the project depends on

• repos: Name of repos and their url recorded packages can be retrieve from. Only url is
recommended to change if need. Name of repos is used in package records and must be
identical

Examples

Not run:
changes repos url
repos <- old_repos <- get_lockfile_metadata("repos")
repos
repos["CRAN"] <- "https://cran.r-project.org/"
set_lockfile_metadata(repos = repos)
get_lockfile_metadata("repos")
setting back old state
set_lockfile_metadata(repos = old_repos)

packify 9

changes R version
rver <- old_rver <- get_lockfile_metadata("r_version")
rver
rver <- "3.4.1"
set_lockfile_metadata(r_version = rver)
get_lockfile_metadata("r_version")
Setting back old state
set_lockfile_metadata(r_version = old_rver)

End(Not run)

packify Automatically Enter Packrat Mode on Startup

Description

Install/augment the .Rprofile in a project, so that all R sessions started in this directory enter
packrat mode, and use the local project library.

Usage

packify(project = NULL, quiet = FALSE)

Arguments

project The directory in which to install the .Rprofile file.

quiet Be chatty?

Details

It is not normally necessary to call packify directly; these files are normally installed by init.
packify can be used to restore the files if they are missing (for instance, if they were not added to
source control, or were accidentally removed).

You’ll need to restart R in the specified directory after running packify in order to start using the
private package library.

10 packrat

packrat Packrat: Reproducible dependency management

Description

Packrat is a tool for managing the R packages your project depends on in an isolated, portable, and
reproducible way.

Details

Use packrat to make your R projects more:

• Isolated: Installing a new or updated package for one project won’t break your other projects,
and vice versa. That’s because packrat gives each project its own private package library.

• Portable: Easily transport your projects from one computer to another, even across different
platforms. Packrat makes it easy to install the packages your project depends on.

• Reproducible: Packrat records the exact package versions you depend on, and ensures those
exact versions are the ones that get installed wherever you go.

Use init to create a new packrat project, snapshot to record changes to your project’s library, and
restore to recreate your library the way it was the last time you (or anyone!) took a snapshot.

Using these simple functions and sharing packrat’s files lets you collaborate in a shared, consistent
environment with others as your project grows and changes, and provides an easy way to share your
results when you’re done.

Anatomy of a packrat project

A packrat project contains a few extra files and directories. The init function creates these files for
you, if they don’t already exist.

packrat/lib/ Private package library for this project.

packrat/src/ Source packages of all the dependencies that packrat has been made aware of.

packrat/packrat.lock Lists the precise package versions that were used to satisfy dependencies,
including dependencies of dependencies. (This file should never be edited by hand!)

.Rprofile Directs R to use the private package library (when it is started from the project direc-
tory).

Using packrat with version control

Packrat is designed to work hand in hand with Git, Subversion, or any other version control system.
Be sure to check in the .Rprofile, packrat.lock files, and everything under packrat/src/. You
can tell your VCS to ignore packrat/lib/ (or feel free to check it in if you don’t mind taking up
some extra space in your repository).

Author(s)

RStudio, Inc.

packrat-external 11

Examples

Not run:
Create a new packrat project from an existing directory of \R code
init()

Install a package and take a snapshot of the new state of the library
install.packages("TTR")
snapshot()

Accidentally remove a package and restore to add it back
remove.packages("TTR")
restore()

End(Not run)

packrat-external Managing External Libraries

Description

These functions provide a mechanism for (temporarily) using packages outside of the packrat pri-
vate library. The packages are searched within the ’default’ libraries; that is, the libraries that would
be available upon launching a new R session.

Usage

with_extlib(packages = NULL, expr, envir = parent.frame())

extlib(packages)

user_lib()

packrat_lib()

Arguments

packages An optional set of package names (as a character vector) to load for the duration
of evaluation of expr. Whether packages is provided or NULL (the default),
expr is evaluated in an environment where the external library path is in place,
not the local (packrat) library path.

expr An R expression.

envir An environment in which the expression is evaluated.

12 packrat-mode

Examples

Not run:
with_extlib("lattice", xyplot(1 ~ 1))
with_extlib(expr = packageVersion("lattice"))
since devtools requires roxygen2 >= 5.0.0 for this step, this
should fail unless roxygen2 is available in the packrat lib.loc
with_extlib("devtools", load_all("path/to/project"))
this method will work given roxygen2 is installed in the
non-packrat lib.loc with devtools
with_extlib(expr = devtools::load_all("path/to/project"))

End(Not run)

packrat-mode Packrat Mode

Description

Use these functions to switch packrat mode on and off. When within packrat mode, the R session
will use the private library generated for the current project.

Usage

packrat_mode(
on = NULL,
project = NULL,
auto.snapshot = get_opts("auto.snapshot"),
clean.search.path = FALSE

)

on(
project = NULL,
auto.snapshot = get_opts("auto.snapshot"),
clean.search.path = TRUE,
print.banner = TRUE

)

off(project = NULL, print.banner = TRUE)

Arguments

on Turn packrat mode on (TRUE) or off (FALSE). If omitted, packrat mode will be
toggled.

project The directory in which packrat mode is launched – this is where local libraries
will be used and updated.

auto.snapshot Perform automatic, asynchronous snapshots?

packrat-options 13

clean.search.path

Detach and unload any packages loaded from non-system libraries before enter-
ing packrat mode?

print.banner Print the packrat banner when entering / exiting packrat mode? The packrat
banner informs you of the new packrat mode state, as well as the library path in
use.

packrat-options Get/set packrat project options

Description

Get and set options for the current packrat-managed project.

Usage

get_opts(options = NULL, simplify = TRUE, project = NULL)

set_opts(..., project = NULL, persist = TRUE)

opts

Arguments

options A character vector of valid option names.

simplify Boolean; unlist the returned options? Useful for when retrieving a single op-
tion.

project The project directory. When in packrat mode, defaults to the current project;
otherwise, defaults to the current working directory.

... Entries of the form key = value, used for setting packrat project options.

persist Boolean; persist these options for future sessions?

Valid Options

• auto.snapshot: Perform automatic, asynchronous snapshots when running interactively?
(logical; defaults to FALSE)

• use.cache: Install packages into a global cache, which is then shared across projects? The
directory to use is read through Sys.getenv("R_PACKRAT_CACHE_DIR"). Windows support
is currently experimental. (logical; defaults to FALSE)

• print.banner.on.startup: Print the banner on startup? Can be one of TRUE (always print),
FALSE (never print), and 'auto' (do the right thing) (defaults to "auto")

• vcs.ignore.lib: If TRUE, version control configuration is modified to ignore packrat private
libraries. (logical; defaults to TRUE)

• vcs.ignore.src: If TRUE, version control configuration is modified to ignore packrat private
sources. (logical; defaults to FALSE)

14 packrat-options

• external.packages: Packages which should be loaded from the user library. This can be
useful for very large packages which you don’t want duplicated across multiple projects, e.g.
BioConductor annotation packages, or for package development scenarios wherein you want
to use e.g. devtools and roxygen2 for package development, but do not want your package to
depend on these packages. (character; defaults to Sys.getenv("R_PACKRAT_EXTERNAL_PACKAGES"))

• local.repos: Ad-hoc local ’repositories’; i.e., directories containing package sources within
sub-directories. (character; empty by default)

• load.external.packages.on.startup: Load any packages specified within external.packages
on startup? (logical; defaults to TRUE)

• ignored.packages: Prevent packrat from tracking certain packages. Dependencies of these
packages will also not be tracked (unless these packages are encountered as dependencies in
a separate context from the ignored package). (character; empty by default)

• ignored.directories: Prevent packrat from looking for dependencies inside certain direc-
tories of your workspace. For example, if you have set your "local.repos" to be inside your
local workspace so that you can track custom packages as git submodules. Each item should
be the relative path to a directory in the workspace, e.g. "data", "lib/gitsubmodule". Note that
packrat already ignores any "invisible" files and directories, such as those whose names start
with a "." character. (character; empty by default)

• quiet.package.installation: Emit output during package installation? (logical; defaults
to TRUE)

• snapshot.recommended.packages: Should ’recommended’ packages discovered in the sys-
tem library be snapshotted? See the Priority field of available.packages() for more
information – ’recommended’ packages are those normally bundled with CRAN releases of
R on OS X and Windows, but new releases are also available on the CRAN server. (logical;
defaults to FALSE)

• snapshot.fields: What fields of a package’s DESCRIPTION file should be used when
discovering dependencies? (character, defaults to c("Imports","Depends","LinkingTo"))

• symlink.system.packages: Symlink base R packages into a private packrat/lib-R di-
rectory? This is done to further encapsulate the project from user packages that have been
installed into the R system library. (boolean, defaults to TRUE)

Examples

Not run:
use 'devtools' and 'knitr' from the user library
packrat::set_opts(external.packages = c("devtools", "knitr"))

set local repository
packrat::set_opts(local.repos = c("~/projects/R"))

get the set of 'external packages'
packrat::opts$external.packages()

set the external packages
packrat::opts$external.packages(c("devtools", "knitr"))

End(Not run)

repository-management 15

packrat-resources Paths to Packrat Resources

Description

These functions provide a mechanism for retrieving the paths to Packrat resource directories. Each
of these directories can be overridden by setting either an environment variable, or an R option.

Usage

project_dir(project = NULL)

src_dir(project = NULL)

lib_dir(project = NULL)

bundles_dir(project = NULL)

Arguments

project The project directory.

Project Directory

project_dir() is special – the R_PACKRAT_PROJECT_DIR environment variable is set and unset by
on and off, respectively, and generally should not be overridden by the user.

Directory Resolution

The following table shows the order in which resource directories are discovered (from left to right).
The first non-empty result is used.

API Environment Variable R Option Default Value
project_dir() R_PACKRAT_PROJECT_DIR packrat.project.dir getwd()
src_dir() R_PACKRAT_SRC_DIR packrat.src.dir "packrat/src"
lib_dir() R_PACKRAT_LIB_DIR packrat.lib.dir "packrat/lib"
bundles_dir() R_PACKRAT_BUNDLES_DIR packrat.bundles.dir "packrat/bundles"
(none) R_PACKRAT_LIB_R_DIR packrat.lib-r.dir "packrat/lib-R"
(none) R_PACKRAT_LIB_EXT_DIR packrat.lib-ext.dir "packrat/lib-ext"

repository-management Add a Repository

16 repos_create

Description

Add a repository to the set of currently available repositories. This is effectively an easier-to-use
wrapper over interacting with the "repos" option, which is otherwise set with options(repos =
...).

Usage

repos_add(..., overwrite = FALSE)

repos_add_local(..., overwrite = FALSE)

repos_set(...)

repos_set_local(...)

repos_remove(names)

repos_list()

Arguments

... Named arguments of the form <repoName> = <pathToRepo>.
overwrite Boolean; overwrite if a repository with the given name already exists?
names The names of repositories (as exist in e.g. names(getOption("repos"))).

Details

repos_add_local is used for adding file-based repositories; that is, CRAN repositories that live
locally on disk and not on the internet / local network.

repos_create Create a Local, CRAN-like Repository

Description

Generate a local CRAN-like repository which can be used to store and distribute R packages.

Usage

repos_create(path, name = basename(path), add = TRUE)

Arguments

path Path to a local CRAN-like repository.
name The name to assign to the repository. Defaults to the directory name in which

the reopsitory is created.
add Add this new repository to the current set of repositories?

repos_upload 17

repos_upload Upload a Package to a Local CRAN-like Repository

Description

Upload a Package to a Local CRAN-like Repository

Usage

repos_upload(package, to, ...)

Arguments

package Path to a package tarball. The tarball should be created by R CMD build; alter-
natively, it can be the path to a folder containing the source code for a package
(which will then be built with R CMD build) and then uploaded to the local repos-
itory.

to The name of the CRAN-like repository. It (currently) must be a local (on-disk)
CRAN repository.

... Optional arguments passed to R CMD build.

restore Apply the most recent snapshot to the library

Description

Applies the most recent snapshot to the project’s private library.

Usage

restore(
project = NULL,
overwrite.dirty = FALSE,
prompt = interactive(),
dry.run = FALSE,
restart = !dry.run

)

Arguments

project The project directory. When in packrat mode, if this is NULL, then the direc-
tory associated with the current packrat project is used. Otherwise, the project
directory specified is used.

18 restore

overwrite.dirty

A dirty package is one that has been changed since the last snapshot or restore.
Packrat will leave these alone by default. If you want to guarantee that restore
will put you in the exact state represented by the snapshot being applied, use
overwrite.dirty = TRUE.

prompt TRUE to prompt before performing potentially destructive changes (package re-
movals or downgrades); FALSE to perform these operations without confirma-
tion.

dry.run If TRUE, compute the changes to your packrat state that would be made if a
restore was performed, without actually executing them.

restart If TRUE, restart the R session after restoring.

Details

restore works by adding, removing, and changing packages so that the set of installed packages
and their versions matches the snapshot exactly.

There are three common use cases for restore:

• Hydrate: Use restore after copying a project to a new machine to populate the library on
that machine.

• Sync: Use restore to apply library changes made by a collaborator to your own library. (In
general, you want to run restore whenever you pick up a change to packrat.lock)

• Rollback: Use restore to undo accidental changes made to the library since the last snapshot.

restore cannot make changes to packages that are currently loaded. If changes are necessary to
currently loaded packages, you will need to restart R to apply the changes (restore will let you
know when this is necessary). It is recommended that you do this as soon as possible, because any
library changes made between running restore and restarting R will be lost.

Note

restore can be destructive; it will remove packages that were not in the snapshot, and it will replace
newer packages with older versions if that’s what the snapshot indicates. restore will warn you
before attempting to remove or downgrade a package (if prompt is TRUE), but will always perform
upgrades and new installations without prompting.

restore works only on the private package library created by packrat; if you have other libraries
on your path, they will be unaffected.

The restart parameter will only result in a restart of R when the R environment packrat is running
within makes available a restart function via getOption("restart").

See Also

snapshot, the command that creates the snapshots applied with restore.

status to view the differences between the most recent snapshot and the library.

search_path 19

search_path Get Packages on the Search Path

Description

Retrieve the packages on the search path, as well as the associated library location.

Usage

search_path()

snapshot Capture and store the packages and versions in use

Description

Finds the packages in use in the project, and stores a list of those packages, their sources, and their
current versions in packrat.

Usage

snapshot(
project = NULL,
available = NULL,
lib.loc = libDir(project),
ignore.stale = FALSE,
dry.run = FALSE,
prompt = interactive(),
snapshot.sources = TRUE,
infer.dependencies = TRUE

)

Arguments

project The project directory. Defaults to current working directory.

available A database of available packages.

lib.loc The library to snapshot. Defaults to the private library associated with the given
directory.

ignore.stale Stale packages are packages that are different from the last snapshot, but were
installed by packrat. Typically, packages become stale when a new snapshot is
available, but you haven’t applied it yet with restore. By default, packrat will
prevent you from taking a snapshot when you have stale packages to prevent
you from losing changes from the unapplied snapshot. If your intent is to over-
write the last snapshot without applying it, use ignore.stale = TRUE to skip
this check.

20 status

dry.run Computes the changes to your packrat state that would be made if a snapshot
were performed, and prints them to the console.

prompt TRUE to prompt before performing snapshotting package changes that might be
unintended; FALSE to perform these operations without confirmation. Poten-
tially unintended changes include snapshotting packages at an older version than
the last snapshot, or missing despite being present in the last snapshot.

snapshot.sources

Boolean; should package sources be downloaded during snapshot?
infer.dependencies

If TRUE, infer package dependencies by examining R code used within the project.
This included the R code contained within .R files, as well as other multi-mode
documents (e.g. .Rmd).

Note

snapshot modifies the project’s packrat.lock file, and the sources stored in the project’s packrat/src
directory. If you are working with a version control system, your collaborators can sync the changes
to these files and then use restore to apply your snapshot.

See Also

restore to apply a snapshot. status to view the differences between the most recent snapshot and
the library.

Examples

Not run:
Take a snapshot of the current project
snapshot()

See what changes would be included in a snapshot
snapshot(dry.run = TRUE)

End(Not run)

status Show differences between the last snapshot and the library

Description

Shows the differences between the project’s packrat dependencies, its private package library, and
its R scripts.

Usage

status(project = NULL, lib.loc = libDir(project), quiet = FALSE)

unbundle 21

Arguments

project The directory that contains the R project.

lib.loc The library to examine. Defaults to the private library associated with the project
directory.

quiet Print detailed information about the packrat status to the console?

Details

These differences are created when you use the normal R package management commands like
install.packages, update.packages, and remove.packages. To bring these differences into
packrat, you can use snapshot.

Differences can also arise if one of your collaborators adds or removes packages from the packrat
dependencies. In this case, you simply need to tell packrat to update your private package library
using restore.

Value

Either NULL if a packrat project has not yet been initialized, or a (invisibly) a data.frame with
components:

package The package name,
packrat.version

The package version used in the last snapshot,

packrat.source The location from which the package was obtained,
library.version

The package version available in the local library,

currently.used Whether the package is used in any of the R code in the current project.

unbundle Unbundle a Packrat Project

Description

Unbundle a previously bundled project.

Usage

unbundle(bundle, where, ..., restore = TRUE)

Arguments

bundle Path to the bundled file.

where The directory where we will unbundle the project.

... Optional arguments passed to tar.

restore Boolean; should we restore the library after unbundle-ing the project?

22 unused_packages

unused_packages Find Unused Packages in a Project

Description

Unused packages are those still contained within your project library, but are unused in your project.

Usage

unused_packages(project = NULL, lib.loc = libDir(project))

Arguments

project The project directory.

lib.loc The library to check.

Index

∗ datasets
packrat-options, 13

build, 7
bundle, 2, 21
bundles_dir (packrat-resources), 15

clean, 3

disable, 4

extlib (packrat-external), 11

get_lockfile_metadata
(lockfile-metadata), 8

get_opts (packrat-options), 13

init, 4, 5, 9, 10
install, 6, 7
install.packages, 5, 7, 21
install_local, 7

lib_dir (packrat-resources), 15
library, 5
lockfile-metadata, 8

off, 15
off (packrat-mode), 12
on, 15
on (packrat-mode), 12
opts (packrat-options), 13

package_version, 8
packify, 9
packrat, 6, 10
packrat-external, 11
packrat-mode, 12
packrat-options, 13
packrat-resources, 15
packrat_lib (packrat-external), 11
packrat_mode (packrat-mode), 12

project_dir (packrat-resources), 15

remove.packages, 21
repos_add (repository-management), 15
repos_add_local

(repository-management), 15
repos_create, 16
repos_list (repository-management), 15
repos_remove (repository-management), 15
repos_set (repository-management), 15
repos_set_local

(repository-management), 15
repos_upload, 17
repository-management, 15
require, 5
restore, 5, 10, 17, 19–21

search_path, 19
set_lockfile_metadata

(lockfile-metadata), 8
set_opts (packrat-options), 13
snapshot, 5, 8, 10, 18, 19, 21
src_dir (packrat-resources), 15
status, 18, 20, 20

tar, 3, 21

unbundle, 3, 21
untar, 3
unused_packages, 3, 22
update.packages, 21
user_lib (packrat-external), 11

with_extlib (packrat-external), 11

23

	bundle
	clean
	disable
	init
	install
	install_local
	lockfile-metadata
	packify
	packrat
	packrat-external
	packrat-mode
	packrat-options
	packrat-resources
	repository-management
	repos_create
	repos_upload
	restore
	search_path
	snapshot
	status
	unbundle
	unused_packages
	Index

