
Package ‘pak’
April 11, 2022

Version 0.3.0

Title Another Approach to Package Installation

Description The goal of 'pak' is to make package installation faster and
more reliable. In particular, it performs all HTTP operations in parallel,
so metadata resolution and package downloads are fast. Metadata and package
files are cached on the local disk as well. 'pak' has a dependency solver,
so it finds version conflicts before performing the installation. This
version of 'pak' supports CRAN, 'Bioconductor' and 'GitHub' packages as well.

License GPL-3

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.1.2.9000

Depends R (>= 3.2)

Imports tools, utils

Suggests callr (>= 3.7.0), cli (>= 3.2.0), covr, curl (>= 4.3.2), desc
(>= 1.4.1), digest, distro, filelock (>= 1.0.2), gitcreds, glue
(>= 1.6.2), mockery, pingr, jsonlite (>= 1.8.0), pkgcache (>=
2.0.1), pkgdepends (>= 0.3.0), pkgsearch (>= 3.1.0),
prettyunits, processx (>= 3.5.2), ps (>= 1.6.0), rprojroot (>=
2.0.2), rstudioapi, testthat, withr

Note This field has Remotes syntax, but repeat remotes in `Remotes`!

Config/needs/dependencies callr, cli, curl, distro, filelock, glue,
jsonlite, pkgcache, pkgdepends, pkgsearch, prettyunits,
processx, ps, rprojroot

Config/testthat/edition 3

URL https://pak.r-lib.org/

BugReports https://github.com/r-lib/pak/issues

BuildResaveData no

NeedsCompilation no

1

https://pak.r-lib.org/
https://github.com/r-lib/pak/issues

2 R topics documented:

Author Gábor Csárdi [aut, cre],
Jim Hester [aut],
RStudio [cph, fnd]

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2022-04-11 12:10:02 UTC

R topics documented:

cache_summary . 3
handle_package_not_found . 4
lib_status . 5
local_deps . 6
local_deps_explain . 6
local_install . 7
local_install_deps . 8
local_install_dev_deps . 9
local_package_trees . 10
local_system_requirements . 11
lockfile_create . 12
lockfile_install . 13
meta_summary . 14
pak . 15
pak_cleanup . 16
pak_install_extra . 17
pak_package_sources . 17
pak_setup . 20
pak_sitrep . 20
pak_update . 21
pkg_deps . 21
pkg_deps_explain . 22
pkg_deps_tree . 23
pkg_download . 24
pkg_history . 25
pkg_install . 25
pkg_name_check . 26
pkg_remove . 27
pkg_search . 28
pkg_status . 29
repo_add . 29
repo_get . 31
repo_status . 32

Index 34

cache_summary 3

cache_summary Package cache utilities

Description

Various utilities to inspect and clean the package cache. See the pkgcache package if you need for
control over the package cache.

Usage

cache_summary()

cache_list(...)

cache_delete(...)

cache_clean()

Arguments

... For cache_list() and cache_delete(), ... may contain filters, where the ar-
gument name is the column name. E.g. package, version, etc. Call cache_list()
without arguments to see the available column names. If you call cache_delete()
without arguments, it will delete all cached files.

Details

cache_summary() returns a summary of the package cache.

cache_list() lists all (by default), or a subset of packages in the package cache.

cache_delete() deletes files from the cache.

cache_clean() deletes all files from the cache.

Value

cache_summary() returns a list with elements:

• cachepath: absolute path to the package cache

• files: number of files (packages) in the cache

• size: total size of package cache in bytes

cache_list() returns a data frame with the data about the cache.

cache_delete() returns nothing.

cache_clean() returns nothing.

4 handle_package_not_found

Examples

Summary
cache_summary()

List packages
cache_list()
cache_list(package = "recipes")
cache_list(platform = "source")

Delete packages
cache_delete(package = "knitr")
cache_delete(platform = "macos")

cache_clean()

handle_package_not_found

Install missing packages on the fly

Description

Use this function to set up a global error handler, that is called if R fails to load a package. This
handler will offer yout the choice of installing the missing package (and all its dependencies), and
in some cases it can also remedy the error and restart the code.

Usage

handle_package_not_found(err)

Arguments

err The error object, of class packageNotFoundError.

Details

You are not supposed to call this function directly. Instead, set it up as a global error handler,
possibly in your .Rprofile file:

if (interactive() && getRversion() >= "4.0.0") {
globalCallingHandlers(
packageNotFoundError = function(err) {
try(pak::handle_package_not_found(err))

}
)

}

lib_status 5

Global error handlers are only supported in R 4.0.0 and later.

Currently handle_package_not_found() does not do anything in non-interactive mode (including
in knitr, testthat and RStudio notebooks), this might change in the future.

In some cases it is possible to remedy the original computation that tried to load the missing pack-
age, and pak will offer you to do so after a successful installation. Currently, in R 4.0.4, it is not
possible to continue a failed library() call.

Value

Nothing.

lib_status Status of packages in a library

Description

Status of packages in a library

Usage

lib_status(lib = .libPaths()[1])

pkg_list(lib = .libPaths()[1])

Arguments

lib Path to library.

Value

Data frame the contains data about the packages installed in the library.

See Also

Other package functions: pak_package_sources, pak(), pkg_deps_tree(), pkg_deps(), pkg_download(),
pkg_install(), pkg_remove(), pkg_status()

6 local_deps_explain

local_deps Dependencies of a package tree

Description

Dependencies of a package tree

Usage

local_deps(root = ".", upgrade = TRUE, dependencies = NA)

local_deps_tree(root = ".", upgrade = TRUE, dependencies = NA)

local_dev_deps(root = ".", upgrade = TRUE, dependencies = TRUE)

local_dev_deps_tree(root = ".", upgrade = TRUE, dependencies = TRUE)

Arguments

root Path to the package tree.

upgrade Whether to use the most recent available package versions.

dependencies Which dependencies to print. Defaults to the hard dependencies for local_deps()
and local_deps_tree() and the hard dependencies plus the development de-
pendencies for local_dev_deps() and local_dev_deps_tree().

Value

All of these functions return the dependencies in a data frame. local_deps_tree() and local_dev_deps_tree()
also print the dependency tree.

See Also

Other local package trees: local_deps_explain(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_deps_explain Explain dependencies of a package tree

Description

These functions are similar to pkg_deps_explain(), but work on a local package tree. local_dev_deps_explain()
also includes development dependencies.

local_install 7

Usage

local_deps_explain(deps, root = ".", upgrade = TRUE, dependencies = NA)

local_dev_deps_explain(deps, root = ".", upgrade = TRUE, dependencies = TRUE)

Arguments

deps Package names of the dependencies to explain.

root Path to the package tree.

upgrade Whether to use the most recent available package versions.

dependencies Which dependencies to print. Defaults to the hard dependencies for local_deps()
and local_deps_tree() and the hard dependencies plus the development de-
pendencies for local_dev_deps() and local_dev_deps_tree().

See Also

Other local package trees: local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_install Install a package tree

Description

Installs a package tree (or source package file), together with its dependencies.

Usage

local_install(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = NA

)

Arguments

root Path to the package tree.

lib Package library to install the packages to. Note that all dependent packages will
the be installed here, even if they are already installed in another library.

upgrade When FALSE, the default, does the minimum amount of work to give you the
latest version of pkg. It will only upgrade packages if pkg or one of its explicitly
requires a higher version than what you currently have.
When upgrade = TRUE, will do ensure that you have the latest version of pkg
and all its dependencies.

8 local_install_deps

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies Dependency types. See pkgdepends::as_pkg_dependencies() for possible
values. Note that changing this argument from the default might result an in-
stallation failure, e.g. if you set it to FALSE, packages might not build if their
dependencies are not already installed.

Details

local_install() is equivalent to pkg_install("local::.").

Value

Data frame, with information about the installed package(s).

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_package_trees, pak()

local_install_deps Install the dependencies of a package tree

Description

Installs the hard dependencies of a package tree (or source package file), without installing the
package tree itself.

Usage

local_install_deps(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = NA

)

Arguments

root Path to the package tree.

lib Package library to install the packages to. Note that all dependent packages will
the be installed here, even if they are already installed in another library.

local_install_dev_deps 9

upgrade When FALSE, the default, does the minimum amount of work to give you the
latest version of pkg. It will only upgrade packages if pkg or one of its explicitly
requires a higher version than what you currently have.
When upgrade = TRUE, will do ensure that you have the latest version of pkg
and all its dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies Dependency types. See pkgdepends::as_pkg_dependencies() for possible
values. Note that changing this argument from the default might result an in-
stallation failure, e.g. if you set it to FALSE, packages might not build if their
dependencies are not already installed.

Details

Note that development (and optional) dependencies, under Suggests in DESCRIPTION, are not in-
stalled. If you want to install them as well, use local_install_dev_deps().

Value

Data frame, with information about the installed package(s).

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_install_dev_deps

Install all dependencies of a package tree

Description

Installs all dependencies of a package tree (or source package file), without installing the package
tree itself. It installs the development dependencies as well, specified in the Suggests field of
DESCRIPTION.

Usage

local_install_dev_deps(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = TRUE

)

10 local_package_trees

Arguments

root Path to the package tree.
lib Package library to install the packages to. Note that all dependent packages will

the be installed here, even if they are already installed in another library.
upgrade When FALSE, the default, does the minimum amount of work to give you the

latest version of pkg. It will only upgrade packages if pkg or one of its explicitly
requires a higher version than what you currently have.
When upgrade = TRUE, will do ensure that you have the latest version of pkg
and all its dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies Dependency types. See pkgdepends::as_pkg_dependencies() for possible
values. Note that changing this argument from the default might result an in-
stallation failure, e.g. if you set it to FALSE, packages might not build if their
dependencies are not already installed.

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install(),
local_package_trees, pak()

local_package_trees Local package trees

Description

pak can install packages from local package trees. This is convenient for package development. See
the following functions:

• local_install() installs a package from a package tree and all of its (hard) dependencies
(i.e. Includes, Depends, LinkingTo.

• local_install_deps() installs all hard dependencies of a package.
• local_install_dev_deps() installs all hard and soft dependencies of a package. This func-

tion is intended for active package development.

Details

Note that the last two functions do not install the package in the specified package tree itself, only
its dependencies. This is convenient if the package itself is loaded via some other means, e.g.
devtools::load_all(), for development.

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), pak()

local_system_requirements 11

local_system_requirements

Query system requirements

Description

Returns a character vector of commands to run that will install system requirements for the queried
operating system.

local_system_requirements() queries system requirements for a dev package (and its depen-
dencies) given its root path.

pkg_system_requirements() queries system requirements for existing packages (and their de-
pendencies).

Usage

local_system_requirements(
os = NULL,
os_release = NULL,
root = ".",
execute = FALSE,
sudo = execute,
echo = FALSE

)

pkg_system_requirements(
package,
os = NULL,
os_release = NULL,
execute = FALSE,
sudo = execute,
echo = FALSE

)

Arguments

os, os_release The operating system and operating system release version, e.g. "ubuntu", "de-
bian", "centos", "redhat". See https://github.com/rstudio/r-system-requirements#
operating-systems for all full list of supported operating systems.
If NULL, the default, these will be looked up using distro::distro().

root Path to the package tree.

execute, sudo If execute is TRUE, pak will execute the system commands (if any). If sudo is
TRUE, pak will prepend the commands with sudo.

echo If echo is TRUE and execute is TRUE, echo the command output.

package Package names to lookup system requirements for.

https://github.com/rstudio/r-system-requirements#operating-systems
https://github.com/rstudio/r-system-requirements#operating-systems
https://en.wikipedia.org/wiki/Sudo

12 lockfile_create

Value

A character vector of commands needed to install the system requirements for the package.

Examples

local_system_requirements("ubuntu", "20.04")

pkg_system_requirements("pak", "ubuntu", "20.04")
pkg_system_requirements("pak", "redhat", "7")
pkg_system_requirements("config", "ubuntu", "20.04") # no sys reqs
pkg_system_requirements("curl", "ubuntu", "20.04")
pkg_system_requirements("git2r", "ubuntu", "20.04")
pkg_system_requirements(c("config", "git2r", "curl"), "ubuntu", "20.04")
queried packages must exist
pkg_system_requirements("iDontExist", "ubuntu", "20.04")
pkg_system_requirements(c("curl", "iDontExist"), "ubuntu", "20.04")

lockfile_create Create a lock file

Description

The lock file can be used later, possibly in a new R session, to carry out the installation of the
dependencies, with lockfile_install().

Usage

lockfile_create(
pkg = "deps::.",
lockfile = "pkg.lock",
lib = NULL,
upgrade = FALSE,
dependencies = NA

)

Arguments

pkg Package names or remote package specifications to install. See pak package
sources for details.

lockfile Path to the lock file.

lib Package library to install the packages to. Note that all dependent packages will
the be installed here, even if they are already installed in another library.

lockfile_install 13

upgrade When FALSE, the default, does the minimum amount of work to give you the
latest version of pkg. It will only upgrade packages if pkg or one of its explicitly
requires a higher version than what you currently have.
When upgrade = TRUE, will do ensure that you have the latest version of pkg
and all its dependencies.

dependencies Dependency types. See pkgdepends::as_pkg_dependencies() for possible
values. Note that changing this argument from the default might result an in-
stallation failure, e.g. if you set it to FALSE, packages might not build if their
dependencies are not already installed.

Details

Note, since the URLs of CRAN and most CRAN-like repositories change over time, in practice you
cannot use the lock file much later. For example, binary packages of older package version might
be deleted from the repository, breaking the URLs in the lock file.

Currently the intended use case of lock files in on CI systems, to facilitate caching. The (hash of
the) lock file provides a good key for caching systems.

See Also

Other lock files: lockfile_install()

lockfile_install Install packages based on a lock file

Description

Install a lock file that was created with lockfile_create().

Usage

lockfile_install(lockfile = "pkg.lock", lib = .libPaths()[1], update = TRUE)

Arguments

lockfile Path to the lock file.

lib Library to carry out the installation on.

update Whether to online install the packages that either not installed in lib, or a dif-
ferent version is installed for them.

See Also

Other lock files: lockfile_create()

14 meta_summary

meta_summary Metadata cache utilities

Description

Various utilities to inspect, update and clean the metadata cache. See the pkgcache package if you
need for control over the metadata cache.

Usage

meta_summary()

meta_list(pkg = NULL)

meta_update()

meta_clean(force = FALSE)

Arguments

pkg Package names, if specified then only entries for pkg are returned.

force If FALSE, then pak will ask for confirmation.

Details

meta_summary() returns a summary of the metadata cache.

meta_list() lists all (or some) packages in the metadata database.

meta_update() updates the metadata database. You don’t normally need to call this function man-
ually, because all pak functions (e.g. pkg_install(), pkg_download(), etc.) call it automatically,
to make sure that they use the latest available metadata.

meta_clean() deletes the whole metadata DB.

Value

meta_summary() returns a list with entries:

• cachepath: absolute path of the metadata cache.

• current_db: the file that contains the current metadata database. It is currently an RDS file,
but this might change in the future.

• raw_files: the files that are the downloaded PACKAGES* files.

• db_files: all metadata database files.

• size: total size of the metadata cache.

meta_list() returns a data frame of all available packages in the configured repositories.

meta_update() returns nothing.

meta_clean() returns nothing

pak 15

Examples

Metadata cache summary
meta_cummary()

The current metadata DB
meta_list()
Selected packages only
meta_list(pkg = c("shiny", "htmlwidgets"))

Update the metadata DB
meta_update()

Delete the metadata DB
meta_clean()

pak Install the required packages

Description

Install the specified packages, or the ones required by the package or project in the current working
directory.

Usage

pak(pkg = NULL, ...)

Arguments

pkg Package names or remote package specifications to install. See pak package
sources for details. If NULL, will install all development dependencies for the
current package.

... Extra arguments are passed to pkg_install() or local_install_dev_deps().

Details

This is a convenience function:

• If you want to install some packages, it is easier to type than pkg_install().

• If you want to install all the packages that are needed for the development of a package or
project, then it is easier to type than local_install_dev_deps().

• You don’t need to remember two functions to install packages, just one.

16 pak_cleanup

See Also

Other package functions: lib_status(), pak_package_sources, pkg_deps_tree(), pkg_deps(),
pkg_download(), pkg_install(), pkg_remove(), pkg_status()

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees

pak_cleanup Clean up pak caches

Description

Clean up pak caches

Usage

pak_cleanup(
package_cache = TRUE,
metadata_cache = TRUE,
pak_lib = TRUE,
force = FALSE

)

Arguments

package_cache Whether to clean up the cache of package files.

metadata_cache Whether to clean up the cache of package meta data.

pak_lib This argument is now deprecated and does nothing.

force Do not ask for confirmation. Note that to use this function in non-interactive
mode, you have to specify force = FALSE.

See Also

Other pak housekeeping: pak_sitrep()

pak_install_extra 17

pak_install_extra Install all optional dependencies of pak

Description

These packages are not required for any pak functionality. They are recommended for some func-
tions that return values that are best used with these packages. E.g. many functions return data
frames, which are printed nicer is the pillar package is available.

Usage

pak_install_extra(upgrade = FALSE)

Arguments

upgrade Whether to install or upgrade to the latest versions of the optional packages.

Details

Currently only one package is optional: pillar.

pak_package_sources Package sources

Description

Package sources

Standard packages

pak can install packages from various package sources. By default, a package name without the
specification of its source, refers to a CRAN or Bioconductor package. pak calls these standard
packages. For example:

CRAN package
pkg_install("glue")
BioC package
pkg_install("limma")

When considering a standard package, the calling version of R is used to determine the available
source and binary packages on CRAN and the Bioconductor repositories.

The full specification of standard packages is simply

[standard::]<package>

If you know the exact source of the package, you can also write

cran::<package>
bioc::<package>

18 pak_package_sources

GitHub packages

pak can install packages from GitHub repositories. Any package that is specified in the user/repo
notation is taken to be a GitHub package. For example:

Package from GitHub
pkg_install("r-lib/glue")

The full specification of GitHub packages is

[<package>=][github::]<username>/<repo>[/<subdir>]
[@<committish> | #<pull> | @[*]release]

• <package> is the name of the package. If this is missing, the name of the package must match
the name of the repository.

• <username>: GitHub user or organization name.
• <repo>: repository name.
• <subdir>: If the R package is in a subdirectory within the repository.
• <commitish>: A branch name, git tag or SHA hash, to specify the branch, tag or commit to

download or install.
• <pull>: Pull request number, to install the branch that corresponds to a pull request.

• The @*release string can be used to install the latest release.

Local package trees

pak can install packages from package trees. You can either use the local_install() function for
this, or specify the local:: package source. E.g. these are equivalent:

local_install("/path/to/my/package")
pkg_install("local::/path/to/my/package")

The local:: form is handy if you want to mix it with other package specifications, e.g. to install a
local package, and another standard package:

pkg_install(c("local://path/to/my/package", "testthat"))

The Remotes field

You can mark any regular dependency defined in the Depends, Imports, Suggests or Enhances
fields as being installed from a remote location by adding the remote location to Remotes in your
DESCRIPTION file. This will cause pak to download and install them from the specified location,
instead of CRAN.

The remote dependencies specified in Remotes is a comma separated list of package sources:

Remotes: <pkg-source-1>, <pkg-source-2>, [...]

Note that you will still need add the package to one of the regular dependency fields, i.e. Imports,
Suggests, etc. Here is a concrete example that specifies the r-lib/glue package:

pak_package_sources 19

Imports: glue
Remotes: r-lib/glue,
r-lib/httr@v0.4,
klutometis/roxygen#142,
r-lib/testthat@c67018fa4970

The CRAN and Bioconductor repositories do not support the Remotes field, so you need to remove
this field, before submitting your package to either of them.

The package dependency solver

pak contains a package dependency solver, that makes sure that the package source and version
requirements of all packages are satisfied, before starting an installation. For CRAN and BioC
packages this is usually automatic, because these repositories are generally in a consistent state. If
packages depend on other other package sources, however, this is not the case.

Here is an example of a conflict detected:

> pak::pkg_install(c("r-lib/pkgcache@conflict", "r-lib/cli@message"))
Error: Cannot install packages:
* Cannot install `r-lib/pkgcache@conflict`.
- Cannot install dependency r-lib/cli@main

* Cannot install `r-lib/cli@main`.
- Conflicts r-lib/cli@message

r-lib/pkgcache@conflict depends on the main branch of r-lib/cli, whereas, we explicitly
requested the message branch. Since it cannot install both versions into a single library, pak quits.

When pak considers a package for installation, and the package is given with its name only, (e.g.
as a dependency of another package), then the package may have any package source. This is
necessary, because one R package library may contain only at most one version of a package with
a given name.

pak’s behavior is best explained via an example. Assume that you are installing a local package (see
below), e.g. local::., and the local package depends on pkgA and user/pkgB, the latter being a
package from GitHub (see below), and that pkgA also depends on pkgB. Now pak must install pkgB
and user/pkgB. In this case pak interprets pkgB as a package from any package source, instead of
a standard package, so installing user/pkgB satisfies both requirements.

Note that that cran::pkgB and user/pkgB requirements result a conflict that pak cannot resolve.
This is because the first one must be a CRAN package, and the second one must be a GitHub
package, and two different packages with the same cannot be installed into an R package library.

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_download(),
pkg_install(), pkg_remove(), pkg_status()

20 pak_sitrep

pak_setup Set up private pak library (deprecated)

Description

This function is deprecated and does nothing. Recent versions of pak do not need a pak_setup()
call.

Usage

pak_setup(mode = c("auto", "download", "copy"), quiet = FALSE)

Arguments

mode Where to get the packages from. "download" will try to download them from
CRAN. "copy" will try to copy them from your current "regular" package li-
brary. "auto" will try to copy first, and if that fails, then it tries to download.

quiet Whether to omit messages.

Value

The path to the private library, invisibly.

pak_sitrep pak SITuation REPort

Description

It prints

• pak version,

• the current library path,

• location of the private library,

• whether the pak private library exists,

• whether the pak private library is functional.

Usage

pak_sitrep()

See Also

Other pak housekeeping: pak_cleanup()

pak_update 21

pak_update Update pak itself

Description

Use this function to update the released or development version of pak.

Usage

pak_update(force = FALSE, stream = c("auto", "stable", "rc", "devel"))

Arguments

force Whether to force an update, even if no newer version is available.

stream Whether to update to the

• "stable",
• "rc" (release candidate) or
• "devel" (development) version.
• "auto" updates to the same stream as the current one.

Often there is no release candidate version, then "rc" also installs the stable
version.

Value

Nothing.

pkg_deps Look up the dependencies of a package

Description

Look up the dependencies of a package

Usage

pkg_deps(pkg, upgrade = TRUE, dependencies = NA)

Arguments

pkg Package name or remote package specification to resolve.

upgrade Whether to use the most recent available package versions.

dependencies Dependency types. See pkgdepends::as_pkg_dependencies() for possible
values.

22 pkg_deps_explain

Value

A data frame.

See Also

Other package functions: lib_status(), pak_package_sources, pak(), pkg_deps_tree(), pkg_download(),
pkg_install(), pkg_remove(), pkg_status()

Examples

pkg_deps("curl")
pkg_deps("r-lib/fs")

pkg_deps_explain Explain how a package depends on other packages

Description

Extract dependency chains from pkg to deps.

Usage

pkg_deps_explain(pkg, deps, upgrade = TRUE, dependencies = NA)

Arguments

pkg Package name or remote package specification.

deps Package names of the dependencies to explain.

upgrade Whether to use the most recent available package versions.

dependencies Dependency types. See pkgdepends::as_pkg_dependencies() for possible
values.

Details

This function is similar to pkg_deps_tree(), but its output is easier to read if you are only inter-
ested is certain packages (deps).

Value

A named list with a print method. First entries are the function arguments: pkg, deps, dependencies,
the last one is paths and it contains the results in a named list, the names are the package names in
deps.

pkg_deps_tree 23

Examples

Not run:
How does the GH version of usethis depend on cli and ps?
pkg_deps_explain("r-lib/usethis", c("cli", "ps"))

End(Not run)

pkg_deps_tree Draw the dependency tree of a package

Description

Draw the dependency tree of a package

Usage

pkg_deps_tree(pkg, upgrade = TRUE, dependencies = NA)

Arguments

pkg Package name or remote package specification to resolve.

upgrade Whether to use the most recent available package versions.

dependencies Dependency types. See pkgdepends::as_pkg_dependencies() for possible
values.

Value

The same data frame as pkg_deps(), invisibly.

See Also

Other package functions: lib_status(), pak_package_sources, pak(), pkg_deps(), pkg_download(),
pkg_install(), pkg_remove(), pkg_status()

Examples

pkg_deps_tree("dplyr")
pkg_deps_tree("r-lib/usethis")

24 pkg_download

pkg_download Download a package and potentially its dependencies as well

Description

Download a package and potentially its dependencies as well

Usage

pkg_download(
pkg,
dest_dir = ".",
dependencies = FALSE,
platforms = NULL,
r_versions = NULL

)

Arguments

pkg Package names or remote package specifications to download.

dest_dir Destination directory for the packages. If it does not exist, then it will be created.

dependencies Dependency types, to download the (recursive) dependencies of pkg as well.
See pkgdepends::as_pkg_dependencies() for possible values.

platforms Types of binary or source packages to download. The default is the value of
pkgdepends::default_platforms().

r_versions R version(s) to download packages for. (This does not matter for source pack-
ages, but it does for binaries.) It defaults to the current R version.

Value

Data frame with information about the downloaded packages, invisibly.

See Also

Other package functions: lib_status(), pak_package_sources, pak(), pkg_deps_tree(), pkg_deps(),
pkg_install(), pkg_remove(), pkg_status()

Examples

pkg_download("forcats")
pkg_download("r-lib/pak", platforms = "source")

pkg_history 25

pkg_history Query the history of a package

Description

Query the history of a package

Usage

pkg_history(pkg)

Arguments

pkg Package name.

Value

A data frame, with one row per package version.

pkg_install Install a package

Description

Install a package and its dependencies into a single package library.

Usage

pkg_install(
pkg,
lib = .libPaths()[[1L]],
upgrade = FALSE,
ask = interactive(),
dependencies = NA

)

Arguments

pkg Package names or remote package specifications to install. See pak package
sources for details.

lib Package library to install the packages to. Note that all dependent packages will
the be installed here, even if they are already installed in another library.

26 pkg_name_check

upgrade When FALSE, the default, does the minimum amount of work to give you the
latest version of pkg. It will only upgrade packages if pkg or one of its explicitly
requires a higher version than what you currently have.
When upgrade = TRUE, will do ensure that you have the latest version of pkg
and all its dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies Dependency types. See pkgdepends::as_pkg_dependencies() for possible
values. Note that changing this argument from the default might result an in-
stallation failure, e.g. if you set it to FALSE, packages might not build if their
dependencies are not already installed.

Value

(Invisibly) A data frame with information about the installed package(s).

See Also

Other package functions: lib_status(), pak_package_sources, pak(), pkg_deps_tree(), pkg_deps(),
pkg_download(), pkg_remove(), pkg_status()

Examples

Not run:
pkg_install("dplyr")

Upgrade dplyr and all its dependencies
pkg_install("dplyr", upgrade = TRUE)

Install the development version of dplyr
pkg_install("tidyverse/dplyr")

Switch back to the CRAN version. This will be fast because
pak will have cached the prior install.
pkg_install("dplyr")

End(Not run)

pkg_name_check Check if an R package name is available

Description

Additionally, look up the candidate name in a number of dictionaries, to make sure that it does not
have a negative meaning.

pkg_remove 27

Usage

pkg_name_check(name, dictionaries = NULL)

Arguments

name Package name candidate.

dictionaries Character vector, the dictionaries to query. Available dictionaries: * wikipedia
* wiktionary, * acromine (http://www.nactem.ac.uk/software/acromine/),
* sentiment (https://github.com/fnielsen/afinn), * urban (Urban Dic-
tionary). If NULL (by default), the Urban Dictionary is omitted, as it is often
offensive.

Details

Valid package name check:
Check the validity of name as a package name. See ’Writing R Extensions’ for the allowed pack-
age names. Also checked against a list of names that are known to cause problems.

CRAN checks:
Check name against the names of all past and current packages on CRAN, including base and
recommended packages.

Bioconductor checks:
Check name against all past and current Bioconductor packages.

Profanity check:
Check name with https://www.purgomalum.com/service/containsprofanity to make sure
it is not a profanity.

Dictionaries:
See the dictionaries argument.

Value

pkg_name_check object with a custom print method.

pkg_remove Remove installed packages

Description

Remove installed packages

Usage

pkg_remove(pkg, lib = .libPaths()[[1L]])

http://www.nactem.ac.uk/software/acromine/
https://github.com/fnielsen/afinn
https://www.purgomalum.com/service/containsprofanity

28 pkg_search

Arguments

pkg A character vector of packages to remove.

lib library to remove packages from

See Also

Other package functions: lib_status(), pak_package_sources, pak(), pkg_deps_tree(), pkg_deps(),
pkg_download(), pkg_install(), pkg_status()

pkg_search Search CRAN packages

Description

Search the indexed database of current CRAN packages. It uses the pkgsearch package. See
that package for more details and also pkgsearch::pkg_search() for pagination, more advanced
searching, etc.

Usage

pkg_search(query, ...)

Arguments

query Search query string.

... Additional arguments passed to pkgsearch::pkg_search()

Value

A data frame, that is also a pak_search_result object with a custom print method. To see the
underlying table, you can use [] to drop the extra classes. See examples below.

Examples

Simple search
pkg_search("survival")

See the underlying data frame
psro <- pkg_search("ropensci")
psro[]

pkg_status 29

pkg_status Display installed locations of a package

Description

Display installed locations of a package

Usage

pkg_status(pkg, lib = .libPaths())

Arguments

pkg Name of one or more installed packages to display status for.

lib One or more library paths to lookup packages status in.

Value

Data frame with data about installations of pkg. Columns include: library, package, title,
version.

See Also

Other package functions: lib_status(), pak_package_sources, pak(), pkg_deps_tree(), pkg_deps(),
pkg_download(), pkg_install(), pkg_remove()

Examples

Not run:
pkg_status("MASS")

End(Not run)

repo_add Add a new CRAN-like repository

Description

Add a new repository to the list of repositories that pak uses to look for packages.

Usage

repo_add(..., .list = NULL)

repo_resolve(spec)

30 repo_add

Arguments

... Repository specifications, possibly named character vectors. See details below.

.list List or character vector of repository specifications. This argument is easier to
use programmatically than See details below.

spec Repository specification, a possibly named character scalar.

Details

repo_add() adds new repositories. It resolves the specified repositories using repo_resolve()
and then modifies the repos global option.

repo_add() only has an effect in the current R session. If you want to keep your configuration
between R sessions, then set the repos option to the desired value in your user or project .Rprofile
file.

Value

repo_resolve() returns a named character scalar, the URL of the repository.

Repository specifications

The format of a repository specification is a named or unnamed character scalar. If the name is
missing, pak adds a name automatically. The repository named CRAN is the main CRAN repository,
but otherwise names are informational.

Currently supported repository specifications:

• URL pointing to the root of the CRAN-like repository. Example:

https://cloud.r-project.org

• RSPM@<date>, RSPM (RStudio Package Manager) snapshot, at the specified date.
• RSPM@<package>-<version> RSPM snapshot, for the day after the release of <version> of

<package>.
• RSPM@R-<version> RSPM snapshot, for the day after R <version> was released.
• MRAN@<date>, MRAN (Microsoft R Application Network) snapshot, at the specified date.
• MRAN@<package>-<version> MRAN snapshot, for the day after the release of <version> of

<package>.
• MRAN@R-<version> MRAN snapshot, for the day after R <version> was released.

Notes:

• See more about RSPM at https://packagemanager.rstudio.com/client/#/.

• See more about MRAN snapshots at https://mran.microsoft.com/timemachine.

• All dates (or times) can be specified in the ISO 8601 format.

• If RSPM does not have a snapshot available for a date, the next available date is used.

• Dates that are before the first, or after the last RSPM snapshot will trigger an error.

• Dates before the first, or after the last MRAN snapshot will trigger an error.

• Unknown R or package versions will trigger an error.

https://mran.microsoft.com/timemachine

repo_get 31

See Also

Other repository functions: repo_get(), repo_status()

Examples

repo_add(RSPMdplyr100 = "RSPM@dplyr-1.0.0")
repo_get()

repo_resolve("MRAN@2020-01-21")
repo_resolve("RSPM@2020-01-21")
repo_resolve("MRAN@dplyr-1.0.0")
repo_resolve("RSPM@dplyr-1.0.0")
repo_resolve("MRAN@R-4.0.0")
repo_resolve("RSPM@R-4.0.0")

repo_get Query the currently configured CRAN-like repositories

Description

pak uses the repos option, see options(). It also automatically adds a CRAN mirror if none is
set up, and the correct version of the Bioconductor repositories. See the cran_mirror and bioc
arguments.

Usage

repo_get(r_version = getRversion(), bioc = TRUE, cran_mirror = NULL)

Arguments

r_version R version to use to determine the correct Bioconductor version, if bioc = TRUE.
bioc Whether to automatically add the Bioconductor repositories to the result.
cran_mirror CRAN mirror to use. Leave it at NULL to use the mirror in getOption("repos")

or an automatically selected one.

Details

repo_get() returns the table of the currently configured repositories.

See Also

Other repository functions: repo_add(), repo_status()

Examples

repo_get()

32 repo_status

repo_status Show the status of CRAN-like repositories

Description

It checks the status of the configured or supplied repositories.

Usage

repo_status(
platforms = NULL,
r_version = getRversion(),
bioc = TRUE,
cran_mirror = NULL

)

repo_ping(
platforms = NULL,
r_version = getRversion(),
bioc = TRUE,
cran_mirror = NULL

)

Arguments

platforms Platforms to use, default is the current platform, plus source packages.

r_version R version(s) to use, the default is the current R version, via getRversion().

bioc Whether to add the Bioconductor repositories. If you already configured them
via options(repos), then you can set this to FALSE.

cran_mirror The CRAN mirror to use.

Details

repo_ping() is similar to repo_status() but also prints a short summary of the data, and it returns
its result invisibly.

Value

A data frame that has a row for every repository, on every queried platform and R version. It has
these columns:

• name: the name of the repository. This comes from the names of the configured repositories
in options("repos"), or added by pkgcache. It is typically CRAN for CRAN, and the current
Bioconductor repositories are BioCsoft, BioCann, BioCexp, BioCworkflows.

• url: base URL of the repository.

• bioc_version: Bioconductor version, or NA for non-Bioconductor repositories.

repo_status 33

• platform: platform, possible values are source, macos and windows currently.

• path: the path to the packages within the base URL, for a given platform and R version.

• r_version: R version, one of the specified R versions.

• ok: Logical flag, whether the repository contains a metadata file for the given platform and R
version.

• ping: HTTP response time of the repository in seconds. If the ok column is FALSE, then this
columns in NA.

• error: the error object if the HTTP query failed for this repository, platform and R version.

See Also

Other repository functions: repo_add(), repo_get()

Examples

repo_status()
repo_status(

platforms = c("windows", "macos"),
r_version = c("4.0", "4.1")

)
repo_ping()

Index

∗ library functions
lib_status, 5

∗ local package trees
local_deps, 6
local_deps_explain, 6
local_install, 7
local_install_deps, 8
local_install_dev_deps, 9
local_package_trees, 10
pak, 15

∗ lock files
lockfile_create, 12
lockfile_install, 13

∗ package functions
lib_status, 5
pak, 15
pak_package_sources, 17
pkg_deps, 21
pkg_deps_tree, 23
pkg_download, 24
pkg_install, 25
pkg_remove, 27
pkg_status, 29

∗ pak housekeeping
pak_cleanup, 16
pak_sitrep, 20

∗ repository functions
repo_add, 29
repo_get, 31
repo_status, 32

cache_clean (cache_summary), 3
cache_delete (cache_summary), 3
cache_list (cache_summary), 3
cache_summary, 3

distro::distro(), 11

getRversion(), 32

handle_package_not_found, 4

lib_status, 5, 16, 19, 22–24, 26, 28, 29
local_deps, 6, 7–10, 16
local_deps_explain, 6, 6, 8–10, 16
local_deps_tree (local_deps), 6
local_dev_deps (local_deps), 6
local_dev_deps_explain

(local_deps_explain), 6
local_dev_deps_tree (local_deps), 6
local_install, 6, 7, 7, 9, 10, 16
local_install(), 10, 18
local_install_deps, 6–8, 8, 10, 16
local_install_deps(), 10
local_install_dev_deps, 6–9, 9, 10, 16
local_install_dev_deps(), 9, 10, 15
local_package_trees, 6–10, 10, 16
local_system_requirements, 11
lockfile_create, 12, 13
lockfile_create(), 13
lockfile_install, 13, 13
lockfile_install(), 12

meta_clean (meta_summary), 14
meta_list (meta_summary), 14
meta_summary, 14
meta_update (meta_summary), 14

options(), 31

pak, 5–10, 15, 19, 22–24, 26, 28, 29
pak package sources, 12, 15, 25
pak_cleanup, 16, 20
pak_install_extra, 17
pak_package_sources, 5, 16, 17, 22–24, 26,

28, 29
pak_setup, 20
pak_sitrep, 16, 20
pak_sitrep_data (pak_sitrep), 20
pak_update, 21
pkg_deps, 5, 16, 19, 21, 23, 24, 26, 28, 29
pkg_deps(), 23

34

INDEX 35

pkg_deps_explain, 22
pkg_deps_explain(), 6
pkg_deps_tree, 5, 16, 19, 22, 23, 24, 26, 28,

29
pkg_deps_tree(), 22
pkg_download, 5, 16, 19, 22, 23, 24, 26, 28, 29
pkg_download(), 14
pkg_history, 25
pkg_install, 5, 16, 19, 22–24, 25, 28, 29
pkg_install(), 14, 15
pkg_list (lib_status), 5
pkg_name_check, 26
pkg_remove, 5, 16, 19, 22–24, 26, 27, 29
pkg_search, 28
pkg_status, 5, 16, 19, 22–24, 26, 28, 29
pkg_system_requirements

(local_system_requirements), 11
pkgdepends::as_pkg_dependencies(),

8–10, 13, 21–24, 26
pkgdepends::default_platforms(), 24
pkgsearch::pkg_search(), 28

repo_add, 29, 31, 33
repo_get, 31, 31, 33
repo_ping (repo_status), 32
repo_resolve (repo_add), 29
repo_status, 31, 32

	cache_summary
	handle_package_not_found
	lib_status
	local_deps
	local_deps_explain
	local_install
	local_install_deps
	local_install_dev_deps
	local_package_trees
	local_system_requirements
	lockfile_create
	lockfile_install
	meta_summary
	pak
	pak_cleanup
	pak_install_extra
	pak_package_sources
	pak_setup
	pak_sitrep
	pak_update
	pkg_deps
	pkg_deps_explain
	pkg_deps_tree
	pkg_download
	pkg_history
	pkg_install
	pkg_name_check
	pkg_remove
	pkg_search
	pkg_status
	repo_add
	repo_get
	repo_status
	Index

